[推荐学习]2018-2019学年高中数学人教B版必修二学案:2.2.2 第1课时 直线的点斜式方程

合集下载

2018-2019学年高中数学人教B版必修二学案:2章末复习提升

2018-2019学年高中数学人教B版必修二学案:2章末复习提升

1.直线的倾斜角与斜率(1)倾斜角与斜率从“形”和“数”两方面刻画了直线的倾斜程度,但倾斜角α是角度(α∈[0°,180°)),是倾斜度的直接体现;斜率k 是实数(k ∈(-∞,+∞)),是倾斜程度的间接反映.在解题的过程中,用斜率往往比用倾斜角更方便.(2)倾斜角与斜率的对应关系:当α=90°时,直线的斜率不存在;当α≠90°时,斜率k =tan α,且经过两点A (x 1,y 1),B (x 2,y 2)(x 1≠x 2)的直线的斜率k AB =y 2-y 1x 2-x 1. (3)当α由0°→90°→180°(不含180°)变化时,k 由0(含0)逐渐增大到+∞(不存在),然后由-∞(不存在)逐渐增大到0(不含0). 2.直线方程的五种形式及比较的直线,两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直和过原点的直线,一般式虽然可以表示任何直线,但要注意A2+B2≠0,必要时要对特殊情况进行讨论.3.两直线平行与垂直的条件直关系求直线的方程或确定方程的系数关系时,要根据题目条件设出合理的直线方程.4.距离问题与几何图形直观分析相结合.5.直线系方程直线系方程是解析几何中直线方程的基本内容之一,它把具有某一共同性质的直线族表示成一个含参数的方程,然后根据直线所满足的其他条件确定出参数的值,进而求出直线方程.直线系方程的常见类型有:(1)过定点P(x0,y0)的直线系方程是:y-y0=k(x-x0)(k是参数,直线系中未包括直线x=x0),也就是平常所提到的直线的点斜式方程;(2)平行于已知直线Ax+By+C=0的直线系方程是:Ax+By+λ=0(λ是参数,λ≠C);(3)垂直于已知直线Ax+By+C=0的直线系方程是:Bx-Ay+λ=0(λ是参数);(4)过两条已知直线l1:A1x+B1y+C1=0和l2:A2x+B2y+C2=0的交点的直线系方程是:A1x+B1y+C1+λ(A2x+B2y+C2)=0(λ是参数,当λ=0时,方程变为A1x+B1y+C1=0,恰好表示直线l1;当λ≠0时,方程表示过直线l1和l2的交点,但不含直线l1和l2的任一条直线).6.对称问题对称问题主要有两大类:一类是中心对称,一类是轴对称.(1)中心对称①两点关于点对称,设P1(x1,y1),P(a,b),则P1(x1,y1)关于P(a,b)对称的点为P2(2a-x1,2b-y1),即P为线段P1P2的中点.特别地,P(x,y)关于原点对称的点为P′(-x,-y).②两直线关于点对称,设直线l1,l2关于点P对称,这时其中一条直线上任一点关于点P 对称的点在另一条直线上,并且l1∥l2,P到l1,l2的距离相等.(2)轴对称①两点关于直线对称,设P1,P2关于直线l对称,则直线P1P2与l垂直,且线段P1P2的中点在l上,这类问题的关键是由“垂直”和“平分”列方程.②两直线关于直线对称,设l1,l2关于直线l对称.当三条直线l1,l2,l共点时,l上任意一点到l1,l2的距离相等,并且l1,l2中一条直线上任意一点关于l对称的点在另外一条直线上;当l1∥l2∥l时,l1与l间的距离等于l2与l间的距离.7.圆的方程(1)圆的标准方程:(x-a)2+(y-b)2=r2,其中圆心是C(a,b),半径是r.特别地,圆心在原点的圆的标准方程为x2+y2=r2.圆的一般方程:x2+y2+Dx+Ey+F=0(D2+E2-4F>0).(2)由于圆的方程均含有三个参变量(a,b,r或D,E,F),而确定这三个参数必须有三个独立的条件,因此,三个独立的条件可以确定一个圆.(3)求圆的方程常用待定系数法,此时要善于根据已知条件的特征来选择圆的方程.如果已知圆心或半径长,或圆心到直线的距离,通常可用圆的标准方程;如果已知圆经过某些点,通常可用圆的一般方程.8.点与圆的位置关系(1)点在圆上①如果一个点的坐标满足圆的方程,那么该点在圆上.②如果点到圆心的距离等于半径,那么点在圆上.(2)点不在圆上①若点的坐标满足F(x,y)>0,则该点在圆外;若满足F(x,y)<0,则该点在圆内.②点到圆心的距离大于半径则点在圆外;点到圆心的距离小于半径则点在圆内.注意:若P点是圆C外一定点,则该点与圆上的点的最大距离:d max=|PC|+r;最小距离:d min=|PC|-r.9.直线与圆的位置关系直线与圆的位置关系有三种:相交、相离、相切,其判断方法有两种:代数法(通过解直线方程与圆的方程组成的方程组,根据解的个数来判断)、几何法(由圆心到直线的距离d与半径r的大小关系来判断).(1)当直线与圆相离时,圆上的点到直线的最大距离为d+r,最小距离为d-r,其中d为圆心到直线的距离.(2)当直线与圆相交时,圆的半径、弦心距、弦长的一半构成直角三角形.(3)当直线与圆相切时,经常涉及圆的切线.①若切线所过点(x0,y0)在圆x2+y2=r2上,则切线方程为x0x+y0y=r2;若点(x0,y0)在圆(x -a)2+(y-b)2=r2上,则切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2.②若切线所过点(x0,y0)在圆外,则切线有两条.此时解题时若用到直线的斜率,则要注意斜率不存在的情况也可能符合题意.(4)过直线l:Ax+By+C=0(A,B不同时为0)与圆C:x2+y2+Dx+Ey+F=0(D2+E2-4F >0)的交点的圆系方程是x2+y2+Dx+Ey+F+λ(Ax+By+C)=0,λ是待定的系数.10.圆与圆的位置关系圆与圆的位置关系有五种:外离、外切、相交、内切、内含,其判断方法有两种:代数法(通过解两圆的方程组成的方程组,根据解的个数来判断)、几何法(由两圆的圆心距d与半径r,R的大小关系来判断).(1)求相交两圆的弦长时,可先求出两圆公共弦所在直线的方程,再利用相交两圆的几何性质和勾股定理来求弦长.(2)过圆C1:x2+y2+D1x+E1y+F1=0与圆C2:x2+y2+D2x+E2y+F2=0的交点的直线方程为(D1-D2)x+(E1-E2)y+F1-F2=0.11.空间直角坐标系(1)建立的空间直角坐标系要遵循右手法则,空间上的任意一点都与有序实数组(x,y,z)一一对应.(2)空间中P1(x1,y1,z1),P2(x2,y2,z2)之间的距离|P1P2|=(x1-x2)2+(y1-y2)2+(z1-z2)2.(3)可利用“关于谁对称,谁保持不变,其余坐标相反”的方法来求空间直角坐标系下的对称点.题型一 直线的方程(1)求直线方程的主要方法是待定系数法,要掌握直线方程五种形式的适用条件及相互转化,能根据条件灵活选用方程,当不能确定某种方程条件具备时要另行讨论条件不满足的情况. (2)运用直线系方程的主要作用在于能使计算简单.例1 过点P (-1,0),Q (0,2)分别作两条互相平行的直线,使它们在x 轴上截距之差的绝对值为1,求这两条直线的方程.解 (1)当两条直线的斜率不存在时,两条直线的方程分别为x =-1,x =0,它们在x 轴上截距之差的绝对值为1,满足题意;(2)当直线的斜率存在时,设其斜率为k ,则两条直线的方程分别为y =k (x +1),y =kx +2. 令y =0,分别得x =-1,x =-2k . 由题意⎪⎪⎪⎪-1+2k =1,即k =1. 则直线的方程为y =x +1,y =x +2, 即x -y +1=0,x -y +2=0综上可知,所求的直线方程为x =-1,x =0,或x -y +1=0,x -y +2=0. 跟踪演练1 将直线的方程x -2y +6=0:(1)化成斜截式,并指出它的斜率与在y 轴上的截距; (2)化成截距式,并指出它在x 轴、y 轴上的截距.解 (1)将原方程移项得2y =x +6,两边同除以2,得斜截式y =12x +3,因此它的斜率k =12,在y 轴上的截距为3.(2)将原方程移项得x -2y =-6,两边同除以-6,得截距式x -6+y3=1.由方程可知,直线在x 轴、y 轴上的截距分别为-6,3. 题型二 直线的位置关系两条直线的位置关系有相交(特例垂直)、平行、重合三种,主要考查两条直线的平行和垂直.通常借助直线的斜截式方程来判断两条直线的位置关系.解题时要注意分析斜率是否存在,用一般式方程来判断,可以避免讨论斜率不存在的情况.例2 已知两条直线l 1:ax -by +4=0,l 2:(a -1)x +y +b =0,求分别满足下列条件的a 、b 的值.(1)直线l 1过点(-3,-1),并且直线l 1与直线l 2垂直. (2)直线l 1与直线l 2平行,并且坐标原点到l 1、l 2的距离相等. 解 (1)∵l 1⊥l 2,∴a (a -1)+(-b )·1=0. 即a 2-a -b =0① 又点(-3,-1)在l 1上, ∴-3a +b +4=0.② 由①②解得a =2,b =2. (2)∵l 1∥l 2且l 2的斜率为1-a ,∴l 1的斜率也存在,a b =1-a ,即b =a 1-a .故l 1和l 2的方程可分别表示为 l 1∶(a -1)x +y +4(a -1)a =0, l 2:(a -1)x +y +a1-a=0. ∵原点到l 1与l 2的距离相等,∴4⎪⎪⎪⎪a -1a =⎪⎪⎪⎪a 1-a ,解得a =2或a =23.因此⎩⎪⎨⎪⎧a =2,b =-2或⎩⎪⎨⎪⎧a =23,b =2.跟踪演练2 已知直线l 1:ax +2y +6=0和直线l 2:x +(a -1)y +a 2-1=0. (1)试判断l 1与l 2是否平行; (2)l 1⊥l 2时,求a 的值. 解 (1)若l 1∥l 2,则⎩⎪⎨⎪⎧a (a -1)-2×1=0,a (a 2-1)-6×1≠0.∴a =-1.∴a =-1时,l 1∥l 2. (2)当l 2的斜率不存在时,a =1. 则l 2:x =0,l 1:x +2y +6=0. 显然l 1与l 2不垂直. 当l 2斜率存在时,a ≠1. 则k 2=11-a,k 1=-a 2.∵l 1⊥l 2,∴k 1·k 2=11-a ·⎝⎛⎭⎫-a 2=-1.∴a =23.题型三 直线与圆、圆与圆的位置关系(1)直线与圆的位置关系是重点,切线问题更是重中之重,判断直线与圆的位置关系以几何法为主,解题时应充分利用圆的几何性质以简化解题过程.(2)解决圆与圆的位置关系的关键是抓住它的几何特征,利用两圆圆心距与两圆半径的和、差的绝对值的大小来确定两圆的位置关系,以及充分利用它的几何图形的形象直观性来分析问题.例3 如图所示,在平面直角坐标系xOy 中,已知圆C 1:(x +3)2+(y -1)2=4和圆C 2:(x -4)2+(y -5)2=4.(1)若直线l 过点A (4,0),且被圆C 1截得的弦长为23,求直线l 的方程;(2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂直的直线l 1和l 2,它们分别与圆C 1和圆C 2相交,且直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,试求所有满足条件的点P 的坐标.解 (1)由于直线x =4与圆C 1不相交,所以直线l 的斜率存在.设直线l 的方程为y =k (x -4),圆C 1的圆心到直线l 的距离为d ,因为直线l 被圆C 1截得的弦长为23,所以d =22-(3)2=1.由点到直线的距离公式得d =|1-k (-3-4)|1+k 2=1,从而k (24k +7)=0.即k =0或k =-724,所以直线l 的方程为y =0或7x +24y -28=0.(2)设点P (a ,b )满足条件,不妨设直线l 1的方程为y -b =k (x -a ),k ≠0,则直线l 2的方程为y -b =-1k (x -a ).因为圆C 1和圆C 2的半径相等,且直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,所以圆C 1的圆心到直线l 1的距离和圆C 2的圆心到直线l 2的距离相等,即|1-k (-3-a )-b |1+k 2=⎪⎪⎪⎪5+1k (4-a )-b 1+1k2,整理得|1+3k +ak -b |=|5k +4-a -bk |,从而1+3k +ak -b =5k +4-a -bk 或1+3k +ak -b = -5k -4+a +bk ,即(a +b -2)k =b -a +3或(a -b +8)k =a +b -5,因为k 的取值范围有无穷多个,所以⎩⎪⎨⎪⎧ a +b -2=0,b -a +3=0或⎩⎪⎨⎪⎧a -b +8=0,a +b -5=0,解得⎩⎨⎧a =52,b =-12或⎩⎨⎧a =-32,b =132.这样点P 只可能是点P 1⎝⎛⎭⎫52,-12或点P 2⎝⎛⎭⎫-32,132. 经检验点P 1和P 2满足题目条件.跟踪演练3 已知圆M :(x -1)2+(y -1)2=4,直线l 过点P (2,3)且与圆M 交于A ,B 两点,且|AB |=23,求直线l 的方程.解 (1)当直线l 存在斜率时,设直线l 的方程为y -3=k (x -2),即kx -y +3-2k =0. 作示意图如图,作MC ⊥AB 于C .在Rt △MBC 中, |BC |=3,|MB |=2, 故|MC |=|MB |2-|BC |2=1,由点到直线的距离公式得|k -1+3-2k |k 2+1=1,解得k =34.所以直线l 的方程为3x -4y +6=0.(2)当直线l 的斜率不存在时,其方程为x =2, 且|AB |=23,所以适合题意.综上所述,直线l 的方程为3x -4y +6=0或x =2. 题型四 与圆有关的最值问题在解决有关直线与圆的最值和范围问题时,最常用的方法是函数法,把要求的最值或范围表示为某个变量的关系式,用函数或方程的知识,尤其是配方的方法求出最值或范围;除此之外,数形结合的思想方法也是一种重要方法,直接根据图形和题设条件,应用图形的直观位置关系得出要求的范围.例4 已知圆C :(x +2)2+y 2=1,P (x ,y )为圆C 上任一点.(1)求y -2x -1的最大值与最小值;(2)求x -2y 的最大值与最小值. 解 (1)显然y -2x -1可以看作是点P (x ,y )与点Q (1,2)连线的斜率.令y -2x -1=k ,如图所示,则其最大值、最小值分别是过点Q (1,2)的圆C 的两条切线的斜率. 对上式整理得kx -y -k +2=0, ∴|-2k -k +2|1+k 2=1,∴k =3±34.故y -2x -1的最大值是3+34,最小值是3-34.(2)令u =x -2y ,则u 可视为一组平行线,当直线和圆C 有公共点时,u 的范围即可确定,且最值在直线与圆相切时取得.依题意,得|-2-u |5=1,解得u =-2±5,故x -2y 的最大值是-2+5,最小值是-2- 5.跟踪演练4 当曲线y =1+4-x 2与直线y =k (x -2)+4有两个相异交点时,实数k 的取值范围是( ) A.⎝⎛⎭⎫0,512 B.⎝⎛⎦⎤13,34 C.⎝⎛⎦⎤512,34 D.⎝⎛⎭⎫512,+∞ 答案 C解析 曲线y =1+4-x 2是以(0,1)为圆心,2为半径的半圆(如图),直线y =k (x -2)+4是过定点(2,4)的直线.设切线PC 的斜率为k 0,则切线PC 的方程为y =k 0(x -2)+4,圆心(0,1)到直线PC 的距离等于半径2,即|-1+4-2k 0|1+k 20=2,k 0=512. 直线PA 的斜率为k 1=34.所以,实数k 的范围是512<k ≤34.题型五 分类讨论思想分类讨论思想是中学数学的基本思想之一,其实质就是整体问题化为部分问题来解决,化成部分问题后,从而增加了题设的条件.在用二元二次方程表示圆时要分类讨论,在求直线的斜率问题时,用斜率表示直线方程时都要分类讨论. 例5 已知直线l 经过点P (-4,-3),且被圆(x +1)2+ (y +2)2=25截得的弦长为8,求直线l 的方程.解 圆(x +1)2+(y +2)2=25的圆心为(-1,-2),半径r =5.①当直线l 的斜率不存在时,则l 的方程为x =-4,由题意可知直线x =-4符合题意. ②当直线l 的斜率存在时,设其方程为y +3=k (x +4), 即kx -y +4k -3=0.由题意可知⎝ ⎛⎭⎪⎫|-k +2+4k -3|1+k 22+⎝⎛⎭⎫822=52,解得k =-43,即所求直线方程为4x +3y +25=0.综上所述,满足题设的l 的方程为x =-4或4x +3y +25=0.跟踪演练5 如图,已知以点A (-1,2)为圆心的圆与直线l 1:x +2y +7=0相切.过点B (-2,0)的动直线l 与圆A 相交于M ,N 两点,Q 是MN 的中点,直线l 与l 1相交于点P .(1)求圆A 的方程;(2)当|MN |=219时,求直线l 的方程. 解 (1)设圆A 的半径为R .由于圆A 与直线l 1:x +2y +7=0相切, ∴R =|-1+4+7|5=2 5.∴圆A 的方程为(x +1)2+(y -2)2=20.(2)①当直线l 与x 轴垂直时,易知x =-2符合题意;②当直线l 与x 轴不垂直时,设直线l 的方程为y =k (x +2),即kx -y +2k =0.连接AQ ,则AQ ⊥MN .∵|MN |=219,∴|AQ |=20-19=1,则由|AQ |=|k -2|k 2+1=1,得k =34. 直线方程为3x -4y +6=0.综上,直线l 的方程为x =-2或3x -4y +6=0.1.在平面解析几何中,用代数知识解决几何问题时应首先挖掘出几何图形的几何条件,把它们进一步转化为代数方程之间的关系求解.2.关于对称问题,要充分利用“垂直平分”这个基本条件,“垂直”是指两个对称点的连线与已知直线垂直,“平分”是指:两对称点连成线段的中点在已知直线上,可通过这两个条件列方程组求解.3.涉及直线斜率问题时,应从斜率存在与不存在两方面考虑,防止漏掉情况.4.初中我们从平面几何的角度研究过圆的问题,本章则主要是利用圆的方程从代数角度研究了圆的性质,如果我们能够将两者有机地结合起来解决圆的问题,将在处理圆的有关问题时收到意想不到的效果.圆是非常特殊的几何图形,它既是中心对称图形又是轴对称图形,它的许多几何性质在解决圆的问题时往往起到事半功倍的作用,所以在实际解题中常用几何法,充分结合圆的平面几何性质.那么,我们来看经常使用圆的哪些几何性质:(1)圆的切线的性质:圆心到切线的距离等于半径;切点与圆心的连线垂直于切线;切线在切点处的垂线一定经过圆心;圆心、圆外一点及该点所引切线的切点构成直角三角形的三个顶点等等.(2)直线与圆相交的弦的有关性质:相交弦的中点与圆心的连线垂直于弦所在直线;弦的垂直平分线(中垂线)一定经过圆心;弦心距、半径、弦长的一半构成直角三角形的三边,满足勾股定理.(3)与直径有关的几何性质:直径是圆的最长的弦;圆的对称轴一定经过圆心;直径所对的圆周角是直角.。

