一次函数的应用经典课件ppt
合集下载
一次函数的应用PPT课件
例2 教材补充例题 如图,直线l是一次函数y=kx+b的图象,请根据图象 求出这个函数的表达式.
【解析】由图象可知,函数y=kx+b的图象经过 点(0,1)和点(3,-3).
解:由图象可知,直线 y=kx+b 过点(0,1), 所以 b=1,所以一次函数的表达式为 y=kx+1. 又因为此函数图象过点(3,-3), 所以-3=3k+1,解得 k=-43. 故这个函数的表达式为 y=-4x+1.
点(a,0)
函数值为 0 时,相应的自变量的值为 a;函数图象与 x 轴的交点
点(x1,y1)和点(x2,y2)
自变量每增加 1,函数值的改变量为y2-y1 x2-x1
点(x1,y1)和点(x2,y2) (x1≤x≤x2)
若 k>0,当 x=x1 时,y 最小值=kx1+b;当 x=x2 时,y 最大值=kx2+b 若 k<0,当 x=x1 时,y 最大值=kx1+b;当 x=x2 时,y 最小值=kx2+b
解:(1)根据题意,得s=400-80t(0≤t≤5). (2)如图所示: (3)当t=3时,s=400-80×3=160. 因此Байду номын сангаас3小时后,小明一家距重庆160千米.
总结反思
小结
知识点一 正比例函数表达式的确定 由于正比例函数y=kx中只有一个不确定的系数k,故只要
一个条件(原点除外,如一对x,y的值或一个点的坐标)就可求得 k的值.
3
【归纳总结】 确定一次函数表达式的“五步法”: (1)设一次函数表达式为y=kx+b; (2)根据已知条件列出有关k,b的方程; (3)解方程,求k,b的值; (4)把k,b的值代回所设表达式; (5)写出表达式.
目标二 能借助表达式解决一些简单问题
一次函数图象的应用课件
一次函数图象的应 用ppt课件
目 录
• 一次函数图象的概述 • 一次函数图象在实际生活中的应用 • 一次函数图象与其他数学知识的结合应用 • 一次函数图象的应用实例分析 • 总结与展望
01
一次函数图象的概述
一次函数图象的定义
01
02
03
一次函数图象
一次函数y=kx+b(k≠0 )的图象是一条直线。
教学方法单一
部分教师在教授一次函数图象时 ,过于注重理论教学,缺乏实际 应用的结合,导致学生难以理解
其实际意义和应用价值。
技术应用不足
现代技术如几何画板、数学软件等 在课堂上的应用不足,限制了学生 对于函数图象动态变化的理解。
学生实践机会少
由于应试教育的影响,学生往往缺 乏实际操作和实践的机会,导致对 一次函数图象的理解停留在理论层 面。
对未来应用的展望与期待
加强技术与教学的结合
期待未来能更多地利用现代技术,使一次函数图象的教学更加生 动、形象,提高学生的学习兴趣和参与度。
注重实际应用与问题解决
希望教师在教学中能更多地引入实际问题,让学生在实际操作中理 解和掌握一次函数图象的应用。
培养学生的创新思维
期待未来的一次函数图象教学能够更加注重培养学生的创新思维和 解决问题的能力,而不仅仅是知识的灌输。
们的位置。
ቤተ መጻሕፍቲ ባይዱ
连线
用直线将这些点连接起 来,形成一次函数的图
象。
验证
根据题目要求或实际应 用需要,验证所绘制的 图象是否符合实际情况
。
02
一次函数图象在实际生活 中的应用
一次函数图象在物理中的应用
总结词
物理现象的数学描述
详细描述
目 录
• 一次函数图象的概述 • 一次函数图象在实际生活中的应用 • 一次函数图象与其他数学知识的结合应用 • 一次函数图象的应用实例分析 • 总结与展望
01
一次函数图象的概述
一次函数图象的定义
01
02
03
一次函数图象
一次函数y=kx+b(k≠0 )的图象是一条直线。
教学方法单一
部分教师在教授一次函数图象时 ,过于注重理论教学,缺乏实际 应用的结合,导致学生难以理解
其实际意义和应用价值。
技术应用不足
现代技术如几何画板、数学软件等 在课堂上的应用不足,限制了学生 对于函数图象动态变化的理解。
学生实践机会少
由于应试教育的影响,学生往往缺 乏实际操作和实践的机会,导致对 一次函数图象的理解停留在理论层 面。
对未来应用的展望与期待
加强技术与教学的结合
期待未来能更多地利用现代技术,使一次函数图象的教学更加生 动、形象,提高学生的学习兴趣和参与度。
注重实际应用与问题解决
希望教师在教学中能更多地引入实际问题,让学生在实际操作中理 解和掌握一次函数图象的应用。
培养学生的创新思维
期待未来的一次函数图象教学能够更加注重培养学生的创新思维和 解决问题的能力,而不仅仅是知识的灌输。
们的位置。
ቤተ መጻሕፍቲ ባይዱ
连线
用直线将这些点连接起 来,形成一次函数的图
象。
验证
根据题目要求或实际应 用需要,验证所绘制的 图象是否符合实际情况
。
02
一次函数图象在实际生活 中的应用
一次函数图象在物理中的应用
总结词
物理现象的数学描述
详细描述
一次函数的应用课件(共31张PPT)
(0,b)
直线
未知数
方程或方程组
3.一次函数的图象与性质.
