第三章 线性系统的时域分析与校正 习题及答案

合集下载

线性系统的时域分析法

线性系统的时域分析法

1
即 100Kh

0.1
3,

K h 0.3
• 解题关键:化闭环传递函数为标准形式。
30
3-3 二阶系统的时域分析
• 本节主要内容:
• • 二阶系统的数学模型 • • 二阶系统的单位阶跃响应 • • 欠阻尼二阶系统的动态过程分析 • • 过阻尼二阶系统的动态过程分析 • • 二阶系统性能的改善
33
3-3–2 二阶系统的单位阶跃响应
- ξ>ζ 1>1
S1,2=
ξω ω√ ±j 1
1
n T2
T1
n ξ2
-

=1
0
jj 00
= - hξ=(t)1
t
t
+ + 1 e = 过TTS阻211,尼21T1
ξωTe1 n=T12 -ωn T2
h(t)= 1临-(1界+阻ω尼nt)0je-ωnt
0<0<ξ<ζ 1<1 S1,2= -ξ ωn ±jj ωn√1-ξζ2 =0
来 一阶系统的参数与标准式的参数之间有 • 着对的应0.1的倍,关且保系证。原放求大出倍数标不准变,形试式确定的参动数 态Ko 和性K能H 的指取值。
标与其参数间的关系,便可求得任何一阶系 统的性能指标。
10KO
10KO
(s) KOG(S) 0.2s 1 1 K HG(s) 1 10K H
11
性能指标图解
超调量σp
延迟时
间td
上升时
间tr
峰值时
间tp
调整时
间ts
12
其它性能指标
• 振荡次数N:在0≤t≤ts时间内,过渡过程c(t) 穿越其稳态值c(∞)次数的一半。

第三章线性系统的时域分析典型输入信号

第三章线性系统的时域分析典型输入信号
eT
T
c(t )

1
t2
Tt
T 2 (1
t
eT
)
2
§3 二阶系统的时域分析
二阶系统的定义:用二阶微分方程描述的系统 微分方程的标准形式:
d 2 c(t ) dt 2

2 n
dc(t) dt

n 2 c(t )

n 2 r (t )
—阻尼比,n —无阻尼自振频率。
传递函数及方框图
d 1 2
cos d t p )
0
- n (cos d t p
1 2
sin d t )
d (-sin d t p
d 1 2
cos d t p )
0
sin d t p 0, d t p 0, ,2 ,3 .......
R(s) Ts 1
1 TS 1
一.单 位 阶 跃 响 应
r(t) 1(t) R(s) 1 s
C(s) (s)R(s) 1 1 1 T Ts 1 s s Ts 1
t
c(t) 1 e T
说明:
1.可以用时间常数去度量系统输出量的数值
t t

T时, c(t) 1 e1 0.632 3T时, c(t) 0.95 95%
好 等 于c(), 令N m , 得 2
n
N
1 2 t s arctg
1 2



2
将t s

1
n
ln
1 代入,并取整数得
1- 2
N N(
1- 2 2
ln
1

8第三章 线性系统的时域分析(第八讲)

8第三章 线性系统的时域分析(第八讲)

主导极点 如果系统中有一个(极点或一对)复数极点距虚轴最近, 且附近没有闭环零点;而其它闭环极点与虚轴的距离都比该极点与虚 轴距离大5倍以上,则此系统的响应可近似地视为由这个(或这对)极 点所产生。
3.5 线形定常系统的稳定性
稳定是控制系统能够正常运行的首要条件。 对系统进行各类品质指标的分析也必须在系统稳定的前提
求的 K和值,计算该系统的上升 时间tr ,tS ,td .
解:

=e 1 2 0.2
R(s)

K
C(s)
s(s 1)
1
ln( )


0.456
2 (ln 1 )2

tp
d
1s
d 3.14rad / s d n 1 2
n
Td ,改变 d 阻尼的大小
比例-微分控制可以不该变自然频率 n ,但可增大系统的阻尼比
1 由于PD控制相当于给系统增加了一个闭环零点, z Td
故比例-微分控制的二阶系统称为有零点的二阶系统。
当输入为单位阶跃函数时
C(s)
(s)R(s)

S2

SZ
2n S
n2

S2
Td n 2
(S

1 Td
)
(2n Tdn 2 )S
n2
Tdn2 2 'n
令z 1 Td
' Tdn
2
d '

z(S 2
n2 (S z) 2dnS n2 )
Td n
2
(3-36)
(3-35)
结论 可通过适当选择微分时间常数

【自动控制原理经典考试题目整理】第三章-第四章

【自动控制原理经典考试题目整理】第三章-第四章

自动控制原理经典考试题目整理第三章-第四章第三章时域分析法一、自测题1.线性定常系统的响应曲线仅取决于输入信号的______________和系统的特性,与输入信号施加的时间无关。