2018年人教版高中数学必修二全册导学案精编

2018年人教版高中数学必修二全册导学案精编

人教版高中数学必修二全册导学案目录第一章第一节柱锥台球的结构特征第一课时 (1)第一章第一节柱锥台球的结构特征第二课时 (3)第一章第二节空间几何体的三视图和直观图第一课时 (6)第一章第二节空间几何体的三视图和直观图第二课时 (11)第一章第三节球的表面积与体积 (15)第一章第三节柱体锥体台体的表面积 (20)第一章第三节柱体锥体台体的体积 (25)第一章空间几何体复习 (30)第二章第一节空间中平面与平面之间的位置关系 (34)第二章第一节空间中直线与平面之间的位置关系 (39)第二章第一节空间中直线与直线之间的位置关系 (44)第二章第一节两条直线平行与垂直的判定 (49)第二章第一节平面 (54)第二章第二节平面与平面平行的判定 (59)第二章第二节直线与平面平行的判定 (64)第二章第二节直线与平面平面与平面平行的性质 (70)第二章第三节平面与平面垂直的判定 (75)第二章第三节平面与平面垂直的性质 (82)第二章第三节直线与平面垂直的判定 (87)第二章第三节直线与平面垂直的性质 (94)第二章空间点直线平面之间的位置关系复习 (99)第三章第一节倾斜角与斜率 (104)第三章第二节直线的一般式方程 (109)第三章第二节直线的点斜式方程 (114)第三章第二节直线的两点式方程 (116)第三章第三节点到直线的距离两条平行直线间的距离 (121)第三章第三节两点间的距离 (125)第三章第三节两条直线的交点坐标 (129)第三章直线与方程复习 (134)第四章第一节圆的一般方程 (139)第四章第一节圆的标准方程 (144)第四章第二节圆与圆的位置关系 (149)第四章第二节直线与圆的方程应用 (154)第四章第二节直线与圆的位置关系 (159)第四章第三节空间两点间距离 (164)第四章第三节空间直角坐标系导学精要 (169)第四章直线与圆的方程复习 (174)第一章第一节柱锥台球的结构特征第一课时三维目标1.能根据几何结构特征对空间物体进行分类;2. 了解多面体的有关概念;3. 了解棱柱、棱锥、棱台的定义.认识棱柱、棱锥、棱台的结构特征及其关系;4. 会用语言概述棱柱、棱锥、棱台的结构特征._____________________________________________________________________ _________目标三导学做思1问题1.空间几何体是指什么?请举例说明.问题2. 什么是多面体、多面体的面、棱、顶点?什么是旋转体、旋转体的轴?问题3. (1)图(1)中的几何体叫做? AA1、BB1等叫它的? A、B、C1等叫它的?(2)图(2)中的几何体叫做? PA、PB叫它的? 平面PBC、PCD叫做它的? 平面ABCD叫它的?(3)图(3)中的几何体叫做? 它是由棱锥________被平行于底面ABCD的平面________截得的.AA′,BB′叫它的? 平面BCC′B′、平面DAA′D′叫它的?【学做思2】1.如图,过BC的截面截去长方形的一角,所得的几何体是不是棱柱?变式:有两个面互相平行,其余各面都是平行四边形的多面体一定是棱柱吗?2.判断下列几何体是不是棱台,并说明为什么.*3. 观察下列图片,你知道这图片在几何中分别叫什么名称吗?它们还有其它特征吗?达标检测1.图1是由图2中的哪个平面图旋转而得到的( )2.如图,在透明塑料制成的长方体ABCD -A 1B 1C 1D 1容器中灌进一些水,将容器底面一边BC 置于地面上,再将容器倾斜,随着倾斜程度的不同,以下命题:①水的形状成棱柱形;②水面EFGH 的面积不变;③水的EFGH 始终为矩形.其中正确的命题序号是________.3.已知正方体ABCD -A 1B 1C 1D 1,图(1)中截去的是什么几何体?图(2)中截去一部分,其中HG ∥AD ∥EF ,剩下的几何体是什么?第一章第一节柱锥台球的结构特征第二课时三维目标1.了解圆柱、圆锥、圆台、球的定义,认识圆柱、圆锥、圆台、球的结构特征;2. 会用柱、锥、台、球的结构特征描述简单组合体的结构特征;3. 了解柱、锥、台体的关系._________________________________________________________________ _______________目标三导学做思1问题1. (1)图①中的几何体叫做________,O叫它的________,OA叫它的________,AB叫它的________.(2)图②中的几何体叫________,AB、CD都是它的________,⊙O和⊙O′及其内部是它的________.(3)图③中的几何体叫做________,SB为叫它的________.(4)图④中的几何体叫做________,AA′叫它的________,⊙O′及其内部叫它的________,⊙O及其内部叫它的________,它还可以看作直角梯形OAA′O′绕它的________________旋转一周后,其他各边所形成的面所围成的旋转体.(5).什么是简单组合体?简单几何体有哪几种基本形式?指出下图中的组合形式.【学做思2】1.如图,AB 为圆弧BC 所在圆的直径, .将这个平面图形绕直线AB 旋转一周,得到一个组合体,试说明这个组合体的结构特征.2.已知圆台的两底半径分别为2和3,母线长为5,求展开后的弧所对的圆心角度数.3.圆锥底面半径为1cm,高为cm,其中有一个内接正方体,求这个内接正方体的棱长.【变式】已知球的内接正方体棱长为2,求球的半径.达标检测1.如图所示的四个几何体中,是圆柱的为________;是圆锥的为________. 45BAC ∠=22.说出如图所示几何体的主要结构特征.3.如图所示,下列几何体可看作由什么图形旋转360°得到?画出平面图形和旋转轴.4.如图,长方体ABCD—A1BlClD1中,AD=3,AAl=4,AB=5,则从A点沿表面到Cl的最短距离为______.5.一个圆台的母线长为12cm,两底面面积分别为4πcm2和25πcm2.求:(1)圆台的高;(2)截得此圆台的圆锥的母线长.第一章第二节空间几何体的三视图和直观图第一课时三维目标1.了解中心投影和平行投影;2. 能画出简单空间图形的三视图;3. 能识别三视图所表示的立体模型._________________________________________________________________ _______________目标三导学做思1问题1.阅读教材第11~13页,完成下列表格:问题3.说出作三视图、侧视图、俯视图的方法.【学做思2】 1.如图甲所示,在正方体1111D C B A ABCD 中,E 、F 分别是1AA 、11D C 的中点,G 是正方形11B BCC 的中心,则四边形AGFE 在该正方体的各个面上的投影可能是图乙中的 .2. 作出下面几何体的三视图.3.根据右图中所给出的一个物体的三视图,试画出它的形状.达标检测1. 用若干块相同的小正方体搭成一个几何体,该几何体的三视图如图所示,则搭成该几何体需要的小正方体的块数是()A.8 B.7 C.6 D.5*2.如图,下列四个几何体中,它们各自的三视图(正视图、侧视图、俯视图)中有且仅有两个相同的是( )A.①② B.①③ C.②③ D.①④第一章第二节空间几何体的三视图和直观图第二课时三维目标1.会用斜二测画法画出一些简单平面图形和立体图形的直观图;2. 通过观察三视图和直观图,了解空间图形的不同表示形式及不同形式之间的关系._________________________________________________________________ _______________目标三导学做思1问题1. 如图是美术作品中的一种绘画方法,叫透视画法.这种画法就是表现画面中各种物体的相互之间的空间关系或者位置关系,在平面上构建空间感、立体感的方法.在立体几何中也常用斜投影来画空间图形的直观图,这种画法叫叫什么?有什么特点?.*问题2. 用斜二测画法画一个水平放置的正六边形的直观图.【思考】用斜二测画法画平面图形直观图的步骤有哪些?问题3. 用斜二测画法作长宽高分别为4、3、2图.作法:【思考】用斜二测画法画立体图形直观图的步骤有哪些?斜二侧画法中如何找一般位置下的点?【学做思2】1. 用斜二测画法画出下图中水平放置的四边形的直观图.*2.已知几何体的三视图,用斜二测画法画出它的直观图.达标检测1.如图所示,四边形ABCD 是一个梯形,CD ∥AB ,CD =AO =1,三角形AOD 为等腰直角三角形,O 为AB的中点,试求侧视图俯视图梯形ABCD水平放置的直观图的面积.2.如上右图所示,△A′B′C′是水平放置的△ABC的直观图,则在△ABC 的三边及中线AD中,最长的线段是( )A.AB B.AD C.BC D.AC第一章第三节球的表面积与体积三维目标1.了解球的表面积和体积公式;2. 能运用球的表面积和体积公式解决简单实际问题._________________________________________________________________ _______________目标三导学做思1问题1. 如图,一个圆锥形的空杯子上面放着一个半球形的冰淇淋,如果冰淇淋融化了,冰淇淋会从杯子溢出吗?请说明理由.【学做思2】1.一种空心钢球的质量是142g,外径是5cm,求它的内径.(钢的密度是7.9g/cm2)2.已知过球面上,,A B C 三点的截面和球心的距离为球半径的一半,且2AB BC CA ===,求球的表面积.3.有三个球123O O O 、、,球1O 切于正方体的各面,球2O 切于正方体的各侧棱,球3O 过正方体的各顶点,求这三个球的表面积以及体积之比.*4.已知球的半径为R ,在球内作一个内接圆柱,当这个圆柱底面半径为何值时,它的侧面积最大,并求出最大值。

新教材人教B版高中数学必修第二册全册学案(知识点汇总及配套习题、含答案)

新教材人教B版高中数学必修第二册全册学案(知识点汇总及配套习题、含答案)

