人教版数学七年级下册--确定解集找数轴
人教版七年级数学下册不等式及其解集2
立志难也,不在胜人,在自胜。 有志的人战天斗地,无志的人怨天恨地。 壮志与毅力是事业的双翼。 成功往往偏向于有准备的人 胸无大志,枉活一世。
3.下列说法不正确的是( C ) 人无志向,和迷途的盲人一样。
立志是事业的大门,工作是登门入室的旅程。 鹰爱高飞,鸦栖一枝。
岂器能大尽 者如声人必意闳,,但(志求A高无)者愧方意我必心程远. 。2X+3=1的解是X=-1
这样表示不等式的解集呢?
画一画: 利用数轴来表示下列不等式的解集.
(1)x>-1
1 (2)x<
2
-1 0 1
(3)X≥-1
● -1 0 1
实心圆: 表示-1在这个解集内
0
12
大于向右画;
空心圆: 表示-1不在这个解集内
大于向右画,小于向左画; 有等号的画实心圆点,无等号的画空 心圆圈.
用数轴表示x+2≥5的解集x≥3的步骤:
一个含有未知数的不等式的所有的解,组成这个不等式的 解的集合,简称为这个 不等式的解集。
D 1.下列说法正确的是( ) < (A)x=3.5是2x 7的解集
< (B)x=3.5是2x 7的解
< (C)x=3是2x
7的唯一解
< < (D)x 3.5是2x 7的解集
C 2.下列说法错误的是( )
(A)X=3.1是x+3>6的一个解 (B)x+1<2的解有无数个 (C)x+1<4的解集是x<2 (D)x+2>1的解集是x>-1
给这类些比数方定 程的个名解称?
(C)x=3是2x < 7的唯一解
这里表示的不都是不等式的解,如何表示解集呢?
用有我“等≠号 们”的表画知示实不心道等圆关点:系,的无使式等子号方也的是画程不空等心左式圆。圈右. 两边相等的未知数的值叫做方程的解
人教版七年级数学下册各章节知识点归纳
最新人教版七年级数学下册各章节知识点归纳七年级数学下册知识点归纳第五章相交线及平行线5.1 相交线一、相交线两条直线相交,形成4个角。
1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。
性质是对顶角相等。
①邻补角:两个角有一条公共边,它们的另一条边互为反向延长线。
具有这种关系的两个角,互为邻补角。
如:∠1、∠2。
②对顶角:两个角有一个公共顶点,并且一个角的两条边,分别是另一个角的两条边的反向延长线,具有这种关系的两个角,互为对顶角。
如:∠1、∠3。
③对顶角相等。
二、垂线1.垂直:如果两条直线相交成直角,那么这两条直线互相垂直。
2.垂线:垂直是相交的一种特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。
3.垂足:两条垂线的交点叫垂足。
4.垂线特点:过一点有且只有一条直线及已知直线垂直。
5.点到直线的距离:直线外一点到这条直线的垂线段的长度,叫点到直线的距离。
连接直线外一点及直线上各点的所有线段中,垂线段最短。
三、同位角、内错角、同旁内角两条直线被第三条直线所截形成8个角。
1.同位角:(在两条直线的同一旁,第三条直线的同一侧)在两条直线的上方,又在直线EF的同侧,具有这种位置关系的两个角叫同位角。
如:∠1和∠5。
2.内错角:(在两条直线内部,位于第三条直线两侧)在两条直线之间,又在直线EF的两侧,具有这种位置关系的两个角叫内错角。
如:∠3和∠5。
3.同旁内角:(在两条直线内部,位于第三条直线同侧)在两条直线之间,又在直线EF的同侧,具有这种位置关系的两个角叫同旁内角。
如:∠3和∠6。