2.一阶系统1/(TS+1)的单位阶跃响应为。

3.二阶系统两个重要参数是,系统的输出响应特性完全由这两个参数来描述。

4.二阶系统的主要指标有超调量MP%、调节时间ts和稳态输出C(∞),其中MP%和ts是系统的指标,C(∞)是系统的指标。

5.在单位斜坡输入信号的作用下,0型系统的稳态误差ess=__________。

6.时域动态指标主要有上升时间、峰值时间、最大超调量和__________。

7.线性系统稳定性是系统__________特性,与系统的__________无关。

8.时域性能指标中所定义的最大超调量Mp的数学表达式是__________。

9.系统输出响应的稳态值与___________之间的偏差称为稳态误差ess。

10.二阶系统的阻尼比ξ在______范围时,响应曲线为非周期过程。

11.在单位斜坡输入信号作用下,Ⅱ型系统的稳态误差ess=______。

12.响应曲线达到超调量的________所需的时间,称为峰值时间tp。

13.在单位斜坡输入信号作用下,I型系统的稳态误差ess=__________。

14.二阶闭环控制系统稳定的充分必要条件是该系统的特征多项式的系数_____________。

15.引入附加零点,可以改善系统的_____________性能。

16.如果增加系统开环传递函数中积分环节的个数,则闭环系统的稳态精度将提高,相对稳定性将________________。

17.为了便于求解和研究控制系统的输出响应,输入信号一般采用__________输入信号。

18.当系统的输入具有突变性质时,可选择阶跃函数为典型输入信号。

()19.暂态响应是指当时间t趋于无穷大时,系统的输出状态。

()20.在欠阻尼0<ζ<1情况下工作时,若ζ过小,则超调量大。

第3章 线性系统的时域分析第九节_3

第3章 线性系统的时域分析第九节_3

(3)根轨迹起始于开环极点,终止于开环零点
说明 当根轨迹增益K1从0变化到∞时,在s平面就会画 出一条一条的根轨迹,每条根轨迹都有起点和终 点,对应于K1 =0的s点叫根轨迹的起点,对应于 K1 →∞的s点叫根轨迹的终点。 由幅值条件
可见 当s=pj时, K1 =0 ;根轨迹起始于开环极点; 当s=zi时, K1 →∞ ;终止于开环零点; 当|s|→∞且n≥m时, K1 →∞。如果开环零点个 数m少于开环极点个数n,则有(n-m)条根轨迹终 止于无穷远处。
(5)两条根轨迹的交点方程为
其中sd为交点。
说明: 交点sd是指两支根轨迹会合后分离的点, 该点为闭环特征方程的重根
假设闭环特征方程有2个重根,则可将其 改写为
例3-6 单位负反馈系统开环传递函数为
试画出系统实轴上的根轨迹并求出系统根轨迹 的交点。
解: 由规则1),系统有3条根轨迹; 由规则3),3条根轨迹的起点为
(4)实轴上的根轨迹 实轴上的某一区域,若其右边开环实数零、 极点个数之和为奇数,则该区域必是根轨迹。 (如红线所示)
红色部分 为根轨迹
说明:以实轴上的s0点为例,根据相角条 件,分三个方面说明这个法则。
G ( s ) H ( s )
m n
(s z ) (s p )
解 系统有3条根轨迹分支,且3条根轨迹都趋 于无穷远处。 实轴上的根轨迹: ,2 1,0 渐近线:
根轨迹的交点满足以下方程
交点必须在根轨迹上,所以交点取
根轨迹与虚轴的交点及临界增益。
令s=iω
令实部及虚部分别为0
解得
第一组解为根迹的起点,第二组得根迹和虚轴的 交点 ,临界根轨迹增益为6
K s ( s 1)( s 2) K 1 s ( s 1)( s 2)

线性系统的时域分析法

线性系统的时域分析法

三、动态性Leabharlann 和稳态性能动态性能:通常在阶跃函数作用下,测定或计算系统的动
态性能。一般认为阶跃输入对系统来说是最严峻的工作状态。
描述稳定的系统在阶跃函数作用下,动态过程随时间的
变化状况的指标称为动态性能指标。通常包括:
延迟时间 td :指响应曲线第一次到达稳态值一半所需的时间。
上升时间 tr :指响应第一次 h(t) % 误差带
洛比特法则
lim lim
(s pi )N (s)
(s pi )N (s) N (s) N ( pi )
s pi
D(s)
s pi
D(s)
D( pi )
f (t) L1
F (s)
L1
n i1
Ai s pi
n i 1
Aie pi t
② 具有多重极点的有理函数的反变换
F (s)
误差平方积分(ISE,Integral of Square Error)
ISE e2 (t)dt 0
( e(t)是输入输出之间存在的误差)
时间乘误差平方积分(ITSE,Integral of Timed Square Error)
ITSE te2 (t)dt 0
误差绝对值积分(IAE,Integral of Absoluted Error)
(s a
j)F (s) sa j
N (s) D(s)
sa j
k1
e j
思考:为何 k1,k2 必为共轭复数?
f
(t)
L1 F (s)
L1
s
A1 p1
k1 sa
j
k2 sa
j
A1e p1t
k1e(a j)t

自动控制原理胡寿松第五版第三章答案

自动控制原理胡寿松第五版第三章答案

第三章 线性系统的时域分析与校正习题及答案3-1 已知系统脉冲响应t 25.1e 0125.0)t (k -=,试求系统闭环传递函数)s (Φ。

解 [])25.1s /(0125.0)t (k L )s (+==Φ3-2 设某高阶系统可用下列一阶微分方程)t (r )t (r )t (c )t (c T +τ=+∙∙近似描述,其中,1)T (0<τ-<。

试求系统的调节时间s t 。

解 设单位阶跃输入ss R 1)(=当初始条件为0时有:1T s 1s )s (R )s (C ++τ= 1Ts T s 1s 11Ts 1s )s (C +τ--=⋅++τ=∴ T/t e T T 1)t (h )t (c -τ--== T )0(h τ=,1)(h =∞,20T T )]0(h )(h [05.0τ-=-∞=∆求 s tT/t s s e TT 1)0(h )]0(h )(h [95.0)t (h -τ--=+-∞= 3T 05.ln0T t s ==∴3-2 一阶系统结构如图所示。

