庞皓计量经济学课后答案第三章
计量经济学第三版庞浩第三章习题
第三章习题3.1(1)2011年各地区的百户拥有家用汽车量及影响因素数据图形可以看出,2011年各地区的百户拥有家用汽车量及影响因素的差异明显,其变动的方向基本相同,相互间可能具有一定的相关性,因而将其模型设定为线性回归模型形式:Y=β1+β2X2+β3X3+β4X4估计参数Y=246.854+5.996865X 2-0.524027X 3-2.26568X 4模型检验① R 2是0.666062,修正的R 2为0.628957,说明模型对样本拟合较好 ② F 检验,分别针对H0:βj=0(j=1,2,3,4),给定显著性水平α=0.05,在F 分布表中查出自由度为k-1=3,n-k=27的临界值F α(3,27)=3.65,由表可知,F=17.95108>F α(3,27)=3.65,应拒绝原假设,回归方程显著。
③ t 检验,分别针对H0:βj=0(j=1,2,3,4),给定显著性水平α=0.05,查t 分布表得自由度为n-k=27临界值t 205.0(n-k )=2.0518。
对应的t 统计量分别为 4.749476,4.265020,-2.922950,-4.366842,其绝对值均大于t (27)=2.0518,所以这些系数都是显著的。
(2)人均GDP增加1万元,百户拥有家用汽车增加5.996865辆,城镇人口比重增加1个百分点,百户拥有家用汽车减少0.524027辆, 交通工具消费价格指数每上升1,百户拥有家用汽车减少2.265680辆。
(3)将其模型设定为 Y=β1+β2X 2+β3LnX 3+β4LnX 4Y=1148.758+5.135670X2-22.81005LnX3-230.8481LnX4改进后的R2为0.691952>原R2为0.666062,拟合程度得到了提高3.2(1)估计参数Y = - 18231.58+0.135474X 2 + 18.85348X 3 模型检验R 2是0.985838,修正的R 2是0.983950,说明模型对样本拟合较好F 检验,分别针对H 0;βj =0(j=1,2,3),给定显著性水平α=0.05,在F 分布表中查出自由度为k-1=2,n-k=15的临界值F α(2,15)=4.77,由表可知,F=522.0976>F (2,15)=4.77,应拒绝原假设,回归方程显著。
计量经济学(庞皓)第二版课后思考题答案3
答:多元线性回归分析中,多重可决系数是模型中解释变量个数的增函数,这给对比不同模 型的多重可决系数带来缺陷,所以需要修正。可决系数只涉及变差,没有考虑自由度。如果 用自由度去校正所计算的变差,可纠正解释变量个数不同引起的对比困难。 联系:由方差分析可以看出,F 检验与可决系数有密切联系,二者都建立在对应变量变 差分解的基础上。F 统计量也可通过可决系数计算。对方程联合显著性检验的 F 检验,实际 F 检验有精确的分布, 上也是对可决系数的显著性检验。区别: 它可以在给定显著性水平下, 给出统计意义上严格的结论。可决系数只能提供一个模糊的推测,可决系数越大,模型对数 据的拟合程度就越好。但要大到什么程度才算模型拟合得好,并没有一个绝对的数量标准。 3.5 什么是方差分析?对被解释变量的方差分析与对模型拟合优度的度量有什么联系和区 别? 答:被解释变量 Y 观测值的总变差分解式为: TSS = ESS + RSS 。将自由度考虑进去进行 方差分析,即得如下方差分析表: 变差来源 源于回归 源于残差 总变差
Y = b1 + β 2 X 2 + β3 X 3 + β 4 X 4 + u
其中,Y 为汽车销售量,X2 为居民收入, X3 为汽车价格, X4 为汽油价格,像其他费用、 道路状况、政策环境等次要因素包含在随机误差项 u 中。 3.9 说明用 Eviews 完成多元线性回归分析的具体操作步骤。 答:1、建立工作文件,建立一个 Group 对象,输入数据。 2、点击 Quick 下拉菜单中的 Estimate Equation。 3、在对话框 Equation Specification 栏中键入 Y C X2 X3 X4 ,点击 OK,即出现回归结 果。
而当 X 2 和 X 3 相互独立时, X 2 和 X 3 的斜方差等于零,即:
庞皓版计量经济学课后习题答案
第二章练习题参考解答练习题资料来源:《深圳统计年鉴2002》,中国统计出版社(1)建立深圳地方预算内财政收入对GDP的回归模型;(2)估计所建立模型的参数,解释斜率系数的经济意义;(3)对回归结果进行检验;(4)若是2005年年的国内生产总值为3600亿元,确定2005年财政收入的预测值和预测区间(0.05α=)。
2.2某企业研究与发展经费与利润的数据(单位:万元)列于下表:1995 1996 1997 1998 1999 2000 2001 2002 2003 2004研究与发展经费 10 10 8 8 8 12 12 12 11 11利润额 100 150 200 180 250 300 280 310 320 300 分析企业”研究与发展经费与利润额的相关关系,并作回归分析。
2.3为研究中国的货币供应量(以货币与准货币M2表示)与国内生产总值(GDP)的相互依存关系,分析表中1990年—2001年中国货币供应量(M2)和国内生产总值(GDP)的有关数据:年份货币供应量(亿元)M2国内生产总值(亿元)GDP1990 1529.31 8598.41991 19349.92 1662.51992 25402.22 6651.91993 34879.83 4560.51994 46923.54 6670.01995 60750.55 7494.91996 76094.96 6850.51997 90995.37 3142.71998 104498.57 6967.21999 119897.98 0579.42000 134610.38 8228.12001 158301.99 4346.4资料来源:《中国统计年鉴2002》,第51页、第662页,中国统计出版社对货币供应量与国内生产总值作相关分析,并说明分析结果的经济意义。
2.4表中是16支公益股票某年的每股帐面价值和当年红利:根据上表资料:(1)建立每股帐面价值和当年红利的回归方程;(2)解释回归系数的经济意义;(3)若序号为6的公司的股票每股帐面价值增加1元,估计当年红利可能为多少?2.5美国各航空公司业绩的统计数据公布在《华尔街日报1999年年鉴》(The Wall Street1。
庞皓《计量经济学》(第4版)章节题库-第3章 多元线性回归模型【圣才出品】
2
2
而 1-α 的置信度下 Y0 的置信区间为:
Yˆ0 t ˆ
1
X0
X
X
1
X
0
Y0
Yˆ0
t
ˆ
1
X0
X
X
1
X
0
2
2
6.多元回归模型中的解释变量个数为 k,那么回归方程显著性检验的 F 统计量的第一 自由度为 n-k-1,第二自由度为 k。( )
【答案】× 【解析】多元回归模型中的解释变量个数为 k,那么回归方程显著性检验的 F 统计量 的第一自由度为 k,第二自由度为 n-k-1。
2 / 22
圣才电子书
十万种考研考证电子书、题库视频学习平
台
【解析】在变量显著性检验中,针对某变量 Xj(j=1,2,…,k)设计的原假设与备
择假设为 H0:βj=0,H1:βj≠0。给定显著性水平 α 之后,可根据|t|>tα/2(n-k-1)
(或|t|≤tα/2(n-k-1))来决定拒绝(或接受)原假设 H0,从而判定对应的解释变量是
三、简答题 1.多元线性回归模型的基本假设是什么?试说明在证明最小二乘估计量的无偏性和 有效性的过程中,哪些基本假设起了作用? 答:(1)针对普通最小二乘法,多元线性回归模型的基本假设主要有以下三大类: ①关于模型设定的基本假设: 假定回归模型的设定是正确的,即模型的变量和函数形式均为正确的。 ②关于随机扰动项的基本假设: 假定随机扰动项满足条件零均值、条件同方差、条件序列不相关性以及服从正态分布。
2.调整的多重可决系数 Error!2 与多重可决系数 R2 的关系为( )。 A.Error!2=R2(n-1)/(n-k-1) B.Error!2=1-R2(n-1)/(n-k-1) C.Error!2=1-(1+R2)(n-1)/(n-k-1) D.Error!2=1-(1-R2)(n-1)/(n-k-1) 【答案】D 【解析】在样本容量一定的情况下,增加解释变量必定使得自由度减少,为了剔除变 量个数对拟合优度的影响,调整的多重可决系数是将残差平方和与总离差平方和处以各自
计量经济学(庞浩)第三章-多元线性回归模型(1)
矩阵X的秩为K(注意X为n行K列)。
Ran(X)= k
Rak(X'X)=k
即 (X'X) 可逆 假定6:正态性假定
ui ~ N (0, 2 )
u ~ N (0, 2I)
12
第二节 多元线性回归模型的估计
一、普通最小二乘法(OLS)
原则:寻求剩余平方和最小的参数估计式 min : ei2 (Yi Yˆi )2
1
X 22
Xk
2
2
u2
Yn
1 X 2n
X
kn
k
un
Y
X
βu
n 1
nk
k 1 n1
9
9
矩阵表示方式
总体回归函数 E(Y) = Xβ 或 Y = Xβ + u
样本回归函数 Yˆ = Xβˆ 或 Y = Xβˆ + e
其中: Y,Yˆ,u,e 都是有n个元素的列向量
β, βˆ 是有k 个 元素的列向量
多重可决系数:在多元回归模型中,由各个解释
变量联合起来解释了的Y的变差,在Y的总变差中占
的比重,用 R2表示 与简单线性回归中可决系数 r的2 区别只是 不Yˆi 同
多元回归中
Yˆi ˆ1 ˆ2 X2i ˆ3 X3i ˆk Xki
多重可决系数可表示为
R2 ESS TSS
(Yˆi Y )2 (Yi Y )2
0
2
X 2i
Yi
(ˆ1
ˆ2
X 2i
ˆ3
X 3i
ˆki
X ki )
0
(i 1, 2, n)
( j 1, 2, n)
ei 0
X2iei 0
2
计量经济学第三版庞浩第三章习题
计量经济学第三版庞浩第三章习题第三章习题3.1(1)2021年各地区的百户拥有家用汽车量及影响因素数据图形可以看出,2021年各地区的百户拥有家用汽车量及影响因素的差异明显,其变动的方向基本相同,相互间可能具有一定的相关性,因而将其模型设定为线性回归模型形式:Y=β1+β2X2+β3X3+β4X4① R2是0.*****,修正的R2为0.*****,说明模型对样本拟合较好② F检验,分别针对H0:βj=0(j=1,2,3,4),给定显著性水平α=0.05,在F分布表中查出自由度为k-1=3,n-k=27的临界值Fα(3,27)=3.65,由表可知,F=17.*****Fα(3,27)=3.65,应拒绝原假设,回归方程显著。
③ t检验,分别针对H0:βj=0(j=1,2,3,4),给定显著性水平α=0.05,查t分布表得自由度为n-k=27临界值t=2.0518,所以这些系数都是显著的。
(2)人均GDP增加1万元,百户拥有家用汽车增加5.*****辆,城镇人口比重增加1个百分点,百户拥有家用汽车减少0.*****辆,交通工具消费价格指数每上升1,百户拥有家用汽车减少2.*****辆。
0.052(n-k)=2.0518。
对应的t统计量分别为4.*****,4.*****,-2.*****,-4.*****,其绝对值均大于t(27)(3)将其模型设定为Y=β1+β2X2+β3LnX3+β4LnX4Y=1148.758+5.*****X2-22.*****LnX3-230.8481LnX4改进后的R2为0.*****原R2为0.*****,拟合程度得到了提高3.2(1)估计参数Y = - *****.58+0.*****X2 + 18.*****X3 模型检验R2是0.*****,修正的R2是0.*****,说明模型对样本拟合较好F检验,分别针对H0;βj=0(j=1,2,3),给定显著性水平α=0.05,在F分布表中查出自由度为k-1=2,n-k=15的临界值Fα(2,15)=4.77,由表可知,F=522.0976F(2,15)=4.77,应拒绝原假设,回归方程显著。
计量经济学第三版(庞浩)版课后答案全
第二章之五兆芳芳创作(1)①对于浙江省预算收入与全省生产总值的模型,用Eviews阐发结果如下:Dependent Variable: YMethod: Least SquaresDate: 12/03/14 Time: 17:00Sample (adjusted): 1 33Included observations: 33 after adjustmentsVariable Coefficient Std. Error t-Statistic Prob.XCR-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)③关于浙江省财务预算收入与全省生产总值的模型,查验模型的显著性:1)可决系数为0.983702,说明所建模型整体上对样本数据拟合较好.2)对于回归系数的t查验:t(β2)=43.25639>t0.025(31)=2.0395,对斜率系数的显著性查验标明,全省生产总值对财务预算总收入有显著影响.④用标准形式写出查验结果如下:(0.004072) (39.08196)t= (43.25639) (-3.948274)R2=0.983702 F=1871.115 n=33⑤经济意义是:全省生产总值每增加1亿元,财务预算总收入增加0.176124亿元.(2)当x=32000时,①进行点预测,由上可知Y=0.176124X—154.3063,代入可得:②进行区间预测:先由Eviews阐发:由上表可知,当Xf=32000时,将相关数据代入计较得到:5481.6617—2.0395x175.2325x√1/33+1852223.473/675977068 .2≤即Yf的置信区间为(5481.6617—64.9649, 5481.6617+64.9649)(3) 对于浙江省预算收入对数与全省生产总值对数的模型,由Eviews阐发结果如下:Dependent Variable: LNYMethod: Least SquaresDate: 12/03/14 Time: 18:00Sample (adjusted): 1 33Included observations: 33 after adjustmentsVariable Coefficient Std. Error t-Statistic Prob.LNXCR-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)③关于浙江省财务预算收入与全省生产总值的模型,查验其显著性:1)可决系数为0.963442,说明所建模型整体上对样本数据拟合较好.2)对于回归系数的t查验:t(β2)=28.58268>t0.025(31)=2.0395,对斜率系数的显著性查验标明,全省生产总值对财务预算总收入有显著影响.