5.2 平行线及其判定(一) 平行线1.平行:两条直线不相交。
互相平行的两条直线,互为平行线。
a∥b(在同一平面内,不相交的两条直线叫做平行线。
)2.平行公理:经过直线外一点,有且只有一条直线及这条直线平行。
人教版七年级数学下册9.1.1不等式的概念教学设计
二、学情分析
七年级下册的学生已经具备了一定的数学基础,掌握了基本的算术运算和代数表达式的知识。在此基础上,学生对不等式的概念已有初步的认识,但在理解深度和运用灵活性方面仍有待提高。此外,学生在解决实际问题时,往往难以将问题转化为数学模型,需要教师在教学过程中加以引导。因此,本章节教学应注重以下几点:
4.能够运用不等式的性质解决一些简单的实际问题,如比较大小、求范围等。
(二)过程与方法
1.通过实际问题,引导学生观察、分析、抽象出不等式的概念,培养学生从实际问题中提炼数学问题的能力。
2.引导学生运用数轴辅助分析不等式,培养学生的数形结合思想。
3.通过小组讨论、合作探究,引导学生发现并总结不等式的性质,提高学生的合作能力和逻辑思维能力。
2.从第4题开始,选择至少两道题目进行解答,这些题目涉及将实际问题转化为不等式模型,要求学生能够准确识别问题中的关键信息,并建立相应的不等式关系。
3.设计一道生活情境题,要求学生自己编写一个包含不等式的实际问题,并将其解答出来。这个问题可以涉及购物、交通、饮食等任何与生活息息相关的场景,以此检验学生对不等式知识在实际中的应用能力。
4.学生在讨论过程中,加深对不等式性质的理解,提高解决实际问题的能力。
(四)课堂练习
1.教师出示一系列不等式练习题,包括基础题和提高题,让学生独立完成。
2.教师挑选部分学生解答,展示解题过程,并对错误答案进行讲解。
3.学生通过练习,巩固所学知识,提高解题能力。
(五)总结归纳
1.教师引导学生从概念、性质、应用等方面总结本节课所学内容。
4.小组合作完成一道开放性问题,要求每组分析一个社会现象或科学问题,如人口增长、资源分配等,通过建立不等式模型来探究问题背后的数学原理。
人教版数学 七年级下册第9章9.1.1不等式及其解集 课件(公开课 )
拔河时力气的大小
新课探究
问题:一辆匀速行驶的汽车在11:20距离A地 50千米,要在12:00之前驶过A地,车速应满 足什么条件?
A
汽车
分析:设车速是x千米/时
从时间上看,汽车要在12:00之前驶过A地,则以 2 这个速度行驶50千米所用的时间不到 小时,即 3
50 2 x 3
2 x 50 3
标出数轴上某一区间,其中的 点对应的数值都是不等式的解. 10 20
0
5
15
例2: 用数轴表示下列不等式的解集: ⑴ x>-1; ⑵ x≥ -1; ⑶ x< -1; ⑷ x≤ -1.
解:
○ ●
-1
0
-1
0
⑴
○
⑵
●
-1
0
-1
0
⑷ 总结: ①第一步:画数轴; 第二步:定界点; 第三步:定方向. ②规律: 大于向右画,小于向左画; 有等号(≥ ,≤)画实心点,无等号(>,<)画空心圆.
解:x+y ≤-2; (5)a与b的和的20%至多为15.
解:20%(a+b) ≤15
二.不等式的解: 2 x 50 3
你能找出一个符合条件的x的值吗? 使方程等号两边相等的未知数的值叫方程的解. 使不等式成立的未知数的值叫做不等式的解.
动动脑: 不等式的解与方程的解有什 么区别?
注意:不等式的解与一元一次方程的解是 有区别的.不等式的解是不确定的,是一 个范围,而一元一次方程的解则是一个具 体的数值.
(6)a的相反数至少为1.
解:-a≥1.