人教B版高中数学必修第二册全册学案第四章指数函数、对数函数与幂函数................................................................................ - 2 -4.1指数与指数函数..................................................................................................... - 2 -4.1.1实数指数幂及其运算.................................................................................. - 2 -4.1.2指数函数的性质与图像.............................................................................. - 7 -第1课时指数函数的性质与图像.............................................................. - 7 -第2课时指数函数的性质与图像的应用................................................ - 13 -4.2对数与对数函数................................................................................................... - 19 -4.2.1对数运算 ................................................................................................... - 19 -4.2.2对数运算法则........................................................................................ - 23 -4.2.3对数函数的性质与图像............................................................................ - 28 -第1课时对数函数的性质与图像............................................................ - 28 -第2课时对数函数的性质与图像的应用................................................ - 33 -4.3指数函数与对数函数的关系............................................................................... - 39 -4.4幂函数 .................................................................................................................. - 44 -4.5增长速度的比较................................................................................................... - 49 -4.6函数的应用(二) .................................................................................................... - 54 - 第五章统计与概率.............................................................................................................. - 59 -5.1统计 ...................................................................................................................... - 59 -5.1.1数据的收集................................................................................................ - 59 -第1课时总体与样本、简单随机抽样.................................................... - 59 -第2课时分层抽样.................................................................................... - 65 -5.1.2数据的数字特征........................................................................................ - 70 -5.1.3数据的直观表示........................................................................................ - 78 -5.1.4用样本估计总体........................................................................................ - 86 -5.3概率 ...................................................................................................................... - 92 -5.3.1样本空间与事件........................................................................................ - 92 -5.3.2事件之间的关系与运算............................................................................ - 96 -5.3.3古典概型 ................................................................................................. - 102 -5.3.4频率与概率.............................................................................................. - 107 -5.3.5随机事件的独立性.................................................................................. - 110 -5.4统计与概率的应用............................................................................................. - 116 - 第六章平面向量初步........................................................................................................ - 121 -6.1平面向量及其线性运算..................................................................................... - 121 -6.1.1向量的概念.............................................................................................. - 121 -6.1.2向量的加法.............................................................................................. - 126 -6.1.3向量的减法.............................................................................................. - 132 -6.1.4数乘向量 ................................................................................................. - 137 -6.1.5向量的线性运算...................................................................................... - 141 -6.2向量基本定理与向量的坐标............................................................................. - 146 -6.2.1向量基本定理.......................................................................................... - 146 -6.2.2直线上向量的坐标及其运算.................................................................. - 151 -6.2.3平面向量的坐标及其运算...................................................................... - 154 -6.3平面向量线性运算的应用................................................................................. - 161 - 第四章指数函数、对数函数与幂函数4.1指数与指数函数4.1.1实数指数幂及其运算素养目标·定方向课程标准学法解读1.理解n次方根、n次根式的概念,能正确运用根式运算性质化简求值.2.理解有理数指数幂的含义,能正确运用其运算法则进行化简、计算.3.理解无理数指数幂,了解指数幂的拓展过程.4.掌握实数指数幂的运算法则.1.通过学习n次方根、n次根式概念及有理数指数幂含义,提升数学抽象素养.2.通过根式运算性质、有理数指数幂运算法则的应用,提升数学运算素养.3.通过学习无理数指数幂,了解无限逼近思想,提升数学抽象素养.4.通过实数指数幂运算法则的应用,提升数学运算素养.必备知识·探新知知识点n次方根(1)定义:给定大于1的正整数n和实数a,如果存在实数x,使得__x n=a__,则x称为a的n次方根.(2)表示:n为奇数n为偶数a∈R a>0a=0a<0 x=__n a__x=__±n a__0不存在思考:对于式子n a中a一定是非负数吗?如不是,其范围是什么?提示:不一定是非负数,其范围由n的奇偶决定;当n为奇数时,a∈R;当n为偶数时,a≥0.知识点根式(1)当na 有意义时,na 称为根式,n 称为__根指数__,a 称为被开方数. (2)性质:①(na )n=__a __;②na n=⎩⎪⎨⎪⎧__a __,n 为奇数,__|a |__,n 为偶数.思考:(n a )n 与na n 中的字母a 的取值范围是否一样?提示:取值范围不同.式子(na )n 中隐含a 是有意义的,若n 为偶数,则a ≥0,若n 为奇数,a ∈R ;式子na n 中,a ∈R .分数指数幂的意义 知识点正分数 指数幂 n 为正整数,na 有意义,且a ≠0时,规定a 1n=__na __ 正分数m n,a m n =__(n a )m __=na m负分数 指数幂s 是正分数,a s 有意义且a ≠0时,规定a -s =__1as __思考:分数指数幂中的mn有什么规定?提示:mn 为既约分数,如果没有特殊说明,一般总认为分数指数中的分数都是既约分数.知识点无理数指数幂当a >0且t 是无理数时,a t 是一个确定的__实数__. 思考:当a >0时,式子a x 中的x 的范围是什么? 提示:x ∈R . 知识点实数指数幂的运算法则(a >0,b >0,r ,s ∈R )(1)a r a s =__a r +s __. (2)(a r )s =__a rs __. (3)(ab )r =__a r b r __.关键能力·攻重难题型探究题型n 次方根的概念及相关问题典例剖析典例1 (1)求使等式(a -3)(a 2-9)=(3-a )a +3成立的实数a 的取值范围;(2)设-3<x <3,求x 2-2x +1-x 2+6x +9的值. [分析] (1)利用a 2=|a |进行讨论化简. (2)利用限制条件去绝对值号.[解析] (1)(a -3)(a 2-9)=(a -3)2(a +3) =|a -3|a +3,要使|a -3|a +3=(3-a )a +3成立,需⎩⎪⎨⎪⎧a -3≤0,a +3≥0,解得-3≤a ≤3,即实数a 的取值范围为[-3,3]. (2)原式=(x -1)2-(x +3)2=|x -1|-|x +3|,∵-3<x <3,∴当-3<x <1时,原式=-(x -1)-(x +3)=-2x -2;当1≤x <3时,原式=(x -1)-(x +3)=-4.∴原式=⎩⎪⎨⎪⎧-2x -2,-3<x <1,-4,1≤x <3.规律方法:1.对于n a ,当n 为偶数时,要注意两点:(1)只有a ≥0时才有意义;(2)只要na 有意义,na 必不为负.2.当n 为偶数时,na n 先化为|a |,再根据a 的正负去绝对值符号. 对点训练1.(1)若4a -2+(a -3)0有意义,则a 的 取值范围是__[2,3)∪(3,+∞)__; (2)已知x ∈[1,2],化简(4x -1)4+6(x -2)6=__1__.[解析] (1)由⎩⎪⎨⎪⎧a -2≥0,a -3≠0,得a ≥2,且a ≠3.(2)∵x ∈[1,2],∴x -1≥0,x -2≤0,∴(4x -1)4+6(x -2)6=x -1+|x -2|=x -1-(x -2)=1.题型根式与分数指数幂的互化典例剖析典例2 (1)用根式表示下列各式:a 15;a 34;a -23; (2)用分数指数幂表示下列各式:3a 5;3a 6;13a 2.[分析] 利用分数指数幂的定义求解. [解析] (1)a 15=5a ;a 34=4a 3;a -23=1a 23=13a 2.(2)3a 5=a 53 ;3a 6=a 63=a 2;13a 2=1a 23=a -23.规律方法:根式与分数指数幂互化的规律(1)根指数化为,分数指数的分母,被开方数(式)的指数――→化为分数指数的分子.(2)在具体计算时,通常会把根式转化成分数指数幂的形式,然后利用有理数指数幂的运算法则解题.对点训练2.(1)用根式表示下列各式:x 35;x -13; (2)用分数指数幂表示下列各式: ①b 3a 2·a 2b 6(a >0,b >0); ②a -4b 23ab 2(a >0,b >0).[解析] (1)x 35=5x 3;x -13=13x. (2)①b 3a 2·a 2b6=b 3a 2·a b 3=a -12. ②a-4b 23ab 2=a -4b 2·(ab 2)13 =a-4b 2a 13 b 23 =a-113b 83=a-116b 43.题型有理(实数)指数幂的运算法则的应用典例剖析典例3 化简:(1)(5x -23y 12)·⎝⎛⎭⎫-14x -1y 12 ·⎝⎛⎭⎫-56x 13 y -16 (其中x >0,y >0); (2)0.064-13-⎝⎛⎭⎫-780+[(-2)3] -43 +16-0.75; (3)32+3×27-33; (4)(1+2)[(-2-1)-2(2)12 ]12+(2)1-3×(2)1+3.[分析] 利用幂的运算法则计算.[解析] (1)原式=⎣⎡⎦⎤5×(-14)×(-56)·x -23 +(-1)+13·y 12 +12 -16=2524x -43 y 56 . (2)原式=0.4-1-1+(-2)-4+2-3 =52-1+116+18=2716. (3)32+3×27-33=32+3×(33)-33=32+3×3-3=32+3-3=32=9.(4)(1+2)[(-2-1)-2(2)12]12+(2)1-3×(2)1+3=(1+2)[(2+1)-2·(2)12 ]12+(2)1-3+1+3=(1+2)[(2+1)-2×12(2)12 ×12 ]+(2)2 =(1+2)·[(2+1)-1·(2)14]+2 =(2)14+2=2+218.规律方法:指数幂的一般运算步骤是:有括号先算括号里的;无括号先做指数运算.负指数幂化为正指数幂的倒数.底数是负数,先确定符号,底数是小数,先要化成分数,底数是带分数,先要化成假分数,然后要尽可能用幂的形式表示,便于用指数幂的运算性质.对点训练 3.化简与求值(1)⎝⎛⎭⎫-338 -23 +(0.002)-12 -10(5-2)-1+(2-3)0; (2)3a 32·a -3·(a -5)-12 ·(a -12 )13. [解析] (1)原式=(-1) -23⎝⎛⎭⎫338-23 +⎝⎛⎭⎫1500-12-105-2+1=⎝⎛⎭⎫278-23 +(500) 12 -10(5+2)+1=49+105-105-20+1=-1679. (2)原式=(a 32·a -23 )13·[(a -5)-12·(a -12)13] 12=(a 0) 13·(a 52·a -23)12=(a -4) 12=a -2.易错警示典例剖析典例4 化简(1-a )[(a -1)-2·(-a ) 12 ] 12.[错解] 原式=(1-a )(a -1)-1·(-a ) 14 =-(-a ) 14.[辨析] 误解中忽略了题中有(-a ) 12 ,即-a ≥0,a ≤0,则[(a -1)-2] 12 ≠(a -1)-1. [正解] ∵(-a ) 12存在,∴-a ≥0,故a -1<0,原式=(1-a )·(1-a )-1(-a ) 14=(-a )14.4.1.2 指数函数的性质与图像第1课时 指数函数的性质与图像素养目标·定方向课程标准学法解读1.了解指数函数的实际背景,理解指数函数的概念.2.掌握指数函数的性质与图像. 3.初步学会运用指数函数来解决问题.1.通过理解指数函数的概念和意义,发展数学抽象素养.2.通过利用计算机软件作指数函数的图像,发展直观想象素养.3.通过指数函数的实际应用,提升数学建模素养.必备知识·探新知知识点指数函数函数__y =a x __称为指数函数,其中a 是常数,a >0且a ≠1. 思考:(1)为什么指数函数的底数a >0,且a ≠1? (2)指数函数的解析式有什么特征?提示:(1)①如果a =0,当x >0时,a x 恒等于0,没有研究的必要;当x ≤0时,a x 无意义. ②如果a <0,例如f (x )=(-4)x ,这时对于x =12,14,…,该函数无意义.③如果a =1,则y =1x 是一个常量,没有研究的价值. 为了避免上述各种情况,所以规定a >0,且a ≠1.(2)①a >0,且a ≠1,②a x 的系数为1;③自变量x 的系数为1. 指数函数的图像和性质知识点0<a <1a >1图像定义域 实数集R 值域 __(0,+∞)__ 性质过定点__(0,1)__是__减__函数是__增__函数思考:(1)对于指数函数y =2x ,y =3x ,y =⎝⎛⎭⎫12x,y =⎝⎛⎭⎫13x ,…,为什么一定过点(0,1)? (2)对于指数函数y =a x (a >0且a ≠1),在下表中,?处y 的范围是什么?底数 x 的范围 y 的范围 a >1x >0 ? x <0 ? 0<a <1x >0 ? x <0?提示:(1)当x =0时,a 0=1恒成立,即指数函数的图像一定过点(0,1). (2)底数 x 的范围 y 的范围 a >1x >0 y >1 x <0 0<y <1 0<a <1x >0 0<y <1 x <0y >1关键能力·攻重难题型探究题型指数函数的概念典例剖析典例1 (1)函数y =(a 2-3a +3)·a x 是指数函数,则a 的值为__2__. (2)指数函数y =f (x )的图像经过点(π,e),则f (-π)=__1e __.[分析] (1)根据指数函数解析式的特征列方程求解. (2)设出指数函数的解析式,代入点的坐标求f (-π). [解析] (1)由题意得a 2-3a +3=1, 即(a -2)(a -1)=0, 解得a =2或a =1(舍).(2)设指数函数为y =a x (a >0且a ≠1), 则e =a π,所以f (-π)=a -π=(a π)-1=e -1=1e .规律方法:1.判断一个函数是指数函数的方法(1)把握指数函数解析式的特征:①底数a >0,且a ≠1; ②a x 的系数为1;③自变量x 的系数为1.(2)有些函数需要对解析式变形后判断,如y =13x =⎝⎛⎭⎫13x 是指数函数.2.求指数函数解析式的步骤(1)设指数函数的解析式f (x )=a x (a >0且a ≠1). (2)利用已知条件求底数A . (3)写出指数函数的解析式. 对点训练1.(1)函数f (x )=(2a -3)a x 是指数函数,则f (1)=( D ) A .8 B .32C .4D .2(2)指数函数y =f (x )的图像经过点⎝⎛⎭⎫-2,14,那么f (4)·f (2)=__64__. [解析] (1)因为f (x )=(2a -3)a x 为指数函数,所以2a -3=1,解得a =2,所以f (1)=21=2.(2)设指数函数的解析式为y =a x (a >0且a ≠1), 因为函数的图像经过点⎝⎛⎭⎫-2,14,所以 14=a -2,所以a =2, 所以指数函数的解析式为y =2x , 所以f (4)·f (2)=24×22=26=64. 题型指数函数的图像问题典例剖析典例2 (1)函数y =a x ,y =x +a 在同一坐标系中的图像可能是( D )(2)要得到函数y =23-x 的图像,只需将函数y =⎝⎛⎭⎫12x 的图像( A ) A .向右平移3个单位 B .向左平移3个单位 C .向右平移8个单位D .向左平移8个单位[分析] (1)要注意对a 进行讨论,分0<a <1和a >1两种情况讨论判断. (2)先对解析式变形,再进行判断. [解析] (1)函数y =x +a 单调递增. 由题意知a >0且a ≠1.当0<a <1时,y =a x 单调递减,直线y =x +a 在y 轴上的截距大于0且小于1; 当a >1时,y =a x 单调递增,直线y =x +a 在y 轴上的截距大于1.故选D . (2)因为y =23-x =⎝⎛⎭⎫12 x -3,所以y =⎝⎛⎭⎫12x的图像向右平移3个单位得到y =⎝⎛⎭⎫12x -3 , 即y =23-x 的图像.规律方法:1.函数图像问题的处理技巧(1)抓住图像上的特殊点,如指数函数的图像过定点.(2)利用图像变换,如函数图像的平移变换(左右平移、上下平移).(3)利用函数的奇偶性与单调性,奇偶性确定函数的对称情况,单调性决定函数图像的走势.2.指数型函数图像过定点问题的处理策略求指数型函数图像所过的定点时,只需令指数为0,求出对应的x 与y 的值,即为函数图像所过的定点.对点训练2.(1)图中曲线C 1,C 2,C 3,C 4分别是指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像,则a ,b ,c ,d 与1之间的大小关系是( D )A .a <b <1<c <dB .a <b <1<d <cC .b <a <1<c <dD .b <a <1<d <c(2)若函数y =a x +m -1(a >0)的图像经过第一、三和第四象限,则( B ) A .a >1B .a >1,且m <0C .0<a <1,且m >0D .0<a <1[解析] (1)过点(1,0)作直线x =1,在第一象限内分别与各曲线相交,可知1<d <c ,b <a <1,故b <a <1<d <C .(2)y =a x (a >0)的图像在第一、二象限内,欲使y =a x +m -1的图像经过第一、三、四象限,必须将y =a x 向下移动.当0<a <1时,图像向下移动,只能经过第一、二、四象限或第二、三、四象限,故只有当a >1时,图像向下移动才可能经过第一、三、四象限.当a >1时,图像向下移动不超过一个单位时,图像经过第一、二、三象限,向下移动一个单位时,图像恰好经过原点和第一、三象限,欲使图像经过第一、三、四象限,则必须向下平移超过一个单位,故m -1<-1,所以m <0,故选B .题型指数函数的定义域、值域问题典例剖析典例3 (1)当x >0时,函数f (x )=(a 2-1)x 的值域为(1,+∞),则实数a 的取值范围是( D )A .(-2,-1)∪(1,2)B .(-1,1)C .(-∞,-1)∪(1,+∞)D .(-∞,-2)∪(2,+∞)(2)函数y =52x -1的定义域为__⎩⎨⎧⎭⎬⎫x⎪⎪x ≥12__. [分析] (1)根据指数函数的图像,函数值恒大于1,底数应该大于1可得. (2)根据根式的性质,被开方数大于或等于0求解.[解析] (1)当x >0时,函数f (x )=(a 2-1)x 的值总大于1,则底数a 2-1>1,a 2>2,所以|a |>2,所以实数a 的取值范围是(-∞,-2)∪(2,+∞).(2)要使函数y =52x -1有意义,则2x -1≥0,所以x ≥12.所以函数y = 52x -1的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≥12.规律方法:函数y =a f (x )定义域、值域的求法(1)定义域:形如y =a f (x )形式的函数的定义域是使得f (x )有意义的x 的取值集合. (2)值域:①换元,令t =f (x ); ②求t =f (x )的定义域x ∈D ; ③求t =f (x )的值域t ∈M ;④利用y =a t 的单调性求y =a t ,t ∈M 的值域.提醒:(1)通过建立不等关系求定义域时,要注意解集为各不等关系解集的交集. (2)当指数型函数的底数含字母时,在求定义域、值域时要注意分类讨论. 对点训练3.(1)已知集合A ={x |y =21x -4},B ={0,2,4},A ∩B =____________;(2)求函数y =312x -4的定义域和值域.[解析] (1)要使y =21x -4有意义需x -4≠0,则x ≠4,即A ={x |x ≠4,x ∈R },所以A ∩B ={0,2}.(2)要使函数y =312x -4有意义,只需2x -4>0,解得x >2;令t =12x -4,则t >0,由于函数y =3t在t ∈(0,+∞)上是增函数,故3t>1.故函数y =312x -4的定义域为{x |x >2},值域为{y |y >1}.误区警示:此题易忽略2x -4≠0,而误认为2x -4≥0从而造成错误.易错警示典例剖析典例4 若函数f (x )=a x -1(a >0,a ≠1)的定义域和值域都是[0,2],求实数a 的值.[错解] ∵函数f (x )=a x -1(a >0,a ≠1)的定义域和值域都是[0,2],∴⎩⎪⎨⎪⎧a 0-1=2a 2-1=0,∴a =3.故实数a 的值为3.[辨析] 误解中没有对a 进行分类讨论.[正解] 当a >1时,函数f (x )=a x -1在[0,2]上是增函数,由题意可知,⎩⎪⎨⎪⎧ a 0-1=0a 2-1=2,解得a = 3.当0<a <1时,函数f (x )=a x -1在[0,2]上是减函数,由题意可知,⎩⎪⎨⎪⎧a 0-1=2a 2-1=0,此时a 无解.综上所述,a =3.第2课时 指数函数的性质与图像的应用素养目标·定方向课程标准学法解读1.进一步熟练掌握指数函数的图像、性质.2.会求指数型函数的定义域、值域、最值,以及能判断与证明单调性.3.能够利用指数函数的图像和性质比较数的大小、解不等式.1.通过例题进一步深入理解指数函数的单调性及其应用,提升学生的逻辑推理素养. 2.借助指数函数的性质,研究指数型函数的相关问题,提升学生的数学运算及数学抽象素养.必备知识·探新知知识点底数与指数函数图像的关系(1)由指数函数y =a x (a >0且a ≠1)的图像与直线x =1相交于点(1,a )可知,在y 轴右侧,图像从__下__到__上__相应的底数由小变大.(2)由指数函数y =a x (a >0且a ≠1)的图像与直线x =-1相交于点⎝⎛⎭⎫-1,1a 可知,在y 轴左侧,图像从下到上相应的底数__由大变小__.如图所示,指数函数底数的大小关系为0<a 4<a 3<1<a 2<a 1. 知识点 解指数型不等式(1)形如a f (x )>a g (x )的不等式,可借助y =a x (a >0且a ≠1)的__单调性__求解;(2)形如a f(x)>b的不等式,可将b化为以a为底数的指数幂的形式,再借助y=a x(a>0且a≠1)的__单调性__求解;(3)形如a x>b x的不等式,可借助两函数y=a x(a>0且a≠1),y=b x(b>0且b≠1)的图像求解.知识点与指数函数复合的函数单调性一般地,形如y=a f(x)(a>0且a≠1)函数的性质有:(1)函数y=a f(x)与函数y=f(x)有__相同__的定义域.(2)当a>1时,函数y=a f(x)与y=f(x)具有__相同__的单调性;当0<a<1时,函数y=a f(x)与y=f(x)具有__相反__的单调性.思考:(1)指数函数y=a x(a>0且a≠1)的单调性取决于哪个量?(2)如何判断形如y=f(a x)(a>0且a≠1)的函数的单调性?提示:(1)指数函数y=a x(a>0且a≠1)的单调性与其底数a有关,当a>1时,y=a x(a>0且a≠1)在定义域上是增函数,当0<a<1时,y=a x(a>0且a≠1)在定义域上是减函数.(2)①定义法,即“取值—作差—变形—定号”.其中,在定号过程中需要用到指数函数的单调性;②利用复合函数的单调性“同增异减”的规律.关键能力·攻重难题型探究题型指数函数性质的简单应用典例剖析典例1比较下列各组数的大小:(1)1.72.5,1.73;(2)0.8-0.1,0.8-0.2;(3)1.70.3,0.93.1;(4)55,33,2.[分析]底数相同的幂值a b与a c比较大小,一般用y=a x的单调性;指数相同的幂值a c 与b c比较大小,可在同一坐标系中,画出y=a x与y=b x的图像考察x=c时,函数值的大小;底数与指数均不同的一般考虑先化同底.不方便化时,常借助中间量0、1等过渡.[解析](1)考查指数函数y=1.7x,由于底数1.7>1,所以指数函数y=1.7x在(-∞,+∞)上是增函数.∵2.5<3,∴1.72.5<1.73.(2)考查函数y =0.8x ,由于0<0.8<1,所以指数函数y =0.8x 在(-∞,+∞)上为减函数. ∵-0.1>-0.2,∴0.8-0.1<0.8-0.2.(3)由指数函数的性质得 1.70.3>1.70=1, 0.93.1<0.90=1, ∴1.70.3>0.93.1.(4)底数不同、根指数也不同的两个数比较其大小,要化为同底数的或化为同指数的再作比较.∵2=212=(23) 16 =816,33=313 =(32) 16 =916 而8<9.∴816 <916,即2<33, 又2=212=(25) 110 =32110,55=515=(52) 110,而25<32,∴55<2.总之,55<2<33.规律方法:利用指数函数的性质比较大小的方法:1.把这两个数看作指数函数的两个函数值,再利用指数函数的单调性比较.2.若两个数不是同一个函数的两个函数值,则寻求一个中间量,中间量常选1,两个数都与这个中间量进行比较.对点训练1.比较下列各题中两个值的大小. (1)0.3x 与0.3x +1; (2)⎝⎛⎭⎫12-2与212 .[解析] (1)∵y =0.3x 为减函数, 又x <x +1,∴0.3x >0.3x +1.(2)化同底为:(12)-2=22,与212 ,∵函数y =2x 为增函数,2>12.∴22>212,即(12)-2>212 .题型形如y =a f (x )类型函数的单调性与值域典例剖析典例2 求函数y =⎝⎛⎭⎫12-x 2+x +2的单调递增区间、值域. [分析] 利用复合函数单调性的原则“同增异减”求解 [解析] 令t =-x 2+x +2, 则y =⎝⎛⎭⎫12t ,因为t =-⎝⎛⎭⎫x -122+94,可得t 的减区间为⎣⎡⎭⎫12,+∞,因为函数y =⎝⎛⎭⎫12t 在R 上是减函数, 所以函数y =⎝⎛⎭⎫12-x 2+x +2的单调递增区间⎣⎡⎭⎫12,+∞; 又t ≤94,所以⎝⎛⎭⎫12t ≥⎝⎛⎭⎫1294, 所以函数y =⎝⎛⎭⎫12-x 2+x +2值域为⎣⎡⎭⎫⎝⎛⎭⎫1294,+∞. 规律方法:复合函数的单调性、值域 (1)分层:一般分为外层y =a t ,内层t =f (x ).(2)单调性复合:复合法则“同增异减”,即内外层的单调性相同则为增函数,单调性相反则为减函数.(3)值域复合:先求内层t 的值域,再利用单调性求y =a t 的值域. 对点训练2.函数f (x )=⎝⎛⎭⎫23x 2-2x 的单调递减区间是__[1,+∞)__,值域是__⎝⎛⎦⎤-∞,32__. [解析] 令t =x 2-2x =(x -1)2-1,则f (x )=⎝⎛⎭⎫23t ,利用二次函数的性质可得函数t 的增区间为[1,+∞),所以函数f (x )=⎝⎛⎭⎫23x 2-2x 的减区间是[1,+∞);因为t ≥-1,所以f (x )≤32,所以函数f (x )=⎝⎛⎭⎫23x 2-2x 的值域为⎝⎛⎦⎤-∞,32. 题型指数函数性质的综合应用典例剖析典例3 (1)已知函数f (x )=⎩⎪⎨⎪⎧a x,x ≥1,⎝⎛⎭⎫4-a 2x +2,x <1,对任意x 1≠x 2 ,都有f (x 1)-f (x 2)x 1-x 2>0成立,则实数a 的取值范围是( B )A .(4,8)B .[4,8)C .(1,+∞)D .(1, 8)(2)已知函数f (x )=a ·2x -11+2x 是R 上的奇函数.①判断并证明f (x )的单调性;②若对任意实数,不等式f [f (x )]+f (3-m )>0恒成立,求m 的取值范围. [解析] (1)因为分段函数为增函数,所以满足⎩⎪⎨⎪⎧a >1,4-a 2>0,a ≥6-a 2,解得4≤a <8.(2)①因为f (x )为R 上的奇函数, 所以f (0)=0,即a -12=0,由此得a =1,所以f (x )=2x -12x +1=1-22x +1,所以f (x )为R 上的增函数.证明:设x 1<x 2,则f (x 1)-f (x 2)=1-22x 1+1-⎝⎛⎭⎫1-22x 2+1=22x 2+1-22x 1+1, 因为x 1<x 2,所以22x 2+1-22x 1+1<0,所以f (x 1)<f (x 2),所以f (x )为R 上的增函数. ②因为f (x )为R 上的奇函数.所以原不等式可化为f [f (x )]>-f (3-m ), 即f [f (x )]>f (m -3),又因为f (x )为R 上的增函数,所以f (x )>m -3, 由此可得不等式m <f (x )+3=4-22x +1对任意实数x 恒成立,由2x >0⇒2x +1>1⇒0<22x +1<2⇒-2<-22x +1<0⇒2<4-22x +1<4,所以m ≤2.规律方法:1.关于分段函数y =⎩⎪⎨⎪⎧f (x ),x ≤x 0,g (x ),x >x 0的单调性(1)增函数:f (x ),g (x )均为增函数,且f (x 0)≤g (x 0). (2)减函数:f (x ),g (x )均为减函数,且f (x 0)≥g (x 0). 2.含参数恒成立问题的一种处理方法将参数分离到左侧,根据不等号恒成立的方向,求出右侧函数的最大值或最小值,即可得到参数的范围.特别提醒:已知分段函数的单调性求参数的范围时,容易忽视判断分界点处取值的大小. 对点训练3.(1)若将本例(1)中的函数改为f (x )=⎩⎪⎨⎪⎧(2-a )x +1,x <1,a x ,x ≥1,其他条件不变,试求a 的范围;(2)已知f (x )是定义在[-2,2]上的奇函数,当x ∈(0,2]时,f (x )=2x -1,函数g (x )=x 2-2x +m .如果对于任意的x 1∈[-2,2],总存在 x 2∈[-2,2],使得f (x 1)≤g (x 2),则实数m 的取值范围是__m ≥-5__.[解析] (1)因为函数f (x )满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,所以函数f (x )在定义域上是增函数, 则满足⎩⎪⎨⎪⎧2-a >0,a >1,2-a +1≤a , 即⎩⎪⎨⎪⎧a <2a >1,a ≥32.得32≤a <2. (2)因为f (x )是定义在[-2,2]上的奇函数, 所以f (0)=0,当x ∈(0,2]时,f (x )=2x -1∈(0,3], 则当x ∈[-2,2]时,f (x )∈[-3,3], 若对于∀x 1∈[-2,2],∃x 2∈[-2,2], 使得g (x 2)≥f (x 1), 则等价为g (x )max ≥3,因为g (x )=x 2-2x +m =(x -1)2+m -1, x ∈[-2,2],所以g (x )max =g (-2)=8+m , 则满足8+m ≥3解得m ≥-5.易错警示典例剖析典例4 求函数y =⎝⎛⎭⎫14x +⎝⎛⎭⎫12x+1的值域.[错解] 令t =⎝⎛⎭⎫12x,则y =t 2+t +1=⎝⎛⎭⎫t +122+34,所以t =-12时,y min =34, 所以函数的值域为⎣⎡⎭⎫34,+∞.[辨析] 在换元时,令t =⎝⎛⎭⎫12x,所以⎝⎛⎭⎫12x >0,在误解中忽略了这一点. [正解] 令t =⎝⎛⎭⎫12x ,则y =t 2+t +1=⎝⎛⎭⎫t +122+34. 因为t >0,y =⎝⎛⎭⎫t +122+34在(0,+∞)上是增函数, 所以y >1,即函数的值域为(1,+∞).4.2 对数与对数函数4.2.1 对数运算素养目标·定方向课程标准学法解读1.理解对数的概念.2.知道自然对数和常用对数.3.通过阅读材料,了解对数的发现历史以及对简化运算的作用.1.会用对数的定义进行对数式与指数式的互化.2.理解和掌握对数的性质,会求简单的对数值,发展数学抽象及数学运算素养.必备知识·探新知知识点对数的概念(1)定义:在代数式a b =N (a >0且a ≠1),N ∈(0,+∞)中,幂指数b 称为以a 为底N 的对数.(2)记法:b =__log a N __,a 称为对数的__底数__,N 称为对数的__真数__. (3)范围:N >0,即__负数和零没有对数__. 思考:(1)为什么负数和零没有对数? (2)对数式log a N 是不是log a 与N 的乘积?提示:(1)因为b =log a N 的充要条件是a b =N ,当a >0且a ≠1时,由指数函数的值域可知N >0,故负数和零没有对数.(2)不是,log a N 是一个整体,是求幂指数的一种运算,其运算结果是一个实数. 知识点对数恒等式(1)a log a N =N . (2)log a a b =B . 知识点常用对数与自然对数(1)常用对数:log 10N ,简写为lg N .(2)自然对数:log e N ,简写为ln N ,e =2.718 28….关键能力·攻重难题型探究题型对数的概念典例剖析典例1 若a 2 020=b (a >0,且a ≠1),则( A ) A .log a b =2 020 B .log b a =2 020 C .log 2 020a =bD .log 2 020b =a(2)对数式log (a -2)(5-a )中实数a 的取值范围是( C ) A .(-∞,5) B .(2,5) C .(2,3)∪(3,5)D .(2,+∞)(3)下列指数式与对数式互化不正确的一组是( B ) A .e 0=1与ln 1=0 B .log 39=2与912=3 C .8-13=12与log 812=-13D .log 77=1与71=7[分析] (1)根据对数的定义转化.(2)对数式中底数大于0且不等于1,真数大于0. (3)根据对数式的定义判断.[解析] (1)若a 2020=b (a >0,且a ≠1)则log a b =2 020.(2)由题意得⎩⎪⎨⎪⎧a -2>0,a -2≠1,5-a >0,解得2<a <3或3<a <5.(3)由指、对数式的互化可知,A 、C 、D 正确;对于B 选项log 39=2可化为32=9,所以B 选项错误.规律方法:指数式与对数式互化的思路 (1)指数式化为对数式:将指数式的幂作为真数,指数作为对数,底数不变,写出对数式. (2)对数式化为指数式:将对数式的真数作为幂,对数作为指数,底数不变,写出指数式. 对点训练1.(1)如果a 5=b (a >0且a ≠1,b >0),则( A ) A .log a b =5 B .log a 5=b C .log 5a =bD .log 5b =a(2)若对数式log (t -2)3有意义,则实数t 的取值范围是( B ) A .[2,+∞) B .(2,3)∪(3,+∞) C .(-∞,2)D .(2,+∞)[解析] (1)如果a 5=b (a >0,且a ≠1,b >0)则化为对数式为log a b =5.(2)由题意得⎩⎪⎨⎪⎧t -2>0t -2≠1,解得t >2且t ≠3.所以t 的取值范围是(2,3)∪(3,+∞) 题型利用指数式与对数式关系求值角度1 利用指数式与对数式的互化求值 典例剖析典例2 求下列各式的值: (1)log 381; (2)log 4116;(3)log 128;(4)lg 0.1.[解析] (1)因为34=81,所以log 381=4. (2)因为4-2=116,所以log 4116=-2.(3)因为⎝⎛⎭⎫12-3=8,所以log 128=-3.(4)因为10-1=0.1,所以lg 0.1=-1. 角度2 两个特殊对数值的应用 典例3 已知log 2[log 3(log 4x )]= log 3[log 4(log 2y )]=0,求x +y 的值. [解析] 因为log 2[log 3(log 4x )]=0, 所以log 3(log 4x )=1,所以log 4x =3,所以x =43=64,同理求得y =16,所以x +y =80. 规律方法:对数性质在求值中的应用1.对数运算时的常用性质:log a a =1,log a 1=0.2.使用对数的性质时,有时需要将底数或真数进行变形后才能运用;对于有多重对数符号的,可以先把内层视为整体,逐层使用对数的性质.对点训练2.(1)log 5[log 3(log 2x )]=0,则x -12等于( C ) A .36 B .39C .24D .23(2)log 3127=__-3__;log 5 625=__4__.[解析] (1)因为log 5[log 3(log 2x )]=0, 所以log 3(log 2x )=1,所以log 2x =3,所以x =23=8,所以x -12=8-12=18=24. (2)因为3-3=127,所以log 3127=-3;因为54=625, 所以log 5 625=4. 题型对数恒等式的应用典例剖析 典例4 计算: (1)71-log 75; (2)412(log 29-log 25);(3)a log a b ·log b c (a 、b 均为不等于1的正数,c >0).[解析] (1)原式=77log 75=75.(2)原式=2(log 29-log 25)=2log 292log 25=95.(3)原式=(a log a b )log b c =b log b c =C .规律方法:对于指数中含有对数值的式子进行化简,应充分考虑对数恒等式的应用.这就要求首先要牢记对数恒等式,对于对数恒等式a log a N =N 要注意格式:(1)它们是同底的;(2)指数中含有对数形式:(3)其值为对数的真数.对点训练3.求31+log 36-24+log 23+103lg 3+(19)log 34的值.[解析] 原式=3·3log 36-24·2log 23+(10lg3)3+(3log 34)-2 =3×6-16×3+33+4-2 =18-48+27+116=-4716.易错警示典例剖析典例5 求满足等式log (x +3)(x 2+3x )=1中x 的值. [错解] ∵log (x +3)(x 2+3x )=1,∴x 2+3x =x +3, 即x 2+2x -3=0,解得x =-3或x =1.故满足等式log (x +3)(x 2+3x )=1中x 的值为-3和1. [辨析] 误解中忽略了对数的真数与底数都必须为正数,且底数不能等于1.[正解] 由对数性质,得⎩⎪⎨⎪⎧x 2+3x >0x +3>0x +3≠1x 2+3x =x +3,解得x =1.故满足等式log (x +3)(x 2+3x )=1的x 的值为1.4.2.2 对数运算法则素养目标·定方向2.知道对数的换底公式,能将一般对数转化为自然对数和常用对数,并能进行简单的化简、计算.值,进一步提升数学抽象与数学运算素养.必备知识·探新知知识点 积、商、幂的对数若a >0,且a ≠1,M >0,N >0,则有 (1)积的对数:__log a (MN )=log a M +log a N __. (2)商的对数:__log a MN =log a M -log a N __.(3)幂的对数:__log a M n =n log a M __.思考:在积的对数运算性质中,三项的乘积式log a (MNQ )是否适用?你可以得到一个什么样的结论?提示:适用,log a (MNQ )=log a M +log a N +log a Q ,积的对数运算性质可以推广到n 项的乘积.知识点 换底公式若a >0,且a ≠1,c >0,且c ≠1,b >0,则有__log a b =log c blog c a __.思考:(1)对数的换底公式用常用对数、自然对数表示是什么形式? (2)你能用换底公式推导出结论log Nn M m =mn log N M 吗?提示:(1)log a b =lg b lg a ,log a b =ln bln a.(2)log Nn M m=lg M m lg N n =m lg M n lg N =m n ·lg M lg N =mn log NM .关键能力·攻重难题型探究题型利用对数的运算法则求值典例剖析 典例1 计算:(1)log a 2+log a 12(a >0且a ≠1);(2)log 318-log 32;(3)2log 510+log 50.25; (4)2log 525+3log 264; (5)log 2(log 216); (6)62log 63-20log 71+log 4116. [解析] (1)log a 2+log a 12=log a (2×12)=log a 1=0.(2)log 318-log 32=log 3(18÷2)=log 39=2. (3)2log 510+log 50.25=log 5100+log 50.25 =log 5(100×0.25)=log 525=2.(4)2log 525+3log 264=2log 552+3log 226=4+18=22. (5)log 2(log 216)=log 24=2.(6)原式=6log 69-20×0+log 44-2=9-2=7. 规律方法:对于同底的对数的化简,常用的方法: (1)“收”,将同底的两对数的和(差)收成积(商)的对数. (2)“拆”,将积(商)的对数拆成对数的和(差). 对点训练1.计算log 535+2log 22-log 5150-log 514的值. [解析] log 535+2log 22-log 5150-log 514=log 535+2×12+log 550-log 514=log 535×5014+1=3+1=4.题型利用对数的运算法则化简典例剖析典例2 用lg x ,lg y ,lg z 表示下列各式: (1)lg (xyz );(2)lg xy 2z ;(3)lg xy 3z ;(4)lg xy 2z .[解析] (1)lg (xyz )=lg x +lg y +lg z . (2)lg xy 2z =lg (xy 2)-lg z =lg x +2lg y -lg z .(3)lg xy 3z =lg (xy 3)-lg z =lg x +3lg y -12lg z .(4)lg x y 2z =lg x -lg (y 2z )=12lg x -2lg y -lg z .规律方法:关于对数式的化简首先观察式子的结构、层次特征,确定化简的顺序,其次利用积、商、幂的对数运算法则依次展开.对点训练2.lg 2=a ,lg 3=b ,试用a 、b 表示lg 108,lg 1825.[解析] lg 108=lg(27×4)=lg(33×22)=lg 33+lg 22=3lg 3+2lg 2=2a +3B .lg 1825=lg 18-lg 25=lg (2×32)-lg 10222=lg 2+lg 32-lg 102+lg 22=lg 2+2lg 3-2+2lg 2=3a +2b -2.题型换底公式及其应用典例剖析典例3 (1)已知log 189=a,18b =5,用a 、b 表示log 3645的值; (2)设3x =4y =6z >1,求证:1z -1x =12y.[分析] 在(1)中把所求的换成与已知同底的对数,在(2)中可用整体代换法求出x ,y ,z ,并结合换底公式与对数的运算性质证明.[解析] (1)由18b =5,得log 185=b , ∴log 3645=log 1845log 1836=log 185+log 1891+log 182=b +a 1+1-log 189=a +b 2-a.(2)设3x =4y =6z =t ,∵3x =4y =6z >1, ∴t >1,∴x =lg t lg 3,y =lg t lg 4,z =lg tlg 6,∴1z -1x =lg 6lg t -lg 3lg t =lg 2lg t =lg 42lg t =12y . ∴1z -1x =12y. 规律方法:换底公式的应用(1)一般利用常用对数或自然对数进行化简求值. (2)注意指数式与对数式的互化在求值中的应用.(3)注意一些常见结论的应用,如对数的倒数公式1log a b =log b A .对点训练3.(1)若3a =7b =21,求1a +1b的值;(2)设4a =5b =m ,且1a +2b =1,求m 的值.[解析] (1)∵3a =7b =21, ∴a =log 321,b =log 721, ∴1a +1b =1log 321+1log 721 =1lg 21lg 3+1lg 21lg 7=lg 3+lg 7lg 21=lg 2112lg 21=2.(2)∵4a =5b =m ,∴a =log 4m ,b =log 5m , 又1a +2b =1,∴1log 4m +2log 5m =1, 即log m 4+2log m 5=1, ∴log m 100=1,∴m =100.易错警示典例剖析典例4 已知lg x +lg y =2lg (x -2y ),求log 2xy的值.[错解] ∵lg x +lg y =2lg (x -2y ),∴xy =(x -2y )2,即x 2-5xy +4y 2=0. ∴(x -y )(x -4y )=0,解得x =y 或x =4y . ∵xy =1或4, ∴log2xy=log 21=0或log 2xy=log 24=4. [辨析] 误解中忽视了对数的真数大于0这一条件.[正解] ∵lg x +lg y =2lg (x -2y ),∴xy =(x -2y )2,即x 2-5xy +4y 2=0. ∴(x -y )(x -4y )=0,解得x =y 或x =4y . ∵x >0,y >0,x -2y >0,∴x =y 应舍去. ∴xy=4,∴log 2xy=log 24=4.4.2.3对数函数的性质与图像第1课时对数函数的性质与图像素养目标·定方向课程标准学法解读1.理解对数函数的概念.2.初步掌握对数函数的性质与图像.理解对数函数的概念及对数函数的性质与图像,发展学生的数学抽象素养、直观想象素养及数学运算素养.必备知识·探新知知识点对数函数函数y=__log a x__称为对数函数,其中a是常数,a>0且a≠1.思考:(1)对数函数的定义域是什么?为什么?(2)对数函数的解析式有何特征?提示:(1)定义域为x>0,因为负数和零没有对数.(2)①a>0,且a≠1;②log a x的系数为1;③自变量x的系数为1.对数函数的性质与图像知识点0<a<1a>1 图像定义域__(0,+∞)__值域__R__性质过__定点(1,0)____是减函数____是增函数__思考:(1)对于对数函数y=log2x,y=log3x,y=log12x,y=log13x,…,为什么一定过点(1,0)?(2)对于对数函数y=log a x(a>0且a≠1),在表中,?处y的范围是什么?底数x的范围y的范围a>1x>1?0<x<1?0<a<1x>1?0<x<1?提示:(1)当x=1时,log a1=0恒成立,即对数函数的图像一定过点(1,0).(2)底数x的范围y的范围a>1x>1y>0 0<x<1y<00<a<1x>1y<0 0<x<1y>0关键能力·攻重难题型探究题型对数函数的概念典例剖析典例1指出下列函数哪些是对数函数?(1)y=2log3x;(2)y=log5x;(3)y=log x2;(4)y=log2x+1.[解析](1)log3x的系数是2,不是1,不是对数函数.(2)是对数函数.(3)自变量在底数位置,不是对数函数.(4)对数式log2x后又加1,不是对数函数.规律方法:判断一个函数是对数函数必须是形如y=log a x(a>0且a≠1)的形式,即必须满足以下条件:(1)系数为1.(2)底数为大于0且不等于1的常数.(3)对数的真数仅有自变量x.对点训练1.(1)下列函数是对数函数的是(D)A.y=log a(2x) B.y=lg 10x。