要求单位阶跃输入时调节时间4.0t s ≤s (误差带为5%),稳态 输出为2,试确定参数21k ,k 的值。

解 由结构图写出闭环系统传递函数1k k sk 1k k s k sk k 1s k )s (212211211+=+=+=Φ闭环增益2k 1k 2==Φ, 得:5.0k 2= 令调节时间4.0k k 3T 3t 21s ≤==,得:15k 1≥。

3-4 在许多化学过程中,反应槽内的温度要保持恒定, 下图(a )和(b )分别为开环和闭环温度控制系统结构图,两种系统正常的K 值为1。

解 (1)对(a )系统: 1s 1011s 10K )s (G a +=+=, 时间常数 10T =632.0)T (h = (a )系统达到稳态温度值的63.2%需要10秒;对(b )系统:1s 10110101100101s 10100)s (b+=+=Φ, 时间常数 10110T = 632.0)T (h = (b )系统达到稳态温度值的63.2%需要0.099秒。

第三章信号的时域分解线性系统分析...

第三章信号的时域分解线性系统分析...

第三章信号的时域分解§3-1 引言●线性系统分析方法,是将复杂信号分解为简单信号之和(或积分),通过系统对简单信号的响应求解系统对复杂信号的响应。

●在时域中,近代时域法将信号分解为冲激信号的积分,根据系统的冲激响应通过卷积计算出系统对信号的响应。

●而在频域法中,我们将信号分解为一系列正弦函数的和(或积分),通过系统对正弦信号的响应求解系统对信号的响应。

●频域在工程中也有很重要的意义。

很多信号的特性与频域都有很重要的关系。

研究频域可以得到很多具有实用价值的结论。

如上章所述,通过信号分解的方法求解响应要研究下面几个问题:1)如何将任意信号分解为一系列正弦信号之和(或积分)。

2)如何求系统对各个正弦子信号的响应,这个内容在电路分析课程中已经有详细介绍;3) 如何将各子信号的响应相叠加,从而合成系统对激励信号的响应。

本章将要研究的就是如何对信号进行分解和合成。

§3-2 信号在正交函数集中的分解为了形象地说明信号的分解,首先我们讨论矢量的分解。

一、矢量的分解 1、矢量的定义2、矢量运算:加,标量乘法,矢量乘法3、矢量的分解:1) 矢量的单矢量基的分解:11A c 近似矢量A ——误差尽可能小。

ε+=11A A c从几何或者解析角度,都可以得到使误差最小的系数为:1111A A A A =c其中的1c 称为矢量A 和1A 的相似系数。

如果01=c (或01=A A ),则表明A 和1A 相垂直(又称为正交)。

2) 矢量的多矢量基分解:将矢量表示成为一系列标准矢量(基)的线性组合:∑==+++=ni i i n n c c c c 12211...A A A A A✧ 显然,如果知道了标准矢量i A 和相应的系数i c ,就可以确定任意矢量。

✧ 如何确定最佳的系数i c 情况比较复杂,对于特定的i 而言,i c 不仅与特定的i A 有关,与其它的标准矢量也有关系。

但是如果矢量i A 两两正交,可以证明:ii i i c A A AA =4、标准矢量基的几个限制条件:1)归一化:标准矢量的模等于1——方便计算 2)正交化:标准矢量两两正交3)完备性:可以不失真地组合出任意矢量二、信号的分解与矢量分解相似,我们也可以推导出信号分解。