图象:一次函数y=kx+b(k≠0)的图象是一条 ,通常叫做直线y=kx+b.
性质:对于一次函数y=kx+b,当 时,y随x的 而 ;当 时,y随x的 而 .
(1)完成下面的表格
(2)你能探索L与n之间的函数解析式吗?这个函数是一次函数吗?试写出L与n的函数解析式。
(3)求n=20时L的值。
14
17
20
北京某厂和上海某厂同时制成电子计算机若干台,北京厂可支援外地10台,上海厂可支援外地4台,现在决定给重庆8台,汉口6台。假定每台计算机的运费如下表,求
华氏温度y看作x的函数,建立直角坐标系,把表中每一对(x,y)的值作为点的坐标,在直角坐标系中描出表中相应的点,观察这些点是否同在一条直线上.
(2)你能利用(1)中的图象,写出y与x的函数表达式吗?
(3)除了小亮所说的方法外,你能通过分析上表中两个变量间的数量关系,判断它们之间是一次函数关系吗?
(4)你能求出华氏温度为0度(即0˚F )时,摄氏温度是多少度?
10.6 一次函数的应用
1.一次函数图象的画法.
通常过 , 两点画一条 ,就是函数y=kx+b(k≠0)的图象.
2.待定系数法.
先设出表达式中的 ,再根据所给条件,利用 确定这些未知数.这种方法叫待定法.
在例1 的解决过程中,是从现实生活中抽象出数学问题,用数学符号建立函数表达式,表示数学问题中变量之间的数量关系和变化规律.因此函数也是一种重要的数学模型.
梯形个数n
1
2
3
4
5
6
…
所拼得四边形的周长L
直线
未知数
方程或方程组
3.一次函数的图象与性质.
图象:一次函数y=kx+b(k≠0)的图象是一条 ,通常叫做直线y=kx+b.
性质:对于一次函数y=kx+b,当 时,y随x的 而 ;当 时,y随x的 而 .
(1)完成下面的表格
(2)你能探索L与n之间的函数解析式吗?这个函数是一次函数吗?试写出L与n的函数解析式。
(3)求n=20时L的值。
14
17
20
北京某厂和上海某厂同时制成电子计算机若干台,北京厂可支援外地10台,上海厂可支援外地4台,现在决定给重庆8台,汉口6台。假定每台计算机的运费如下表,求
华氏温度y看作x的函数,建立直角坐标系,把表中每一对(x,y)的值作为点的坐标,在直角坐标系中描出表中相应的点,观察这些点是否同在一条直线上.
(2)你能利用(1)中的图象,写出y与x的函数表达式吗?
(3)除了小亮所说的方法外,你能通过分析上表中两个变量间的数量关系,判断它们之间是一次函数关系吗?
(4)你能求出华氏温度为0度(即0˚F )时,摄氏温度是多少度?
10.6 一次函数的应用
1.一次函数图象的画法.
通常过 , 两点画一条 ,就是函数y=kx+b(k≠0)的图象.
2.待定系数法.
先设出表达式中的 ,再根据所给条件,利用 确定这些未知数.这种方法叫待定法.
在例1 的解决过程中,是从现实生活中抽象出数学问题,用数学符号建立函数表达式,表示数学问题中变量之间的数量关系和变化规律.因此函数也是一种重要的数学模型.
梯形个数n
1
2
3
4
5
6
…
所拼得四边形的周长L
一次函数的应用ppt
解题思路
02
确定一次函数的表达式
03
04
代入已知条件求解
验证答案是否符合实际情况
经典的一次函数应用题解析
1 2 3
题型一
速度与时间问题
题目
一辆汽车以60千米/小时的速度匀速行驶,行驶 了3小时后,离目的地还有100千米,求目的地 与起始点的距离。
解析
设目的地与起始点的距离为 d 千米,根据速度、 时间和距离的关系,有 d = 60 × 3 + 100。
02
一次函数是线性函数的一种,其 图像是一条直线。
一次函数的性质
当 $a > 0$ 时,函数为增函数,即当 $x$ 增大时,$y$ 也随之增大;当 $a < 0$ 时,函数为减函数,即当 $x$ 增大时,$y$ 随之减小。
斜率 $k = a$,表示函数图像的倾斜程度。当 $k > 0$ 时,图像向右上方倾斜;当 $k < 0$ 时,图像向右下方倾斜。
VS
一次函数与预测模型
利用一次函数建立预测模型,可以预测未 来趋势或结果。例如,通过历史销售数据 建立一次函数模型,可以预测未来的销售 趋势。
04 一次函数的应用题解析
一次函数的应用题类型及解题思路
类型一:速度与时间问题 类型二:利润与销售量问题
类型三:几何问题
一次函数的应用题类型及解题思路
01
一次函数的应用
contents
目录
• 一次函数的定义和性质 • 一次函数在实际生活中的应用 • 一次函数与其他数学知识的综合应用 • 一次函数的应用题解析 • 一次函数的应用前景展望
01 一次函数的定义和性质
一次函数的定义
01
一次函数的一般形式为 $y = ax + b$,其中 $a$ 和 $b$ 是常数,且 $a neq 0$。
02
确定一次函数的表达式
03
04
代入已知条件求解
验证答案是否符合实际情况
经典的一次函数应用题解析
1 2 3
题型一
速度与时间问题
题目
一辆汽车以60千米/小时的速度匀速行驶,行驶 了3小时后,离目的地还有100千米,求目的地 与起始点的距离。
解析