高中数学人教B版必修二学案:2章末复习提升-新整理

高中数学人教B版必修二学案:2章末复习提升-新整理

高中数学人教B版必修二学案:2章末复习提升-新整理
(1)倾斜角与斜率从“形”和“数”两方面刻画了直线的倾斜程度,但倾斜角α是角度(α∈[0°,180°)),是倾斜度的直接体现;斜率k是实数(k∈(-∞,+∞)),是倾斜程度的间接反映.在解题的过程中,用斜率往往比用倾斜角更方便.
(2)倾斜角与斜率的对应关系:当α=90°时,直线的斜率不存在;当α≠90°时,斜率k=tan α,且经过两点A(x1,y1),B(x2,
y2)(x1≠x2)的直线的斜率kAB=.
(3)当α由0°→90°→180°(不含180°)变化时,k由0(含0)逐渐增大到+∞(不存在),然后由-∞(不存在)逐渐增大到0(不含0).
2.直线方程的五种形式及比较
式不能表示斜率不存在的直线,两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直和过原点的直线,一般式虽然可以表示任何直线,但要注意A2+B2≠0,必要时要对特殊情况进行讨论.
3.两直线平行与垂直的条件。

2018年版本高中数学人教B版本选修22的学案:2练习习题课综合法及解析总结计划法正式版本

2018年版本高中数学人教B版本选修22的学案:2练习习题课综合法及解析总结计划法正式版本

习题课综合法和剖析法明目、知要点加深合法、剖析法的理解,用两种方法明数学.1.合法合法是中学数学明中最常用的方法,它是从已知到未知,从到的推理方法,即从中的已知条件或已的真判断出,一系列的中推理,最后出所要求的命.合法是一种由因果的明方法.合法的明步用符号表示是:P0(已知)?P1?P2?⋯?P n( )2.剖析法剖析法是指从需的出,剖析出使个成立的充足条件,使化判断那些条件能否具,其特色能够描绘“果索因”,即从未知看需知,逐渐靠已知.剖析法的写形式一般“因⋯⋯,了明⋯⋯,只需明⋯⋯,即⋯⋯,所以,只需明⋯⋯,因⋯⋯成立,所以⋯⋯,成立”.剖析法的明步用符号表示是:P0(已知)?⋯?P n-2?P n-1?P n()剖析法属方法范围,它的体在剖析程步步可逆.型一适合的方法明不等式2例1 a,b,c随意三角形三,I=a+b+c,S=ab+bc+ca,:3S≤I<4S.22222明I=(a+b+c)=a+b+c+2ab+2bc+2caa2+b2+c2+2S.欲3S≤I2<4S,即ab+bc+ca≤a2+b2+c2<2ab+2bc+2ca.先明ab+bc+ca≤a2+b2+c2,只需2a2+2b2+2c2≥2ab+2bc+2ca,即(a-b)2+(a-c)2+(b-c)2≥0,然成立;再明a2+b2+c2<2ab+2bc+2ca,只需a2-ab-ac+b2-ab-bc+c2-bc-ca<0,即a(a-b-c)+b(b-a-c)+c(c-b-a)<0,只需a<b+c,且b<c+a,且c<b+a,因为a、b、c为三角形的三边长,2上述三式明显成立,故有3S≤I<4S.反省与感悟此题要证明的结论要先进行转变,能够使用剖析法.对于连续不等式的证明,能够分段来证,使证明过程层次清楚.证明不等式所依靠的主假如不等式的基天性质和已知的重要不等式,此中常用的有以下几个:2(1)a≥0(a∈R).222≥2ab,(a+b222≥a+b2(2)(a-b)≥0(a、b∈R),其变形有a +b2)≥ab,a+b2(3)若a,b∈(0,+∞),则a+b≥ab,特别地b+a≥2.2a b (4)a2+b2+c2≥ab+bc+ca(a,b,c∈R).追踪训练1已知a,b是正数,且a+b=1,求证:1+1≥4.a b证明方法一∵a,b是正数且a+b=1,∴a+b≥2ab,∴ab≤1,∴1+1=a+b=1≥4.2ab abab方法二∵a,b是正数,∴a+b≥2ab>0,1+1≥21a b ab>0,(a+b)(1+1)≥4.ab又a+b=1,∴1+1≥4.ab方法三11a+ba+b a ba+=a+=1+++1≥2+2·=4.当且仅当a=b时,取“=”号.ab b ab ab题型二选择适合的方法证明等式例2已知△ABC的三个内角A,B,C成等差数列,对应的三边为a,b,c,求证:1+a+b1=3b +ca+b +c.证明要证原式,只需证a+b+c+a+b+c=3,a +bb+cc +a2+a2+ab=1,即证=1,即只需证bc+c2a+b b+cab+b+ac+bc而由题意知A+C=2B,π222∴B=3,∴b=a+c-ac,bc+c2+a2+ab bc+c2+a2+ab∴ab+b2+ac+bc=ab+a2+c2-ac+ac +bc2+abb c +c+a=ab +a 2+c 2+bc =1,∴原等式成立,即1 +1= 3a+bb +ca +b+c .反省与感悟 综合法推理清楚,易于书写,剖析法从结论下手易于找寻解题思路. 在实质证明命题时,常把剖析法与综合法联合起来使用,称为剖析综合法,其构造特色是:依据条件的构造特色去转变结论,获得中间结论Q ;依据结论的构造特色去转变条件,获得中间结论P ;若由P 可推出Q ,即可得证.追踪训练2设实数a ,b ,c 成等比数列,非零实数x ,y 分别为a 与b ,b 与c的等差中项,c试证:x +y=2.证明由已知条件得b 2=ac ,①2x =a +b,2y =b +c.②ac要证+=2,只需证ay +cx =2xy , 只需证2ay +2cx =4xy.由①②得2ay +2cx =a(b +c)+c(a +b)=ab +2ac +bc , 4xy =(a +b)(b +c)=ab +b 2+ac +bc =ab +2ac +bc , 所以2ay +2cx =4xy.命题得证. 题型三 立体几何中地点关系的证明例3 如图,在四棱锥 P -ABCD 中,PA⊥底面ABCD ,AB⊥AD,AC⊥CD,∠ABC=60°, PA =AB =BC ,E 是PC 的中点.证明:CD⊥AE;证明:PD⊥平面ABE.证明(1)在四棱锥P-ABCD中,PA⊥底面ABCD,CD?底面ABCD,PA⊥CD.∵AC⊥CD,PA∩AC=A,∴CD⊥平面PAC,而AE?平面PAC,∴CD⊥AE.(2)由PA=AB=BC,∠ABC=60°,可得AC=PA,∵E是PC的中点,∴AE⊥PC.由(1)知,AE⊥CD,且PC∩CD=C,所以AE⊥平面PCD.而PD?平面PCD,∴AE⊥PD.∵PA⊥底面ABCD,∴PA⊥AB,又AB⊥AD,∴AB⊥平面PAD,∴AB⊥PD,又AB∩AE=A,综上得PD⊥平面ABE.反省与感悟综合法证明线面之间的垂直关系是高考考察的要点,利用垂直的判断定理和性质定理能够进行线线、线面以及面面之间垂直关系的转变.此外,利用一些常有的结论还经常能够将线面间的垂直与平前进行转变.比方:两条平行线中一条垂直于平面α,则此外一条也垂直于平面α;垂直于同一条直线的两个平面相互平行等.追踪训练3如图,正方形ABCD和四边形ACEF所在的平面相互垂直,EF∥AC,AB=2,CE=EF=1.求证:AF∥平面BDE;求证:CF⊥平面BDE.证明(1)如图,设 AC与BD交于点G.因为EF∥AG,且EF=1,1AG=2AC=1,所以四边形AGEF为平行四边形.所以AF∥EG.因为EG?平面BDE,AF?平面BDE,所以AF∥平面BDE.(2)连结FG.因为EF∥CG,EF=CG=1,且CE=1,所以四边形CEFG为菱形.所以CF⊥EG.因为四边形ABCD为正方形,所以BD⊥AC.又因为平面ACEF⊥平面ABCD,且平面ACEF∩平面ABCD=AC,所以BD⊥平面ACEF.所以CF⊥BD.又BD∩EG=G,所以CF⊥平面BDE.[呈要点、现规律 ]1.综合法的特色是:从已知看可知,逐渐推出未知.2.剖析法的特色是:从未知看需知,逐渐聚拢已知.3.剖析法和综合法各有优弊端.剖析法思虑起来比较自然,简单找寻到解题的思路和方法,弊端是思路逆行,表达较繁;综合法从条件推出结论,较简捷地解决问题,但不便于思虑.实际证题时经常两法兼用,先用剖析法探究证明门路,而后再用综合法表达出来.学不是一时半刻的事情,需要平累,需要平的好学苦。

2018版高中数学人教B版必修二学案:第一单元 1-2-2 第

2018版高中数学人教B版必修二学案:第一单元 1-2-2 第

第3课时 平面与平面平行学习目标 1.掌握平面与平面的位置关系,会判断平面与平面的位置关系.2.学会用图形语言、符号语言表示平面间的位置关系.3.掌握空间中面面平行的判定定理及性质定理,并能应用这两个定理解决问题.知识点一 平面与平面平行的判定思考1 三角板的一条边所在平面与平面α平行,这个三角板所在平面与平面α平行吗?思考2 三角板的两条边所在直线分别与平面α平行,这个三角板所在平面与平面α平行吗?梳理 平面平行的判定定理及推论知识点二 平面与平面平行的性质观察长方体ABCD -A 1B 1C 1D 1的两个面:平面ABCD 及平面A 1B 1C 1D 1.思考1 平面A 1B 1C 1D 1中的所有直线都平行于平面ABCD 吗?思考2 过BC 的平面交平面A 1B 1C 1D 1于B 1C 1,B 1C 1与BC 是什么关系?梳理 平面平行的性质定理及推论类型一 平面与平面平行的判定例1 如图所示,在正方体AC 1中,M ,N ,P 分别是棱C 1C ,B 1C 1,C 1D 1的中点,求证:平面MNP ∥平面A 1BD .引申探究若本例条件不变,求证:平面CB 1D 1∥平面A 1BD .反思与感悟 判定平面与平面平行的四种常用方法 (1)定义法:证明两个平面没有公共点,通常采用反证法.(2)利用判定定理:一个平面内的两条相交直线分别平行于另一个平面.证明时应遵循先找后作的原则,即先在一个平面内找到两条与另一个平面平行的相交直线,若找不到再作辅助线.(3)转化为线线平行:平面α内的两条相交直线与平面β内的两条相交直线分别平行,则α∥β.(4)利用平行平面的传递性:若α∥β,β∥γ,则α∥γ.跟踪训练1如图所示,在三棱柱ABC-A1B1C1中,E,F,G,H分別是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EF A1∥平面BCHG.类型二面面平行性质的应用命题角度1与面面平行性质有关的计算例2如图,平面α∥β,A、C∈α,B、D∈β,直线AB与CD交于S,且AS=8,BS=9,CD =34,求CS的长.引申探究若将本例改为:点S在平面α,β之间(如图),其他条件不变,求CS的长.反思与感悟应用平面与平面平行性质定理的基本步骤跟踪训练2如图所示,平面α∥平面β,△ABC,△A′B′C′分别在α,β内,线段AA′,BB′,CC′共点于O,O在平面α和平面β之间,若AB=2,AC=2,∠BAC=60°,OA∶OA′=3∶2,则△A′B′C′的面积为________.命题角度2利用面面平行证明线线平行例3如图所示,平面四边形ABCD的四个顶点A,B,C,D均在平行四边形A′B′C′D′外,且AA′,BB′,CC′,DD′互相平行,求证:四边形ABCD是平行四边形.反思与感悟本例充分利用了▱A′B′C′D′的平行关系及AA′,BB′,CC′,DD′间的平行关系,先得出线面平行,再得面面平行,最后由平面平行的性质定理得线线平行.跟踪训练3如图,已知E,F分别是正方体ABCD-A1B1C1D1的棱AA1,CC1的中点,求证:四边形BED1F是平行四边形.类型三平行关系的综合应用例4设AB,CD为夹在两个平行平面α,β之间的线段,且直线AB,CD为异面直线,M,P 分别为AB,CD的中点.求证:MP∥平面β.反思与感悟线线平行、线面平行、面面平行是一个有机的整体,平行关系的判定定理、性质定理是转化平行关系的关键,其内在联系如图所示:跟踪训练4如图所示,在正方体ABCD-A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,问:当点Q在什么位置时,使得平面D1BQ∥平面P AO?1.下列命题中正确的是()A.一个平面内两条直线都平行于另一平面,那么这两个平面平行B.如果一个平面内任何一条直线都平行于另一个平面,那么这两个平面平行C.平行于同一直线的两个平面一定相互平行D.如果一个平面内的无数多条直线都平行于另一平面,那么这两个平面平行2.在正方体EFGH-E1F1G1H1中,下列四对截面彼此平行的一对是()A.平面E1FG1与平面EGH1B.平面FHG1与平面F1H1GC.平面F1H1H与平面FHE1D.平面E1HG1与平面EH1G3.平面α∥平面β,平面γ∥平面δ,且α∩γ=a,α∩δ=b,β∩γ=c,β∩δ=d,则交线a,b,c,d的位置关系是()A.互相平行B.交于一点C.相互异面D.不能确定4.若平面α∥平面β,a⊂α,下列说法正确的是________.①a与β内任一直线平行;②a与β内无数条直线平行;③a与β内任一直线不垂直;④a与β无公共点.5.如图,在正方体ABCD-A1B1C1D1中,点N在BD上,点M在B1C上,且CM=DN.求证:MN∥平面AA1B1B.1.常用的平面与平面平行的其他几个性质(1)两个平面平行,其中一个平面内的任意一条直线平行于另一个平面.(2)夹在两个平行平面之间的平行线段长度相等.(3)经过平面外一点有且只有一个平面与已知平面平行.(4)如果两个平面分别平行于第三个平面,那么这两个平面互相平行.2.空间中各种平行关系相互转化关系的示意图答案精析问题导学知识点一思考1不一定.思考2平行.梳理两条相交直线两条相交直线两条直线知识点二思考1是的.思考2平行.梳理平行成比例a∥b题型探究例1证明如图,连接B1C.由已知得A1D∥B1C,且MN∥B1C,∴MN∥A1D.又∵MN⊄平面A1BD,A1D⊂平面A1BD,∴MN∥平面A1BD.连接B1D1,同理可证PN∥平面A1BD.又∵MN⊂平面MNP,PN⊂平面MNP,且MN∩PN=N,∴平面MNP∥平面A1BD.引申探究证明因为ABCD-A1B1C1D1为正方体,所以DD1綊BB1,所以BDD1B1为平行四边形,所以BD∥B1D1.又BD⊄平面CB1D1,B1D1⊂平面CB1D1,所以BD ∥平面CB 1D 1, 同理A 1D ∥平面CB 1D 1. 又BD ∩A 1D =D ,所以平面CB 1D 1∥平面A 1BD .跟踪训练1 证明 (1)因为G ,H 分别是A 1B 1,A 1C 1的中点, 所以GH 是△A 1B 1C 1的中位线, 所以GH ∥B 1C 1.又因为B 1C 1∥BC ,所以GH ∥BC , 所以B ,C ,H ,G 四点共面. (2)因为E ,F 分别是AB ,AC 的中点, 所以EF ∥BC . 因为EF ⊄平面BCHG , BC ⊂平面BCHG , 所以EF ∥平面BCHG . 因为A 1G ∥EB ,A 1G =EB , 所以四边形A 1EBG 是平行四边形, 所以A 1E ∥GB . 因为A 1E ⊄平面BCHG , GB ⊂平面BCHG , 所以A 1E ∥平面BCHG . 因为A 1E ∩EF =E , 所以平面EF A 1∥平面BCHG .例2 证明 设AB ,CD 共面γ,因为γ∩α=AC ,γ∩β=BD ,且α∥β, 所以AC ∥BD , 所以△SAC ∽△SBD , 所以SC SC +CD =SASB ,即SC SC +34=89,所以SC =272. 引申探究解 设AB ,CD 共面γ,γ∩α=AC ,γ∩β=BD . 因为α∥β,所以AC 与BD 无公共点, 所以AC ∥BD ,所以△ACS ∽△BDS ,所以AS BS =CSDS .设CS =x ,则x 34-x =89,所以x =16,即CS =16. 跟踪训练2439解析 AA ′,BB ′相交于O ,所以AA ′,BB ′确定的平面与平面α,平面β的交线分别为AB ,A ′B ′,有AB ∥A ′B ′,且OA OA ′=AB A ′B ′=32,同理可得OA OA ′=AC A ′C ′=32,OAOA ′=BC B ′C ′=32,所以△ABC ,△A ′B ′C ′面积的比为9∶4,又△ABC 的面积为3,所以△A ′B ′C ′的面积为439. 例3 证明 ∵四边形A ′B ′C ′D ′是平行四边形, ∴A ′D ′∥B ′C ′. ∵A ′D ′⊄平面BB ′C ′C , B ′C ′⊂平面BB ′C ′C , ∴A ′D ′∥平面BB ′C ′C . 同理AA ′∥平面BB ′C ′C . ∵A ′D ′⊂平面AA ′D ′D , AA ′⊂平面AA ′D ′D , 且A ′D ′∩AA ′=A ′,∴平面AA ′D ′D ∥平面BB ′C ′C .又∵AD ,BC 分别是平面ABCD 与平面AA ′D ′D ,平面BB ′C ′C 的交线, ∴AD ∥BC . 同理可证AB ∥CD .∴四边形ABCD 是平行四边形.跟踪训练3 证明 如图,连接AC ,BD ,交点为O ,连接A 1C 1,B 1D 1,交点为O 1,连接BD 1,EF ,OO 1,设OO 1的中点为M ,由正方体的性质可得四边形ACC 1A 1为矩形.又因为E,F分别为AA1,CC1的中点,所以EF过OO1的中点M,同理四边形BDD1B1为矩形,BD1过OO1的中点M,所以EF与BD1相交于点M,所以E,B,F,D1四点共面.又因为平面ADD1A1∥平面BCC1B1,平面EBFD1∩平面ADD1A1=ED1,平面EBFD1∩平面BCC1B1=BF,所以ED1∥BF.同理,EB∥D1F.所以四边形BED1F是平行四边形.例4证明如图,过点A作AE∥CD交平面β于点E,连接DE,BE.∵AE∥CD,∴AE,CD确定一个平面,设为γ,则α∩γ=AC,β∩γ=DE.又α∥β,∴AC∥DE(平面平行的性质定理),取AE的中点N,连接NP,MN,∵M,P分别为AB,CD的中点,∴NP∥DE,MN∥BE.又NP⊄β,DE⊂β,MN⊄β,BE⊂β,∴NP∥β,MN∥β,∵NP∩MN=N,∴平面MNP∥β.∵MP⊂平面MNP,MP⊄β,∴MP∥β.跟踪训练4解当Q为CC1的中点时,平面D1BQ∥平面P AO.∵Q为CC1的中点,P为DD1的中点,连接PQ,如图,易证四边形PQBA是平行四边形,∴QB∥P A.又∵AP ⊂平面APO ,QB ⊄平面APO ,∴QB ∥平面APO .∵P ,O 分别为DD 1,DB 的中点,∴D 1B ∥PO .同理可得D 1B ∥平面P AO ,又D 1B ∩QB =B ,∴平面D 1BQ ∥平面P AO .当堂训练1.B 2.A 3.A 4.②④5.证明 如图,作MP ∥BB 1交BC 于点P ,连接NP ,∵MP ∥BB 1,∴CM MB 1=CP PB. ∵BD =B 1C ,DN =CM ,∴B 1M =BN ,∴CM MB 1=DN NB , ∴CP PB =DN NB, ∴NP ∥CD ∥AB .∵NP ⊄平面AA 1B 1B ,AB ⊂平面AA 1B 1B ,∴NP ∥平面AA 1B 1B .∵MP ∥BB 1,MP ⊄平面AA 1B 1B ,BB 1⊂平面AA 1B 1B ,∴MP ∥平面AA 1B 1B .又∵MP⊂平面MNP,NP⊂平面MNP,MP∩NP=P,∴平面MNP∥平面AA1B1B.∵MN⊂平面MNP,∴MN∥平面AA1B1B.。