④经济意义:全省生产总值每增长1%,财务预算总收入增长0.980275%(1)对修建面积与建造单位成本模型,用Eviews阐发结果如下:Dependent Variable: YMethod: Least SquaresDate: 12/01/14 Time: 12:40Sample: 1 12Included observations: 12Variable Coefficient Std. Error t-Statistic Prob.XCR-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)由上可得:修建面积与建造成本的回归方程为:(2)经济意义:修建面积每增加1万平方米,修建单位成本每平方米削减64.18400元.(3)②再进行区间估量:用Eviews阐发:由上表可知,当Xf=4.5时,将相关数据代入计较得到:1556.647—2.228x31.73600x√1/12+43.5357/0.95387843≤即Yf的置信区间为(1556.647—478.1231, 1556.647+478.1231)第三章1)对出口货色总额计量经济模型,用Eviews阐发结果如下::Dependent Variable: YMethod: Least SquaresDate: 12/01/14 Time: 20:25Sample: 1994 2011Included observations: 18Variable Coefficient Std. Error t-Statistic Prob.X2X3CR-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid8007316. Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)①由上可知,模型为:②对模型进行查验:1)可决系数是0.985838,修正的可决系数为0.983950,说明模型对样本拟合较好2)F查验,F=522.0976>F(2,15)=4.77,回归方程显著3)t查验,t统计量辨别为X2的系数对应t值为10.58454,大于t(15)=2.131,系数是显著的,X3的系数对应t值为1.928512,小于t(15)=2.131,说明此系数是不显著的.(2)对于对数模型,用Eviews阐发结果如下:Dependent Variable: LNYMethod: Least SquaresDate: 12/01/14 Time: 20:25Sample: 1994 2011Included observations: 18Variable Coefficient Std. Error t-Statistic Prob.LNX2LNX3CR-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)①由上可知,模型为:LNY=-20.52048+1.564221 LNX2+1.760695 LNX3②对模型进行查验:1)可决系数是0.986295,修正的可决系数为0.984467,说明模型对样本拟合较好.2)F查验,F=539.7364> F(2,15)=4.77,回归方程显著.3)t查验,t统计量辨别为-3.777363,17.57789,2.581229,均大于t(15)=2.131,所以这些系数都是显著的.(3)①(1)式中的经济意义:产业增加1亿元,出口货色总额增加0.135474亿元,人民币汇率增加1,出口货色总额增加18.85348亿元.②(2)式中的经济意义:产业增加额每增加1%,出口货色总额增加1.564221%,人民币汇率每增加1%,出口货色总额增加1.760695%(1)对家庭书刊消费对家庭月平均收入和户主受教育年数计量模型,由Eviews阐发结果如下:Dependent Variable: YMethod: Least SquaresDate: 12/01/14 Time: 20:30Sample: 1 18Included observations: 18Variable Coefficient Std. Error t-Statistic Prob.XTCR-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)②对模型进行查验:1)可决系数是0.951235,修正的可决系数为0.944732,说明模型对样本拟合较好.2)F查验,F=539.7364> F(2,15)=4.77,回归方程显著.3)t查验,t统计量辨别为2.944186,10.06702,均大于t(15)=2.131,所以这些系数都是显著的.③经济意义:家庭月平均收入增加1元,家庭书刊年消费支出增加0.086450元,户主受教育年数增加1年,家庭书刊年消费支出增加52.37031元.(2)用Eviews阐发:①Dependent Variable: YMethod: Least SquaresDate: 12/01/14 Time: 22:30Sample: 1 18Included observations: 18Variable Coefficient Std. Error t-Statistic Prob.TCR-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)②Dependent Variable: XMethod: Least SquaresDate: 12/01/14 Time: 22:34Sample: 1 18Included observations: 18Variable Coefficient Std. Error t-Statistic Prob.TCR-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid4290746. Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)以上辨别是y与T,X与T的一元回归模型辨别是:(3)对残差进行模型阐发,用Eviews阐发结果如下:Dependent Variable: E1Method: Least SquaresDate: 12/03/14 Time: 20:39Sample: 1 18Included observations: 18Variable Coefficient Std. Error t-Statistic Prob.E2CR-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)模型为:(3)由上可知,β2与α2的系数是一样的.回归系数与被解释变量的残差系数是一样的,它们的变更纪律是一致的.第五章(1)由Eviews软件阐发得:Dependent Variable: YMethod: Least SquaresDate: 12/10/14 Time: 16:00Sample: 1 31Included observations: 31Variable Coefficient Std. Error t-Statistic Prob.XCR-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid12220196 Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)由上表可知,2007年我国农村居民家庭人均消费支出(x)对人均纯收入(y)的模型为:(2)①由图形法查验由上图可知,模型可能存在异方差.②Goldfeld-Quanadt查验1)定义区间为1-12时,由软件阐发得:Dependent Variable: Y1Method: Least SquaresDate: 12/10/14 Time: 11:34Sample: 1 12Included observations: 12Variable Coefficient Std. Error t-Statistic Prob.X1CR-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid1772245. Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)得∑e1i2=1772245.2)定义区间为20-31时,由软件阐发得:Dependent Variable: Y1Method: Least SquaresDate: 12/10/14 Time: 16:36Sample: 20 31Included observations: 12Variable Coefficient Std. Error t-Statistic Prob.X1CR-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid7909670. Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)得∑e2i2=7909670.3)按照Goldfeld-Quanadt查验,F统计量为:在α=0.05水平下,份子分母的自由度均为10,查散布表得临界值F0.05(10,10)=2.98,因为F=4.4631> F0.05(10,10)=2.98,所以拒绝原假定,此查验标明模型存在异方差.(3)1)采取WLS法估量进程中,①用权数w1=1/X,成立回归得:Dependent Variable: YMethod: Least SquaresDate: 12/09/14 Time: 11:13Sample: 1 31Included observations: 31Weighting series: W1Variable Coefficient Std. Error t-Statistic Prob.XCWeighted StatisticsR-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid8352726. Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)Unweighted StatisticsR-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Sum squared resid14484289 Durbin-Watson stat对此模型进行White查验得:Heteroskedasticity Test: WhiteF-statistic Prob. F(2,28)Obs*R-squared Prob. Chi-Square(2)Scaled explained SS Prob. Chi-Square(2)Test Equation:Dependent Variable: WGT_RESID^2Method: Least SquaresDate: 12/10/14 Time: 21:13Sample: 1 31Included observations: 31Collinear test regressors dropped from specificationVariable Coefficient Std. Error t-Statistic Prob.C1045682.WGT^21173622.X*WGT^2R-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid 1.40E+13 Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)从上可知,nR2=0.649065,比较计较的统计量的临界值,因为nR2=0.649065<0.05(2)=5.9915,所以接受原假定,该模型消除了异方差.估量结果为:t=(11.97157)(-0.972298)②用权数w2=1/x2,用回归阐发得:Dependent Variable: YMethod: Least SquaresDate: 12/09/14 Time: 21:08Sample: 1 31Included observations: 31Weighting series: W2Variable Coefficient Std. Error t-Statistic Prob.XCWeighted StatisticsR-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid6320554. Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)Unweighted StatisticsR-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Sum squared resid19268334Durbin-Watson stat对此模型进行White查验得:Heteroskedasticity Test: WhiteF-statistic Prob. F(3,27)Obs*R-squared Prob. Chi-Square(3)Scaled explained SS Prob. Chi-Square(3)Test Equation:Dependent Variable: WGT_RESID^2Method: Least SquaresDate: 12/10/14 Time: 21:29Sample: 1 31Included observations: 31Variable Coefficient Std. Error t-Statistic Prob.CWGT^22240181.X^2*WGT^2X*WGT^2R-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid 5.10E+12 Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)从上可知,nR2=0.999322,比较计较的统计量的临界值,因为nR2=0.999322<0.05(2)=5.9915,所以接受原假定,该模型消除了异方差.估量结果为:t=(10.70922)(-1.841272)③用权数w3=1/sqr(x),用回归阐发得:Dependent Variable: YMethod: Least SquaresDate: 12/09/14 Time: 21:35Sample: 1 31Included observations: 31Weighting series: W3Variable Coefficient Std. Error t-Statistic Prob.XCWeighted StatisticsR-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid9990985. Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)Unweighted StatisticsR-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Sum squared resid12717412 Durbin-Watson stat对此模型进行White查验得:Heteroskedasticity Test: WhiteF-statistic Prob. F(2,28)Obs*R-squared Prob. Chi-Square(2)Scaled explained SS Prob. Chi-Square(2)Test Equation:Dependent Variable: WGT_RESID^2Method: Least SquaresDate: 12/09/14 Time: 20:36Sample: 1 31Included observations: 31Collinear test regressors dropped from specificationVariable Coefficient Std. Error t-Statistic Prob.C1212308.2141958.WGT^21301839.X^2*WGT^2R-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid 2.17E+13 Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)从上可知,nR2=0.911022,比较计较的统计量的临界值,因为nR2=0.911022<0.05(2)=5.9915,所以接受原假定,该模型消除了异方差.估量结果为:t=(13.52507)(-0.151390)经过查验发明,用权数w1的效果最好,所以综上可知,即修改后的结果为:t=(11.97157)(-0.972298)第六章(1)成立居民收入-消费模型,用Eviews阐发结果如下:Dependent Variable: YMethod: Least SquaresDate: 12/20/14 Time: 14:22Sample: 1 19Included observations: 19Variable Coefficient Std. Error t-Statistic Prob.XCR-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)所得模型为:Se=(0.012877)(12.39919)t=(53.62068)(6.446390)(2)1)查验模型中存在的问题①做出残差图如下:残差的变动有系统模式,连续为正和连续为负,标明残差项存在一阶自相关.②该回归方程可决系数较高,回归系数均显著.对样本量为19,一个解释变量的模型,5%的显著水平,查DW统计表可知,dL=1.180,dU=1.401,模型中DW=0.574663,<dL,显然模型中有自相关.③对模型进行BG查验,用Eviews阐发结果如下:Breusch-Godfrey Serial Correlation LM Test:F-statistic Prob. F(2,15)Obs*R-squared Prob. Chi-Square(2)Test Equation:Dependent Variable: RESIDMethod: Least SquaresDate: 12/20/14 Time: 15:03Sample: 1 19Included observations: 19Presample missing value lagged residuals set to zero.Variable Coefficient Std. Error t-Statistic Prob.XCRESID(-1)RESID(-2)R-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)如上表显示,LM=TR2=7.425088,其p值为0.0244,标明存在自相关.2)对模型进行处理:①采纳狭义差分法a)为估量自相关系数ρ.对et进行滞后一期的自回归,用EViews 阐发结果如下:Dependent Variable: EMethod: Least SquaresDate: 12/20/14 Time: 15:04Sample (adjusted): 2 19Included observations: 18 after adjustmentsVariable Coefficient Std. Error t-Statistic Prob.E(-1)R-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood Hannan-Quinn criter.Durbin-Watson statb)对原模型进行狭义差分回归,用Eviews进行阐发所得结果如下:Dependent Variable: Y-0.657352*Y(-1)Method: Least SquaresDate: 12/20/14 Time: 15:04Sample (adjusted): 2 19Included observations: 18 after adjustmentsVariable Coefficient Std. Error t-Statistic Prob.CX-0.657352*X(-1)R-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)由上图可知回归方程为:Yt*=35.97761+0.668695Xt*Se=(8.103546)(0.020642)t=(4.439737)(32.39512)由于使用了狭义差分数据,样本容量削减了1个,为18个.查5%显著水平的DW统计表可知,dL=1.158,dU=1.391模型中DW=1,830746,du<DW<4- dU,说明在5%的显著水平下狭义差分模型中已无自相关.可决系数R2,t,F统计量也均达到理想水平.由此最终的消费模型为:Yt=104.9987+0.668695Xt②用科克伦-奥克特迭代法,用EVIews 阐发结果如下:Dependent Variable: YMethod: Least SquaresDate: 12/20/14 Time: 15:15Sample (adjusted): 2 19Included observations: 18 after adjustmentsConvergence achieved after 5 iterationsVariable Coefficient Std. Error t-Statistic Prob.CXAR(1)R-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)Inverted AR Roots .63所得方程为:(3)经济意义:人均实际收入每增加1元,平均说来人均时间消费支出将增加0.669262元.(1)针对对数模型,用Eviews阐发结果如下:Dependent Variable: LNYMethod: Least SquaresDate: 12/27/14 Time: 16:13Sample: 1980 2000Included observations: 21Variable Coefficient Std. Error t-Statistic Prob.LNXCR-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)所得模型为:se=(0.038897) (0.241025)t=(24.45123) (9.007529)2)查验模型的自相关性该回归方程可决系数较高,回归系数均显著.对样本量为21,一个解释变量的模型,5%的显著水平,查DW统计表可知,dL=1.221,dU=1.420,模型中DW=1.159788<dL,显然模型中有自相关.(2)用狭义差分法处理模型:1)为估量自相关系数ρ.对et进行滞后一期的自回归,用EViews 阐发结果如下:Dependent Variable: EMethod: Least SquaresDate: 12/27/14 Time: 16:18Sample (adjusted): 1982 2000Included observations: 19 after adjustmentsVariable Coefficient Std. Error t-Statistic Prob.E(-1)R-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid2848090. Schwarz criterionLog likelihood Hannan-Quinn criter.Durbin-Watson stat2)对原模型进行狭义差分回归,用Eviews进行阐发所得结果如下:Dependent Variable: Y+0.012872*Y(-1)Method: Least SquaresDate: 12/27/14 Time: 21:06Sample (adjusted): 1981 2000Included observations: 20 after adjustmentsVariable Coefficient Std. Error t-Statistic Prob.CX+0.012872*X(-1)R-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid2882022. Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)由上图可知回归方程为:Yt*=-104.9645+6.653757Xt*Se=(197.7928)( 0.304157)t=(-0.530679)( 21.87605)由于使用了狭义差分数据,样本容量削减了1个,为20个.查5%显著水平的DW统计表可知,dL=1.201,dU=1.411模型中DW=1.8222596,du<DW<4- dU,说明在5%的显著水平下狭义差分模型中已无自相关.可决系数R2,t,F统计量也均达到理想水平.由此最终的模型为:(3)对于此模型,用Eviews阐发结果如下:Dependent Variable: LNY1Method: Least SquaresDate: 12/27/14 Time: 22:16Sample (adjusted): 1981 2000Included observations: 20 after adjustmentsVariable Coefficient Std. Error t-Statistic Prob.LNX1CR-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)由题目可知,此模型样本容量为20,查5%显著水平的DW统计表可知,dL=1.201,dU=1.411模型中DW=1.590363,du<DW<4- dU,说明在5%的显著水平此模型中无自相关.可决系数R2,t,F统计量也均达到理想水平。
计量经济学(庞皓)课后思考题答案
思考题答案第一章绪论思考题1.1怎样理解产生于西方国家的计量经济学能够在中国的经济理论研究和现代化建设中发挥重要作用?答:计量经济学的产生源于对经济问题的定量研究,这是社会经济发展到一定阶段的客观需要。
计量经济学的发展是与现代科学技术成就结合在一起的,它反映了社会化大生产对各种经济因素和经济活动进行数量分析的客观要求。
经济学从定性研究向定量分析的发展,是经济学逐步向更加精密、更加科学发展的表现。
我们只要坚持以科学的经济理论为指导,紧密结合中国经济的实际,就能够使计量经济学的理论与方法在中国的经济理论研究和现代化建设中发挥重要作用。
1.2理论计量经济学和应用计量经济学的区别和联系是什么?答:计量经济学不仅要寻求经济计量分析的方法,而且要对实际经济问题加以研究,分为理论计量经济学和应用计量经济学两个方面。
理论计量经济学是以计量经济学理论与方法技术为研究内容,目的在于为应用计量经济学提供方法论。
所谓计量经济学理论与方法技术的研究,实质上是指研究如何运用、改造和发展数理统计方法,使之成为适合测定随机经济关系的特殊方法。
应用计量经济学是在一定的经济理论的指导下,以反映经济事实的统计数据为依据,用计量经济方法技术研究计量经济模型的实用化或探索实证经济规律、分析经济现象和预测经济行为以及对经济政策作定量评价。
1.3怎样理解计量经济学与理论经济学、经济统计学的关系?答:1、计量经济学与经济学的关系。
联系:计量经济学研究的主体—经济现象和经济关系的数量规律;计量经济学必须以经济学提供的理论原则和经济运行规律为依据;经济计量分析的结果:对经济理论确定的原则加以验证、充实、完善。
区别:经济理论重在定性分析,并不对经济关系提供数量上的具体度量;计量经济学对经济关系要作出定量的估计,对经济理论提出经验的内容。
2、计量经济学与经济统计学的关系。
联系:经济统计侧重于对社会经济现象的描述性计量;经济统计提供的数据是计量经济学据以估计参数、验证经济理论的基本依据;经济现象不能作实验,只能被动地观测客观经济现象变动的既成事实,只能依赖于经济统计数据。
庞皓计量经济学第三章多元线性回归模型学习辅导
第三章 多元线性回归模型学习辅导一、本章的基本内容(一)基本内容图3.1 第三章基本内容(二)本章的教学目标在现实的计量经济分析中,事实上影响被解释变量的因素不止一个,通常会有多个影响因素;另外,即使我们的分析目的是仅考察某一个因素对被解释变量的影响,但为了得到该因素对被解释变量的“净”影响,也需要将其他影响因素作为“控制变量”,使其以显性形式出现在模型中,以提高模型估计精度。
因此,在对现实经济问题进行计量经济分析时,通常需要建立包含两个及两个以上解释变量的计量模型,此类模型称为多元回归模型。
多元回归模型是在简单回归模型理论基础上的扩展,其建模的理论基础、基本思路、模型估计等与一元回归模型基本一致,只是因解释变量增多,从而带来一些新的内容,比如模型整体显著性检验(F 检验)、修正的可决系数(2R )以及解释变量之间多重共线性等问题。
本章的教学目标是:深刻理解建立多元回归模型的目的;掌握多元线性回归模型估计、检验的理论与方法;熟练掌握多元线性回归EViews 输出结果的解释。
二、重点与难点分析1.对多元线性回归模型参数意义的理解多元线性回归模型的参数与简单线性回归模型的参数有重要区别。
在多元线性回归模型中,解释变量对应的参数是偏回归系数,表达的是控制其他解释变量不变的条件下,该解释变量的单位变动对被解释变量平均值的“净”影响。
为了更深刻理解偏回归系数,可以两个解释变量的多元线性回归模型为例加以说明1。
例如,被解释变量Y 与解释变量2X 和3X 都有关,如果分别建立模型:多元线性回归: 12233i i i i Y X X u b b b =+++简单线性回归 : 1221i i i Y a a X u =++由于Y 与3X 有关,可以作回归:1332i i i Y b b X u =++,若用OLS 估计其参数,并计算残差213333ˆˆˆi i i i i e Y b b X y b x =--=-,这里的2i e 表示除去3i X 影响后的i Y 。
计量经济学庞皓课后思考题答案
答:定义关系是指根据定义而表达的恒等式,是由经济理论或客观存在的经济关系决定的恒等关系。国民经济中许多平衡关系都可以建立恒等关系,这样的模型称为定义方程式。在联立方程组模型中经常利用定义方程式。但是,定义方程式的恒等关系中没有随机误差项和需要估计的参数,所以一般不宜用于建立单一方程模型。
1.12为什么计量经济模型可以用于政策评价?其前提条件是什么?