设目的地与起始点的距离为 d 千米,根据速度、 时间和距离的关系,有 d = 60 × 3 + 100。
02
一次函数是线性函数的一种,其 图像是一条直线。
一次函数的性质
当 $a > 0$ 时,函数为增函数,即当 $x$ 增大时,$y$ 也随之增大;当 $a < 0$ 时,函数为减函数,即当 $x$ 增大时,$y$ 随之减小。
斜率 $k = a$,表示函数图像的倾斜程度。当 $k > 0$ 时,图像向右上方倾斜;当 $k < 0$ 时,图像向右下方倾斜。
VS
一次函数与预测模型
利用一次函数建立预测模型,可以预测未 来趋势或结果。例如,通过历史销售数据 建立一次函数模型,可以预测未来的销售 趋势。
04 一次函数的应用题解析
一次函数的应用题类型及解题思路
类型一:速度与时间问题 类型二:利润与销售量问题
类型三:几何问题
一次函数的应用题类型及解题思路
01
一次函数的应用
contents
目录
• 一次函数的定义和性质 • 一次函数在实际生活中的应用 • 一次函数与其他数学知识的综合应用 • 一次函数的应用题解析 • 一次函数的应用前景展望
01 一次函数的定义和性质
一次函数的定义
01
一次函数的一般形式为 $y = ax + b$,其中 $a$ 和 $b$ 是常数,且 $a neq 0$。
《一次函数的应用》PPT课件
销售问题 工程问题 路程问题 积分问题 比较问题 车费问题 增减问题 方案选择 。。。。。。(中考重点)
数学的魅力与奇妙: 题异,理相通,同理可得。 化繁为简,解决实际问题。 应用于生活,服务于生活。
学以致用
练习:如图,李大爷要围成一个矩形菜园ABCD,菜园的 一边利用足够长的墙,用篱笆围成的另外三边总长应恰好 为24米.设BC边的长为x米,AB边的长为y米,则y与x之 间的函数关系式是?
学习目标 1、通过对实际问题分析,体会一次函数是刻画现实世 界数量关系的模型. 2、能用一次函数解决简单的实际问题,感悟数形结合、 转化和建模的数学思想,增强应用意识,提高分析问 题和解决问题的能力.
温故知新---化繁为简
之前学过的应用题主要有列一元一次方程解应用题、列分式方程解应用 题、列一元一次不等式解应用题。应用题基本题型你记得有哪些呢?
出最低费用.
数的性质求出最低费用.
典例剖析
解:(1)设购买甲种树苗x万株, 则乙种树苗y万株,由题意得:
x+y=3 25x+40y=90 解得x=2,y=1 经检验 符合题意 答:购买甲种树苗2万株,乙种 树苗1万株. (2)设甲种树苗购买z万株, 由题意得:
80%z+90%(3-z)≥3×85%, 解得z≤1.5. 答:甲种树苗至多购买1.5万株.
10.6 一次函数的应用
-.
y (元)
为有源头活水来--理论转化实际
2、再看左图,某航空公司规定,
900
旅客所携带行李的质量(kg)与其运
300
(kg)
O
30 50 x
费(元)由左图所示的一次函数图象 确定,如果旅客缴纳的运费在300 元到900之间,那么你能否猜测出
《一次函数的应用》一次函数课件(第1课时)
1 若直线l与直线y=2x-3关于x轴对称,则直线l
的表达式为( B )
A. y=-12x-3
2
C. y= x+3
B. y=-2x+1 3
2
D. y=- x-3
知2-练
2 如图,把直线l向上平移2个单位得到直线l′,则l′ 的表达式为( D )
A. y= 1 x+1
2
B. y= 1x-1 C. y=-2 x-1 D. y=- 12x+1
知1-练
1 已知正比例函数y=kx(k≠0)的图象经过点(1,-2), 则这个正比例函数的表达式为( B )
A. y=2x
B. y=-2x
C. y= 1 x
2
D. y=- 1x
2
知1-练
2 已知正比例函数y=kx(k≠0)的图象如图所示,则 在下列选项中k值可能是( B ) A. 1 B. 2 C. 3 D. 4
知4-讲
知识点 4 由数量关系求一次函数的表达式
例5 为了提高身体素质,有些人选择到专业的健身中心锻炼身体,
某健身中心的消费方式如下: 普通消费: 35元/次;白金卡消费: 购卡280元/张,凭卡免费消费10次再送2次;钻石卡消费: 购 卡560元/张,凭卡每次消费不再收费.以上消费卡使用年限 均为一年,每位顾客只能购买一张卡,且只限本人使用.
与t之间是一次函数关系,可用描点法在直角坐标系内 画出其图象,但要注意t≥0;(2)是要求方程12-6t=0 和12-6t=-9的解,观察(1)中所画的图象即可求出.
知2-讲
解: (知1)依识题点意,得T与t之间的函数关系式为T=12-6t(t≥0),用描
点法画出图象,如图所示.
(2)观察图象发现,方程12-6t=0的解是T=12-6t(t≥0)的图象
一次函数的应用课件
正比例函数 y=kx(k≠0)
确定一次函数 表达式
一次函数 y=kx+b(k≠0)
从一次函数图象可获得哪些信息?
1.由一次函数的图象可确定k 和 b 的符号; 2.由一次函数的图象可估计函数的变化趋势; 3.可直接视察出:x与y 的对应值; 4.由一次函数的图象与y 轴的交点的坐标可确定b值 , 从而确定一次函数的图象的表达式.