【K12教育学习资料】2018-2019学年高中数学人教B版必修二学案:2.2.2 第2课时 直线的

【K12教育学习资料】2018-2019学年高中数学人教B版必修二学案:2.2.2 第2课时 直线的

第2课时 直线的两点式方程[学习目标] 1.掌握直线方程的两点式的形式,了解其适用范围.2.了解直线方程截距式的形式,特征及其适用范围.3.会用中点坐标公式求两点的中点坐标.[知识链接]1.直线的点斜式方程为y -y 0=k (x -x 0).2.直线的斜截式方程为y =kx +b .3.经过两点P 1(x 1,y 1),P 2(x 2,y 2)的直线的斜率k =y 2-y 1x 2-x 1(x 1≠x 2).[预习导引]1.两点确定一条直线.经过两点P 1(x 1,y 1),P 2(x 2,y 2)且x 1≠x 2,y 1≠y 2的直线方程y -y 1y 2-y 1=x -x 1x 2-x 1,叫做直线的两点式方程.2.直线l 与x 轴交点A (a,0);与y 轴交点B (0,b ),其中a ≠0,b ≠0,则得直线方程 x a +yb =1,叫做直线的截距式方程.3.若点P 1,P 2的坐标分别为(x 1,y 1),(x 2,y 2)且线段P 1P 2的中点M 的坐标为(x ,y ),则⎩⎨⎧x =x 1+x 22y =y 1+y 22.要点一 直线的两点式方程例1 已知A (-3,2),B (5,-4),C (0,-2),在△ABC 中, (1)求BC 边的方程;(2)求BC 边上的中线所在直线的方程.解 (1)∵BC 边过两点B (5,-4),C (0,-2), ∴由两点式得y -(-4)(-2)-(-4)=x -50-5,即2x +5y +10=0.故BC 边的方程为2x +5y +10=0(0≤x ≤5). (2)设BC 的中点为M (x 0,y 0),则x 0=5+02=52,y 0=(-4)+(-2)2=-3.∴M ⎝⎛⎭⎫52,-3,又BC 边上的中线经过点A (-3,2). ∴由两点式得y -2-3-2=x -(-3)52-(-3),即10x +11y +8=0.故BC 边上的中线所在直线的方程为10x +11y +8=0.规律方法 (1)首先要鉴别题目条件是否符合直线方程相应形式的要求,对含有字母的则需分类讨论;(2)注意问题叙述的异同,例1中第一问是表示的线段,所以要添加范围;第二问则表示的是直线.跟踪演练1 已知△ABC 三个顶点坐标A (2,-1),B (2,2),C (4,1),求三角形三条边所在的直线方程.解 ∵A (2,-1),B (2,2),A 、B 两点横坐标相同, ∴直线AB 与x 轴垂直,故其方程为x =2.∵A (2,-1),C (4,1),由直线方程的两点式可得直线AC 的方程为y -1-1-1=x -42-4,即x -y -3=0.同理可由直线方程的两点式得直线BC 的方程为y -21-2=x -24-2,即x +2y -6=0.要点二 直线的截距式方程例2 求过点(4,-3)且在两坐标轴上截距的绝对值相等的直线l 的方程. 解 设直线在x 轴、y 轴上的截距分别为a 、b . ①当a ≠0,b ≠0时,设l 的方程为x a +yb =1.∵点(4,-3)在直线上,∴4a +-3b=1,若a =b ,则a =b =1,直线的方程为x +y -1=0.若a =-b ,则a =7,b =-7,直线的方程为x -y -7=0. ②当a =b =0时,直线过原点,且过点(4,-3), ∴直线的方程为3x +4y =0.综上知,所求直线l 的方程为x +y -1=0或x -y -7=0或3x +4y =0.规律方法 (1)当直线与两坐标轴相交时,一般可考虑用截距式表示直线方程,用待定系数法求解.(2)选用截距式时一定要注意条件,直线不能过原点.跟踪演练2 求过定点P (2,3)且在两坐标轴上的截距相等的直线l 的方程. 解 设直线的两截距都是a ,则有①当a =0时,直线为y =kx ,将P (2,3)代入得k =32,∴l :3x -2y =0;②当a ≠0时,直线设为x a +ya =1,即x +y =a ,把P (2,3)代入得a =5,∴l :x +y =5. ∴直线l 的方程为3x -2y =0或x +y -5=0.1.过两点(-2,1)和(1,4)的直线方程为( ) A.y =x +3 B.y =-x +1 C.y =x +2 D.y =-x -2答案 A解析 代入两点式得直线方程y -14-1=x +21+2,整理得y =x +3.2.经过P (4,0),Q (0,-3)两点的直线方程是( ) A.x 4+y3=1 B.x 3+y 4=1 C.x 4-y3=1 D.x 3-y 4=1 答案 C解析 因为由点坐标知直线在x 轴,y 轴上截距分别为4,-3,所以直线方程为x 4+y-3=1.3.经过M (3,2)与N (6,2)两点的直线方程为( ) A.x =2 B.y =2 C.x =3 D.x =6答案 B解析 由M ,N 两点的坐标可知,直线MN 与x 轴平行,所以直线方程为y =2,故选B. 4.求过点P (-2,3)且与两坐标轴围成的三角形面积为12的直线的条数.解 设过点P (-2,3)且与两坐标轴围成的三角形面积为12的直线的斜率为k ,则有直线的方程为y -3=k (x +2),即kx -y +2k +3=0,它与坐标轴的交点分别为M (0,2k +3)、N ⎝⎛⎭⎫-2-3k ,0. 再由12=12|OM |·|ON |=12|2k +3|×|-2-3k |,可得|4k +9k+12|=24,即4k +9k +12=24,或4k +9k +12=-24.解得k =32或k =-9-622或k =-9+622,故满足条件的直线有3条.5.求过点M (3,-4),且在两坐标轴上的截距相等的直线的方程. 解 ①若直线过原点,则k =-43,∴y =-43x ,即4x +3y =0.②若直线不过原点,设x a +ya =1,即x +y =a .∴a =3+(-4)=-1, ∴x +y +1=0.故直线方程为4x +3y =0或x +y +1=0.1.求直线的两点式方程的策略以及注意点(1)当已知两点坐标,求过这两点的直线方程时,首先要判断是否满足两点式方程的适用条件:两点的连线不垂直于坐标轴,若满足,则考虑用两点式求方程.(2)由于减法的顺序性,一般用两点式求直线方程时常会将字母或数字的顺序错位而导致错误.在记忆和使用两点式方程时,必须注意坐标的对应关系.2.截距式方程应用的注意事项(1)如果问题中涉及直线与坐标轴相交,则可考虑选用截距式直线方程,用待定系数法确定其系数即可.(2)选用截距式直线方程时,必须首先考虑直线能否过原点以及能否与两坐标轴垂直.(3)要注意截距式直线方程的逆向应用.3.对称问题的解决(1)点关于点对称,可用线段的中点坐标公式.(2)线关于点对称,可设线上任一点及其对称点化为点关于点对称,结合代入法解决.(3)点关于线对称,运用对称点的中点在对称轴直线上、对称点连线与对称轴垂直这两个条件,通过解方程组求解.(4)线关于线对称,转化为点关于线对称,结合代入法解决.。

2018版高中数学人教B版必修二学案:第一单元 章末复习课 Word版含答案

2018版高中数学人教B版必修二学案:第一单元 章末复习课 Word版含答案

学习目标 1.整合知识结构,形成知识网络、深化所学知识.2.会画几何体的直观图和三视图,并能计算几何体的表面积和体积.3.熟练掌握线线、线面、面面间的平行与垂直关系.1.空间几何体的结构特征(1)棱柱:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边互相平行.棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形.棱台是棱锥被平行于底面的平面所截而成的.这三种几何体都是多面体.(2)圆柱、圆锥、圆台、球是由平面图形矩形、直角三角形、直角梯形、半圆面旋转而成的,它们都称为旋转体.在研究它们的结构特征以及解决应用问题时,常需作它们的轴截面或截面.(3)由柱、锥、台、球组成的简单组合体,研究它们的结构特征实质是将它们分解成多个基本几何体.2.空间几何体的三视图与直观图(1)三视图是观察者从三个不同位置观察同一个空间几何体而画出的图形;它包括主视图、左视图、俯视图三种.画图时要遵循“长对正、高平齐、宽相等”的原则.注意三种视图的摆放顺序,在三视图中,分界线和可见轮廓线都用实线画出,不可见轮廓线用虚线画出.熟记常见几何体的三视图.画组合体的三视图时可先拆,后画,再检验.(2)斜二测画法为:主要用于水平放置的平面图形或立体图形的画法.它的主要步骤:①画轴;②画平行于x、y、z轴的线段分别为平行于x′、y′、z′轴的线段;③截线段:平行于x、z轴的线段的长度不变,平行于y轴的线段的长度变为原来的一半.三视图和直观图都是空间几何体的不同表示形式,两者之间可以互相转化,这也是高考考查的重点;根据三视图的画法规则理解三视图中数据表示的含义,从而可以确定几何体的形状和基本量.3.几何体的表面积和体积的有关计算(1)常见几何体的表面积和体积的计算公式(2)求几何体体积常用技巧①等体积法;②割补法.4.平行关系(1)基本性质4平行于同一条直线的两条直线________.即如果直线a∥b,c∥b,那么________.(2)直线与平面平行的判定与性质(3)平面与平面平行的判定①文字语言:如果一个平面内有两条相交直线平行于另一个平面,那么这两个平面平行.。