信号与线性系统-白恩健书答案

信号与线性系统-白恩健书答案

第1章基本概念K第1章习题k1.1解:(1)x(t)为周期信号,周期为T=10。

(2)x(t)为非周期信号。

(3)x[n]为非周期信号。

(4)x[n]为周期信号,周期为N=2。

(5)x(t)为非周期信号。

(6)x[n]为周期信号,周期为N=2。

1.2解:(1)x(t)为功率信号。

(2)x(t)既不是能量信号也不是功率信号。

(3)x[n]为能量信号。

(4)x(t)为能量信号。

(5)x(t)为能量信号。

(6)x[n]为能量信号。

1.3略。

1.4略。

1.5(原题有误)一个离散时间系统的激励与响应的关系为y[n]=M∑i=0b i x[n−i]。

用算符S−k代表将信号x[n]平移k个单位时间得到输出信号x[n−k]的系统,即x[n−k]=S−k(x[n])。

写出联系y[n]与x[n]的系统算符T及其可逆系统的算符T inv。

解:提示:可逆系统为y[n]−M∑i=1b i x[n−i]=b0x[n]。

1.6解:(1)因果、无记忆、非线性、时不变、BIBO稳定系统。

(2)因果、无记忆、线性、时变和BIBO稳定系统。

(3)因果、无记忆、线性、时变和非稳定系统。

(4)因果、记忆、线性、时不变和BIBO稳定系统。

(5)因果、无记忆、线性、时变和BIBO稳定系统。

(6)因果、记忆、时不变、非稳定系统。

–2/48–第1章基本概念(7)因果、无记忆、线性、时不变和BIBO稳定系统。

(8)非因果系统、无记忆、线性、时不变、BIBO稳定系统。

1.7证明略。

1.8解:(1)x[n]的响应为{1,1,−1,2,n=0,1,2,3}。

(2)x[n]的响应为{1,1,−3,1,3,−5,2,n=−3∼3}。

(3)x[n]的响应为{1,0,−1,4,−3,2,n=−2∼3}。

1.9证明提示:根据微积分的极限定义证明。

1.10解:(1)x(t)的响应为4(1−e−t)u(t)−6(1−e−t+1)u(t−1)。

(2)x(t)的响应为[2(t+e−t)−2]u(t)。

自动控制原理-第3章

自动控制原理-第3章

响应曲线如图3-2所示。图中
为输出的稳态值。
第三章 线性系统的时域分析 法
图 3-2 动态性能指标
第三章 线性系统的时域分析 法
动态性能指标通常有以下几种:
延迟时间td: 指响应曲线第一次达到稳态值的一半所需的时间
上升时间tr: 若阶跃响应不超过稳态值, 上升时间指响应曲线从 稳态值的10%上升到90%所需的时间; 对于有振荡的系统, 上升时 间定义为响应从零第一次上升到稳态值所需的时间。上升时间越 短, 响应速度越快。
可由下式确定: (3.8)
振荡次数N: 在0≤t≤ts内, 阶跃响应曲线穿越稳态值c(∞)次 一半称为振荡次数。
上述动态性能指标中, 常用的指标有tr、ts和σp。上升时间tr 价系统的响应速度; σp评价系统的运行平稳性或阻尼程度; ts是同
时反映响应速度和阻尼程度的综合性指标。 应当指出, 除简单的一 、二阶系统外, 要精确给出这些指标的解析表达式是很困难的。
中可以看出, 随着阻尼比ζ的减小, 阶跃响应的振荡程度加剧。 ζ =0时是等幅振荡, ζ≥1时是无振荡的单调上升曲线, 其中临界阻尼 对应的过渡过程时间最短。 在欠阻尼的状态下, 当0.4<ζ<0.8时过
渡过程时间比临界阻尼时更短, 而且振荡也不严重。 因此在 控制工程中, 除了那些不允许产生超调和振荡的情况外, 通常都希
第三章 线性系统的时域分析法 4. 脉冲函数 脉冲函数(见图3-1(d))的时域表达式为
(3.4)
式中,h称为脉冲宽度, 脉冲的面积为1。若对脉冲的宽度取趋于 零的极限, 则有
(3.5) 及
(3.6)
称此函数为理想脉冲函数, 又称δ函数(见图3-1(e))。
第三章 线性系统的时域分析 法

第3章线性系统的时域分析习题答案

第3章线性系统的时域分析习题答案

第3章线性系统的时域分析学习要点1控制系统时域响应的基本概念,典型输入信号及意义;2控制系统稳定性的概念、代数稳定判据及应用;3控制系统的时域指标,一阶二阶系统的阶跃响应特性与时域指标计算;4高阶系统时域分析中主导极点和主导极点法;5 控制系统稳态误差概念、计算方法与误差系数,减小稳态误差的方法。