答:所谓政策评价,是利用计量经济模型对各种可供选择的政策方案的实施后果进行模拟运算,从而对各种政策方案作出评价。前提是,我们是把计量经济模型当作经济运行的实验室,去模拟所研究的经济体计量经济模型体系,分析整个经济体系对各种假设的政策条件的反映。在实际的政策评价时,经常把模型中的某些变量或参数视为可用政策调整的政策变量,然后分析政策变量的变动对被解释变量的影响。
1.4在计量经济模型中被解释变量和解释变量的作用有什么不同?
答:在计量经济模型中,解释变量是变动的原因,被解释变量是变动的结果。被解释变量是模型要分析研究的对象。解释变量是说明被解释变量变动主要原因的变量。
1.5一个完整的计量经济模型应包括哪些基本要素?你能举一个例子吗?
答:一个完整的计量经济模型应包括三个基本要素:经济变量、参数和随机误差项。
2.9为什么对被解释变量个别值的预测区间会比对被解释变量平均值的预测区间更宽?
答:预测被解释变量平均值仅存在抽样误差,而对被解释变量个别值的预测,不仅存在抽样误差,而且要受随机扰动项的影响。所以对个别值的预测区间比对平均值的预测区间更宽。
2.10如果有人利用中国1978~2000年的样本估计的计量经济模型直接预测“中国综合经济水平将在2050年达到美国2002年的水平”,你如何评论这种预测?
庞皓计量经济学第三版课后习题及答案(顶配word版)
第二章练习题及参考解答2.1表2.9中是1992年亚洲各国人均寿命(Y)、按购买力平价计算的人均GDP(X1)、成人识字率(X2)、一岁儿童疫苗接种率(X3)的数据(1)分别分析各国人均寿命与人均GDP、成人识字率、一岁儿童疫苗接种率的数量关系。
(2)对所建立的回归模型进行检验。
【练习题2.1 参考解答】(1)分别设定简单线性回归模型,分析各国人均寿命与人均GDP、成人识字率、一岁儿童疫苗接种率的数量关系:1)人均寿命与人均GDP 关系Y i 1 2 X1i u i估计检验结果:2)人均寿命与成人识字率关系3)人均寿命与一岁儿童疫苗接种率关系(2)对所建立的多个回归模型进行检验由人均GDP、成人识字率、一岁儿童疫苗接种率分别对人均寿命回归结果的参数t 检验值均明确大于其临界值,而且从对应的P 值看,均小于0.05,所以人均GDP、成人识字率、一岁儿童疫苗接种率分别对人均寿命都有显著影响.(3)分析对比各个简单线性回归模型人均寿命与人均GDP 回归的可决系数为0.5261 人均寿命与成人识字率回归的可决系数为0.7168 人均寿命与一岁儿童疫苗接种率的可决系数为0.5379相对说来,人均寿命由成人识字率作出解释的比重更大一些2.2为了研究浙江省财政预算收入与全省生产总值的关系,由浙江省统计年鉴得到以下数据:的显著性,用规范的形式写出估计检验结果,并解释所估计参数的经济意义(2)如果2011 年,全省生产总值为32000 亿元,比上年增长9.0%,利用计量经济模型对浙江省2011 年的财政预算收入做出点预测和区间预测(3)建立浙江省财政预算收入对数与全省生产总值对数的计量经济模型,. 估计模型的参数,检验模型的显著性,并解释所估计参数的经济意义【练习题2.2 参考解答】建议学生独立完成2.3 由12对观测值估计得消费函数为:(1)消费支出C的点预测值;(2)在95%的置信概率下消费支出C平均值的预测区间。
计量经济学_庞皓__第三章练习题答案
第三章考虑以下“期望扩充菲利普斯曲线(Expectations-augmented Phillips curve )”模型:t t t t u X X Y +++=33221βββ其中:t Y =实际通货膨胀率(%);t X 2=失业率(%);t X 3=预期的通货膨胀率(%)表为某国的有关数据,表 1970-1982年某国实际通货膨胀率Y (%),失业率X 2(%)和预期通货膨胀率X 3(%)1)对此模型作估计,并作出经济学和计量经济学的说明。
2)根据此模型所估计结果作统计检验。
3)计算修正的可决系数(写出详细计算过程)。
解答:(1)对此模型作估计,并作出经济学和计量经济学的说明。
(2)根据此模型所估计结果,作计量经济学的检验。
t 检验表明:各参数的t 值的绝对值均大于临界值0.025(133) 2.228t -=,从P 值也可看出均明显小于0.05α=,表明失业率和预期通货膨胀率分别对实际通货膨胀率都有显着影响。
F 检验表明: F=,大于临界值, 其P 值也明显小于0.05α=,说明失业率和预期通货膨胀率联合起来对实际通货膨胀率有显着影响。
从经济意义上看:失业率与实际通货膨胀率负相关,预期通货膨胀率与实际通货膨胀率正相关,与经济理论一致。
(3)计算修正可决系数(写出详细计算过程) 由Y 的统计量表得=214.12846ie=∑223.041892(131)111.0373iy=⨯-=∑214.12846110.12720.8728111.0373R =-=-=某市1974年—1987年粮食年销售量Y 、常住人口X2、人均收入X3、肉销售量X4、蛋销售量X5、鱼虾销售量X6等数据如表所示:表 某市粮食年销售量、常住人口、人均收入、肉、蛋、鱼虾销售量数据2211311(1)1(10.8728)0.8473133n R R n k --=--=--⨯=--1)建立线性回归模型:12233445566t t Y X X X X X u ββββββ=++++++,你预期所估计参数的符号应该是什么2)用OLS 法估计参数,模型参数估计的结果与你的预期是否相符合3)对模型及各个解释变量的显着性作检验,从检验结果中你能发现什么问题吗你如何评价这样的检验结果解答:1)建立线性回归模型:12233445566t t Y X X X X X u ββββββ=++++++ 预期常住人口和人均收入应与粮食销售量正相关,2β和3β应为正值,而肉、蛋、鱼虾与粮食消费应该负相关,预期4β、5β、6β应当为负值。
庞皓计量经济学课后答案第三章
统计学2班第二次作业1、Ŷi =-151.0263 + 0.1179X 1i + 1.5452X 2iT= (-3.066806) (6.652983) (3.378064)R 2=0.934331 R 2=0.92964 F=191.1894 n=31⑴模型估计结果说明,各省市旅游外汇收入Y 受旅行社职工人数X 1,国际旅游人数X 2的影响。
由所估计出的参数可知,在假定其他变量不变的情况下,当旅行社职工人数每增加1人,各省市旅游外汇收入增加0.1179百万美元。
在嘉定其他变量不变的情况下。
当国际旅游人数每增加1万人,各省市旅游外汇收入增加1.5452百万美元。
⑵由题已知,估计的回归系数β1的T 值为:t (β1)=6.652983。
β2的T 值分为: t (β2)=3.378064。
α=0.05.查得自由度为n-2=22-2=29的临界值t 0.025(29)=2.045229因为t (β1)=6.652983≥t 0.025(29)=2.045229.所以拒绝原假设H 0:β1=0。
表明在显著性水平α=0.05下,当其他解释变量不变的情况下,旅行社职工人数X 1对各省市旅游外汇收入Y 有显著性影响。
因为 t (β2)=3.378064≥t 0.025(29)=2.045229,所以拒绝原假设H 0:β2=0表明在显著性水平α=0.05下,当其他解释变量不变的情况下,和国际旅游人数X 2对各省市旅游外汇收入Y 有显著性影响。
⑶正对H O :β1=β2=0,给定显著水性水平α=0.05,自由度为k-1=2,n-k=28的临界值F 0.05(2,28)=3.34038。
由题已知F=191.1894>F 0.05(2,28)=3.34038,应拒绝原假设H O :β1=β2=0,说明回归方程显著,即旅行社职工人数和旅游人数变量联合起来对各省市旅游外汇收入有显著影响。
2、⑴样本容量n=15 残差平方和RSS=66042-65965=77 回归平方和ESS 的自由度为K-1=2 残差平方和RSS 的自由度为n-k=13⑵可决系数R 2=TSS ESS =6604265965=0.99883 调整的可决系数R 2=1-(1-R 2)kn n --1=1-(1-0.99883)1214=0.99863 ⑶利用可决系数R 2=0.99883,调整的可决系数R 2=0.99863,说明模型对样本的拟合很好。
计量经济学庞皓第二版第三章答案
练习题3.3参考解答(1)建立家庭书刊消费的计量经济模型: i i i i u T X Y +++=321βββ其中:Y 为家庭书刊年消费支出、X 为家庭月平均收入、T 为户主受教育年数 (2)估计模型参数,结果为即 ii i T X Y 3703.5208645.00162.50ˆ++-= (49.46026)(0.02936) (5.20217)t= (-1.011244) (2.944186) (10.06702) R 2=0.951235 944732.02=R F=146.2974(3) 检验户主受教育年数对家庭书刊消费是否有显著影响:由估计检验结果, 户主受教育年数参数对应的t 统计量为10.06702, 明显大于t 的临界值131.2)318(025.0=-t ,同时户主受教育年数参数所对应的P 值为0.0000,明显小于05.0=α,均可判断户主受教育年数对家庭书刊消费支出确实有显著影响。
(4)本模型说明家庭月平均收入和户主受教育年数对家庭书刊消费支出有显著影响,家庭月平均收入增加1元,家庭书刊年消费支出将增加0.086元,户主受教育年数增加1年,家庭书刊年消费支出将增加52.37元。
练习题3.4参考解答 估计模型参数,结果为Dependent Variable: Y Method: Least Squares Date: 05/04/09 Time: 21:03 Sample: 1970 1982 C7.1059751.6185554.3903210.0014X2 -1.393115 0.310050 -4.493196 0.0012 R-squared0.872759 Mean dependent var 7.756923 Adjusted R-squared 0.847311 S.D. dependent var 3.041892 S.E. of regression 1.188632 Akaike info criterion 3.382658 Sum squared resid 14.12846 Schwarz criterion 3.513031 Log likelihood -18.98727 F-statistic 34.29559练习题3.5参考解答(1) 建立该地区城镇居民人均全年耐用消费品支出关于人均年可支配收入和耐用消费品价格指数的回归模型:t t t t u T X Y +++=321βββ (2)估计参数结果由估计和检验结果可看出,该地区人均年可支配收入的参数的t 检验值为10.54786,其绝对值大于临界值306.2)311(025.0=-t ;而且对应的P 值为0.0000,也明显小于05.0=α。