人教B版高中数学必修二学案全集

人教B版高中数学必修二学案全集

1.1空间几何体1.1.1构成空间几何体的基本元素1.1.2棱柱、棱锥和棱台的结构特征[学习目标] 1.以长方体的构成为例,认识构成几何体的基本元素,同时在运动变化的观点下,体会空间中的点、线、面与几何体之间的关系.2.理解平面的无限延展性,学会判断平面的方法.3.能根据棱柱、棱锥、棱台的定义和结构特征,掌握它们的相关概念、分类和表示方法.[知识链接]观察下列图片,你知道这些图片所表示的物体在几何中分别叫什么名称吗?答(1)、(8)为圆柱;(2)为长方体;(3)、(6)为圆锥;(4)、(10)为圆台;(5)、(7)、(9)为棱柱;(11)、(12)为球;(13)、(16)为棱台;(14)、(15)为棱锥.[预习导引]1.几何体只考虑一个物体占有空间部分的形状和大小,而不考虑其他因素,则这个空间部分叫做一个几何体.2.构成空间几何体的基本元素(1)点、线、面是构成几何体的基本元素.线有直线(段)和曲线(段)之分,面有平面(部分)和曲面(部分)之分.(2)在立体几何中,平面是无限延展的,通常画一个平行四边形表示一个平面;平面一般用希腊字母α,β,γ,…来命名,还可以用表示它的平行四边形的对角顶点的字母来命名. 3.空间点、线、面的位置关系(1)空间两条直线的位置关系:平行、相交、异面.(2)直线和平面的位置关系:平行、相交、在平面内.(3)两个平面的位置关系:平行、相交.4.多面体(1)多面体是由若干个平面多边形所围成的几何体.(2)把一个多面体的任意一个面延展为平面,如果其余的各面都在这个平面的同一侧,则这样的多面体就叫做凸多面体.5.几种常见的多面体多面体定义图形及表示相关概念棱柱有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱如图可记作:棱柱ABCDEF-A′B′C′D′E′F′底面(底):两个互相平行的面.侧面:其余各面.侧棱:相邻侧面的公共边.顶点:侧面与底面的公共顶点棱锥有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥如图可记作,棱锥S-ABCD底面(底):多边形面.侧面:有公共顶点的各个三角形面.侧棱:相邻侧面的公共边.顶点:各侧面的公共顶点棱台用一个平行于底面的平面去截棱锥,底面与截面之间的部分叫做棱台如图可记作:棱台ABCD-A′B′C′D′上底面:原棱锥的截面.下底面:原棱锥的底面.侧面:其余各面.侧棱:相邻侧面的公共边.顶点:侧面与上(下)底面的公共顶点要点一长方体中基本元素间的位置关系例1如图所示,在长方体ABCD-A′B′C′D′中,如果把它的12条棱延伸为直线,6个面延伸为平面,那么在这12条直线与6个平面中,回答下列问题:(1)与直线B′C′平行的平面有哪几个?(2)与直线B′C′垂直的平面有哪几个?(3)与平面BC′平行的平面有哪几个?(4)与平面BC′垂直的平面有哪几个?解(1)与直线B′C′平行的平面有:平面AD′,平面AC.(2)与直线B′C′垂直的平面有:平面AB′,平面CD′.(3)与平面BC′平行的平面有:平面AD′.(4)与平面BC′垂直的平面有:平面AB′,平面A′C′,平面CD′,平面AC.规律方法 1.解决此类问题的关键在于识图,根据图形识别直线与平面平行、垂直,平面与平面平行、垂直.2.长方体和正方体是立体几何中的重要几何体,对其认识有助于进一步认识立体几何中的点、线、面的基本关系.跟踪演练1若本例中的题干不变,将问题(1)(2)中的“直线B′C′”改为“直线BC′”,再去解答前两个小题.解(1)与直线BC′平行的平面有:平面AD′.(2)所给6个平面中,与直线BC′垂直的平面不存在.要点二棱柱的结构特征例2下列关于棱柱的说法:(1)所有的面都是平行四边形;(2)每一个面都不会是三角形;(3)两底面平行,并且各侧棱也平行;(4)被平面截成的两部分可以都是棱柱.其中正确说法的序号是________.答案(3)(4)解析(1)错误,棱柱的底面不一定是平行四边形;(2)错误,棱柱的底面可以是三角形;(3)正确,由棱柱的定义易知;(4)正确,棱柱可以被平行于底面的平面截成两个棱柱,所以说法正确的序号是(3)(4).规律方法棱柱的结构特征:(1)两个面互相平行;(2)其余各面是四边形;(3)相邻两个四边形的公共边互相平行.求解时,首先看是否有两个平行的面作为底面,再看是否满足其他特征.跟踪演练2下列关于棱柱的说法错误的是()A.所有的棱柱两个底面都平行B.所有的棱柱一定有两个面互相平行,其余各面每相邻面的公共边互相平行C.有两个面互相平行,其余各面都是平行四边形的几何体一定是棱柱D.棱柱至少有五个面答案 C解析对于A、B、D,显然是正确的;对于C,棱柱的定义是这样的:有两个面互相平行,其余各面都是平行四边形,并且每相邻两个四边形的公共边都互相平行,由这些面围成的几何体叫做棱柱,显然题中漏掉了“并且每相邻两个四边形的公共边都互相平行”这一条件,因此所围成的几何体不一定是棱柱.如图所示的几何体就不是棱柱.所以C错误.要点三棱锥、棱台的结构特征例3下列关于棱锥、棱台的说法:(1)用一个平面去截棱锥,底面和截面之间的部分组成的几何体叫棱台;(2)棱台的侧面一定不会是平行四边形;(3)棱锥的侧面只能是三角形;(4)由四个面围成的封闭图形只能是三棱锥;(5)棱锥被平面截成的两部分不可能都是棱锥,其中正确说法的序号是________.答案(2)(3)(4)解析(1)错误,若平面不与棱锥底面平行,用这个平面去截棱锥,棱锥底面和截面之间的部分不是棱台;(2)正确,棱台的侧面一定是梯形,而不是平行四边形;(3)正确,由棱锥的定义知棱锥的侧面只能是三角形;(4)正确,由四个面围成的封闭图形只能是三棱锥;(5)错误,如图所示四棱锥被平面截成的两部分都是棱锥.规律方法判断棱锥、棱台形状的两个方法(1)举反例法:结合棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构特征的某些说法不正确.(2)直接法:棱锥棱台定底面只有一个面是多边形,此面即为底面两个互相平行的面,即为底面看侧棱相交于一点延长后相交于一点A.两底面相似B.侧面都是梯形C.侧棱长都相等D.侧棱延长后相交于一点答案 C解析由棱台的概念(棱台的产生过程)可知A,B,D都是棱台具有的性质,而侧棱长不一定相等.要点四多面体的表面展开图例4画出如图所示的几何体的表面展开图.解表面展开图如图所示:规律方法多面体表面展开图问题的解题策略:(1)绘制展开图:绘制多面体的表面展开图要结合多面体的几何特征,发挥空间想象能力或者是亲手制作多面体模型.在解题过程中,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面,便可得到其表面展开图.(2)已知展开图:若是给出多面体的表面展开图,来判断是由哪一个多面体展开的,则可把上述过程逆推.同一个几何体的表面展开图可能是不一样的,也就是说,一个多面体可有多个表面展开图.跟踪演练4一个无盖的正方体盒子的平面展开图如图,A、B、C是展开图上的三点,则在正方体盒子中,∠ABC=________.答案60°解析将平面图形翻折,折成空间图形,如图.1.三棱锥的四个面中可以作为底面的有()A.1个B.2个C.3个D.4个答案 D解析由于三棱锥的每一个面均可作为底面,应选D.2.棱柱的侧面都是()A.三角形B.四边形C.五边形D.矩形答案 B解析由棱柱的性质可知,棱柱的侧面都是四边形.3.如图所示,不是正四面体(各棱长都相等的三棱锥)的展开图的是()A.①③B.②④C.③④D.①②答案 C解析可选择阴影三角形作为底面进行折叠,发现①②可折成正四面体,③④不论选哪一个三角形作底面折叠都不能折成正四面体.4.下列几何体中,________是棱柱,________是棱锥,________是棱台(仅填相应序号).答案①③④⑥⑤解析结合棱柱、棱锥和棱台的定义可知①③④是棱柱,⑥是棱锥,⑤是棱台.5.线段AB长为5 cm,在水平面上向右移动4 cm后记为CD,将CD沿铅垂线方向向下移动3 cm后记为C′D′,再将C′D′沿水平方向向左移动4 cm后记为A′B′,依次连接构成长方体ABCD-A′B′C′D′.(1)该长方体的高为________;(2)平面A′B′BA与平面CDD′C′间的距离为________;(3)点A到平面BCC′B′的距离为________.答案(1)3 cm(2)4 cm(3)5 cm解析如图,在长方体ABCD-A′B′C′D′中,AB=5 cm,BC=4 cm,CC′=3 cm,∴长方体的高为3 cm;平面A′B′BA与平面CDD′C′之间的距离为4 cm;点A到平面BCC′B′的距离为5 cm.1.空间几何体的本质(1)几何体不仅包括它的外表面,还包括外表面围起的内部部分,如长方体形的盒子外表面不是长方体,而外表面加上它所占据的空间才是长方体.(2)数学上的几何体是一个抽象概念,只需考虑它的形状和大小,研究它的结构特征和构成元素间的逻辑关系等.2.两个特殊的空间位置关系(1)直线与平面垂直是直线与平面相交的一种特殊情形;(2)平面和平面垂直是两个平面相交的特殊情形.3.(1)点到平面的距离:点与平面内任一点连线中最短的一条线段的长度.特别地,当点在平面内时,点到平面的距离为0.(2)两个平行平面间的距离,可转化为其中一个平面内任一点到另一个平面的距离.4.棱柱、棱锥、棱台的关系在运动变化的观点下,棱柱、棱锥、棱台之间的关系可以用下图表示出来(以三棱柱、三棱锥、三棱台为例).5.各种棱柱之间的关系 (1)棱柱的分类棱柱⎩⎪⎨⎪⎧直棱柱⎩⎪⎨⎪⎧正棱柱一般的直棱柱斜棱柱(2)常见的几种四棱柱之间的转化关系6.棱柱、棱锥、棱台在结构上既有区别又有联系,具体见下表: 名称底面侧面侧棱高平行于底面的截面棱柱斜棱柱 平行且全等的两个多边形平行四边形 平行且相等 与底面全等直棱柱 平行且全等的两个多边形矩形平行、相等且垂直于底面等于侧棱 与底面全等正棱柱 平行且全等的两个正多边形全等的矩形平行、相等且垂直于底面等于侧棱 与底面全等棱锥正棱锥 一个正多边形全等的等腰三角形有一个公共顶点且相等 过底面中心 与底面相似其他一个多边形 三角形有一个公共顶点与底面相似1.2.2空间中的平行关系第1课时平行直线、直线与平面平行[学习目标] 1.能认识和理解空间平行线的传递性,会证明空间等角定理.2.掌握直线与平面平行的判定定理和性质定理,并能利用两个定理解决空间中的平行关系问题.[知识链接]1.直线和平面的位置关系有:平行、相交、直线在平面内.2.当直线与平面无公共点时,直线和平面平行.[预习导引]1.平行直线的定义及平行公理在平面几何中,我们把在同一个平面内不相交的两条直线叫做平行线.平行公理:过直线外一点有且只有一条直线和已知直线平行.2.基本性质4平行于同一条直线的两条直线互相平行,即如果直线a∥b,c∥b,那么a∥c.3.等角定理如果一个角的两边与另一个角的两边分别对应平行,并且方向相同,那么这两个角相等. 解决学生凝难点:4.直线和平面的位置关系位置关系直线a在平面α内直线a与平面α相交直线a与平面α平行公共点有无数个公共点有且只有一个公共点没有公共点符号表示a⊂αa∩α=A a∥α图形表示5.定理条件结论符号语言判定如果不在一个平面内的一条直线和平面内的一条直线平行这条直线和这个平面平行l⊄α,m⊂α,l∥m⇒l∥α性质如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交这条直线和这两个平面的交线平行l∥α,l⊂β,α∩β=m⇒l ∥m要点一基本性质4及等角定理的应用例1如图,已知棱长为a的正方体ABCDA1B1C1D1中,M,N分别是棱CD、AD的中点.(1)求证:四边形MNA1C1是梯形;(2)求证:∠DNM=∠D1A1C1.证明(1)如图,连接AC,在△ACD中,∵M,N分别是CD、AD的中点,∴MN是△DAC的中位线,∴MN∥AC,MN=12AC.由正方体的性质得:AC∥A1C1,AC=A1C1.∴MN∥A1C1,且MN=12A1C1,即MN≠A1C1,∴四边形MNA1C1是梯形.(2)由(1)可知MN∥A1C1,又∵ND∥A1D1,∴∠DNM与∠D1A1C1相等或互补.而∠DNM与∠D1A1C1均是直角三角形的锐角,∴∠DNM =∠D 1A 1C 1.规律方法 (1)空间两条直线平行的证明:①定义法:即证明两条直线在同一个平面内且两直线没有公共点;②利用基本性质4:找到一条直线,使所证的直线都与这条直线平行. (2)等角定理的结论是相等或互补,在实际应用时,一般再借助于图形判断是相等,还是互补,还是两种情形都有可能.跟踪演练1 如图,已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点.(1)求证:E ,F ,G ,H 四点共面;(2)若四边形EFGH 是矩形,求证:AC ⊥BD . 证明 (1)在△ABD 中,∵E ,H 分别是AB ,AD 的中点, ∴EH ∥BD .同理FG ∥BD ,则EH ∥FG . 故E ,F ,G ,H 四点共面. (2)由(1)知EH ∥BD ,同理AC ∥GH .又∵四边形EFGH 是矩形,∴EH ⊥GH .故AC ⊥BD . 要点二 线面平行的判定例2 已知有公共边AB 的两个全等的矩形ABCD 和ABEF 不同在一个平面内,P ,Q 分别是对角线AE 、BD 上的点,且AP =DQ .求证:PQ ∥平面CBE .证明 方法一 作PM ∥AB 交BE 于点M ,作QN ∥AB 交BC 于点N ,如图①,①则PM ∥QN , ∴PM AB =EP EA ,QN CD =BQ BD.又∵EA =BD ,AP =DQ , ∴EP =BQ .又AB =CD ,∴PM 綊QN .∴四边形PMNQ 是平行四边形.∴PQ ∥MN . 又PQ ⊄平面CBE ,MN ⊂平面CBE , ∴PQ ∥平面CBE .方法二 连接AQ ,并延长交直线BC 于R ,连接ER ,如图②.②∵AD ∥BR , ∴AQ AR =DQ DB. 又DQ =AP ,DB =AE , ∴AQ AR =APAE∴PQ ∥ER . 又PQ ⊄平面CBE ,ER ⊂平面CBE ,∴PQ ∥平面CBE .规律方法 1.利用直线与平面平行的判定定理证明线面平行,关键是寻找平面内与已知直线平行的直线.2.证线线平行的方法常用三角形中位线定理、平行四边形性质、平行线分线段成比例定理、平行公理等.跟踪演练2 如图,ABCD 是平行四边形,S 是平面ABCD 外一点,M 为SC 的中点,求证:SA ∥平面MDB .证明 连接AC 交BD 于点O ,连接OM .∵四边形ABCD 为平行四边形, ∴O 是AC 的中点, 又∵M 是SC 的中点, ∴OM ∥SA .∵OM ⊂平面MDB ,SA ⊄平面MDB ,∴SA ∥平面MDB . 要点三 线面平行的性质定理的应用例3 已知:α、β是两个平面,a 、l 是两条直线,且α∩β=l ,a ∥α,a ∥β.求证:a ∥l . 证明 如图所示,过a 作平面γ交平面α于b ,∵a ∥α,∴a ∥b .同样过a 作平面δ交平面β于c , ∵a ∥β,∴a ∥c ,∴b ∥c . 又b ⊄β,c ⊂β,∴b ∥β.又b ⊂α,α∩β=l ,∴b ∥l ,∴a ∥l .规律方法 线∥面线面平行的性质线面平行的判定线∥线.在空间平行关系中,交替使用线线平行、线面平行的判定与性质是解决此类问题的关键.跟踪演练3 如图,在直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB ∥CD .AB =4.BC =CD =2,AA 1=2,E ,E 1,F 分别是棱AD ,AA 1,AB 的中点.证明:直线EE 1∥平面FCC 1.证明如图,在直四棱柱ABCD -A1B1C1D1中.取A1B1的中点F1,连接A1D,C1F1,CF1,FF1.∵FF1∥BB1∥CC1,∴F1F⊂平面FCC1,∴平面FCC1即为平面C1CFF1.∵AB=4,CD=2且AB∥CD,∴CD綊A1F1,∴A1F1CD为平行四边形,∴CF1∥A1D.又E,E1分别是棱AD,AA1的中点,∴EE1∥A1D,∴CF1∥EE1,又EE1⊄平面FCC1,CF1⊂平面FCC1,∴直线EE1∥平面FCC1.1.如果OA∥O1A1,OB∥O1B1,那么,∠AOB和∠A1O1B1()A.相等B.互补C.相等或互补D.大小无关答案 C解析因为角的方向不定,所以∠AOB与∠A1O1B1相等或互补.2.如果直线a∥平面α,那么直线a与平面α内的()A.一条直线不相交B.两条相交直线不相交C.无数条直线不相交D.任意一条直线不相交答案 D解析线面平行,则线面无公共点,所以选D,对于C,要注意“无数”并不代表所有. 3.如图,在下列四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出AB∥平面MNP的图形的序号是()A.①③B.①④C.②③D.②④答案 B解析①中,取NP中点O,连MO,则MO∥AB,AB⊄平面MNP.MO⊂平面MNP,∴AB∥平面MNP;②中,在平面MNP内找不到与AB平行的直线,故②不能得出;③中,AB与平面MNP相交;④中,∵AB∥NP,AB⊄平面MNP.NP⊂平面MNP.∴AB∥平面MNP.4.l1,l2,l3是空间三条不同的直线,则下列命题正确的是()A.l1⊥l2,l2⊥l3⇒l1∥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面答案 B解析在空间中,垂直于同一直线的两条直线不一定平行,故A错;两平行线中的一条垂直于第三条直线,则另一条也垂直于第三条直线,B正确;相互平行的三条直线不一定共面,如三棱柱的三条侧棱,故C错;共点的三条直线不一定共面,如三棱锥的三条侧棱,故D 错.5.如图所示,a∥α,A是α的另一侧的点,B、C、D∈a,线段AB、AC、AD分别交α于E、F、G,若BD=4,CF=4,AF=5,则EG=________.答案209解析 由已知EG ∥BD , ∴EG BD =AF AC ,∴EG =209.1.求证两直线平行有两种常用的方法:一是应用基本性质4,证明时要充分应用好平面几何知识,如平行线分线段成比例定理、三角形的中位线定理等;二是证明在同一平面内,这两条直线无公共点.2.求证角相等也有两种常用的方法:一是应用等角定理,在证明的过程中常用到基本性质4,注意两角对应边方向的讨论;二是应用三角形全等或相似.3.利用直线与平面平行的判定定理来证明线面平行,关键是寻找面内与已知直线平行的直线,常利用平行四边形、三角形中位线、平行公理等.4.利用线面平行的性质定理解题的步骤: (1)确定(或寻找)一条直线平行于一个平面;(2)确定(或寻找)过这条直线且与这个平面相交的平面; (3)确定交线,由性质定理得出结论.1.2.3空间中的垂直关系第1课时直线与平面垂直[学习目标] 1.了解直线与平面垂直的概念.2.掌握直线与平面垂直的判定定理和性质定理.3.掌握一些求点到平面距离的常用方法.[知识链接]生活中处处都有直线和平面垂直的例子,如旗杆和地面、路灯与地面等等.在判断线面平行时我们有判定定理,那么判断线面垂直又有什么好办法呢?[预习导引]1.直线与直线垂直如果两条直线相交于一点或经过平移后相交于一点,并且交角为直角,则称这两条直线互相垂直.2.直线与平面垂直的定义如果一条直线和一个平面相交于点O,并且和这个平面内过交点(O)的任何直线都垂直,我们就说这条直线和这个平面互相垂直,这条直线叫做平面的垂线,这个平面叫做直线的垂面,交点叫做垂足.垂线上任意一点到垂足间的线段,叫做这个点到这个平面的垂线段.垂线段的长度叫做这个点到平面的距离.3.直线与平面垂直的性质如果一条直线垂直于一个平面,那么它就和平面内的任意一条直线垂直.4.直线与平面垂直的判定定理及其推论定理:如果一条直线与平面内的两条相交直线垂直,则这条直线与这个平面垂直.推论1:如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直于这个平面. 推论2:如果两条直线垂直于同一个平面,那么这两条直线平行.要点一直线和平面垂直的定义例1下列命题中,正确的序号是________.①若直线l与平面α内的一条直线垂直,则l⊥α;②若直线l不垂直于平面α,则α内没有与l垂直的直线;③若直线l不垂直于平面α,则α内也可以有无数条直线与l垂直;④若平面α内有一条直线与直线l不垂直,则直线l与平面α不垂直.答案③④解析当l与α内的一条直线垂直时,不能保证l与平面α垂直,所以①不正确;当l与α不垂直时,l可能与α内的无数条平行直线垂直,所以②不正确,③正确.根据线面垂直的定义,若l⊥α则l与α的所有直线都垂直,所以④正确.规律方法 1.直线和平面垂直的定义是描述性定义,对直线的任意性要注意理解.实际上,“任何一条”与“所有”表达相同的含义.当直线与平面垂直时,该直线就垂直于这个平面内的任何直线.由此可知,如果一条直线与一个平面内的一条直线不垂直,那么这条直线就一定不与这个平面垂直.2.由定义可得线面垂直⇒线线垂直,即若a⊥α,b⊂α,则a⊥b.跟踪演练1设l,m是两条不同的直线,α是一个平面,则下列命题正确的是()A.若l⊥m,m⊂α,l⊥αB.若l⊥α,l∥m,则m⊥αC.若l∥α,m⊂α,则l∥mD.若l∥α,m∥α,则l∥m答案 B解析对于A,直线l⊥m,m并不代表平面α内任意一条直线,所以不能判定线面垂直;对于B,因l⊥α,则l垂直α内任意一条直线,又l∥m,由异面直线所成角的定义知,m与平面α内任意一条直线所成的角都是90°,即m⊥α,故B正确;对于C,也有可能是l,m 异面;对于D,l,m还可能相交或异面.要点二线面垂直的判定例2如图所示,在三棱柱ABCA1B1C1中,侧棱AA1⊥底面ABC,AB=AC=1,AA1=2,∠B1A1C1=90°,D为BB1的中点.求证:AD⊥平面A1DC1.证明∵AA1⊥底面ABC,平面A1B1C1∥平面ABC,∴AA1⊥平面A1B1C1,显然A1C1⊂平面A1B1C1,∴A1C1⊥AA1.又∠B1A1C1=90°,∴A1C1⊥A1B1而A1B1∩AA1=A1,∴A1C1⊥平面AA1B1B,AD⊂平面AA1B1B,∴A1C1⊥AD.由已知计算得AD=2,A1D=2,AA1=2.∴AD2+A1D2=AA21,∴A1D⊥AD.∵A1C1∩A1D=A1,∴AD⊥平面A1DC1.规律方法证线面垂直的方法(1)线线垂直证明线面垂直:①定义法(不常用,但由线面垂直可得出线线垂直);②判定定理最常用:要着力寻找平面内哪两条相交直线(有时作辅助线);结合平面图形的性质(如勾股定理逆定理等腰三角形底边中线等)及一条直线与平行线中一条垂直也与另一条垂直等结论来论证线线垂直.(2)平行转化法(利用推论):①a∥b,a⊥α⇒b⊥α;②α∥β,a⊥α⇒a⊥β.跟踪演练2如图,在正方体ABCDA1B1C1D1中,E,F分别是棱AB,BC的中点,O是底面ABCD的中心,求证:EF⊥平面BB1O.证明∵ABCD为正方形,∴AC⊥BO.又∵BB1⊥平面ABCD,AC⊂平面ABCD,∴AC⊥BB1,又∵BO∩BB1=B,∴AC⊥平面BB1O,又EF是△ABC的中位线,∴EF∥AC,∴EF⊥平面BB1O.要点三直线与平面垂直的性质及应用例3如图,正方体A1B1C1D1ABCD中,EF与异面直线AC、A1D都垂直相交.求证:EF∥BD1.证明如图所示,连接AB1、B1D1、B1C、BD,∵DD1⊥平面ABCD,AC⊂平面ABCD,∴DD1⊥AC.又AC⊥BD,DD1∩BD=D,∴AC⊥平面BDD1B1,又BD1⊂平面BDD1B1,∴AC⊥BD1.同理可证BD1⊥B1C,∴BD1⊥平面AB1C.∵EF⊥A1D,A1D∥B1C,∴EF⊥B1C.又∵EF⊥AC,AC∩B1C=C,∴EF⊥平面AB1C,∴EF∥BD1.规律方法证明线线平行常有如下方法:(1)利用线线平行定义:证共面且无公共点;(2)利用三线平行公理:证两线同时平行于第三条直线;(3)利用线面平行的性质定理:把证线线平行转化为证线面平行;(4)利用线面垂直的性质定理:把证线线平行转化为证线面垂直;(5)利用面面平行的性质定理:把证线线平行转化为证面面平行.跟踪演练3如图,已知平面α∩平面β=l,EA⊥α,垂足为A,EB⊥β,垂足为B,直线a ⊂β,a⊥AB.求证:a∥l.证明因为EA⊥α,α∩β=l,即l⊂α,所以l⊥EA.同理l⊥EB,又EA∩EB=E,所以l⊥平面EAB.因为EB⊥β,a⊂β,所以EB⊥a,又a⊥AB,EB∩AB=B,所以a⊥平面EAB.因此,a∥l.1.一条直线和三角形的两边同时垂直,则这条直线和三角形的第三边的位置关系是()A.平行B.垂直C.相交不垂直D.不确定答案 B解析由题意可知,该直线垂直于三角形所确定的平面,故这条直线和三角形的第三边也垂直.2.如图所示,如果MC⊥菱形ABCD所在平面,那么MA与BD的位置关系是()A.平行B.垂直相交C.垂直但不相交D.相交但不垂直答案 C解析连接AC,因为ABCD是菱形,所以BD⊥AC.又MC⊥平面ABCD,则BD⊥MC.因为AC∩MC=C,所以BD⊥平面AMC.又MA⊂平面AMC,所以MA⊥BD.显然直线MA与直线BD不共面,因此直线MA与BD的位置关系是垂直但不相交.3.下列表述正确的个数为()①若直线a∥平面α,直线a⊥b,则b⊥α;②若直线a⊄平面α,b⊂α,且a⊥b,则a⊥α;③若直线a平行于平面α内的两条直线,则a∥α;④若直线a垂直于平面α内的两条直线,则a⊥α.A.0B.1C.2D.3答案 A解析①中b与α还可能平行、斜交或b在平面α内;②中a与α还可能平行或斜交;③中a还可能在平面α内;由直线与平面垂直的判定定理知④错.4.如果一条直线垂直于一个平面内的下列各种情况,能保证该直线与平面垂直的是()①三角形的两边;②梯形的两边;③圆的两条直径;④正六边形的两条边.A.①③B.②C.②④D.①②④答案 A解析由线面垂直的判定定理知,直线垂直于①③图形所在的平面,对于②④图形中的两边不一定是相交直线,所以该直线与它们所在的平面不一定垂直.5.若a,b表示直线,α表示平面,下列命题中正确的有________个.①a⊥α,b∥α⇒a⊥b; ②a⊥α,a⊥b⇒b∥α;③a∥α,a⊥b⇒b⊥α;④a⊥α,b⊥α⇒a∥b.答案 2解析由线面垂直的性质定理知①④正确.1.直线与平面垂直的判定方法:(1)利用定义;(2)利用判定定理,其关键是在平面内找两条相交直线.2.对于线面垂直的性质定理(推论2)的理解:(1)直线与平面垂直的性质定理(推论2)给出了判定两条直线平行的另一种方法.(2)定理揭示了空间中“平行”与“垂直”关系的内在联系,提供了“垂直”与“平行”关系转化的依据.。

【配套K12】2018-2019学年高中数学人教B版必修二学案:1.1.2 第2课时 平面与平面垂直

【配套K12】2018-2019学年高中数学人教B版必修二学案:1.1.2 第2课时 平面与平面垂直

第2课时 平面与平面垂直[学习目标] 1.掌握平面与平面垂直的定义.2.掌握平面与平面垂直的判定与性质定理.3.理解线线垂直,线面垂直和面面垂直的内在联系.[知识链接]1.直线与平面垂直的判定定理定理:如果一条直线与平面内的两条相交直线垂直,则这条直线与这个平面垂直.推论1:如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直于这个平面; 推论2:如果两条直线垂直于同一个平面,那么这两条直线平行. 2.直线与平面垂直的性质定义:如果一条直线垂直于一个平面,那么它就和平面内的任意一条直线垂直. 符号表示:⎭⎪⎬⎪⎫a ⊥αb ⊂α⇒a ⊥b . [预习导引]1.平面与平面垂直的定义如果两个相交平面的交线与第三个平面垂直,又这两个平面与第三个平面相交所得的两条交线互相垂直,就称这两个平面互相垂直. 2.平面与平面垂直的判定定理如果一个平面过另一个平面的一条垂线,则两个平面互相垂直. 3.平面与平面垂直的性质定理如果两个平面互相垂直,那么在一个平面内垂直于它们的交线的直线垂直于另一个平面.要点一 平面与平面垂直判定定理的应用例1 如图,AB 是⊙O 的直径,P A 垂直于⊙O 所在的平面,C 是圆周上异于A 、B 的任意一点,求证:平面P AC ⊥平面PBC .证明连接AC,BC,则BC⊥AC,又P A⊥平面ABC,∴P A⊥BC,而P A∩AC=A,∴BC⊥平面P AC,又BC⊂平面PBC,∴平面P AC⊥平面PBC.规律方法面面垂直的判定定理是证明面面垂直的常用方法,即要证面面垂直,只需转证线面垂直,关键是在其中一个平面内寻找一直线与另一个平面垂直.跟踪演练1如图,四棱锥P-ABCD的底面是正方形,PD⊥底面ABCD,点E在棱PB上,求证:平面AEC⊥平面PDB.证明设AC∩BD=O,连接OE,∵AC⊥BD,AC⊥PD,PD,BD为平面PDB内两条相交直线,∴AC⊥平面PDB.又∵AC⊂平面AEC,∴平面AEC⊥平面PDB.要点二面面垂直性质定理的应用例2如果两个相交平面都垂直于第三个平面,那么它们的交线垂直于第三个平面.解已知:α⊥γ,β⊥γ,α∩β=l.求证:l⊥γ.方法一在γ内取一点P,作P A垂直α与γ的交线于A,PB垂直β与γ的交线于B,则P A⊥α,PB⊥β.∵l=α∩β,∴l⊥P A,l⊥PB.又P A∩PB=P,且P A⊂γ,PB⊂γ,∴l⊥γ.方法二在α内作直线m垂直于α与γ的交线,在β内作直线n垂直于β与γ的交线,∵α⊥γ,β⊥γ,∴m⊥γ,n⊥γ.∴m∥n.又n⊂β,∴m∥β.又m⊂α,α∩β=l,∴m∥l.∴l⊥γ.规律方法面面垂直的性质是作平面的垂线的重要方法,因此,在有面面垂直的条件下,若需要平面的垂线,要首先考虑面面垂直的性质.跟踪演练2如图,在三棱锥P ABC中,P A⊥平面ABC,平面P AB⊥平面PBC.求证:BC⊥AB.证明在平面P AB内,作AD⊥PB于D.∵平面P AB⊥平面PBC,且平面P AB∩平面PBC=PB.∴AD⊥平面PBC.又BC⊂平面PBC,∴AD⊥BC.又∵P A⊥平面ABC,BC⊂平面ABC,∴P A⊥BC,又P A∩AD=A,∴BC⊥平面P AB.又AB⊂平面P AB,∴BC⊥AB.要点三线线、线面、面面垂直的综合应用例3如图所示,在四棱锥P-ABCD中,底面ABCD是边长为a的菱形,且∠DAB=60°,侧面P AD为正三角形,其所在的平面垂直于底面ABCD.(1)若G为AD边的中点,求证:BG⊥平面P AD;(2)求证:AD⊥PB.证明(1)∵在菱形ABCD中,G为AD的中点,∠DAB=60°,∴BG⊥AD.又平面P AD⊥平面ABCD, 平面P AD∩平面ABCD=AD,BG⊥平面P AD.(2)连接PG,如图,∵△P AD为正三角形,G为AD的中点,∴PG⊥AD.由(1)知BG⊥AD,PG∩BG=G,∴AD⊥平面PGB,∵PB⊂平面PGB,∴AD⊥PB.规律方法证明线面垂直,一种方法是利用线面垂直的判定定理,另一种方法是利用面面垂直的性质定理,本题已知面面垂直,故可考虑面面垂直的性质定理.利用面面垂直的性质定理,证明线面垂直的问题时,要注意以下三点;(1)两个平面垂直;(2)直线必须在其中一个平面内;(3)直线必须垂直于它们的交线.跟踪演练3如图,已知四棱锥P ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC =PB=PC=2CD,侧面PBC⊥底面ABCD.证明:P A⊥BD.证明如图,取BC的中点O,连接PO、AO.∵PB=PC.∴PO⊥BC,又侧面PBC⊥底面ABCD,平面PBC∩平面ABCD=BC,PO⊂平面PBC,∴PO⊥底面ABCD.∵BD⊂平面ABCD,∴PO⊥BD,在直角梯形ABCD中,易证△ABO≌△BCD,∠BAO=∠CBD,∠CBD+∠ABD=90°,∴∠BAO+∠ABD=90°∴AO⊥BD,又PO∩AO=O,∴BD⊥平面P AO,又P A⊂平面P AO,∴BD⊥P A.1.若平面α⊥平面β,平面β⊥平面γ,则()A.α∥γB.α⊥γC.α与γ相交但不垂直D.以上都有可能答案 D解析以正方体为模型;相邻两侧面都与底面垂直;相对的两侧面都与底面垂直;一侧面和一对角面都与底面垂直,故选D.2.已知l⊥α,则过l与α垂直的平面()A.有1个B.有2个C.有无数个D.不存在答案 C解析由面面垂直的判定定理知,凡过l的平面都垂直于平面α,这样的平面有无数个.3.已知长方体ABCDA1B1C1D1,在平面AB1上任取一点M,作ME⊥AB于E,则()A.ME⊥平面ACB.ME⊂平面ACC.ME∥平面ACD.以上都有可能答案 A解析由于ME⊂平面AB1,平面AB1∩平面AC=AB,且平面AB1⊥平面AC,ME⊥AB,则ME⊥平面AC.4.如图,设P是正方形ABCD外一点,且P A⊥平面ABCD,则平面P AB与平面PBC、平面P AD的位置关系是()A.平面P AB与平面PBC、平面P AD都垂直B.它们两两垂直C.平面P AB与平面PBC垂直,与平面P AD不垂直D.平面P AB与平面PBC、平面P AD都不垂直答案 A解析∵P A⊥平面ABCD,∴P A⊥BC.又BC⊥AB,P A∩AB=A,∴BC⊥平面P AB,∵BC⊂平面PBC,∴平面PBC⊥平面P AB.由AD⊥P A,AD⊥AB,P A∩AB=A,得AD⊥平面P AB.∵AD⊂平面P AD,∴平面P AD⊥平面P AB.由已知易得平面PBC与平面P AD不垂直,故选A.5.下列四个命题中,正确的序号有________.①α∥β,β⊥γ,则α⊥γ;②α∥β,β∥γ,则α∥γ;③α⊥β,γ⊥β,则α⊥γ;④α⊥β,γ⊥β,则α∥γ.答案①②解析③④不正确,当α⊥β,γ⊥β时,α,γ可以平行、相交或垂直.1.面面垂直的性质定理揭示了“面面垂直、线面垂直及线线垂直”间的内在联系,体现了数学中的化归转化思想,其转化关系如下:2.运用平面垂直的性质定理时,一般需要作铺助线,基本作法是过其中一个平面内一点作交线的垂线,这样把面面垂直转化为线面垂直或线线垂直.。

2018-2019数学新学案同步必修二人教B版全国通用版课件:第二章 平面解析几何初步2.1.2

2018-2019数学新学案同步必修二人教B版全国通用版课件:第二章 平面解析几何初步2.1.2

跟踪训练2 (1)已知三点A(x,5),B(-2,y),C(1,1),且点C是线段AB的 中点,求x,y的值;
x-2 2=1, 解 由题意知,5+2 y=1,
解得xy= =- 4,3.
解答
(2)求点M(4,3)关于点N(5,-3)的对称点.