3
x.
4
∵OA= 32 42=5,且OA=2OB,
∴OB=
5 2
.
∵点B在y轴的负半轴上,
∴B点的坐标为(0,- 5 ).
2
又∵点B在一次函数y2=k2x+b的图象上,
∴- 5 =b,
代 ∴入 一3次2=函4数k2+的b表中达,式得为k2y=2=18118.1x-
5 2
.
某种拖拉机的油箱可储油40L,加满油并开始工作后, 油箱中的剩余油量y(L)与工作时间x(h) 之间为 一次函数关系,函数图象如图所示. (1)求y关于x的函数表达式;
第四章 ·一次函数
第4节一次函数的应用
前面,我们学习了一次函数及其图象和性质,
你能写出两个具体的一次函数解析式吗?如何画
出它们的图象? y=3x-1
y=-2x+3
两点法——两点确定一条直线
思考: 反过来,已知一个一次函数的图象经过两个 具体的点,你能求出它的解析式吗?
一 确定正比例函数的表达式
引例:某物体沿一个斜坡下滑,它的速度v(m/s)与
方法总结:利用正比例函数的定义确定表达式: 自变量的指数为1,系数不为0.
想一想:确定正比例函数的表达式需要几个条件? 一个
确定一次函数的表达式呢? 两个
二 确定一次函数的表达式
一次函数的应用课件
关系就可以用一次函数表示。
热学
在热学中,描述温度随时间变化 的规律时,一次函数经常被使用 。例如,当物体被加热或冷却时 ,其温度变化率往往是一次函数
。
电学
在电学中,电流、电压和电阻之 间的关系也可以用一次函数来表 示。通过这些关系,可以计算出
电流、电压和电阻的值。
日常生活中的应用
购物
在购物时,一次函数可以用来计算购物后的总花费。例如, 如果一件商品的价格随着购买数量的增加而增加,那么这个 价格和数量之间的关系就可以用一次函数来表示。
二次函数在金融、经济、工程等领域 应用较多,如投资、贷款、工程设计 等。
05 一次函数与不等式的关系
通过图像解不等式
01
函数图像与x轴的关系
当函数值大于0时,函数图像位于x轴上方;当函数值小于0时,函数图
像位于x轴下方。
02
函数图像与y轴的关系
当自变量为0时,函数值即为y轴截距,正数表示函数值大于0,负数表
在物理学中,一次函数可 以用来描述物体的运动规 律,例如速度、加速度和 时间之间的关系。
自然科学中的应用
化学反应速率
化学反应的速率可以用一次函数表示 ,描述反应物浓度和反应速率之间的 关系。
细胞生长
在生物学中,一次函数可以用来描述 细胞生长过程中细胞数量和时间之间 的关系。
1.谢谢聆 听
单调性判断
根据斜率正负和函数图像升降规律判断单调性,当函数图 像向上倾斜时,函数单调递增;当函数图像向下倾斜时, 函数单调递减。
单调性与函数最值关系
单调性决定了函数在区间上的最值,单调递增函数在区间 上取得最小值,单调递减函数在区间上取得最大值。
03 一次函数的应用
解析几何中的应用
热学
在热学中,描述温度随时间变化 的规律时,一次函数经常被使用 。例如,当物体被加热或冷却时 ,其温度变化率往往是一次函数
。
电学
在电学中,电流、电压和电阻之 间的关系也可以用一次函数来表 示。通过这些关系,可以计算出
电流、电压和电阻的值。
日常生活中的应用
购物
在购物时,一次函数可以用来计算购物后的总花费。例如, 如果一件商品的价格随着购买数量的增加而增加,那么这个 价格和数量之间的关系就可以用一次函数来表示。
二次函数在金融、经济、工程等领域 应用较多,如投资、贷款、工程设计 等。
05 一次函数与不等式的关系
通过图像解不等式
01
函数图像与x轴的关系
当函数值大于0时,函数图像位于x轴上方;当函数值小于0时,函数图
像位于x轴下方。
02
函数图像与y轴的关系
当自变量为0时,函数值即为y轴截距,正数表示函数值大于0,负数表
在物理学中,一次函数可 以用来描述物体的运动规 律,例如速度、加速度和 时间之间的关系。
自然科学中的应用
化学反应速率
化学反应的速率可以用一次函数表示 ,描述反应物浓度和反应速率之间的 关系。
细胞生长
在生物学中,一次函数可以用来描述 细胞生长过程中细胞数量和时间之间 的关系。
1.谢谢聆 听
单调性判断
根据斜率正负和函数图像升降规律判断单调性,当函数图 像向上倾斜时,函数单调递增;当函数图像向下倾斜时, 函数单调递减。
单调性与函数最值关系
单调性决定了函数在区间上的最值,单调递增函数在区间 上取得最小值,单调递减函数在区间上取得最大值。
03 一次函数的应用
解析几何中的应用
1313一次函数的应用课件ppt[1](共16张)
No 60个小时,选用哪种方式上网合算。一慢车和一快车沿相同路线从A地到B地,所行的路程与时间的函数图
象如图所示.试根据图象,回答下列问题:。当x>100时,y与x的函数关系式为。y(元)
Image
第16页,共16页。
一个月内每天买进该种晚报的份数 100 150
(时2),设月每利天润从(lìrù报n)y社元当买,试月进利求该润出种(单y与晚位:报x元的x) 份函(数12关0系≤式x ,≤并2求00月) 利润的最大值.