思考与习题祥解题思考与总结下述问题。

(1)画出二阶系统特征根在复平面上分布的几种情况,归纳ξ值对二阶系统特征根的影响规律。

ω对二阶系统阶跃响应特性的影响规律。

(2)总结ξ和n(3)总结增加一个零点对二阶系统阶跃响应特性的影响规律。

(4)分析增加一个极点可能对二阶系统阶跃响应特性有何影响(5)系统误差与哪些因素有关试归纳减小或消除系统稳态误差的措施与方法。

(6)为减小或消除系统扰动误差,可采取在系统开环传递函数中增加积分环节的措施。

请问,该积分环节应在系统结构图中如何配置,抗扰效果是否与扰动点相关答:(1)二阶系统特征根在复平面上分布情况如图所示。

图 二阶系统特征根在复平面上的分布当0ξ=,二阶系统特征根是一对共轭纯虚根,如图中情况①。

当01ξ<<,二阶系统特征根是一对具有负实部的共轭复数根,变化轨迹是以n ω为半径的圆弧,如图中情况②。

当1ξ=,二阶系统特征根是一对相同的负实根,如图中情况③。

当1ξ>,二阶系统特征根是一对不等的负实根,如图中情况④。

(2)ξ和n ω是二阶系统的两个特征参量。

ξ是系统阻尼比,描述了系统的平稳性。

当0ξ=,二阶系统特征根是一对共轭纯虚根,二阶系统阶跃响应为等幅振荡特性,系统临界稳定。

当01ξ<<,二阶系统特征根是一对具有负实部的共轭复数根,二阶系统阶跃响应为衰减振荡特性,系统稳定。

ξ越小,二阶系统振荡性越强,平稳性越差;ξ越大,二阶系统振荡性越弱,平稳性越好。

因此,二阶系统的时域性能指标超调量由ξ值唯一确定,即001_100%2⨯=-πξξσe。

自动控制原理-胡寿松-第三章-线性系统时域分析法

自动控制原理-胡寿松-第三章-线性系统时域分析法
impulse(G) 简单介绍一下m文件的用法 Simulink 用法
课前提问
3-3 二阶系统的时域分析(非常重点、难点)
二阶系统定义:能够用二阶微分方程描述的系统称为二阶系统。 本节内容
0. 预备知识 1. 二阶系统的数学模型 2. 二阶系统的单位阶跃响应 3. 欠阻尼二阶系统的动态过程分析 4. 过阻尼二阶系统的动态过程分析 5. 二阶系统的单位斜坡响应 6. 二阶系统性能的改善 7. 非零初始条件下二阶系统的响应过程
超调量 % :
显然 h(tp) hmax
若 h(tp) h() 则响应无超调
实际中,常用的动态性能指标
tr
tp
评价系统起始段的响应速度;
ts
评价系统整个过渡过程的响应速度,是响应速度和阻尼程度的综合指标。
%
评价系统的阻尼程度;
思考:稳态误差从图中怎么看?
3-2 一阶系统的时域分析
一阶系统定义:能够用一阶微分方程描述的系统称为一阶系统。
第三章 线性系统的时域分析法
系统的数序模型确定后,便可以用多种不同的方 法去分析控制系统的动态性能和稳态性能。
在经典控制理论中
时域分析的一般思路:
时域分析法 根轨迹法 频域分析法
数数数数
数数数数数数数 求解微分方程
数数数数
数数数数
优点:直接在时间域对系统进行分析,具有直观、准确的 优点,并可以提供系统时间响应的全部信息。
本章内容
▪ 3-1 系统时间响应的性能指标 ▪ 3-2 一阶系统的时域分析 ▪ 3-3 二阶系统的时域分析 ▪ 3-4 高阶系统的时域分析 ▪ 3-5 线性系统的稳定性分析 ▪ 3-6 线性系统的稳态误差计算 ▪ 3-7 控制系统时域设计

第三章-线性系统的时域分析法(简)

第三章-线性系统的时域分析法(简)
注意:此时系统不为稳定系统,而是临界稳定系统
劳斯表出现全零行:
系统在s平面有对称分布的根:
①大小相等符号相反的实根
j
0
②共轭虚根
j
③对称于实轴的两对共轭复根
j
0
0
• 特殊情况3:多行元素全为零
Routh表出现多个全零行,系统在s平面有重共轭虚根, 则系统不稳定。
参看:《现代控制系统》第八版 Richard C.Dorf Robert H.Bishop著
名称
时域表达式 复数域表达式
单位阶跃信号 1(t) , t 0
1 s
单位斜坡信号 t , t 0
1 s2
单位加速度信号 1 t 2 , t 0
2
1 s3
单位脉冲信号 (t) , t 0
1
正弦信号
A
As
Asint Acost s2 2 s2 2
二、 动态过程与稳态过程 P78
➢ 动态过程(过渡过程、瞬态过程): 在典型输入信号作用下,系统输出量从初始状
s5
1
5
6 解决方法:
s4
1
由全0行的上一行元素构
5
6 成辅助方程F(s)=0,并
s3 0 4 0 10 0 对其求导后,用所得系数
s2 5/2
6
代替全0行的元素。
s1 2/ 5
例如:F(s) s4 5s2 6 0
s0
6
求导得: F(s) 4s3 10s1 0
s1,2 j 2 s3,4 j 3 s5 1
第三章 线性系统的时域分析法
本章主要内容: 3.I 系统时间响应的性能指标 3.2 一阶系统的时域分析 3.3 二阶系统的时域分析 3.4 高阶系统的时域分析 3.5 线性系统的稳定性分析 3.6 线性系统的稳态误差计算

自控原理(3)

自控原理(3)

§3.线性系统时域分析
3)欠阻尼即0<ζ<1时二阶系统的单位阶跃响应动态性能分析
设r(t)=1,即 R(s) 1 s
则二阶系统在时的单位阶跃响应式为:
C(s)
C(s()s) R(s)
R(sn2)2s2n2n s2n2nn2
s
1 s
n2
1 s
(sC(s1s)sn)2s22(ss)n22n(1R2(nss) 2n)
j
s1
,s2
为一对不等的负实数根。
j
s1、s2
0
0
t
② ζ = 1时,(临界阻尼) s1 ,s2 为一对相等的负实数根。
③ 0< ζ <1时,(欠阻尼) s1 ,s2 为一对具有负实部的共轭复根。
Automatic Control Theory
§3.线性系统时域分析
④ 当ζ =0时,(无阻尼,零阻尼) s1 ,s2 为一对幅值相等的虚根。

e tr
1
2
sin
d
tr
0
由于
e tr
1
2
0,
故只有
故只有 sin dtr 0
所以 t
r
d
1 2 n
sin t d
峰值时间 tp :指响应从0到达第一次峰值(最大值)时 所 需要的时 间; 由求c (t)极值的方法,即由 c’(t)=0 求得:
t
p
d
1 2 n
Automatic Control Theory
§3.线性系统时域分析
一般式拉氏变换 (S)
1
T s2 2 2Ts 1
二阶系统标准式
2
(s)
n
s2 2 s 2

自动控制原理 第三章 时域分析c1

自动控制原理 第三章 时域分析c1


2时 5时
h(t)
其他动态性能指标:
td 0.69T
tr 2.20T
ts 3T (5%误差带)
16 t
3-2 一阶系统的时域分析
自控原理
3.一阶系统单位脉冲响应
当输入信号为理想单位脉冲函数δ (t)时,R(S)=1,输出量的拉氏
变换与传递函数相同,即 C(s) 1 TS 1
t
eT
)
t0
2
S3
2
上述几种典型响应有如下关系:
积分
积分
积分
单位脉冲
单位阶跃
单位斜坡
函数响应
函数响应
函数响应
微分
微分
微分
单位抛物线 函数响应
20
3-2 一阶系统的时域分析
自控原理
例: 设某高阶系统可用下列一阶微分方程近似描述:


T ct ct rt rt
其中, 1 (T ) 0
结论:一阶系统无法跟踪加速度形式的输入信号
19
3-2 一阶系统的时域分析
自控原理
输入信号 输入信号
时域
频域
输出响应
传递函数
(t)
1
1
t
eT
T
(t 0)
1
1(t)
S
t
1e T t 0
1
t
1
t
TS 1
S2
t T Te T t 0
1 t2
1
1
t2
Tt

T
2 (1
2.能熟练运用劳斯稳定性判据判断系统的稳定性
3.正确理解对控制信号和干扰作用的稳态误差定义, 能熟练应用静态误差系数法计算稳态误差。

自动控制原理考试试题第三章习题及答案

自动控制原理考试试题第三章习题及答案

第三章 线性系统的时域分析与校正练习题及答案3-1 已知系统脉冲响应t e t k 25.10125.0)(-=试求系统闭环传递函数)(s Φ。

解 Φ()()./(.)s L k t s ==+00125125 3-2 设某高阶系统可用下列一阶微分方程T c t c t r t r t ∙∙+=+()()()()τ近似描述,其中,1)(0<-<τT 。

试证系统的动态性能指标为 T T T t d ⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛-+=τln 693.0t T r =22. T T T t s ⎥⎦⎤⎢⎣⎡-+=)ln(3τ 解 设单位阶跃输入ss R 1)(=当初始条件为0时有:11)()(++=Ts s s R s C τ 11111)(+--=⋅++=∴Ts T s s Ts s s C ττC t h t T Te t T()()/==---1τ 1) 当 t t d = 时h t T Te t td ()./==---051τ12=--T T e t T d τ/ ; T t T T d -⎪⎭⎫ ⎝⎛-=-τln 2ln ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=∴T T T t d τln 2ln2) 求t r (即)(t c 从1.0到9.0所需时间)当 Tt e TT t h /219.0)(---==τ; t T T T 201=--[ln()ln .]τ 当 Tt e TT t h /111.0)(---==τ; t T T T 109=--[ln()ln .]τ 则 t t t T T r =-==21090122ln ... 3) 求 t sTt s s e TT t h /195.0)(---==τ ]ln 3[]20ln [ln ]05.0ln [ln TT T T T T T T T t s τττ-+=+-=--=∴3-3 一阶系统结构图如图3-45所示。

要求系统闭环增益2=ΦK ,调节时间4.0≤s t s ,试确定参数21,K K 的值。

自动控制原理 胡寿松

自动控制原理  胡寿松

第六版前言第一章自动控制的一般概念1-1 自动控制的基本原理与方式1-2 自动控制系统示例1-3 自动控制系统的分类1-4 对自动控制系统的基本要求1-5 自动控制系统的分析与设计工具习题第二章控制系统的数学模型2-1 控制系统的时域数学模型2-2 控制系统的复数域数学模型2-3 控制系统的结构图与信号流图2-4 控制系统建模实例习题第三章线性系统的时域分析法3-1 系统时间响应的性能指标3-2 一阶系统的时域分析3-3 二阶系统的时域分析3-4 高阶系统的时域分析3-5 线性系统的稳定性分析3-6 线性系统的稳态误差计算3-7 控制系统时域设计习题第四章线性系统的根轨迹法4-1 根轨迹法的基本概念4-2 根轨迹绘制的基本法则4-3 广义根轨迹4-4 系统性能的分析4-5 控制系统复域设计习题第五章线性系统的频域分析法5-1 频率特性5-2 典型环节与开环系统的频率特性5-3 频率域稳定判据5-4 稳定裕度5-5 闭环系统的频域性能指标5-6 控制系统频域设计习题第六章线性系统的校正方法6-1 系统的设计与校正问题6-2 常用校正装置及其特性6-3 串联校正6-4 前馈校正6-5 复合校正6-6 控制系统校正设计习题第七章线性离散系统的分析与校正7-1 离散系统的基本概念7-2 信号的采样与保持7-3 z变换理论7-4 离散系统的数学模型7-5 离散系统的稳定性与稳态误差7-6 离散系统的动态性能分析7-7 离散系统的数字校正7-8 离散控制系统设计习题第八章非线性控制系统分析8-1 非线性控制系统概述8-2 常见非线性特性及其对系统运动的影响8-3 相平面法8-4 描述函数法8-5 非线性控制的逆系统方法8-6 非线性控制系统设计习题第九章线性系统的状态空间分析与综合9-1 线性系统的状态空间描述9-2 线性系统的可控性与可观测性9-3 线性定常系统的反馈结构及状态观测器9-4 李雅普诺夫稳定性分析9-5 控制系统状态空间设计习题第十章动态系统的最优控制方法10-1 最优控制的一般概念10-2 最优控制中的变分法10-3 极小值原理及其应用10-4 线性二次型问题的最优控制10-5 控制系统优化设计。

(完整word版)自动控制原理3卢京潮

(完整word版)自动控制原理3卢京潮

第三章 线性系统的时域分析与校正习题及答案3-1 已知系统脉冲响应t e t k 25.10125.0)(-=试求系统闭环传递函数)(s Φ。

解 Φ()()./(.)s L k t s ==+00125125 3-2 设某高阶系统可用下列一阶微分方程T c t c t r t r t ••+=+()()()()τ近似描述,其中,1)(0<-<τT 。