设所求点的坐标为(x,y),则xy+ +22 43= =- 5,3,
故点 P 的坐标为-95,0,d(P,A)=
-3+952+42=2
109 5.
解答
类型二 中点公式及应用 例2 已知平行四边形ABCD的两个顶点坐标分别为A(4,2),B(5,7),对角 线交点为E(-3,4),求另外两顶点C,D的坐标.
解答
反思与感悟 中点公式应用的步骤 (1)认真审题,提炼题设中的条件. (2)将条件转化为与中点有关的问题. (3)利用中点公式求解. (4)转化为题目要求的结果. 特别提醒:利用中点坐标公式可求得以 A(x1,y1),B(x2,y2),C(x3,y3) 为顶点的△ABC 的重心坐标为x1+x32+x3,y1+y32+y3.
|BC|= [0--3]2+5-22= 18=3 2,
|AC|= 0-42+5-12= 32=4 2.
∴△ABC 的周长为|AB|+|BC|+|AC|=5 2+3 2+4 2=12 2.
解析 答案
(2)若A(-5,6),B(a,-2)两点的距离为10,则a=_1_或__-__1_1_. 解析 ∵|AB|= x1-x22+y1-y22 = -5-a2+6+22=10, ∴a=1或-11.
C.直角三角形
Dห้องสมุดไป่ตู้无法确定
1 2 34 5
答案
4.已知A(a,6),B(-2,b),点P(2,3)平分线段AB,则a+b=_6__.

2018版高中数学人教B版选修2-2学案:2-2-2 反证法 精

2018版高中数学人教B版选修2-2学案:2-2-2 反证法 精

2.2.2反证法明目标、知重点 1.了解反证法是间接证明的一种基本方法.2.理解反证法的思考过程,会用反证法证明数学问题.1.反证法的定义一般地,由证明p⇒q转向证明:綈q⇒r⇒…⇒t,t与假设矛盾,或与某个真命题矛盾.从而判定綈q为假,推出q为真的方法,叫做反证法.2.反证法常见的矛盾类型反证法的关键是在正确的推理下得出矛盾.这个矛盾可以是与假设矛盾或与数学公理、定理、公式、定义或已被证明了的结论矛盾,或与公认的简单事实矛盾等.3.反证法中常用的“结论词”与“反设词”如下[情境导学]王戎小时候,爱和小朋友在路上玩耍.一天,他们发现路边的一棵树上结满了李子,小朋友一哄而上,去摘李子,独有王戎没动,等到小朋友们摘了李子一尝,原来是苦的!他们都问王戎:“你怎么知道李子是苦的呢?”王戎说:“假如李子不苦的话,早被路人摘光了,而这树上却结满了李子,所以李子一定是苦的.”这就是著名的“道旁苦李”的故事.王戎的论述,运用的方法即是本节课所要学的方法——反证法.探究点一反证法的概念思考1结合情境导学描述反证法的一般模式是什么?答(1)假设原命题不成立(提出原命题的否定,即“李子苦”),(2)以此为条件,经过正确的推理,最后得出一个结论(“早被路人摘光了”),(3)判定该结论与事实(“树上结满李子”)矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法称为反证法.思考2反证法证明的关键是经过推理论证,得出矛盾.反证法引出的矛盾有几种情况?答(1)与假设矛盾;(2)与数学公理、定理、公式、定义或已被证明了的结论矛盾;(3)与公认的简单事实矛盾.思考3反证法主要适用于什么情形?答①要证的结论与条件之间的联系不明显,直接由条件推出结论的线索不够清晰;②如果从正面证明,需要分成多种情形进行分类讨论,而从反面进行证明,只要研究一种或很少的几种情形.探究点二用反证法证明定理、性质等一些事实结论例1已知直线a,b和平面α,如果a⊄α,b⊂α,且a∥b,求证:a∥α.证明因为a∥b,所以经过直线a,b确定一个平面β.因为a⊄α,而a⊂β,所以α与β是两个不同的平面.因为b⊂α,且b⊂β,所以α∩β=b.下面用反证法证明直线a与平面α没有公共点.假设直线a与平面α有公共点P,如图所示,则P∈α∩β=b,即点P是直线a与b的公共点,这与a∥b矛盾.所以a∥α.反思与感悟数学中的一些基础命题都是数学中我们经常用到的明显事实,它们的判定方法极少,宜用反证法证明.正难则反是运用反证法的常见思路,即一个命题的结论如果难以直接证明时,可考虑用反证法.跟踪训练1如图,已知a∥b,a∩平面α=A.求证:直线b与平面α必相交.证明假设b与平面α不相交,即b⊂α或b∥α.①若b⊂α,因为b∥a,a⊄α,所以a∥α,这与a∩α=A相矛盾;②如图所示,如果b∥α,则a,b确定平面β.显然α与β相交,设α∩β=c,因为b∥α,所以b∥c.又a∥b,从而a∥c,且a⊄α,c⊂α,则a∥α,这与a∩α=A相矛盾.由①②知,假设不成立,故直线b与平面α必相交.探究点三用反证法证明否定性命题例2求证:2不是有理数.证明假设2是有理数.于是,存在互质的正整数m,n,使得2=mn,从而有m=2n,因此m2=2n2,所以m为偶数.于是可设m=2k(k是正整数),从而有4k2=2n2,即n2=2k2,所以n也为偶数.这与m,n互质矛盾.由上述矛盾可知假设错误,从而2不是有理数.反思与感悟当结论中含有“不”、“不是、“不可能”、“不存在”等否定形式的命题时,由于此类问题的反面比较具体,适于应用反证法.跟踪训练2已知三个正数a,b,c成等比数列,但不成等差数列,求证:a,b,c不成等差数列.证明假设a,b,c成等差数列,则a+c=2b,即a+c+2ac=4b,而b2=ac,即b=ac,∴a+c+2ac=4ac,∴(a-c)2=0.即a=c,从而a=b=c,与a,b,c不成等差数列矛盾,故a,b,c不成等差数列.探究点四含至多、至少、唯一型命题的证明例3若函数f(x)在区间[a,b]上是增函数,那么方程f(x)=0在区间[a,b]上至多有一个实根.证明假设方程f(x)=0在区间[a,b]上至少有两个实根,设α、β为其中的两个实根.因为α≠β,不妨设α<β,又因为函数f(x)在[a,b]上是增函数,所以f(α)<f(β).这与假设f(α)=0=f(β)矛盾,所以方程f (x )=0在区间[a ,b ]上至多有一个实根.反思与感悟 当一个命题的结论有“最多”、“最少”、“至多”、“至少”、“唯一”等字样时,常用反证法来证明,用反证法证明时,注意准确写出命题的假设.跟踪训练3 若a ,b ,c 均为实数,且a =x 2-2y +π2,b =y 2-2z +π3,c =z 2-2x +π6.求证:a 、b 、c 中至少有一个大于0.证明 假设a ,b ,c 都不大于0,即a ≤0,b ≤0,c ≤0, 所以a +b +c ≤0,而a +b +c =(x 2-2y +π2)+(y 2-2z +π3)+(z 2-2x +π6)=(x 2-2x )+(y 2-2y )+(z 2-2z )+π=(x -1)2+(y -1)2+(z -1)2+π-3, 所以a +b +c >0,这与a +b +c ≤0矛盾, 故a 、b 、c 中至少有一个大于0.1.用反证法证明“在△ABC 中至多有一个直角或钝角”,第一步应假设( ) A .三角形中至少有一个直角或钝角 B .三角形中至少有两个直角或钝角 C .三角形中没有直角或钝角 D .三角形中三个角都是直角或钝角 答案 B2.用反证法证明“三角形中至少有一个内角不小于60°”,应先假设这个三角形中( ) A .有一个内角小于60° B .每一个内角都小于60° C .有一个内角大于60° D .每一个内角都大于60°答案 B3.“a <b ”的反面应是( ) A .a ≠b B .a >b C .a =b D .a =b 或a >b答案 D4.用反证法证明“在同一平面内,若a ⊥c ,b ⊥c ,则a ∥b ”时,应假设( ) A .a 不垂直于c B .a ,b 都不垂直于c C .a ⊥b D .a 与b 相交 答案 D5.已知a ≠0,证明:关于x 的方程ax =b 有且只有一个根.证明 由于a ≠0,因此方程至少有一个根x =ba.如果方程不止一个根,不妨设x 1,x 2是它的两个不同的根,即ax 1=b , ① ax 2=b . ②①-②,得a (x 1-x 2)=0.因为x 1≠x 2,所以x 1-x 2≠0,所以应有a =0,这与已知矛盾,故假设错误. 所以,当a ≠0时,方程ax =b 有且只有一个根. [呈重点、现规律]1.反证法证明的基本步骤:(1)假设命题结论的反面是正确的;(反设)(2)从这个假设出发,经过逻辑推理,推出与已知条件、公理、定义、定理、反设及明显的事实矛盾;(推谬)(3)由矛盾判定假设不正确,从而肯定原命题的结论是正确的.(结论) 2.反证法证题与“逆否命题法”的异同:反证法的理论基础是逆否命题的等价性,但其证明思路不完全是证明一个命题的逆否命题.反证法在否定结论后,只要找到矛盾即可,可以与题设矛盾,也可以与假设矛盾,与定义、定理、公式、事实矛盾.因此,反证法与证明逆否命题是不同的.。

2018版高中数学人教B版必修二学案:第二单元 章末复习课 含答案 精品

2018版高中数学人教B版必修二学案:第二单元 章末复习课 含答案 精品

学习目标 1.熟练掌握直线方程的四种形式,并会判断两直线的位置关系.2.会运用两点间距离、点到直线的距离及两平行线间的距离公式解决一些实际问题.3.理解圆的标准方程和一般方程,熟练掌握直线与圆的位置关系的相关应用.1.直线倾斜角的范围直线倾斜角的范围是0°≤α<180°. 2.写出直线的斜率公式(1)直线l 的倾斜角α满足a ≠90°,则直线斜率k =________________.(2)P 1(x 1,y 1),P 2(x 2,y 2)是直线l 上两点,且x 1≠x 2,则直线l 的斜率为k =________________. 3.直线方程的几种形式 (1)点斜式:________________. (2)斜截式:________________.(3)两点式:________________(x 1≠x 2,y 1≠y 2). (4)截距式:________________(a ≠0,b ≠0). (5)一般式:________________. 4.两直线平行与垂直的条件由两直线的方程判断两条直线是否平行或垂直时,要注意条件的限制;同时已知平行或垂直关系求直线的方程或确定方程的系数关系时,要根据题目条件设出合理的直线方程.5.距离问题6.平行直线系和垂直直线系(1)与直线Ax+By+C=0平行的直线方程为Ax+By+m=0(m≠C).(2)与直线Ax+By+C=0垂直的直线方程为Bx+Ay+n=0.7.圆的方程(1)圆的标准方程:________________.(2)圆的一般方程:________________.8.直线与圆的位置关系设直线l与圆C的圆心之间的距离为d,圆的半径为r,则(1)l与圆C相离⇔________.(2)l与圆C相切⇔________.(3)l与圆C相交⇔________.9.圆与圆的位置关系设⊙O1的半径为r1,⊙O2的半径为r2,两圆的圆心距为d.当|r1-r2|<d<r1+r2时,两圆相交;当r1+r2=d时,两圆外切;当|r1-r2|=d时,两圆内切;当r1+r2<d时,两圆外离;当|r1-r2|>d,两圆内含.10.空间直角坐标系空间两点间距离公式:设空间两点A(x1,y1,z1),B(x2,y2,z2),两点的距离公式是d(A,B)=|AB|=________________.特别提醒:(1)计算直线被圆截得的弦长的常用方法①几何方法运用弦心距(即圆心到直线的距离)、弦长的一半及半径构成直角三角形计算.②代数方法运用根与系数的关系及弦长公式|AB |=1+k 2|x A -x B |=(1+k 2)[(x A +x B )2-4x A x B ]. 注:圆的弦长、弦心距的计算常用几何方法. (2)对称问题①点关于点的对称:求点P 关于点M (a ,b )的对称点Q 的问题,主要依据M 是线段PQ 的中点,即x P +x Q =2a ,y P +y Q =2b .②直线关于点的对称:求直线l 关于点M (m ,n )的对称直线l ′的问题,主要依据l ′上的任一点T (x ,y )关于M (m ,n )的对称点T ′(2m -x,2n -y )必在l 上.③点关于直线的对称:求已知点A (m ,n )关于已知直线l :y =kx +b 的对称点A ′(x 0,y 0)的一般方法是依据l 是线段AA ′的垂直平分线,列出关于x 0,y 0的方程组,由“垂直”得一方程,由“平分”得一方程,即⎩⎪⎨⎪⎧k ·y 0-n x 0-m =-1,y 0+n 2=k ·x 0+m2+b .④直线关于直线的对称:求直线l 关于直线g 的对称直线l ′,主要依据l ′上任一点M 关于直线g 的对称点必在l 上.类型一 两直线的位置关系例1 已知两条直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足下列条件的a ,b 的值. (1)l 1⊥l 2,且l 1过点(-3,-1);(2)l 1∥l 2,且坐标原点到这两条直线的距离相等.反思与感悟 已知两直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0(1)对于l 1∥l 2的问题,先由A 1B 2-A 2B 1=0解出其中的字母值,然后代回原方程检验这时的l 1和l 2是否重合,若重合,舍去.(2)对于l 1⊥l 2的问题,由A 1A 2+B 1B 2=0解出字母的值即可.跟踪训练1已知直线l1:ax+2y+6=0和直线l2:x+(a-1)y+a2-1=0.(1)试判断l1与l2是否平行;(2)当l1⊥l2时,求a的值.类型二直线的方程例2过点P(-1,0)、Q(0,2)分别作两条互相平行的直线,使它们在x轴上截距之差的绝对值为1,求这两条直线的方程.反思与感悟求直线方程时,要根据给定条件,选择恰当的方程,常用以下两种方法求解:(1)直接法:直接选取适当的直线方程的形式,写出结果;(2)待定系数法:先以直线满足的某个条件为基础设出直线方程,再由直线满足的另一个条件求出待定系数,从而求得方程.跟踪训练2已知经过点A(-2,0)和点B(1,3a)的直线l1与经过点P(0,-1)和点Q(a,-2a)的直线l2互相垂直,求实数a的值.类型三圆的方程例3已知圆经过点A(2,-1),圆心在直线2x+y=0上,且与直线x-y-1=0相切,求圆的方程.反思与感悟(1)求圆的方程的方法求圆的方程主要是联想圆系方程、圆的标准方程和一般方程,利用待定系数法解题. (2)采用待定系数法求圆的方程的一般步骤 ①选择圆的方程的某一形式.②由题意得a ,b ,r (或D ,E ,F )的方程(组). ③解出a ,b ,r (或D ,E ,F ). ④代入圆的方程.跟踪训练3 在平面直角坐标系中,已知△ABC 的三个顶点坐标分别为A (-3,0),B (2,0),C (0,-4),经过这三个点的圆记为M .(1)求BC 边的中线AD 所在直线的一般式方程; (2)求圆M 的方程.类型四 直线与圆的位置关系例4 已知点M (3,1),直线ax -y +4=0及圆(x -1)2+(y -2)2=4. (1)求过点M 的圆的切线方程;(2)若直线ax -y +4=0与圆相切,求a 的值;(3)若直线ax -y +4=0与圆相交于A ,B 两点,且弦AB 的长为23,求a 的值.反思与感悟 直线与圆位置关系的判断方法主要有代数法和几何法.一般常用几何法,而不用代数法.因为代数法计算复杂,书写量大,易出错,而几何法较简单.跟踪训练4 与直线x +y -2=0和曲线x 2+y 2-12x -12y +54=0都相切的半径最小的圆的标准方程是__________________________. 类型五 数形结合思想的应用例5 设点P (x ,y )在圆x 2+(y -1)2=1上. (1)求(x -2)2+y 2的最小值; (2)求y +2x +1的最小值.反思与感悟 (1)形如μ=y -bx -a形式的最值问题,可转化为动直线斜率的最值问题.(2)形如t =ax +by 形式的最值问题,可转化为动直线截距的最值问题.(3)形如(x -a )2+(y -b )2形式的最值问题,可转化为动点到定点的距离的平方的最值问题.跟踪训练5 当曲线y =1+4-x 2与直线y =k (x -2)+4有两个相异交点时,实数k 的取值范围是( ) A.⎝⎛⎭⎫0,512 B.⎝⎛⎦⎤13,34 C.⎝⎛⎦⎤512,34D.⎝⎛⎭⎫512,+∞1.经过两点A (2,1),B (1,m 2)的直线l 的倾斜角为锐角,则实数m 的取值范围是( ) A .m <1 B .m >-1 C .-1<m <1D .m >1或m <-12.以点(-3,4)为圆心,且与x 轴相切的圆的方程是( ) A .(x -3)2+(y +4)2=16 B .(x +3)2+(y -4)2=16 C .(x -3)2+(y +4)2=9 D .(x +3)2+(y -4)2=93.直线l :x -y +1=0关于y 轴对称的直线方程为( ) A .x +y -1=0 B .x -y +1=0 C .x +y +1=0D .x -y -1=04.若直线mx -(m +2)y +2=0与3x -my -1=0互相垂直,则点(m,1)到y 轴的距离为________. 5.已知直线x -my +3=0和圆x 2+y 2-6x +5=0. (1)当直线与圆相切时,求实数m 的值;(2)当直线与圆相交,且所得弦长为2105时,求实数m 的值.1.求直线的方程时需要充分利用平面几何知识,主要求解方法有数形结合法、待定系数法、轨迹法等.在求解时,一定要注意直线方程的各种形式的局限性.平行与垂直是平面内两条直线特殊的位置关系.高考一般考查平行或垂直的判断、平行或垂直条件的应用.2.在求解圆的有关问题时,常使用几何法.常使用的圆的几何性质如下:(1)圆的切线的性质:圆心到切线的距离等于半径;切点与圆心的连线垂直于切线;切线在切点处的垂线一定经过圆心;圆心、圆外一点及该点所引切线的切点构成直角三角形的三个顶点等等.(2)直线与圆相交的弦的有关性质:相交弦的中点与圆心的连线垂直于弦所在直线;弦的垂直平分线(中垂线)一定经过圆心;弦心距、半径、弦长的一半构成直角三角形的三边,满足勾股定理.(3)与直径有关的几何性质:直径是圆最长的弦;圆的对称轴一定经过圆心;直径所对的圆周角是直角.答案精析知识梳理 2.(1)tan α (2)y 2-y 1x 2-x 13.(1)y -y 0=k (x -x 0) (2)y =kx +b (3)y -y 1y 2-y 1=x -x 1x 2-x 1 (4)x a +y b =1 (5)Ax +By +C =0 7.(1)(x -a )2+(y -b )2=r 2(2)x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0) 8.(1)d >r (2)d =r (3)d <r10.(x 2-x 1)2+(y 2-y 1)2+(z 2-z 1)2 题型探究例1 解 (1)∵l 1⊥l 2, ∴a (a -1)-b =0.① 又l 1过点(-3,-1), ∴-3a +b +4=0.②由①②,得⎩⎪⎨⎪⎧a =2,b =2.(2)∵l 2的斜率存在,l 1∥l 2, ∴直线l 1的斜率也存在, ∴k 1=k 2,即ab=1-a .③∵坐标原点到这两条直线的距离相等,且l 1∥l 2, ∴l 1,l 2在y 轴上的截距互为相反数, 即4b=-(-b ).④③④联立,解得⎩⎪⎨⎪⎧a =2,b =-2或⎩⎪⎨⎪⎧ a =23,b =2.经检验此时的l 1与l 2不重合,故所求值为⎩⎪⎨⎪⎧a =2,b =-2 或⎩⎪⎨⎪⎧a =23,b =2.跟踪训练1 解 (1)若l 1∥l 2,则⎩⎪⎨⎪⎧a (a -1)-2×1=0,a (a 2-1)-6×1≠0. ∴a =-1,∴当a =-1时,l 1∥l 2.(2)当直线l 2的斜率不存在时,a =1. 则l 2:x =0,l 1:x +2y +6=0. 显然l 1与l 2不垂直, 当直线l 2斜率存在时,a ≠1. 则k 2=11-a ,k 1=-a 2.∵l 1⊥l 2,∴k 1·k 2=11-a ·⎝⎛⎭⎫-a 2=-1.∴a =23.例2 解 (1)当两条直线的斜率不存在时,两条直线的方程分别为x =-1,x =0,它们在x 轴上截距之差的绝对值为1,符合题意;(2)当直线的斜率存在时,设其斜率为k ,则两条直线的方程分别为y =k (x +1), y -2=kx .令y =0,得x =-1,x =-2k .由题意,得|-1+2k|=1,即k =1.∴两条直线的方程分别为y =x +1,y =x +2, 即为x -y +1=0,x -y +2=0. 综上可知,所求的直线方程为x =-1,x =0或x -y +1=0,x -y +2=0. 跟踪训练2 解 l 1的斜率 k 1=3a -01-(-2)=a ,当a ≠0时,l 2的斜率 k 2=-2a -(-1)a -0=1-2a a .∵l 1⊥l 2,∴k 1·k 2=-1, 即a ·1-2aa=-1,得a =1.当a =0时,P (0,-1),Q (0,0),这时直线l 2为y 轴, A (-2,0)、B (1,0),这时直线l 1为x 轴,显然l 1⊥l 2. 综上可知, 实数a 的值为1或0.例3 解 设圆的方程为(x -a )2+(y -b )2=r 2(r >0). ∵圆心在直线2x +y =0上, ∴b =-2a ,即圆心为C (a ,-2a ).又圆与直线x -y -1=0相切,且过点(2,-1), ∴|a +2a -1|2=r , (2-a )2+(-1+2a )2=r 2,即(3a -1)2=2[(2-a )2+(-1+2a )2], 解得a =1或a =9,∴⎩⎪⎨⎪⎧a =1,b =-2,r =2或⎩⎪⎨⎪⎧a =9,b =-18,r =13 2.综上所述,所求圆的方程为(x -1)2+(y +2)2=2 或(x -9)2+(y +18)2=338.跟踪训练3 解 (1)方法一 由B (2,0),C (0,-4)知,BC 的中点D 的坐标为(1,-2). 又A (-3,0),所以直线AD 的方程为y -0-2-0=x +31+3,即中线AD 所在直线的一般式方程为x +2y +3=0.方法二 由题意,得|AB |=|AC |=5,则△ABC 是等腰三角形,所以AD ⊥BC .因为直线BC 的斜率k BC =2,所以直线AD 的斜率k AD =-12, 由直线的点斜式方程,得y -0=-12(x +3), 所以直线AD 的一般式方程为x +2y +3=0.(2)设圆M 的方程为x 2+y 2+Dx +Ey +F =0.将A (-3,0),B (2,0),C (0,-4)三点的坐标分别代入圆的方程,得⎩⎪⎨⎪⎧ 9-3D +F =0,4+2D +F =0,16-4E +F =0,解得⎩⎪⎨⎪⎧ D =1,E =52,F =-6.所以圆M 的方程是x 2+y 2+x +52y -6=0. 例4 解 (1)由题意知,圆心C (1,2),半径为r =2,①当直线的斜率不存在时,方程为x =3.由圆心C (1,2)到直线x =3的距离d =3-1=2=r 知,此时,直线与圆相切;②当直线的斜率存在时,设方程为y -1=k (x -3),即kx -y +1-3k =0. 由题意知,|k -2+1-3k |k 2+1=2,解得k =34. ∴直线方程为y -1=34(x -3), 即3x -4y -5=0.故过点M 的圆的切线方程为x =3或3x -4y -5=0.(2)由题意有|a -2+4|a 2+1=2,解得a =0或a =43. (3)∵圆心到直线ax -y +4=0的距离为|a +2|a 2+1, ∴⎝ ⎛⎭⎪⎫|a +2|a 2+12+⎝⎛⎭⎫2322=4,解得a =-34. 跟踪训练4 (x -2)2+(y -2)2=2解析 曲线可化为(x -6)2+(y -6)2=18,其圆心到直线x +y -2=0的距离为d =|6+6-2|2=52, 根据图示可知,所求的最小圆的圆心在直线y =x 上,其到直线x +y -2=0的距离为2,所以圆心坐标为(2,2).故圆的标准方程为(x -2)2+(y -2)2=2.例5 解 (1)式子(x -2)2+y 2的几何意义是圆上的点与定点(2,0)之间的距离.因为圆心(0,1)与定点(2,0)的距离是22+(-1)2=5,圆的半径是1,所以(x -2)2+y 2的最小值是5-1.(2)式子y +2x +1的几何意义是点P (x ,y )与定点(-1,-2)连线的斜率.如图,当切线为l 1时,斜率最小.设y +2x +1=k , 即kx -y +k -2=0,由直线与圆相切, 得|-1+k -2|k 2+1=1, 解得k =43. 故y +2x +1的最小值是43. 跟踪训练5 C [曲线y =1+4-x 2是以(0,1)为圆心,2为半径的半圆(如图),直线y =k (x -2)+4是过定点(2,4)的直线.设切线PC 的斜率为k 0,则切线PC 的方程为y =k 0(x -2)+4,圆心(0,1)到直线PC 的距离等于半径2,即|-1+4-2k 0|1+k 20=2,得k 0=512. 又直线P A 的斜率为k 1=34, 所以实数k 的取值范围是512<k ≤34.] 当堂训练1.C 2.B 3.A4.0或5解析 由题意,得3m +m (m +2)=0,解得m =0或m =-5,∴点(m,1)到y 轴的距离为0或5.5.解 (1)因为圆x 2+y 2-6x +5=0可化为(x -3)2+y 2=4,所以圆心坐标为(3,0). 又直线x -my +3=0与圆相切,所以|3+3|1+m 2=2, 解得m =±2 2.(2)圆心(3,0)到直线x -my +3=0的距离为d =|3+3|1+m 2. 由2 4-(|3+3|1+m 2)2=2105, 得2+2m 2=20m 2-160,即m 2=9.故m =±3.。