请直接想出下列不等式的解集,并在数轴上 表示. (1) 2x<8
0 1 2 3 4
新人教版七年级下册数学知识点整理
新人教版七年级下册数学知识点整理的两个角叫做同位角,它们的度数相等。
②在两条直线(被截线)的异侧,都在第三条直线(截线)的同一侧,这样的两个角叫做内错角,它们的度数相等。
③在两条直线(被截线)的同一侧,都在第三条直线(截线)的同一侧,这样的两个角叫做同旁内角,它们的度数互补。
7、平移是指在平面内,将一个图形沿着某个方向按照某个距离移动,移动后的图形与原图形形状、大小、方向都相同。
平移的性质:平移不改变图形的形状、大小和方向,只改变图形的位置。
本文介绍了平面几何中的角度和平行线的相关概念和性质。
其中,角度分为同位角、内错角和同旁内角,平行线的判定包括同位角相等、内错角相等、同旁内角互补和平行于同一条直线的两条直线互相平行。
此外,文章还介绍了命题和定理的概念,以及平移变换的性质。
最后,文章对实数进行了分类,包括按定义分类和按性质符号分类。
科学记数法是一种将数表示为(1≤<10,n为整数)形式的记数方法。
平面直角坐标系由有序数对和两条互相垂直且有公共原点的数轴组成。
其中,有序数对是有顺序的两个数a与b组成的数对,记做(a,b)。
横轴是水平的数轴,也称为x轴或横轴;纵轴是竖直的数轴,也称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。
对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标,记作P(a,b)。
坐标轴上的点不在任何一个象限内,而两条坐标轴将平面分成四个部分,右上部分叫第一象限,按逆时针方向依次叫第二象限、第三象限、第四象限。
坐标轴上的点有特殊的坐标特点,如x轴正半轴上的点的坐标为(a,0),y轴负半轴上的点的坐标为(0,-b)。
点P(a,b)到x 轴的距离是|b|,到y轴的距离是|a|。
对称点的坐标特点包括:关于x轴对称的两个点,横坐标相等,纵坐标互为相反数;关于y轴对称的两个点,纵坐标相等,横坐标互为相反数;关于原点对称的两个点,横坐标、纵坐标分别互为相反数。
人教版七年级数学下册不等式与不等式组知识点及习题
三不等式与不等式组1. 不等式的概念不等式:用不等号表示不等关系的式子,叫做不等式。
不等式的解集:1)对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。
2)对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。
3)求不等式的解集的过程,叫做解不等式。
用数轴表示不等式的方法2. 不等式基本性质1)不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
2)不等式两边都乘以(或除以)同一个正数,不等号的方向不变。
3)不等式两边都乘以(或除以)同一个负数,不等号的方向改变。
3. 一兀一次不等式一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,不等式的两边都是整式,这样的不等式叫做一元一次不等式。
解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x项的系数化为4. 一元一次不等式组一元一次不等式组:1)几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
2)几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。
3)求不等式组的解集的过程,叫做解不等式组。
当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。
一元一次不等式组的解法:1)分别求出不等式组中各个不等式的解集2 )利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。
四不等式与不等式组1•全面调查:考察全体对象的调查方式叫做全面调查。
2•抽样调查:一种非全面调查,它是从全部调查研究对象中,抽选一部分单位进行调查,并据以对全部调查研究对象作出估计和推断的一种调查方法。
显然,抽样调查虽然是非全面调查,但它的目的却在于取得反映总体情况的信息资料,因而, 也可起到全面调查的作用。
3抽样调查分类:根据抽选样本的方法,抽样调查可以分为概率抽样和非概率抽样两类。