第8页,共16页。
宝应县上网方式有三种(sān 方式一: : zhǒnɡ) 每月80元包干;方式二:每月上网时间 (x)与上网费用(y)的函数关系如图所示; 方式三:以0小时为起点,每小时收费1.6 元,月收费不超过120元。
14000
花去总费用计58000元,求甲、
10000
乙两单位各购买门票多少张.
O
100 150
x(张)
第15页,共16页。
内容(nèiróng)总结
一次函数的应用。⑴ 加油飞机加油油箱中装载了多少吨油。②一个月内(以30天计),有20天每天可以卖出 200份,其余10天每天只能卖出120份。宝应县上网方式有三种:方式一:每月80元包干。(2)小华家每月上网
说明理由.
第7页,共16页。
例 杨嫂在再就业中心的扶持下,创办了”润扬”报 刊零售点,对经营的某种晚报,杨嫂提供了如下信息: ①买进每份0.2元,卖出每份0.3元; ②一个月内(以30 天计),有20天每天可以卖出200份,其余10天每天只能 卖出120份; ③一个月内,每天从报社买进的报纸份数 必须相同,当天卖不掉的报纸,以第份0.1元退回报社. (1)填表:
y〔元〕
1、农民自带的零钱是多少?
象如图所示.试根据图象,回答下列问题:。当x>100时,y与x的函数关系式为。y(元)
Image
第16页,共16页。
一个月内每天买进该种晚报的份数 100 150
(时2),设月每利天润从(lìrù报n)y社元当买,试月进利求该润出种(单y与晚位:报x元的x) 份函(数12关0系≤式x ,≤并2求00月) 利润的最大值.
第8页,共16页。
宝应县上网方式有三种(sān 方式一: : zhǒnɡ) 每月80元包干;方式二:每月上网时间 (x)与上网费用(y)的函数关系如图所示; 方式三:以0小时为起点,每小时收费1.6 元,月收费不超过120元。
14000
花去总费用计58000元,求甲、
10000
乙两单位各购买门票多少张.
O
100 150
x(张)
第15页,共16页。
内容(nèiróng)总结
一次函数的应用。⑴ 加油飞机加油油箱中装载了多少吨油。②一个月内(以30天计),有20天每天可以卖出 200份,其余10天每天只能卖出120份。宝应县上网方式有三种:方式一:每月80元包干。(2)小华家每月上网
说明理由.
第7页,共16页。
例 杨嫂在再就业中心的扶持下,创办了”润扬”报 刊零售点,对经营的某种晚报,杨嫂提供了如下信息: ①买进每份0.2元,卖出每份0.3元; ②一个月内(以30 天计),有20天每天可以卖出200份,其余10天每天只能 卖出120份; ③一个月内,每天从报社买进的报纸份数 必须相同,当天卖不掉的报纸,以第份0.1元退回报社. (1)填表:
y〔元〕
1、农民自带的零钱是多少?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
b符号: y o
K<0,b>0
y x
o
k>0,b<0
x
9、已知一次函数y=(m-1)x+2m+1
(1)若图象经过原点,求m的值;
(2)若图象平行于直线y=2x,求m的值;
(3)若图象交y轴 于正半轴,求m的取值范围;
(4)若图象经过一、二、四象限,求m的取值范 围。
(5)若图象不过第三象限,求m的取值范围。 (6)若随的增大而增大,求m的取值范围。
y2与(x-2)成正比例,又当x=-1时,
13、已知y=y1+y2,其中y1与x成正比例, y=2;当x=2时,y=5.
关系式。
求y与x的函数
例 为了迎接2002年世界杯足球赛的到来,某足球 协会举办了一次足球联赛,其记分规则及奖励方 案如下表: 比赛进行到第12轮(每队均比赛12场)A队积19分 (1)请通过计算,判断A队胜、平、负各几场 (2)若每赛一场,每名参赛队员均得出场费500元, 设A队其中一名参赛队员所得的奖金与出场费的和 为W(元),试求W的最大值
当月利润(单位:元)
(2)设每天从报社买进该种晚报x份(120 ≤x ≤200) 时,月利润y元,试求出y与x的函数关系式, 并求月利润的最大值.
例题分析:
例1、声音在空气中传播的速度y(米/秒)(简称 音速)是气温x(℃)的一次函数,下表列出了 一组不同气温时的音速:
气温x(℃)
音速(米/秒)
0
5
10
15
20
331 334 337 340 343
(1)求y与x之间的函数关系式; (2)气温x=22(℃)时,某人看到烟花燃放5秒 后才听到声音响,那么此人与燃放的烟花所在地约 相距多远?
起点
点
M N
A 60 35
B 100 70
回味练习:
1、函数y=2x图象经过点(0, 0 )与点 (1, 2 ),y随x的增大而 增大 ; 2、函数y=(a-2)x的图象经过第二、 四象限,则a的范围是 a<2 ; 3、函数y=(1-k)x中y随x的增大而减 小,则k的范围是 k>1 .
4、直线y=-3x-6与x轴的交点坐标
(2)就乒乓球盒数讨论去哪家商店购买合算?
例4、某图书馆开展两种方式的租书业务:一种
是使用会员卡,另一种是使用租书卡。使用这 两种卡租书,租书金额y(元)与租书时间x (天)之间的关系如图所示。
(1)分别写出用租书卡和会员卡租书的金额y(元) 与租书时间x(天)之间的函数关系式;
(2)两种租书方式每天租书的收费分别是多少元? (3)若两种租书卡的使用 期限均为一年,则在这一年 中如何选择这两种租书方式 比较合算?