计量经济学_(第二版)庞皓__第三章练习题答案
第三章考虑以下“期望扩充菲利普斯曲线(Expectations-augmented Phillips curve )”模型:t t t t u X X Y +++=33221βββ其中:t Y =实际通货膨胀率(%);t X 2=失业率(%);t X 3=预期的通货膨胀率(%)表为某国的有关数据,表 1970-1982年某国实际通货膨胀率Y (%),失业率X 2(%)和预期通货膨胀率X 3(%)1)对此模型作估计,并作出经济学和计量经济学的说明。
2)根据此模型所估计结果作统计检验。
3)计算修正的可决系数(写出详细计算过程)。
解答:(1)对此模型作估计,并作出经济学和计量经济学的说明。
;(2)根据此模型所估计结果,作计量经济学的检验。
t 检验表明:各参数的t 值的绝对值均大于临界值0.025(133) 2.228t -=,从P 值也可看出均明显小于0.05α=,表明失业率和预期通货膨胀率分别对实际通货膨胀率都有显著影响。
F 检验表明: F=,大于临界值, 其P 值也明显小于0.05α=,说明失业率和预期通货膨胀率联合起来对实际通货膨胀率有显著影响。
从经济意义上看:失业率与实际通货膨胀率负相关,预期通货膨胀率与实际通货膨胀率正相关,与经济理论一致。
(3)计算修正可决系数(写出详细计算过程) 由Y 的统计量表得=214.12846ie=∑223.041892(131)111.0373iy=⨯-=∑214.12846110.12720.8728111.0373R =-=-=!某市1974年—1987年粮食年销售量Y 、常住人口X2、人均收入X3、肉销售量2211311(1)1(10.8728)0.8473133n R R n k --=--=--⨯=--X4、蛋销售量X5、鱼虾销售量X6等数据如表所示:表 某市粮食年销售量、常住人口、人均收入、肉、蛋、鱼虾销售量数据1)建立线性回归模型:12233445566t t Y X X X X X u ββββββ=++++++,你预期所估计参数的符号应该是什么2)用OLS 法估计参数,模型参数估计的结果与你的预期是否相符合3)对模型及各个解释变量的显著性作检验,从检验结果中你能发现什么问题吗你如何评价这样的检验结果解答:1) 建立线性回归模型:12233445566t t Y X X X X X u ββββββ=++++++预期常住人口和人均收入应与粮食销售量正相关,2β和3β应为正值,而肉、蛋、鱼虾与粮食消费应该负相关,预期4β、5β、6β应当为负值。
庞皓计量经济学课后答案第三章-推荐下载
模型参数估计结果为:β1=3.931474 β2=0.248535 β3=0.063869911684.0049404.05398.158ˆX X Y-+=由图近似可知,分析结果合理。
6、Y :能源需求指数 X 1:实际GDP 指数 X 2:能源价格指数⑴t t t t X X Y μβββ+++=22110ln ln ln由表可知β0=1.549504 β1=0.996923 β2=-0.33136421ln 0.331364-ln 0.9969231.549504ˆln X X Y t +=估计结果说明,在假定其他变量不变的前提下,当年实际GDP 指数每增加1%,平均导致能源需求指数增加0.996923%;在假定其他变量不变的前提下,当年能源价格指数每增加1%,平均导致能源需求指数减少0.331364%。
针对H 0:β1=0,由表可得β1=0.996923时所对应的P 值为0.0000≤0.05,所以拒绝原假设。
说明在显著性水平α=0.05下,假定其他变量不变的前提下,实际GDP 指数对能源需求指数有显著性影响。
针对H 0:β2=0,由表可得β2=-0.331364时所对应的P 值为0.0000≤0.05,所以拒绝原假设。
说明在显著性水平α=0.05下,假定其他变量不变的前提下,能源价格指数对能源需求指数有显著性影响。
⑵t t t t X X Y μβββ+++=22110由表可知β0=28.25506 β1=0.980849 β2=-0.25842621ln 0.258426-0.98084928.25506ˆX X Yt +=估计结果说明,在假定其他变量不变的前提下,当年实际GDP 指数每增加1,平均导致能源需求指数增加0.996923;在假定其他变量不变的前提下,当年能源价格指数每增加1,平均导致能源需求指数减少0.331364。
针对H 0:β1=0,由表可得β1=0.980849时所对应的P 值为0.0000≤0.05,所以拒绝原假设。
计计量经济学(庞浩)第二版_科学出版社_课后答案三章
众志成城 互帮互助第三章练习题参考解答练习题3.1为研究中国各地区入境旅游状况,建立了各省市旅游外汇收入(Y ,百万美元)、旅行社职工人数(X1,人)、国际旅游人数(X2,万人次)的模型,用某年31个省市的截面数据估计结果如下:ii i X X Y 215452.11179.00263.151ˆ++-= t=(-3.066806) (6.652983) (3.378064)R 2=0.934331 92964.02=R F=191.1894 n=31 (1) 从经济意义上考察估计模型的合理性。
(2) 在5%显著性水平上,分别检验参数21,ββ的显著性。
(3) 在5%显著性水平上,检验模型的整体显著性。
3.2根据下列数据试估计偏回归系数、标准误差,以及可决系数与修正的可决系数: 367.693Y =, 1402.760X =, 28.0X =, 15n =, 2()66042.269iYY -=∑, 211()84855.096iX X -=∑,222()280.000iX X -=∑,11()()74778.346ii YY X X --=∑,22()()4250.900ii YY X X --=∑,1122()()4796.000ii XX XX--=∑3.3 经研究发现,家庭书刊消费受家庭收入几户主受教育年数的影响,表中为对某地区部分家庭抽样调查得到样本数据:(1) 建立家庭书刊消费的计量经济模型; (2)利用样本数据估计模型的参数; (3)检验户主受教育年数对家庭书刊消费是否有显著影响;(4)分析所估计模型的经济意义和作用3.4 考虑以下“期望扩充菲利普斯曲线(Expectations-augmented Phillips curve )”模型:t t t t u X X Y +++=33221βββ其中:t Y =实际通货膨胀率(%);t X 2=失业率(%);t X 3=预期的通货膨胀率(%)下表为某国的有关数据,表1. 1970-1982年某国实际通货膨胀率Y (%),(2)根据此模型所估计结果,作计量经济学的检验。
计量经济学_(第二版)庞皓__第三章练习题答案
第三章考虑以下“期望扩充菲利普斯曲线(Expectations-augmented Phillips curve )”模型:t t t t u X X Y +++=33221βββ其中:t Y =实际通货膨胀率(%);t X 2=失业率(%);t X 3=预期的通货膨胀率(%)表为某国的有关数据,表 1970-1982年某国实际通货膨胀率Y (%),失业率X 2(%)和预期通货膨胀率X 3(%)1)对此模型作估计,并作出经济学和计量经济学的说明。
2)根据此模型所估计结果作统计检验。
3)计算修正的可决系数(写出详细计算过程)。
解答:(1)对此模型作估计,并作出经济学和计量经济学的说明。
;(2)根据此模型所估计结果,作计量经济学的检验。
t 检验表明:各参数的t 值的绝对值均大于临界值0.025(133) 2.228t -=,从P 值也可看出均明显小于0.05α=,表明失业率和预期通货膨胀率分别对实际通货膨胀率都有显著影响。
F 检验表明: F=,大于临界值, 其P 值也明显小于0.05α=,说明失业率和预期通货膨胀率联合起来对实际通货膨胀率有显著影响。
从经济意义上看:失业率与实际通货膨胀率负相关,预期通货膨胀率与实际通货膨胀率正相关,与经济理论一致。
(3)计算修正可决系数(写出详细计算过程) 由Y 的统计量表得=214.12846ie=∑223.041892(131)111.0373iy=⨯-=∑214.12846110.12720.8728111.0373R =-=-=!某市1974年—1987年粮食年销售量Y 、常住人口X2、人均收入X3、肉销售量2211311(1)1(10.8728)0.8473133n R R n k --=--=--⨯=--X4、蛋销售量X5、鱼虾销售量X6等数据如表所示:表 某市粮食年销售量、常住人口、人均收入、肉、蛋、鱼虾销售量数据1)建立线性回归模型:12233445566t t Y X X X X X u ββββββ=++++++,你预期所估计参数的符号应该是什么2)用OLS 法估计参数,模型参数估计的结果与你的预期是否相符合3)对模型及各个解释变量的显著性作检验,从检验结果中你能发现什么问题吗你如何评价这样的检验结果解答:1) 建立线性回归模型:12233445566t t Y X X X X X u ββββββ=++++++预期常住人口和人均收入应与粮食销售量正相关,2β和3β应为正值,而肉、蛋、鱼虾与粮食消费应该负相关,预期4β、5β、6β应当为负值。
计量经济学(庞皓)_课后习题答案
Yˆ2005 = −3.611151 + 0.134582 × 3600 = 480.884 (亿元)
区间预测:
∑ 平均值为:
xi2
=
σ
2 x
(n
−1)
=
587.26862
× (12
−1)
=
3793728.494
( X f 1 − X )2 = (3600 − 917.5874)2 = 7195337.357
1.138
18
2.98
1.092
试建立曲线回归方程 yˆ = a ebx ( Yˆ = ln a + b x )并进行计量分析。
2.7 为研究美国软饮料公司的广告费用 X 与销售数量 Y 的关系,分析七种主要品牌软饮
料公司的有关数据2(见表 8-1)
表 8-1
美国软饮料公司广告费用与销售数量
品牌名称
449.2889
1994
74.3992
615.1933
1995
88.0174
795.6950
1996
131.7490
950.0446
1997
144.7709
1130.0133
1998
164.9067
1289.0190
1999
184.7908
1436.0267
2000
225.0212
1665.4652
2 i
=
3134543
∑Yi2 = 539512
(1)作销售额对价格的回归分析,并解释其结果。 (2)回归直线未解释的销售变差部分是多少?