概率抽样是按照概率论和数理统计的原理从调查研究的总体中,根据随机原则来抽选样本,并从数量上对总体的某些特征作出估计推断,对推断出可能出现的误差可以从概率意义上加以控制。
人教版初中数学七年级下册第9章一元一次不等式(组)含参专题——有、无解问题(专题课)教案
人教版初中数学七年级下册第九章一元一次不等式(组)含参专题——有、无解问题(专题课)教案核心素养:1.使学生加深对一元一次不等式组和它的解集的理解,会用数轴确定含参数的一元一次不等式组的参数范围;2.培养学生探究、独立思考的学习习惯,感受数形结合的作用,熟悉并掌握数形结合的思想方法,提高分析问题和解决的能力;3.提升学生之间合作与交流以及对问题的探讨能力,从中发现数学的乐趣.【教学重难点】重点:含参一元一次不等式组的分类解法难点:1.一元一次不等式中字母参数的讨论2.一元一次不等式中运用数轴分析参数的范围【教学过程】1.问题引导 合作交流出示问题:请同学们解下列两个不等式(1)x-2m<0,(2)x+m >3并思考m 的取值范围. 同学们不难得出不等式(1)的解为x <2m ;(2)的解为x >3-m.引导分析m 的取值范围. 师引导,生回答:任意实数.[问题1]如果将上述两个不等式联立成不等式组⎩⎨⎧>+<-302m x m x ,你能确定不等式组的解集吗? 师提示学生画数轴 ,问:能画几种情况[问题2]如果这个不等式组无解,你能确定m 的取值范围吗?(学生分组讨论)(借助数轴)师生一起分析:如果不等式组无解,则2m <3-m ,解得m <1。
确定一下“<”要不要添加“=”(这是参数取值问题中的难点)学生借助数轴讨论.师生总结:2m 和3-m 在两个不等式的解中都不包含,所以2m 可以等于3-m ,即m ≤1.2.变式拓展 强化理解变式1:若不等式组⎩⎨⎧⋅⋅⋅⋅⋅>+⋅⋅⋅≤-②①302m x m x 无解,这时m 的取值会有变化吗?解不等式①得x ≤2m 解不等式②得x >3-m(学生分组探究)引导:虽然第一个不等式“<”改成“≤”通过数轴可以看到由于和第二个不等式的解集不包含3-m ,所以2m ≤3-m ,m 的取值范围仍然是m ≤1.变式2:如果不等式组变化为⎩⎨⎧⋅⋅⋅⋅⋅≥+⋅⋅⋅≤-②①302m x m x ,这时m 的取值又会有改变吗?(学生分组探究)由于两个不等式都含有等号,这时2m 和3-m 可能是公共点,而要想使不等式组无解,2m 和3-m 不能重合,只能2m <3-m ,所以m 不能等于1,即m <1.3.问题反转[问题3]如果不等式组⎩⎨⎧⋅⋅⋅⋅⋅≥+⋅⋅⋅≤-②①302m x m x 有解,怎样确定 m 的取值范围?把两个不等式的解集在数轴上表示出,同学们观察数轴 ,不难得出要想使不等式组有解,只要2m ≥3-m ,即m ≥1这样两个不等式的解集有公共部分,不等式组有解,所以m 的取值范围m ≥14.方法小结 归纳步骤解含参一元一次不等式(组)有、无解问题时注意掌握四个步骤:一解 .解不等式组,用参数分别表示出两个不等式的解集;二画.借助数轴进行视觉观察,画出有无解的情况;三验:验证端点取舍判断等号是否可取;四:列出不等式,确定取值范围5,拓展演练 题型再变[问题4]下面这种类型的一元一次不等式组如何确定字母参数取值范围?例:已知不等式组⎩⎨⎧⋅⋅⋅-<⋅⋅⋅⋅⋅⋅⋅⋅≥-②①22-10x x a x 的解集是x >1,求a 的取值范围?学生分组解出每个不等式的解集:解①得:x ≥a 解②得:x >1因为不等式的解集是x >1,(学生分组探讨):a 的位置在数轴上应该在哪个位置? 分析得出:a 在数轴上的位置应该在1的左侧.把不等式组的解集在数轴上表示出来:即a <1,[思考3]a 可不可以等于1?因为a=1时不等式组的解集仍然是x >1.所以a 可以等于1,即a 的取值范围a ≤15.基础过关1.若不等式组⎩⎨⎧≤≥-m x x 062 无解,求m 的取值范围? 2.若不等式组⎩⎨⎧>+<--xx a x x 422)2(3有解,求a 的取值范围?3.若不等式组⎩⎨⎧+>+<+1137m x x x 的解集是x >3,求m 的取值范围?。
人教版初中数学七年级下册9.1.1《不等式及其解集》教案
明确验证解的方法,引入不等式的解集概念
解析:解集是个范围
例3 下列说法中正确的是( )
A.x=3是不是不等式2x>1的解
B.x=3是不是不等式2x>1的唯一解;
C.x=3不是不等式2x>1的解;
D.x=3是不等式2x>1的解集
注意:1.实心点表示包括这个点,空心点表示不包括这个点
例2 下列各数中,哪些是不等是x+1<3的解?哪些不是?