一次函数的应用
基础训练:
1、某地市区打电话的收费标准为:3分钟以内(含3 分钟)收费0.2元,超过分钟,每增加1分钟(不足1分钟, 按1分钟计算)加收0.11元, 求:电话费y(元)与时间t(分) 之间的函数关系式. 2、为了加强公民的节水意识,某市制定了如下的用 水收费标准:每户每月的用水不超过10吨时,水价为 每吨1.2元;超过10吨时,超过的部分按每吨1.8元收费, 该市某户居民5月份用水x吨,应交水费y元,求y与x之 间的函数关系式.
是 (-2,0),与y轴的交点坐标 为 (0,-6) .
5、直线y=3x-1经过 一、三、四 象限
直线y=-2x+5经过 一、二、四 象限
6、直线y=kx+b(k<0,b<0)经过 二、三、四 象限。
7、若直线y=kx+b经过一、二、四象限, 则k < 0,b > 0. 8、直线y=kx+b的图象如图所示,确定k、
A012 34 56
T (小时)
例、某地长途汽车客运公司规定:旅客可 随身携带一定重量的行李,如果超过规定, 则需要购买行李票,行李票费用y(元)是 行李重量x(千克)的一次函数,其图象如 图所示。求(1)y与x之间的函数关系式; (2)旅客最多可免费携带行李的千克数。 y 行李票费用(元)
10
6
O 5 8
x
例3、甲乙两家体育用品商店出售同样的乒乓球 拍和乒乓球,乒乓球拍每付定价20元,乒乓球 每盒5元,现两家商店搞促销活动,甲店:每买 一付球拍赠一盒乒乓球;乙店:按定价的9折优 惠,某班级需要购球拍4付,乒乓球若干盒(不 少于4盒)。 (1)、设购买乒乓球盒数为x(盒),在甲店 购买的付款数为y甲(元),在乙店购买的付款 数为y乙(元),分别写出在两家商店购买的付 款数与乒乓球盒数x之间的函数关系式。
50 20Leabharlann y(元)租书卡 会员卡
o
100
x(天)
例6 预防“非典”期间,某种消毒液A市需 要6吨,B市需要8吨,正好M市储备有10吨, N市储备有4吨,预防“非典”领导小组决定 将这14吨消毒液调往A市和B市,消毒液的运 费价格如下表。设从M市调运x吨到A市。 (1)求调运14吨消毒液的总运费y关于x的 函数关系式; (2)求出总运费最低的调运方案,最低运 费的多少? 终
积 分 奖金(元/人)
胜一场 平一场 负一场 3 1 0 1500 700 0
例、已知A、B两地相距300千米,现有甲、乙两车 同时从A地开往B地,甲车匀速行驶2小时到达AB 中点C地,停留2小时后,再匀速行驶1.5小时到 达B地;乙车以每小时v千米(v≠75)的速度行驶 (1)设s (千米)、t (小时)分别表示甲车离开A地 的路程和时间,试在下列条件下: ①0≤t≤2 ②2<t≤4 ③4<t≤5.5 分别求出s与t的关系式,并在所给的坐标系中画 S (千米) 出它的图象; C B 300 D (2)若甲、乙两车在途中 250 200 恰好相遇两次(不含A、B两 150 地),试确定v的取值范围。 100 50
若点(1,2)及(m,3)都在正比例 函数y=kx的图象上,求m的值。 已知直线y=kx+b经过点(-2,-1) 和点(2,-3),求这条直线的函数 解析式。
某一次函数的图象平行于直线 1 y x ,且过点(4,7),求函数 2 解析式。
例1 去年入夏以来,全国大部分地区发生严重 干旱,某市自来水公司为了鼓励市民节约用水, 采取分段收费标准,若某居民每月应交水费是 用水量的函数,其函数图象如图所示: (1)分别写出x≤5和x>5时,y与x的函数解析式; (2)观察函数图象,利用函数解析式,回答自来水 公司采取的收费标准。 y (3)若某户居民该月用水3.5 6.3 吨,则应交水费多少元? 若该月交水费9元,则用水 3.6 多少吨?
P
X
A
B
例 某单位计划10月份组织员工到外地 旅游,估计人数在6~15人之间。甲、 乙量旅行社的服务质量相同,且对外 报价都是200元,该单位联系时,甲旅 行社表示可给予每位游客八折优惠; 乙旅行社表示,可先免去一位游客的 旅游费用,其余游客九折优惠。
(1)人数在什么范围内,应选甲旅行 分别写出两旅行社所报旅游费用 (2) 若有 11人参加旅游,应选择那个 (3) 与人数的函数关系式; 旅行社? 社;在什么范围内,应选乙旅行社?