试证系统的动态性能指标为 T T T t d ⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛-+=τln 693.0t T r =22. T T T t s ⎥⎦⎤⎢⎣⎡-+=)ln(3τ 解 设单位阶跃输入ss R 1)(= 当初始条件为0时有:11)()(++=Ts s s R s C τ 11111)(+--=⋅++=∴Ts T s s Ts s s C ττC t h t T Te t T()()/==---1τ 1) 当 t t d = 时h t T Te t td ()./==---051τ12=--T T e t T d τ/ ; Tt TT d-⎪⎭⎫ ⎝⎛-=-τln 2ln ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=∴T T T t d τln 2ln2) 求t r (即)(t c 从1.0到9.0所需时间)当 Tt eTT t h /219.0)(---==τ; t T T T 201=--[ln()ln .]τ 当 Tt eTT t h /111.0)(---==τ; t T T T 109=--[ln()ln .]τ 则 t t t T T r =-==21090122ln ... 3) 求 t sTt s s eTT t h /195.0)(---==τ ]ln 3[]20ln [ln ]05.0ln [ln TT T T T T T T T t s τττ-+=+-=--=∴3-3 一阶系统结构图如图3-45所示。

要求系统闭环增益2=ΦK ,调节时间4.0≤s t s ,试确定参数21,K K 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 线性系统的时域分析与校正习题及答案3-1 已知系统脉冲响应t e t k 25.10125.0)(-=试求系统闭环传递函数)(s Φ。

解 Φ()()./(.)s L k t s ==+00125125 3-2 设某高阶系统可用下列一阶微分方程T c t c t r t r t ∙∙+=+()()()()τ近似描述,其中,1)(0<-<τT 。

试证系统的动态性能指标为 T T T t d ⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛-+=τln 693.0t T r =22. T T T t s ⎥⎦⎤⎢⎣⎡-+=)ln(3τ 解 设单位阶跃输入ss R 1)(= 当初始条件为0时有:11)()(++=Ts s s R s C τ 11111)(+--=⋅++=∴Ts T s s Ts s s C ττC t h t T Te t T()()/==---1τ 1) 当 t t d = 时h t T Te t td ()./==---051τ12=--T T e t T d τ/ ; T t T T d -⎪⎭⎫ ⎝⎛-=-τln 2ln ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=∴T T T t d τln 2ln2) 求t r (即)(t c 从1.0到9.0所需时间)当 Tt eTT t h /219.0)(---==τ; t T T T 201=--[ln()ln .]τ 当 Tt eTT t h /111.0)(---==τ; t T T T 109=--[ln()ln .]τ 则 t t t T T r =-==21090122ln ... 3) 求 t sTt s s eTT t h /195.0)(---==τ ]ln 3[]20ln [ln ]05.0ln [ln TT T T T T T T T t s τττ-+=+-=--=∴3-3 一阶系统结构图如图3-45所示。

要求系统闭环增益2=ΦK ,调节时间4.0≤s t s ,试确定参数21,K K 的值。

解 由结构图写出闭环系统传递函数111)(212211211+=+=+=ΦK K sK K K s K sK K s K s令闭环增益212==ΦK K , 得:5.02=K 令调节时间4.03321≤==K K T t s ,得:151≥K 。

3-4 在许多化学过程中,反应槽内的温度要保持恒定, 图3-46(a )和(b )分别为开环和闭环温度控制系统结构图,两种系统正常的K 值为1。

(1) 若)(1)(t t r =,0)(=t n 两种系统从响应开始达到稳态温度值的63.2%各需多长时间?(2) 当有阶跃扰动1.0)(=t n 时,求扰动对两种系统的温度的影响。

解 (1)对(a )系统: 1101110)(+=+=s s K s G a , 时间常数 10=T 632.0)(=T h (a )系统达到稳态温度值的63.2%需要10个单位时间;对(a )系统:11011010110010110100)(+=+=Φs s s b , 时间常数 10110=T 632.0)(=T h (b )系统达到稳态温度值的63.2%需要0.099个单位时间。

(2)对(a )系统: 1)()()(==s N s C s G n 1.0)(=t n 时,该扰动影响将一直保持。

对(b )系统: 1011011011010011)()()(++=++==Φs s s s N s C s n 1.0)(=t n 时,最终扰动影响为001.010111.0≈⨯。

3-5 一种测定直流电机传递函数的方法是给电枢加一定的电压,保持励磁电流不变,测出电机的稳态转速;另外要记录电动机从静止到速度为稳态值的50%或63.2%所需的时间,利用转速时间曲线(如图3-47)和所测数据,并假设传递函数为)()()()(a s s Ks V s s G +=Θ=可求得K 和a 的值。

若实测结果是:加10V 电压可得1200m in r 的稳态转速,而达到该值50%的时间为1.2s ,试求电机传递函数。

提示:注意a s K s V s +=Ω)()(,其中dtd t θω=)(,单位是s rad解 依题意有: 10)(=t v (伏) ππω406021200)(=⨯=∞ (弧度/秒) (1)πωω20)(5.0)2.1(=∞= (弧度/秒) (2) 设系统传递函数 as Ks V s s G +=Ω=)()()(0 应有 πω401010lim )()(lim )(000==+⋅⋅=⋅=∞→→aK a s K s s s V s G s s s (3) [][]ate a K a s s L a K a s s K L s V s G L t -----=⎥⎦⎤⎢⎣⎡+-=⎥⎦⎤⎢⎣⎡+=⋅=1101110)(10)()()(1101ω 由式(2),(3) [][]ππω20140110)2.1(2.12.1=-=-=--a a e e aK得 5.012.1=--ae解出 5776.02.15.0ln =-=a (4) 将式(4)代入式(3)得 2586.74==a K π3-6 单位反馈系统的开环传递函数)5(4)(+=s s s G ,求单位阶跃响应)(t h 和调节时间t s 。