-3,-1,0,1,1.5,2.5,3,3.5
解:略.
练习:1.判断数:-3,-2,-1,0,1,2,3,是不是不等式2x+3<5 的解?再找出另外的小于0的解两个.
2.下列各数:-5,-4,-3,-2,-1,0,1,2,3,4,5中,同时适合x+5<7和2x+2>0的有哪几个数?
情境导入
导出新知
一.问题探知
两个体重相同的孩子正在跷跷板上做游戏.现在换了一个胖子上去,跷跷板发生了倾斜,这个游戏还能继续下去吗?
某班同学去植树,原计划每位同学植树4棵,但由于某组的10名同学另有任务,未能参加植树,其余同学每位植 树6棵,结果仍未能完成计划任务,若以该班同学的人数为x,此时的x应满足怎样的关系式?
含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式.
分析不等关系,渗透不等式的列法
2.不等式解集的表示方法
例4 在数轴上表示下列不等式的解集
(1)x>-1;(2)x≥-1;(3)x<-1;(4)x≤-1
分析:按画数轴,定界点,走方向的步骤答
解:
学生交流后,师生归纳:两者的条件和结论正好相反:
人教版七年级数学下册第9章。一元一次不等式组 知识点专题复习讲义
人教版七年级数学下册第9章。
一元一次不等式组知识点专题复习讲义一元一次不等式组知识点专题复讲义一、知识梳理1.知识结构图概念基本性质不等式的解法不等式的定义不等式的解集一元一次不等式的解法实际应用一元一次不等式组的解法二、知识点回顾1.不等式不等式是由不等号连接起来的式子。
常见的不等号有五种:“≠”、“>”、“<”、“≥”、“≤”。
2.不等式的解与解集不等式的解是使不等式成立的未知数的值。
不等式的解集是一个含有未知数的不等式的解的全体。
解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点。
解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左。
3.不等式的基本性质1) 不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
4.一元一次不等式一元一次不等式只含有一个未知数,且未知数的次数是1.系数不等于的不等式叫做一元一次不等式。
其标准形式为:ax+b<或ax+b≤,ax+b>或ax+b≥0(a≠0)。
5.解一元一次不等式的一般步骤1) 去分母;2) 去括号;3) 移项;4) 合并同类项;5) 化系数为1.删除格式错误的段落。
对于每段话,进行小幅度的改写,使其更加通顺易懂。
解一元一次不等式和解一元一次方程类似。
不同的是,一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变。
这是解不等式时最容易出错的地方。
例如,解不等式:-2/3x-1≤1/3解:去分母,得(3x-1)-2(3x-1)≤2(不要漏乘!每一项都得乘)去括号,得3x-3-6x+2≤2(注意符号,不要漏乘!)移项,得3x-6x≤2+3-1(移项要变号)合并同类项,得-3x≤4(计算要正确)系数化为1,得x≥-4/3(同除负,不等号方向要改变,分子分母别颠倒了)一元一次不等式组是含有相同未知数的几个一元一次不等式所组成的不等式组。
人教版初中数学七年级下册9.1.1《不等式及其解集》教案设计
9.1.1《不等式及其解集》教学设计【内容】人教版七年级数学下第九章第一节【知识与技能】1.能够从现实问题中抽象出不等式,理解不等式的意义,会根据给定条件列不等式.2.正确理解“非负数”、“不小于”、“不大于”等数学术语.3.理解不等式的解、解集的意义,能举出一个不等式的几个解并且会检验一个数是否是某个不等式的解.4.能用数轴表示不等式的解集.【过程与方法】经历由具体实例建立不等式模型的过程,进一步发展学生的符号感和数学化的能力,体会在解决问题的过程中与他人合作的重要性.【情感、态度与价值观】使学生能独立克服困难,运用知识解决问题,树立学好数学的自信心;在独立思考的基础上,积极参与讨论,在合作交流中有一定收获.