∑ XiYi = 1296836
2.9 表中是中国 1978 年-1997 年的财政收入 Y 和国内生产总值 X 的数据:
计量经济学庞皓课后思考题答案
思考题答案第一章绪论思考题怎样理解产生于西方国家的计量经济学能够在中国的经济理论研究和现代化建设中发挥重要作用答:计量经济学的产生源于对经济问题的定量研究,这是社会经济发展到一定阶段的客观需要;计量经济学的发展是与现代科学技术成就结合在一起的,它反映了社会化大生产对各种经济因素和经济活动进行数量分析的客观要求;经济学从定性研究向定量分析的发展,是经济学逐步向更加精密、更加科学发展的表现;我们只要坚持以科学的经济理论为指导,紧密结合中国经济的实际,就能够使计量经济学的理论与方法在中国的经济理论研究和现代化建设中发挥重要作用;理论计量经济学和应用计量经济学的区别和联系是什么答:计量经济学不仅要寻求经济计量分析的方法,而且要对实际经济问题加以研究,分为理论计量经济学和应用计量经济学两个方面;理论计量经济学是以计量经济学理论与方法技术为研究内容,目的在于为应用计量经济学提供方法论;所谓计量经济学理论与方法技术的研究,实质上是指研究如何运用、改造和发展数理统计方法,使之成为适合测定随机经济关系的特殊方法;应用计量经济学是在一定的经济理论的指导下,以反映经济事实的统计数据为依据,用计量经济方法技术研究计量经济模型的实用化或探索实证经济规律、分析经济现象和预测经济行为以及对经济政策作定量评价;怎样理解计量经济学与理论经济学、经济统计学的关系答:1、计量经济学与经济学的关系;联系:计量经济学研究的主体—经济现象和经济关系的数量规律;计量经济学必须以经济学提供的理论原则和经济运行规律为依据;经济计量分析的结果:对经济理论确定的原则加以验证、充实、完善;区别:经济理论重在定性分析,并不对经济关系提供数量上的具体度量;计量经济学对经济关系要作出定量的估计,对经济理论提出经验的内容;2、计量经济学与经济统计学的关系;联系:经济统计侧重于对社会经济现象的描述性计量;经济统计提供的数据是计量经济学据以估计参数、验证经济理论的基本依据;经济现象不能作实验,只能被动地观测客观经济现象变动的既成事实,只能依赖于经济统计数据;区别:经济统计学主要用统计指标和统计分析方法对经济现象进行描述和计量;计量经济学主要利用数理统计方法对经济变量间的关系进行计量;在计量经济模型中被解释变量和解释变量的作用有什么不同答:在计量经济模型中,解释变量是变动的原因,被解释变量是变动的结果;被解释变量是模型要分析研究的对象;解释变量是说明被解释变量变动主要原因的变量; 一个完整的计量经济模型应包括哪些基本要素你能举一个例子吗答:一个完整的计量经济模型应包括三个基本要素:经济变量、参数和随机误差项;例如研究消费函数的计量经济模型:u+=Y+βXα其中,Y为居民消费支出,X为居民家庭收入,二者是经济变量;α和β为参数;u是随机误差项;假如你是中央银行货币政策的研究者,需要你对增加货币供应量促进经济增长提出建议,你将考虑哪些因素你认为可以怎样运用计量经济学的研究方法答:货币政策工具或者说影响货币供应量的因素有再贴现率、公开市场业务操作以及法定准备金率;所以会考虑再贴现率、公开市场业务操作以及法定准备金率;选择这三种因素作为解释变量;货币供应量作为被解释变量;从而建立简单线性回归模型;计量经济学模型的主要应用领域有哪些答:计量经济模型主要可以用于经济结构分析、经济预测、政策评价和检验与发展经济理论;如果要根据历史经验预测明年中国的粮食产量,你认为应当考虑哪些因素应当怎样设定计量经济模型答:影响中国的粮食产量的因素可以有农业资金投入、农业劳动力、粮食播种面积、受灾面积等;可建立如下多元模型:其中,Y 为中国的粮食产量,2X 为农业资金投入,3X 为农业劳动力,4X 为粮食播种面积,5X 为受灾面积;参数和变量的区别是什么为什么对计量经济模型中的参数通常只能用样本观测值去估计答:经济变量反映不同时间、不同空间的表现不同,取值不同,是可以观测的因素;是模型的研究对象或影响因素;经济参数是表现经济变量相互依存程度的、决定经济结构和特征的、相对稳定的因素,通常不能直接观测;一般来说参数是未知的,又是不可直接观测的;由于随机误差项的存在,参数也不能通过变量值去精确计算;只能通过变量样本观测值选择适当方法去估计; 你能分别举出三个时间序列数据、截面数据、面板数据、虚拟变量数据的实际例子,并分别说明这些数据的来源吗答:时间序列数据:中国1981年至2010年国内生产总值,可从中国统计年鉴查得数据;截面数据:中国2010年各省、区、直辖市的国内生产总值,中国统计年鉴查得数据;面板数据:中国1981年至2010年各省、区、直辖市的国内生产总值,中国统计年鉴查得数据;虚拟变量数据:自然灾害状态,1表示该状态发生,0表示该状态不发生;为什么对已经估计出参数的模型还要进行检验你能举一个例子说明各种检验的必要性吗答:模型中的参数被估计以后,一般说来这样的模型还不能直接加以应用,还需要对其进行检验;首先,在设定模型时,对所研究经济现象规律性的认识可能并不充分,所依据的经济理论对所研究对象也许还不能作出正确的解释和说明;或者经济理论是正确的,但可能我们对问题的认识只是从某些局部出发,或者只是考察了某些特殊的样本,以局部去说明全局的变化规律,可能导致偏差;其次,我们用以估计参数的统计数据或其它信息可能并不十分可靠,或者较多地采用了经济突变时期的数据,不能真实代表所研究的经济关系,或者由于样本太小,所估计参数只是抽样的某种偶然结果;此外,我们所建立的模型、采用的方法、所用的统计数据,都有可能违反计量经济的基本假定,这也可能导出错误的结论;为什么计量经济模型可以用于政策评价其前提条件是什么答:所谓政策评价,是利用计量经济模型对各种可供选择的政策方案的实施后果进行模拟运算,从而对各种政策方案作出评价;前提是,我们是把计量经济模型当作经济运行的实验室,去模拟所研究的经济体计量经济模型体系,分析整个经济体系对各种假设的政策条件的反映;在实际的政策评价时,经常把模型中的某些变量或参数视为可用政策调整的政策变量,然后分析政策变量的变动对被解释变量的影响;为什么定义方程式可以用于联立方程组模型,而不宜用于建立单一方程模型答:定义关系是指根据定义而表达的恒等式,是由经济理论或客观存在的经济关系决定的恒等关系;国民经济中许多平衡关系都可以建立恒等关系,这样的模型称为定义方程式;在联立方程组模型中经常利用定义方程式;但是,定义方程式的恒等关系中没有随机误差项和需要估计的参数,所以一般不宜用于建立单一方程模型;第二章简单线性回归模型相关分析与回归分析的关系是什么答:相关分析与回归分析有密切的关系,它们都是对变量间相关关系的研究,二者可以相互补充;相关分析可以表明变量间相关关系的性质和程度,只有当变量间存在一定程度的相关关系时,进行回归分析才有实际的意义;同时,在进行相关分析时如果要具体确定变量间相关的具体数学形式,又要依赖于回归分析,而且相关分析中相关系数的确定也是建立在回归分析基础上的;相关分析与回归分析的区别;从研究目的上看,相关分析是用一定的数量指标相关系数度量变量间相互联系的方向和程度;回归分析却是要寻求变量间联系的具体数学形式,是要根据解释变量的固定值去估计和预测被解释变量的平均值;从对变量的处理看,相关分析对称地对待相互联系的变量,不考虑二者的因果关系,也就是不区分解释变量和被解释变量,相关的变量不一定具有因果关系,均视为随机变量;回归分析是建立在变量因果关系分析的基础上,研究其中解释变量的变动对被解释变量的具体影响,回归分析中必须明确划分解释变量和被解释变量,对变量的处理是不对称的;什么是总体回归函数和样本回归函数它们之间的区别是什么答:总体回归函数是将总体被解释变量的条件期望表现为解释变量的函数;样本回归函数是将被解释变量的样本条件均值表示为解释变量的函数;总体回归函数和样本回归函数之间的区别;首先,总体回归函数虽然未知,但它是确定的;而由于从总体中每次抽样都能获得一个样本,就都可以拟合一条样本回归线,样本回归线是随抽样波动而变化的,可以有很多条;所以样本回归函数还不是总体回归函数,至多只是未知的总体回归函数的近似反映;其次,总体回归函数的参数是确定的常数;而样本回归函数的参数是随抽样而变化的随机变量; 什么是随机扰动项和剩余项残差它们之间的区别是什么答:总体回归函数中,被解释变量个别值i Y 与条件期望)X E(Y i 的偏差是随机扰动项i u ;样本回归函数中,被解释变量个别值i Y 与样本条件均值iY ˆ的偏差是残差项i e ;残差项i e 在概念上类似总体回归函数中的随机扰动项i u ,可视为对随机扰动项i u 的估计;总体回归函数中的随机误差项是不可以直接观测的;而样本回归函数中的残差项是只要估计出样本回归的参数就可以计算的数值;为什么在对参数作最小二乘估计之前,要对模型提出古典假设答:在对参数作最小二乘估计之前,要对模型提出古典假设;因为模型中有随机扰动,估计的参数是随机变量,只有对随机扰动的分布作出假定,才能确定所估计参数的分布性质,也才可能进行假设检验和区间估计;只有具备一定的假定条件,所作出的估计才具有较好的统计性质;总体方差和参数估计方差的区别是什么答:总体方差是未知的,但是确定存在的;参数估计方差可以由样本数据计算出来,但只是总体的近似反映,未必等于真实值;为什么可决系数可以度量模型的拟合优度在简单线性回归中它与对参数的t检验的关系是什么答:可决系数是回归平方和占总离差平方和的比重,即由样本回归作出解释的离差平方和在总离差平方和中占的比重,如果样本回归线对样本观测值拟合程度好,各样本观测点与回归线靠得越近,由样本回归作出解释的离差平方和在总离差平方和中占的比重也将越大,反之拟合程度越差,这部分所占比重就越小;所以可决系数可以作为综合度量回归模型对样本观测值拟合优度的指标;在简单线性回归中,可决系数越大,说明在总变差中由模型作出了解释的部分占的比重越大,X对Y的解释能力越强,模型拟合优度越好;对参数的t检验是判断解释变量X是否是被解释变量Y的显着影响因素;二者的目的作用是一致的;有人说:“得到参数区间估计的上下限后,说明参数的真实值落入这个区间的概率为α1;”如何评论这种说法-答:这种说法是错误的;区间是随机的,只是说明在重复抽样中,像这样的区间可构造许多次,从长远看平均地说,这些区间中将有α1的概率包含着参数的真实值;-参数的真实值虽然未知,却是一个固定的值,不是随机变量;所以应理解为区间包含参数真实值的概率是α1,而不能认为参数的真实值落入这个区间的概率为-α1;-对参数假设检验的基本思想是什么答:对参数假设检验的基本思想,是在所估计样本回归系数概率分布性质已确定的基础上,在对总体回归系数某种原假设成立的条件下,利用适当的有明确概率分布的统计量和给定的显着性水平 ,构造一个小概率事件,判断原假设结果合理与否,是基于“小概率事件不易发生”的原理,可以认为小概率事件在一次观察中基本不会发生,如果小概率事件竟然发生了,就认为原假设不成立,从而拒绝原假设,不拒绝备择假设;为什么对被解释变量个别值的预测区间会比对被解释变量平均值的预测区间更宽答:预测被解释变量平均值仅存在抽样误差,而对被解释变量个别值的预测,不仅存在抽样误差,而且要受随机扰动项的影响;所以对个别值的预测区间比对平均值的预测区间更宽;如果有人利用中国1978~2000年的样本估计的计量经济模型直接预测“中国综合经济水平将在2050年达到美国2002年的水平”,你如何评论这种预测答:用回归模型作预测时,预测期解释变量取值不宜偏离样本期过远,否则预测的精度会大大降低;利用中国1978~2000年的样本估计50年之后的经济水平,其预测不会太准确;对本章开始提出的“中国旅游业总收入将超过3000亿美元”,你认为可以建立什么样的简单线性回归模型去分析答:对本章开始提出的问题,我们会考虑:是什么决定性的因素能使中国旅游业总收入到2020年达到3000亿美元旅游业的发展与这种决定性因素的数量关系究竟是什么怎样具体测定旅游业发展与这种决定性因素的数量关系综合考虑各种因素,我们认为影响中国旅游业总收入的决定性因素是中国居民收入的增长;于是建立如下模型:其中,Y为中国旅游业总收入,X为中国居民收入;第三章多元线性回归模型若要将一个被解释变量对两个解释变量作线性回归分析:1写出总体回归函数和样本回归函数;2写出回归模型的矩阵表示;3说明对此模型的古典假定;4写出回归系数及随机扰动项方差的最小二乘估计式,并说明参数估计式的性质; 答:1总体回归函数:u X βX βY +++=33221β样本回归函数:33221ˆˆˆˆX βX βY ++=β 2写出回归模型的矩阵表示3此模型的古典假定:零均值假定;同方差和无自相关假定;随机扰动项与解释变量不相关;无多重共线性假定;随机误差项服从正态分布;4回归系数最小二乘估计式: 随机扰动项方差的最小二乘估计式:k n e σi-=∑22ˆ参数估计式的性质:具有线性性、无偏性和最小方差性;什么是偏回归系数它与简单线性回归的回归系数有什么不同答:多元线性回归模型中,回归系数j βj =1,2,…,k 表示的是当控制其它解释变量不变的条件下,第j 个解释变量的单位变动对被解释变量平均值的影响,这样的回归系数称为偏回归系数;简单线性回归模型只有一个解释变量,回归系数表示解释变量的单位变动对被解释变量平均值的影响;多元线性回归模型中的回归系数是偏回归系数,是当控制其它解释变量不变的条件下,某个解释变量的单位变动对被解释变量平均值的影响,从而可以实现保持某些控制变量不变的情况下,分析所关注的变量对被解释变量的真实影响;多元线性回归中的古典假定与简单线性回归时有什么不同答:多元线性回归中的古典假定比简单线性回归时多出一个无多重共线性假定;假定各解释变量之间不存在线性关系,或各个解释变量观测值之间线性无关;解释变量观测值矩阵X列满秩k列;这是保证多元线性回归模型参数估计值有解的重要条件;多元线性回归分析中,为什么要对可决系数加以修正修正可决系数与F检验之间有何区别与联系答:多元线性回归分析中,多重可决系数是模型中解释变量个数的增函数,这给对比不同模型的多重可决系数带来缺陷,所以需要修正;可决系数只涉及变差,没有考虑自由度;如果用自由度去校正所计算的变差,可纠正解释变量个数不同引起的对比困难;联系:由方差分析可以看出,F检验与可决系数有密切联系,二者都建立在对应变量变差分解的基础上;F统计量也可通过可决系数计算;对方程联合显着性检验的F检验,实际上也是对可决系数的显着性检验;区别:F检验有精确的分布,它可以在给定显着性水平下,给出统计意义上严格的结论;可决系数只能提供一个模糊的推测,可决系数越大,模型对数据的拟合程度就越好;但要大到什么程度才算模型拟合得好,并没有一个绝对的数量标准;什么是方差分析对被解释变量的方差分析与对模型拟合优度的度量有什么联系和区别答:被解释变量Y观测值的总变差分解式为:RSS=;将自由度考虑进去TSS+ESS进行方差分析,即得如下方差分析表:方差分析和对模型拟合优度的度量可决系数都是在把总变差分解为回归平方和与残差平方和的基础上进行分析;区别是前者考虑了自由度,后者未考虑自由度;多元线性回归分析中,F 检验与t 检验的关系是什么为什么在作了F 检验以后还要作t 检验答:在多元回归中,t 检验是分别检验当其他解释变量保持不变时,各个解释变量X 对应变量Y 是否有显着影响;F 检验是在多元回归中有多个解释变量,需要说明所有解释变量联合起来对应变量影响的总显着性,或整个方程总的联合显着性;F 检验是对多元回归模型方程整体可靠性的检验,而多元线性回归分析的目的,不仅是要寻求方程整体的显着性,也要对各个参数作出有意义的估计;方程整体线性关系显着并不一定表示每个解释变量对被解释变量的影响是显着的,因此,还必须分别对每个回归系数逐个地进行t 检验;试证明:在二元线性回归模型u X βX βY +++=33221β中,当2X 和3X 相互独立时,对斜率系数2β和3β的OLS 估计值;等于Y 分对2X 和3X 作简单线性回归时斜率系数的OLS 估计值;答:二元线性回归模型的回归系数2β和3β最小二乘估计式:而当2X 和3X 相互独立时,2X 和3X 的斜方差等于零,即:将∑=0)(32x x 代入2ˆβ和3ˆβ式中,可得: 所以,当2X 和3X 相互独立时,对斜率系数2β和3β的OLS 估计值;等于Y 分对2X 和X作简单线性回归时斜率系数的OLS估计值;3对于本章开始提出的“中国已成为世界汽车产销第一国”,为分析中国汽车产销量的发展,你认为可建立什么样的计量经济模型答:分析中汽车市场状况如何,我们可以用销售量观测;其次考虑影响汽车销量的主要因素都有哪些比如收入、价格、费用、道路状况、能源、政策环境等;可以建立如下模型:其中,Y为汽车销售量,X2为居民收入,X3为汽车价格,X4为汽油价格,像其他费用、道路状况、政策环境等次要因素包含在随机误差项u中;说明用Eviews完成多元线性回归分析的具体操作步骤;答:1、建立工作文件,建立一个Group对象,输入数据;2、点击Quick下拉菜单中的Estimate Equation;3、在对话框Equation Specification栏中键入Y C X2 X3 X4,点击OK,即出现回归结果;第四章多重共线性思考题多重共线性的实质是什么为什么会出现多重共线性答:多重共线性包括完全的多重共线性和不完全的多重共线性;多重共线性实质上是样本数据问题,出现了解释变量系数矩阵的线性相关问题;产生多重共线性的经济背景主要有以下几种情形:第一,经济变量之间具有共同变化趋势;第二,模型中包含滞后变量;第三,利用截面数据建立模型也可能出现多重共线性;第四,样本数据自身的原因;多重共线性对回归参数的估计有何影响答:在完全多重共线性情况下,参数的估计值不确定,估计量的方差无限大;在不完全共线性情况下,参数估计量的方差随共线性程度的增加而增大;对参数区间估计时,置信区间趋于变大;严重多重共线性时,假设检验容易做出错误的判断;当多重共线性严重时,可能造成可决系数R2较高,经F检验的参数联合显着性也很高,但单个参数t检验却可能不显着,甚至可能使估计的回归系数符号相反,得出完全错误的结论;多重共线性的典型表现是什么判断是否存在多重共线性的方法有哪些答:多重共线性的典型表现是模型拟和较好,但偏回归系数几乎都无统计学意义;偏回归系数估计值不稳定,方差很大;偏回归系数估计值的符号可能与预期不符或与经验相悖,结果难以解释;具体判断方法有:解释变量之间简单相关系数矩阵法;方差扩大因子法以及一些直观判断法和逐步回归的方法;针对出现多重共线性的不同情形,能采取的补救措施有哪些答:根据经验,可以选择剔除变量,增大样本容量,变换模型形式,利用非样本先验信息,截面数据和时间序列数据并用以及变量变换等不同方法;也可以采取逐步回归方法由由一元模型开始逐步增加解释变量个数,增加的原则是显着提高可决系数,自身显着而与其他变量之间又不产生共线性;最后,还可以采取岭回归方法来降低多重共线性的程度;在涉及相关的宏观经济总量指标如GDP、货币供应量、物价水平、国民总收入、就业人数等时间序列的数据中一般都会怀疑有多重共线性,为什么答:原因是这些变量之间通常具有共同变化的趋势;多重共线性的产生与样本容量的个数n、解释变量的个数k有无关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
统计学2班第二次作业1、Ŷi =-151.0263 + 0.1179X 1i + 1.5452X 2iT= (-3.066806) (6.652983) (3.378064)R 2=0.934331 R 2=0.92964 F=191.1894 n=31⑴模型估计结果说明,各省市旅游外汇收入Y 受旅行社职工人数X 1,国际旅游人数X 2的影响。
由所估计出的参数可知,在假定其他变量不变的情况下,当旅行社职工人数每增加1人,各省市旅游外汇收入增加0.1179百万美元。
在嘉定其他变量不变的情况下。
当国际旅游人数每增加1万人,各省市旅游外汇收入增加1.5452百万美元。