解:依题,系统闭环传递函数)1)(1(4)4)(1(4454)(212T s T s s s s s s ++=++=++=Φ ⎩⎨⎧==25.0121T T41)4)(1(4)()()(210++++=++=Φ=s C s C s C s s s s R s s C1)4)(1(4lim)()(lim 000=++=Φ=→→s s s R s s C s s34)4(4lim)()()1(lim 011-=+=Φ+=→-→s s s R s s C s s31)1(4lim)()()4(lim 042=+=Φ+=→-→s s s R s s C s st t e e t h 431341)(--+-=421=T T , ∴3.33.3111==⎪⎪⎭⎫ ⎝⎛=T T T t t s s 。

3-7 设角速度指示随动系统结构图如图3-48所示。

若要求系统单位阶跃响应无超调,且调节时间尽可能短,问开环增益K 应取何值,调节时间s t 是多少?解 依题意应取 1=ξ,这时可设闭环极点为02,11-=λ。

写出系统闭环传递函数Ks s Ks 101010)(2++=Φ 闭环特征多项式20022021211010)(⎪⎪⎭⎫ ⎝⎛++=⎪⎪⎭⎫ ⎝⎛+=++=T s T s T s K s s s D 比较系数有 ⎪⎪⎩⎪⎪⎨⎧=⎪⎪⎭⎫ ⎝⎛=K T T 101102200 联立求解得 ⎩⎨⎧==5.22.00K T 因此有 159.075.40''<''==T t s3-8 给定典型二阶系统的设计指标:超调量%5%≤σ,调节时间 s t s 3<,峰值时间s t p 1<,试确定系统极点配置的区域,以获得预期的响应特性。

解依题%5%≤σ, )45(707.0︒≤≥⇒βξ;35.3<=ns t ωξ, 17.1>⇒n ωξ;np t ωξπ21-=1<, 14.312>-⇒n ωξ综合以上条件可画出满足要求的特征根区域如图解3-8所示。

3-9 电子心脏起博器心律控制系统结构图如题3-49图所示,其中模仿心脏的传递函数相当于一纯积分环节。

(1) 若5.0=ξ对应最佳响应,问起博器增益K 应取多大?(2) 若期望心速为60次/min ,并突然接通起博器,问1s 钟后实际心速为多少?瞬时最大心速多大?解 依题,系统传递函数为2222205.005.0105.0)(nn n s s K s s Ks ωξωω++=++=Φ ⎪⎪⎩⎪⎪⎨⎧⨯==n n Kωξω205.0105.0 令 5.0=ξ可解出 ⎩⎨⎧==2020nK ω将 s t 1=代入二阶系统阶跃响应公式()βωξξξω+---=-t e t h n t n 221sin 11)(可得 m in 00145.60000024.1)1(次次==s h5.0=ξ时,系统超调量 %3.16%=σ,最大心速为min 78.69163.1163.01(次次)==+=s t h p3-10 机器人控制系统结构图如图3-50所示。

试确定参数21,K K 值,使系统阶跃响应的峰值时间5.0=p t s ,超调量%2%=σ。

解 依题,系统传递函数为222121212112)1()1()1(1)1()(n n n s s K K s K K s K s s s K K s s K s ωξωωΦΦ++=+++=++++= 由 ⎪⎩⎪⎨⎧=-=≤=--5.0102.0212n p oo t e ωξπσξπξ 联立求解得⎩⎨⎧==1078.0nωξ 比较)(s Φ分母系数得⎪⎩⎪⎨⎧=-===146.0121001221K K K n n ξωω 3-11 某典型二阶系统的单位阶跃响应如图3-51所示。

试确定系统的闭环传递函数。

解 依题,系统闭环传递函数形式应为2222.)(nn ns s K s ωξωω++=ΦΦ 由阶跃响应曲线有:21)(lim )()(lim (0==⋅Φ=Φ=∞Φ→→K ss s s R s s h s s )⎪⎪⎩⎪⎪⎨⎧=-===-=--o oo o n p e t 25225.221212ξξπσξωπ 联立求解得 ⎩⎨⎧==717.1404.0nωξ所以有 95.239.19.5717.1717.1404.02717.12)(2222++=+⨯⨯+⨯=Φs s s s s3-12 设单位反馈系统的开环传递函数为)12.0(5.12)(+=s s s G试求系统在误差初条件1)0(,10)0(==ee 作用下的时间响应。

解 依题意,系统闭环传递函数为 5.6255.62)(1)()()()(2++=+==Φs s s G s G s R s C s 当0)(=t r 时,系统微分方程为 0)(5.62)(5)(=+'+''t c t c t c 考虑初始条件,对微分方程进行拉氏变换[][]0)(5.62)0()(5)0()0()(2=+-+'--s C c s C s c c s s C s整理得 ()())0()0(5)(5.6252c c s s C s s'++=++ (1)对单位反馈系统有 )()()(t c t r t e -=, 所以110)0()0()0(101000()0()0(-=-='-'='-=-=-=e r c e r c )将初始条件代入式(1)得 2225.7)5.2(26)5.2(105.6255110)(++++-=++--=s s s s s s C 22225.7)5.2(5.747.35.7)5.2()5.2(10++-+++-=s s s)8.705.7sin(6.105.7sin 47.35.7cos 10)(5.25.25.2︒+-=--=---t e t e t et c t t t3-13 设图3-52(a )所示系统的单位阶跃响应如图3-52(b )所示。

相关文档
最新文档