例 某空军加油飞机接到命令,立即给另一架正在飞行 的运输飞机进行空中加油.在加油过程中,设运输飞机 的油箱余油量为Q1吨,加油飞机的加油油箱余油量为Q2 吨,加油时间为t分钟,Q1、Q2与t之间的函数图象如图 所示,结合图象回答下列问题: ⑴ 加油飞机加油油箱中装载了多少吨油?将这些油全部 加给运输飞机需多少分钟? ⑵ 求加油过程中,运输飞机的余 油量 Q1(吨)与时间 t(分钟) 的函数关系式; ⑶ 运输飞机加完油后,以原速 继续飞行,需10小时到达目的地, 油料是否够用? 说明理由.
o
40
60
80
x 行李重量
(千克)
例 在边长为2的正方形ABCD的一边BC上, 一点P从B点运动到C点,设BP=x,四边形 APCD的面积为y。(1)写出y与x的函数关系 式;并写出x的取值范围(2)当x为何值时, 四边形APCD的面积为2.5?(3)当点P沿A B C D路线从A运动到D,点P运动的路程为 x ,写出⊿PAD的面积y与x的函数关系式, 并画出此函数的图象。 D C
10、已知一次函数 y x b 与
y 2 x a的图像都经过A(-2,0),
且与轴分别交于B、C两点,求△ABC
的面积
11、若直线y=3x+b与两坐标轴 所围成的三角形的面积为6, 求b的值。
12、无论m为何值,直线y=x+2m 与y=-x+4的交点不可能在( ) A、第一象限 B、第二象限 C、第三象限 D、第四象限
例 杨嫂在再就业中心的扶持下,创办了”润扬” 报刊零售点,对经营的某种晚报,杨嫂提供了如下 信息: ①买进每份0.2元,卖出每份0.3元; ②一 个月内(以30天计),有20天每天可以卖出200份, 其余10天每天只能卖出120份; ③一个月内,每天 从报社买进的报纸份数必须相同,当天卖不掉的 报纸,以第份0.1元退回报社. (1)填表: 一个月内每天买进该种晚报的份数 100 150
K<0,b>0
y x
o
k>0,b<0
x
9、已知一次函数y=(m-1)x+2m+1
(1)若图象经过原点,求m的值;
(2)若图象平行于直线y=2x,求m的值;
(3)若图象交y轴 于正半轴,求m的取值范围;
(4)若图象经过一、二、四象限,求m的取值范 围。
(5)若图象不过第三象限,求m的取值范围。 (6)若随的增大而增大,求m的取值范围。
y2与(x-2)成正比例,又当x=-1时,
13、已知y=y1+y2,其中y1与x成正比例, y=2;当x=2时,y=5.
关系式。
求y与x的函数
例 为了迎接2002年世界杯足球赛的到来,某足球 协会举办了一次足球联赛,其记分规则及奖励方 案如下表: 比赛进行到第12轮(每队均比赛12场)A队积19分 (1)请通过计算,判断A队胜、平、负各几场 (2)若每赛一场,每名参赛队员均得出场费500元, 设A队其中一名参赛队员所得的奖金与出场费的和 为W(元),试求W的最大值
当月利润(单位:元)
(2)设每天从报社买进该种晚报x份(120 ≤x ≤200) 时,月利润y元,试求出y与x的函数关系式, 并求月利润的最大值.
例题分析:
例1、声音在空气中传播的速度y(米/秒)(简称 音速)是气温x(℃)的一次函数,下表列出了 一组不同气温时的音速:
气温x(℃)
音速(米/秒)
0
5
10
15
20
331 334 337 340 343
(1)求y与x之间的函数关系式; (2)气温x=22(℃)时,某人看到烟花燃放5秒 后才听到声音响,那么此人与燃放的烟花所在地约 相距多远?
起点
点
M N
A 60 35
B 100 70
回味练习:
1、函数y=2x图象经过点(0, 0 )与点 (1, 2 ),y随x的增大而 增大 ; 2、函数y=(a-2)x的图象经过第二、 四象限,则a的范围是 a<2 ; 3、函数y=(1-k)x中y随x的增大而减 小,则k的范围是 k>1 .
4、直线y=-3x-6与x轴的交点坐标
(2)就乒乓球盒数讨论去哪家商店购买合算?
例4、某图书馆开展两种方式的租书业务:一种
是使用会员卡,另一种是使用租书卡。使用这 两种卡租书,租书金额y(元)与租书时间x (天)之间的关系如图所示。
(1)分别写出用租书卡和会员卡租书的金额y(元) 与租书时间x(天)之间的函数关系式;
(2)两种租书方式每天租书的收费分别是多少元? (3)若两种租书卡的使用 期限均为一年,则在这一年 中如何选择这两种租书方式 比较合算?
一次函数的应用
基础训练:
1、某地市区打电话的收费标准为:3分钟以内(含3 分钟)收费0.2元,超过分钟,每增加1分钟(不足1分钟, 按1分钟计算)加收0.11元, 求:电话费y(元)与时间t(分) 之间的函数关系式. 2、为了加强公民的节水意识,某市制定了如下的用 水收费标准:每户每月的用水不超过10吨时,水价为 每吨1.2元;超过10吨时,超过的部分按每吨1.8元收费, 该市某户居民5月份用水x吨,应交水费y元,求y与x之 间的函数关系式.
是 (-2,0),与y轴的交点坐标 为 (0,-6) .