2018版高中数学人教B版选修2-2学案:2章末复习课

2018版高中数学人教B版选修2-2学案:2章末复习课
题型四数学归纳法
数学归纳法是一种逻辑推理,它的第一步称为奠基步骤,是论证的基础保证,即通过验证落实传递的起点,这个基础必须真实可靠;它的第二步称为递推步骤,是命题具有后继传递性的保证,两步合在一起为完全归纳步骤,这两步缺一不可,第二步中证明“当n=k+1时结论正确”的过程中,必须用“归纳假设”,否则就是错误的.
∴4≤ +4(1-cosα)成立.
∴不等式2sin2α≤ 成立.
(综合法)
∵ +4(1-cosα)≥4,
(1-cosα>0,当且仅当cosα= ,即α= 时取等号)
∴4cosα≤ .
∵α∈(0,π),∴sinα>0.
∴4sinαcosα≤ .
∴2sin2α≤ .
跟踪训练2求证: -2cos(α+β)= .
(2)解选取3个侧面两两垂直的四面体作为直角三角形的类比对象.
①设3个两两垂直的侧面的面积分别为S1,S2,S3,底面面积为S,则S +S +S =S2.
②设3个两两垂直的侧面与底面所成的角分别为α,β,γ,则cos2α+cos2β+cos2γ=1.
③设3个两两垂直的侧面形成的侧棱长分别为a,b,c,则这个四面体的外接球的半径为R= .
跟踪训练3已知:ac≥2(b+d).
求证:方程x2+ax+b=0与方程x2+cx+d=0中至少有一个方程有实数根.
证明假设两方程都没有实数根,
则Δ1=a2-4b<0与Δ2=c2-4d<0,有a2+c2<4(b+d),而a2+c2≥2ac,从而有4(b+d)>2ac,即ac<2(b+d),与已知矛盾,故原命题成立.
证明∵sin(2α+β)-2cos(α+β)sinα
=sin[(α+β)+α]-2cos(α+β)sinα

2018版高中数学人教B版必修二学案第二单元 章末复习课 Word版含答案

2018版高中数学人教B版必修二学案第二单元 章末复习课 Word版含答案

学习目标.熟练掌握直线方程的四种形式,并会判断两直线的位置关系.会运用两点间距离、点到直线的距离及两平行线间的距离公式解决一些实际问题.理解圆的标准方程和一般方程,熟练掌握直线与圆的位置关系的相关应用.
.直线倾斜角的范围
直线倾斜角的范围是°≤α<°.
.写出直线的斜率公式
()直线的倾斜角α满足≠°,则直线斜率=.
()(,),(,)是直线上两点,且≠,则直线的斜率为=.
.直线方程的几种形式
()点斜式:.
()斜截式:.
()两点式:(≠,≠).
()截距式:(≠,≠).
()一般式:.
.两直线平行与垂直的条件
直线方程
:=+,
:=+ :++=,
:++=
平行的等价
条件∥⇔=且≠
∥⇔
垂直的等价
条件⊥⇔=-
⊥⇔+=
由两直线的方程判断两条直线是否平行或垂直时,要注意条件的限制;同时已知平行或垂直关系求直线的方程或确定方程的系数关系时,要根据题目条件设出合理的直线方程.
.距离问题
类型已知条件公式
两点间的距离(,),(,)=
点到直线的距离
(,)
:++=

两条平行直线间的距离
:++=,
:++=
(,不同时为)

.平行直线系和垂直直线系
()与直线++=平行的直线方程为++=(≠).()与直线++=垂直的直线方程为++=.
.圆的方程
()圆的标准方程:.
()圆的一般方程:.
.直线与圆的位置关系
设直线与圆的圆心之间的距离为,圆的半径为,则。

《学案导学设计》 高中数学 人教B版必修2第二章 2.2.3(一)

《学案导学设计》 高中数学 人教B版必修2第二章 2.2.3(一)

关 直线 PQ 的方程为 y-1=0.5(x+3),即 y=0.5x+2.5,
因为 k1=k2=0.5,且 2≠2.5,所以直线 BA∥PQ.
研一研·问题探究、课堂更高效
2.2.3(一)
例 2 求通过下列各点且与已知直线平行的直线方程:
(1)(-1,2),y=12x+1;(2)(1,-4),2x+3y+5=0.
k1≠k2 ;l1 与 l2 平行的条件是:k1=k2 且 b1≠b2 ;l1 与 l2
重合的条件是: k1=k2 且 b1=b2 .
研一研·问题探究、课堂更高效
2.2.3(一)
[问题情境]
本 已知两条直线的方程 l1:A1x+B1y+C1=0,l2:A2x+B2y
课 时
+C2=0,则这两条直线相交、平行、重合的条件是怎样的?

时 栏
A1B2-A2B1=0,而B1C2-C1B2≠0
目 开 关
l1

l2
平行⇔或A2C1-A1C2≠0; 或AA21=BB12≠CC12 A2B2C2≠0.
A1=λA2,B1=λB2,C1=λC2λ≠0; l1 与 l2 重合⇔或AA12=BB12=CC12 A2B2C2≠0.
研一研·问题探究、课堂更高效
2.2.3(一)
跟踪训练 1 已知 A(2, 3),B(-4, 0),P(-3, 1),Q(-1, 2),
试判断直线 BA 与 PQ 的位置关系,并证明你的结论.
解 直线 BA 的斜率 k1=2-3--04=0.5,

课 直线 BA 的方程为 y=0.5(x+4)=0.5x+2.
时 栏 目 开
直线 PQ 的斜率 k2=-12--1-3=0.5,
新问题的能力, 以及数形结合能力.

【K12教育学习资料】2018-2019学年高中数学人教B版必修二学案:2.2.2 第1课时 直线的

【K12教育学习资料】2018-2019学年高中数学人教B版必修二学案:2.2.2 第1课时 直线的

2.2.2 直线方程的几种形式 第1课时 直线的点斜式方程[学习目标] 1.掌握直线的点斜式方程和直线的斜截式方程.2.结合具体实例理解直线的方程和方程的直线概念及直线在y 轴上的截距的含义.[预习导引]1.直线方程的几种形式如果直线l 的斜率为k ,且与y 轴的交点为(0,b ),代入直线点斜式方程化简得y =kx +b ,则称b 为直线l 在y 轴上的截距.要点一 直线的点斜式方程例1 求满足下列条件的直线的点斜式方程. (1)过点P (-4,3),斜率k =-3; (2)过点P (3,-4),且与x 轴平行; (3)过P (-2,3),Q (5,-4)两点.解 (1)∵直线过点P (-4,3),斜率k =-3,由直线方程的点斜式得直线方程为y -3=-3(x +4),(2)与x 轴平行的直线,其斜率k =0,由直线方程的点斜式可得直线方程为y -(-4)=0×(x -3), 即y +4=0.(3)过点P(-2,3),Q(5,-4)的直线的斜率k PQ=-4-35-(-2)=-77=-1.又∵直线过点P(-2,3),∴直线的点斜式方程为y-3=-(x+2).规律方法(1)求直线的点斜式方程的步骤:定点(x0,y0)→定斜率k→写出方程y-y0=k(x-x0).(2)点斜式方程y-y0=k·(x-x0)可表示过点P(x0,y0)的所有直线,但x=x0除外.跟踪演练1过点(-1,2),且倾斜角为135°的直线方程为________.答案x+y-1=0解析k=tan 135°=-1,由直线的点斜式方程得y-2=-(x+1),即x+y-1=0.要点二直线的斜截式方程例2根据条件写出下列直线的斜截式方程.(1)斜率为2,在y轴上的截距是5;(2)倾斜角为150°,在y轴上的截距是-2;(3)倾斜角为60°,与y轴的交点到坐标原点的距离为3.解(1)由直线方程的斜截式方程可知,所求直线方程为y=2x+5.(2)∵倾斜角α=150°,∴斜率k=tan 150°=-3 3.由斜截式可得方程为y=-33x-2.(3)∵直线的倾斜角为60°,∴其斜率k=tan 60°=3,∵直线与y轴的交点到原点的距离为3,∴直线在y轴上的截距b=3或b=-3.∴所求直线方程为y=3x+3或y=3x-3.规律方法 1.本题(3)在求解过程中,常因混淆截距与距离的概念,而漏掉解“y=3x-3”.2.截距是直线与x轴(或y轴)交点的横(或纵)坐标,它是个数值,可正、可负、可为零.跟踪演练2写出下列直线的斜截式方程:(1)斜率是3,在y轴上的截距是-3;(2)倾斜角是60°,在y轴上的截距是5;(3)倾斜角是30°,在y轴上的截距是0.解(1)由直线方程的斜截式可得,所求直线方程为y=3x-3.(2)由题意可知,直线的斜率k =tan 60°=3,所求直线的方程为y =3x +5. (3)由题意可知所求直线的斜率k =tan 30°=33, 由直线方程的斜截式可知,直线方程为y =33x . 要点三 直线过定点问题例3 求证:不论m 为何值,直线l :y =(m -1)x +2m +1总过第二象限. 证明 方法一 直线l 的方程可化为 y -3=(m -1)(x +2), ∴直线l 过定点(-2,3),由于点(-2,3)在第二象限,故直线l 总过第二象限. 方法二 直线l 的方程可化为 m (x +2)-(x +y -1)=0.令⎩⎪⎨⎪⎧ x +2=0,x +y -1=0,解得⎩⎪⎨⎪⎧x =-2,y =3. ∴无论m 取何值,直线l 总经过点(-2,3). ∵点(-2,3)在第二象限,∴直线l 总过第二象限.规律方法 本例两种证法是证明直线过定点的基本方法,方法一体现了点斜式的应用,方法二体现代数方法处理恒成立问题的基本思想.跟踪演练3 已知直线y =(3-2k )x -6不经过第一象限,求k 的取值范围.解 由题意知,需满足它在y 轴上的截距不大于零,且斜率不大于零,则⎩⎪⎨⎪⎧-6≤0,3-2k ≤0,得k≥32. 所以,k 的取值范围是⎩⎨⎧⎭⎬⎫k ⎪⎪k ≥32.1.已知直线的方程是y +2=-x -1,则( ) A.直线经过点(-1,2),斜率为-1 B.直线经过点(2,-1),斜率为-1 C.直线经过点(-1,-2),斜率为-1 D.直线经过点(-2,-1),斜率为1 答案 C解析 方程变形为y +2=-(x +1),∴直线过点(-1,-2),斜率为-1.2.直线y-2=-3(x+1)的倾斜角及在y轴上的截距分别为()A.60°,2B.120°,2- 3C.60°,2- 3D.120°,2答案 B解析该直线的斜率为-3,当x=0时,y=2-3,∴其倾斜角为120°,在y轴上的截距为2- 3.3.直线y=kx+b通过第一、三、四象限,则有()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0答案 B解析∵直线经过一、三、四象限,∴图形如图所示,由图知,k>0,b<0.4.斜率为4,经过点(2,-3)的直线方程是________.答案y=4x-115.已知直线l的倾斜角是直线y=x+1的倾斜角的2倍,且过定点P(3,3),则直线l的方程为________.答案x=3解析直线y=x+1的斜率为1,所以倾斜角为45°,又所求直线的倾斜角是已知直线倾斜角的2倍,所以所求直线的倾斜角为90°,其斜率不存在.又直线过定点P(3,3),所以直线l的方程为x=3.1.建立点斜式方程的依据是:直线上任一点与这条直线上一个定点的连线的斜率相同,故有y-y1=k,此式是不含点P1(x1,y1)的两条反向射线的方程,必须化为y-y1=k(x-x1)才是整x-x1条直线的方程.当直线的斜率不存在时,不能用点斜式表示,此时方程为x=x1.2.斜截式方程可看作点斜式的特殊情况,表示过(0,b)点、斜率为k的直线y-b=k(x-0),即y=kx+b,其特征是方程等号的一端只是一个y,其系数是1;等号的另一端是x的一次式,而不一定是x的一次函数.如y=c是直线的斜截式方程,而2y=3x+4不是直线的斜截式方程.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.2.2 直线方程的几种形式 第1课时 直线的点斜式方程
[学习目标] 1.掌握直线的点斜式方程和直线的斜截式方程.2.结合具体实例理解直线的方程和方程的直线概念及直线在y 轴上的截距的含义
.
[预习导引]
1.直线方程的几种形式
如果直线l 的斜率为k ,且与y 轴的交点为(0,b ),代入直线点斜式方程化简得y =kx +b ,则称b 为直线l 在y 轴上的截距.
要点一 直线的点斜式方程
例1 求满足下列条件的直线的点斜式方程. (1)过点P (-4,3),斜率k =-3; (2)过点P (3,-4),且与x 轴平行; (3)过P (-2,3),Q (5,-4)两点.
解 (1)∵直线过点P (-4,3),斜率k =-3,
由直线方程的点斜式得直线方程为y -3=-3(x +4),
(2)与x 轴平行的直线,其斜率k =0,由直线方程的点斜式可得直线方程为y -(-4)=0×(x -3),
即y+4=0.
(3)过点P(-2,3),Q(5,-4)的直线的斜率k PQ=-4-3
5-(-2)

-7
7
=-1.
又∵直线过点P(-2,3),
∴直线的点斜式方程为
y-3=-(x+2).
规律方法(1)求直线的点斜式方程的步骤:定点(x0,y0)→定斜率k→写出方程y-y0=k(x-x0).
(2)点斜式方程y-y0=k·(x-x0)可表示过点P(x0,y0)的所有直线,但x=x0除外.
跟踪演练1过点(-1,2),且倾斜角为135°的直线方程为________.
答案x+y-1=0
解析k=tan 135°=-1,
由直线的点斜式方程得
y-2=-(x+1),即x+y-1=0.
要点二直线的斜截式方程
例2根据条件写出下列直线的斜截式方程.
(1)斜率为2,在y轴上的截距是5;
(2)倾斜角为150°,在y轴上的截距是-2;
(3)倾斜角为60°,与y轴的交点到坐标原点的距离为3.
解(1)由直线方程的斜截式方程可知,所求直线方程为y=2x+5.
(2)∵倾斜角α=150°,∴斜率k=tan 150°=-
3 3.
由斜截式可得方程为y=-3
3x-2.
(3)∵直线的倾斜角为60°,
∴其斜率k=tan 60°=3,
∵直线与y轴的交点到原点的距离为3,
∴直线在y轴上的截距b=3或b=-3.
∴所求直线方程为y=3x+3或y=3x-3.
规律方法 1.本题(3)在求解过程中,常因混淆截距与距离的概念,而漏掉解“y =3x -3”. 2.截距是直线与x 轴(或y 轴)交点的横(或纵)坐标,它是个数值,可正、可负、可为零. 跟踪演练2 写出下列直线的斜截式方程: (1)斜率是3,在y 轴上的截距是-3; (2)倾斜角是60°,在y 轴上的截距是5; (3)倾斜角是30°,在y 轴上的截距是0.
解 (1)由直线方程的斜截式可得,所求直线方程为y =3x -3.
(2)由题意可知,直线的斜率k =tan 60°=3,所求直线的方程为y =3x +5. (3)由题意可知所求直线的斜率k =tan 30°=3
3, 由直线方程的斜截式可知,直线方程为y =33
x . 要点三 直线过定点问题
例3 求证:不论m 为何值,直线l :y =(m -1)x +2m +1总过第二象限. 证明 方法一 直线l 的方程可化为 y -3=(m -1)(x +2), ∴直线l 过定点(-2,3),
由于点(-2,3)在第二象限,故直线l 总过第二象限. 方法二 直线l 的方程可化为 m (x +2)-(x +y -1)=0.
令⎩⎪⎨⎪⎧ x +2=0,x +y -1=0,解得⎩⎪⎨⎪⎧
x =-2,y =3.
∴无论m 取何值,直线l 总经过点(-2,3). ∵点(-2,3)在第二象限,∴直线l 总过第二象限.
规律方法 本例两种证法是证明直线过定点的基本方法,方法一体现了点斜式的应用,方法二体现代数方法处理恒成立问题的基本思想.
跟踪演练3 已知直线y =(3-2k )x -6不经过第一象限,求k 的取值范围.
解 由题意知,需满足它在y 轴上的截距不大于零,且斜率不大于零,则⎩⎪⎨⎪⎧
-6≤0,3-2k ≤0,

k ≥32
. 所以,k 的取值范围是⎩
⎨⎧⎭
⎬⎫
k ⎪⎪
k ≥32
.
1.已知直线的方程是y +2=-x -1,则( ) A.直线经过点(-1,2),斜率为-1 B.直线经过点(2,-1),斜率为-1 C.直线经过点(-1,-2),斜率为-1 D.直线经过点(-2,-1),斜率为1 答案 C
解析 方程变形为y +2=-(x +1), ∴直线过点(-1,-2),斜率为-1.
2.直线y -2=-3(x +1)的倾斜角及在y 轴上的截距分别为( ) A.60°,2 B.120°,2- 3 C.60°,2- 3 D.120°,2
答案 B
解析 该直线的斜率为-3,当x =0时,y =2-3, ∴其倾斜角为120°,在y 轴上的截距为2- 3. 3.直线y =kx +b 通过第一、三、四象限,则有( ) A.k >0,b >0 B.k >0,b <0 C.k <0,b >0 D.k <0,b <0 答案 B
解析 ∵直线经过一、三、四象限, ∴图形如图所示,由图知,k >0,b <0.
4.斜率为4,经过点(2,-3)的直线方程是________. 答案 y =4x -11
5.已知直线l 的倾斜角是直线y =x +1的倾斜角的2倍,且过定点P (3,3),则直线l 的方程为
________.
答案x=3
解析直线y=x+1的斜率为1,所以倾斜角为45°,又所求直线的倾斜角是已知直线倾斜角的2倍,所以所求直线的倾斜角为90°,其斜率不存在.又直线过定点P(3,3),所以直线l 的方程为x=3.
1.建立点斜式方程的依据是:直线上任一点与这条直线上一个定点的连线的斜率相同,故有
y-y1
=k,此式是不含点P1(x1,y1)的两条反向射线的方程,必须化为y-y1=k(x-x1)才是整x-x1
条直线的方程.当直线的斜率不存在时,不能用点斜式表示,此时方程为x=x1.
2.斜截式方程可看作点斜式的特殊情况,表示过(0,b)点、斜率为k的直线y-b=k(x-0),即y=kx+b,其特征是方程等号的一端只是一个y,其系数是1;等号的另一端是x的一次式,而不一定是x的一次函数.如y=c是直线的斜截式方程,而2y=3x+4不是直线的斜截式方程.。

相关文档
最新文档