⑵由题已知,估计的回归系数β1的T 值为:t (β1)=6.652983。
β2的T 值分为: t (β2)=3.378064。
α=0.05.查得自由度为n-2=22-2=29的临界值t 0.025(29)=2.045229因为t (β1)=6.652983≥t 0.025(29)=2.045229.所以拒绝原假设H 0:β1=0。
表明在显著性水平α=0.05下,当其他解释变量不变的情况下,旅行社职工人数X 1对各省市旅游外汇收入Y 有显著性影响。
因为 t (β2)=3.378064≥t 0.025(29)=2.045229,所以拒绝原假设H 0:β2=0表明在显著性水平α=0.05下,当其他解释变量不变的情况下,和国际旅游人数X 2对各省市旅游外汇收入Y 有显著性影响。
⑶正对H O :β1=β2=0,给定显著水性水平α=0.05,自由度为k-1=2,n-k=28的临界值F 0.05(2,28)=3.34038。
由题已知F=191.1894>F 0.05(2,28)=3.34038,应拒绝原假设H O :β1=β2=0,说明回归方程显著,即旅行社职工人数和旅游人数变量联合起来对各省市旅游外汇收入有显著影响。
2、⑴样本容量n=15 残差平方和RSS=66042-65965=77 回归平方和ESS 的自由度为K-1=2 残差平方和RSS 的自由度为n-k=13⑵可决系数R 2=TSS ESS =6604265965=0.99883 调整的可决系数R 2=1-(1-R 2)kn n --1=1-(1-0.99883)1214=0.99863 ⑶利用可决系数R 2=0.99883,调整的可决系数R 2=0.99863,说明模型对样本的拟合很好。
不能确定两个解释变量X 2和X 3个字对Y 都有显著影响。
3、Y :家庭书刊年消费支出/元 X :家庭月平均收入/元 T :户主受教育年数/年⑴5001,0001,5002,0002,5003,0003,5004,00024681012141618Y X T由图可以看出Y,X,都是逐年增长的,但增长的速率有所变动,而T 总体呈水平变动。
说明变量间不一定是线性关系。
所以建立家庭书刊消费的计量经济模型为:μβββ+++=T X Y 321ln ln⑵模型参数估计结果为:β1=3.931474 β2=0.248535 β3=0.063869模型估计结果为:T X Yi 063869.0ln 248535.0931474.3ˆln ++= ⑶估计的回归系数β3的T 值为:t (β3)=12.05508。
α=0.05.查得自由度为n-2=18-2=16的临界值t 0.025(16)=2.12因为t (β3)=12.05508≥t 0.025(16)=2.12.所以拒绝原假设H 0:β3=0。
表明在显著性水平α=0.05下,当其他解释变量不变的情况下,户主受教育年数T 对家庭书刊年消费支出Y 有显著性影响。
⑷模型估计结果说明,在假定其他变量不变的情况下,家庭月平均收入每增长1%,平均说来家庭书刊年消费支出会增长0.248535%。
在假定其他条件不变的情况下,户主受教育年数每增加一年,平均来说家庭书刊年消费支出会增长0.063869%4、Y :实际通货膨胀率/% X 2:失业率/% X 3:预期通货膨胀率/%⑴期望扩充菲利普斯曲线模型为:t t t t X X Y μβββ+++=33221根据表中数据可知t t t X X Y 32480674.1393115.1105975.7+-=估计模型结果说明,在假定其他条件不变的情况下,当年失业率每增长1%,平均导致实际通货膨胀率减少1.393115%。
在假定其他条件不变的情况下,当年预期通货膨胀率每增长1%,平均导致实际通货膨胀率增加1.480674%。
⑵F 检验:针对H O :β2=β3=0,给定显著性水平α=0.05,查得F 0.05(k-1,n-k )=F 0.05(2,10)=4.103. 由表数据可知F=34.29559≥F 0.05(2,10)=4.103,应拒绝原假设H O :β2=β3=0。
说明回归方程显著,即失业率,预期通货膨胀率变量联合起来确实对实际通货膨胀率有显著影响。
T 检验:分别针对H 0:β2=0,H 0:β3=0由题已知,估计的回归系数β2的T 值为:∣t (β2)∣=4.493196。
β3的T 值分为: t (β3)=8.217506。
α=0.05.查得自由度为n-2=13-2=11的临界值t 0.025(11)=2.201因为∣t (β2)∣=4.493196≥t 0.025(11)=2.201.所以拒绝原假设H 0:β2=0。
表明在显著性水平α=0.05下,当其他解释变量不变的情况下,失业率X 2对实际通货膨胀率Y 有显著性影响。
因为 t (β3)=8.217506≥t 0.025(11)=2.201,所以拒绝原假设H 0:β2=0表明在显著性水平α=0.05下,当其他解释变量不变的情况下,预期通货膨胀率X 3对实际通货膨胀率Y 有显著性影响。
⑶847311.01012)872759.01(11)1(122=--=----=k n n R R5、Y:人均耐用消费品支出/元 X 1:人均年可支配收入/元 X 2:耐用消费品价格指数模型建立:t t t t X X Y μβββ+++=2211021911684.0049404.05398.158ˆX X Y t -+=(121.8071) (0.004684) (0,989546)T=(1.301564) (10.54786) (-0.921316)R 2=0.947989 2R =0.934986 F=72.90647 n=11分别针对H 0:β1=0,H 0:β2=0由题已知,估计的回归系数β1的T 值分为: t (β1)=10.54786。
β2的T 值为:∣t (β2)∣=0.9212316。
α=0.05.查得自由度为n-2=11-2=9的临界值t 0.025(9)=2.262 因为t (β1)=10.54786≥t 0.025(9)=2.262,所以拒绝原假设H 0:β1=0表明在显著性水平α=0.05下,当其他解释变量不变的情况下,人均年可支配收入X 1对人均耐用消费品支出Y 有显著性影响。
因为∣t (β2)∣=0.9212316≤t 0.025(9)=2.262.所以接受原假设H 0:β2=0。
表明在显著性水平α=0.05下,当其他解释变量不变的情况下,耐用消费品价格指数X 2对人均耐用消费品支出Y 影响不显著。
由图近似可知,分析结果合理。
6、Y :能源需求指数 X 1:实际GDP 指数 X 2:能源价格指数⑴t t t t X X Y μβββ+++=22110ln ln ln由表可知β0=1.549504 β1=0.996923 β2=-0.33136421ln 0.331364-ln 0.9969231.549504ˆln X X Y t +=估计结果说明,在假定其他变量不变的前提下,当年实际GDP 指数每增加1%,平均导致能源需求指数增加0.996923%;在假定其他变量不变的前提下,当年能源价格指数每增加1%,平均导致能源需求指数减少0.331364%。
针对H 0:β1=0,由表可得β1=0.996923时所对应的P 值为0.0000≤0.05,所以拒绝原假设。
说明在显著性水平α=0.05下,假定其他变量不变的前提下,实际GDP 指数对能源需求指数有显著性影响。
针对H 0:β2=0,由表可得β2=-0.331364时所对应的P 值为0.0000≤0.05,所以拒绝原假设。
说明在显著性水平α=0.05下,假定其他变量不变的前提下,能源价格指数对能源需求指数有显著性影响。
⑵t t t t X X Y μβββ+++=22110由表可知β0=28.25506 β1=0.980849 β2=-0.25842621ln 0.258426-0.98084928.25506ˆX X Y t +=估计结果说明,在假定其他变量不变的前提下,当年实际GDP 指数每增加1,平均导致能源需求指数增加0.996923;在假定其他变量不变的前提下,当年能源价格指数每增加1,平均导致能源需求指数减少0.331364。
针对H 0:β1=0,由表可得β1=0.980849时所对应的P 值为0.0000≤0.05,所以拒绝原假设。
说明在显著性水平α=0.05下,假定其他变量不变的前提下,实际GDP 指数对能源需求指数有显著性影响。
针对H 0:β2=0,由表可得β2=-0.258426时所对应的P 值为0.0000≤0.05,所以拒绝原假设。
说明在显著性水平α=0.05下,假定其他变量不变的前提下,能源价格指数对能源需求指数有显著性影响。
7、Y :粮食年销售量/万吨 X 2:常住人口/万人 X 3:人均收入/元 X 4:肉销售量/万吨 X 5:蛋销售量/万吨 X 6:鱼虾销售量/万吨⑴t t X X X X X Y μββββββ++++++=66554433221预测参数的符号均为正号⑵不相符合。
⑶α=0.05.查得自由度为n-2=14-2=12的临界值t 0.025(12)=2.1788针对H0:βj=0(j=2,3,4,5,6);由表可知估计的回归系数的T 值为T(β2)=2.119245,T(β3)=1.944897 T(β4)=2.129646 T(β5)=1.409082 T(β6)=-2.027719。
在显著性水平α=0.05下,均接受原假设。
说明在α=0.05的显著性水平下,假设其他解释变量不变的情况下,常住人口,人均收入,肉销售量,蛋销售量,鱼虾销售量对粮食年销售量影响不明显。
当α=0.10,查得自由度为n-2=14-2=12的临界值t 0.05(12)=1.78229针对H0:βj=0(j=2,3,4,5,6);由表可知估计的回归系数的T 值为T(β2)=2.119245,T(β3)=1.944897 T(β4)=2.129646 T(β6)=-2.027719。