5、直线y=3x-1经过 一、三、四 象限
直线y=-2x+5经过 一、二、四 象限
6、直线y=kx+b(k<0,b<0)经过 二、三、四 象限。
7、若直线y=kx+b经过一、二、四象限, 则k < 0,b > 0. 8、直线y=kx+b的图象如图所示,确定k、
A012 34 56
T (小时)
例、某地长途汽车客运公司规定:旅客可 随身携带一定重量的行李,如果超过规定, 则需要购买行李票,行李票费用y(元)是 行李重量x(千克)的一次函数,其图象如 图所示。求(1)y与x之间的函数关系式; (2)旅客最多可免费携带行李的千克数。 y 行李票费用(元)
10
6
O 5 8
x
例3、甲乙两家体育用品商店出售同样的乒乓球 拍和乒乓球,乒乓球拍每付定价20元,乒乓球 每盒5元,现两家商店搞促销活动,甲店:每买 一付球拍赠一盒乒乓球;乙店:按定价的9折优 惠,某班级需要购球拍4付,乒乓球若干盒(不 少于4盒)。 (1)、设购买乒乓球盒数为x(盒),在甲店 购买的付款数为y甲(元),在乙店购买的付款 数为y乙(元),分别写出在两家商店购买的付 款数与乒乓球盒数x之间的函数关系式。
50 20Leabharlann y(元)租书卡 会员卡
o
100
x(天)
例6 预防“非典”期间,某种消毒液A市需 要6吨,B市需要8吨,正好M市储备有10吨, N市储备有4吨,预防“非典”领导小组决定 将这14吨消毒液调往A市和B市,消毒液的运 费价格如下表。设从M市调运x吨到A市。 (1)求调运14吨消毒液的总运费y关于x的 函数关系式; (2)求出总运费最低的调运方案,最低运 费的多少? 终
积 分 奖金(元/人)
胜一场 平一场 负一场 3 1 0 1500 700 0
例、已知A、B两地相距300千米,现有甲、乙两车 同时从A地开往B地,甲车匀速行驶2小时到达AB 中点C地,停留2小时后,再匀速行驶1.5小时到 达B地;乙车以每小时v千米(v≠75)的速度行驶 (1)设s (千米)、t (小时)分别表示甲车离开A地 的路程和时间,试在下列条件下: ①0≤t≤2 ②2<t≤4 ③4<t≤5.5 分别求出s与t的关系式,并在所给的坐标系中画 S (千米) 出它的图象; C B 300 D (2)若甲、乙两车在途中 250 200 恰好相遇两次(不含A、B两 150 地),试确定v的取值范围。 100 50
若点(1,2)及(m,3)都在正比例 函数y=kx的图象上,求m的值。 已知直线y=kx+b经过点(-2,-1) 和点(2,-3),求这条直线的函数 解析式。
某一次函数的图象平行于直线 1 y x ,且过点(4,7),求函数 2 解析式。
例1 去年入夏以来,全国大部分地区发生严重 干旱,某市自来水公司为了鼓励市民节约用水, 采取分段收费标准,若某居民每月应交水费是 用水量的函数,其函数图象如图所示: (1)分别写出x≤5和x>5时,y与x的函数解析式; (2)观察函数图象,利用函数解析式,回答自来水 公司采取的收费标准。 y (3)若某户居民该月用水3.5 6.3 吨,则应交水费多少元? 若该月交水费9元,则用水 3.6 多少吨?
P
X
A
B
例 某单位计划10月份组织员工到外地 旅游,估计人数在6~15人之间。甲、 乙量旅行社的服务质量相同,且对外 报价都是200元,该单位联系时,甲旅 行社表示可给予每位游客八折优惠; 乙旅行社表示,可先免去一位游客的 旅游费用,其余游客九折优惠。
(1)人数在什么范围内,应选甲旅行 分别写出两旅行社所报旅游费用 (2) 若有 11人参加旅游,应选择那个 (3) 与人数的函数关系式; 旅行社? 社;在什么范围内,应选乙旅行社?
例 某空军加油飞机接到命令,立即给另一架正在飞行 的运输飞机进行空中加油.在加油过程中,设运输飞机 的油箱余油量为Q1吨,加油飞机的加油油箱余油量为Q2 吨,加油时间为t分钟,Q1、Q2与t之间的函数图象如图 所示,结合图象回答下列问题: ⑴ 加油飞机加油油箱中装载了多少吨油?将这些油全部 加给运输飞机需多少分钟? ⑵ 求加油过程中,运输飞机的余 油量 Q1(吨)与时间 t(分钟) 的函数关系式; ⑶ 运输飞机加完油后,以原速 继续飞行,需10小时到达目的地, 油料是否够用? 说明理由.
o
40
60
80
x 行李重量
(千克)
例 在边长为2的正方形ABCD的一边BC上, 一点P从B点运动到C点,设BP=x,四边形 APCD的面积为y。(1)写出y与x的函数关系 式;并写出x的取值范围(2)当x为何值时, 四边形APCD的面积为2.5?(3)当点P沿A B C D路线从A运动到D,点P运动的路程为 x ,写出⊿PAD的面积y与x的函数关系式, 并画出此函数的图象。 D C
10、已知一次函数 y x b 与
y 2 x a的图像都经过A(-2,0),
且与轴分别交于B、C两点,求△ABC
的面积
11、若直线y=3x+b与两坐标轴 所围成的三角形的面积为6, 求b的值。
12、无论m为何值,直线y=x+2m 与y=-x+4的交点不可能在( ) A、第一象限 B、第二象限 C、第三象限 D、第四象限
例 杨嫂在再就业中心的扶持下,创办了”润扬” 报刊零售点,对经营的某种晚报,杨嫂提供了如下 信息: ①买进每份0.2元,卖出每份0.3元; ②一 个月内(以30天计),有20天每天可以卖出200份, 其余10天每天只能卖出120份; ③一个月内,每天 从报社买进的报纸份数必须相同,当天卖不掉的 报纸,以第份0.1元退回报社. (1)填表: 一个月内每天买进该种晚报的份数 100 150