教学重点理解不等式、不等式的解和解集,能正确列出不等式.教学难点准确应用不等号,理解不等式的解和解集的意义.学情与教材分析一、学情分析学生在小学对不等量关系、数量大小的比较等知识已经有所了解,但对含有未知数的不等式还是第一次接触,本节就是对“不等式”这一概念进一步明确,使它成为一种有效的数学工具.学生在列不等式时,对数量关系中的“不大于”、“不小于”、“负数”、“非负数”等数学术语的含义不能准确理解,在把用文字语言表述的不等关系转化为用符号表示的不等式时有一定困难,对不等式的解、不等式的解集两个概念容易混淆.二、教材分析不等式是解决实际问题的一种数学模型,它不仅是初中阶段学习的重点内容,而且也是后面学习函数等知识的基础.它是在学习了一元一次方程、二元一次方程组之后的后续内容,贯穿于数学学习的始终,起着承上启下的作用.本节是本章的第一课时,主要学习四个概念:不等式、不等式的解、解集。
同时渗透建模、类比、分类等思想方法.教学方法:引导发现法教学准备:教具:圆规、三角尺、多媒体及课件。
学具:圆规、三角尺。
教学过程:一创设情景引入新知(一)动画演示情景激趣:两个体重相同的孩子正在跷跷板上做游戏,现在换了一个大人上去,跷跷板发生了倾斜,游戏无法继续进行下去了,这是什么原因呢?设计意图:通过实例创设情境,从“等”过渡到“不等”,培养学生的观察能力,分析能力,激发他们的学习兴趣问题1:出示图片(多媒体演示): 若设大象的体重为x吨,你能用式子表示图片中两个小朋友的对话吗?问题2:一辆匀速行驶的汽车在11:20时距离A地50千米。
人教版七年级数学下册第九章第三节一元一次不等式组复习试题(含答案) (94)
人教版七年级数学下册第九章第三节一元一次不等式组复习试题(含答案)(1)解不等式:221223x x +-≥- (2)解不等式组:202(1)31x x x ->⎧⎨+-⎩,并把解集在数轴上表示出来. 【答案】(1)x ≤20;(2)2<x ≤3,数轴上表示见解析.【解析】【分析】(1)不等式去分母、去括号、移项合并、系数化为1即可求出不等式的解集;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分确定出解集即可.【详解】解:(1)去分母,得3(2+x )≥2(2x ﹣1)﹣12,去括号,得6+3x ≥4x ﹣2﹣12,移项,得3x ﹣4x ≥﹣2﹣12﹣6,合并同类项,得﹣x ≥﹣20,系数化为1,得x ≤20;(2)由x ﹣2>0得,x >2,由2(x+1)≥3x ﹣1得,x ≤3,∴不等式组的解集是2<x ≤3,在数轴上表示为:【点睛】此题考查了解一元一次不等式(组),以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.32.为了加强对校内外安全监控,创建平安校园,某学校计划增加15台监控摄像设备,现有甲、乙两种型号的设备,其中每台价格,有效监控半径如表所示,经调查,购买1台甲型设备比购买1台乙型设备多150元,购买2台甲型设备比购买3台乙型设备少400元.(1)求a、b的值;(2)若购买该批设备的资金不超过11000元,且要求监控半径覆盖范围不低于1600米,两种型号的设备均要至少买一台,请你为学校设计购买方案,并计算最低购买费用.【答案】(1)a=850,b=700;(2)最省钱的购买方案为:购甲型设备2台,乙型设备13台.【解析】【分析】(1)根据购买1台甲型设备比购买1台乙型设备多150元,购买2台甲型设备比购买3台乙型设备少400元,可列出方程组,解之即可得到a 、b 的值;(2)可设购买甲型设备x 台,则购买乙型设备(15﹣x )台,根据购买该批设备的资金不超过11000元、监控半径覆盖范围不低于1600米,列出不等式组,根据x 的值确定方案,然后对所需资金进行比较,并作出选择.【详解】解:(1)由题意得:15032400a b b a -=⎧⎨-=⎩, 解得850700a b =⎧⎨=⎩; (2)设购买甲型设备x 台,则购买乙型设备(15﹣x )台,依题意得 850700(15)11000150100(15)1600x x x x ①②+-⎧⎨+-⎩, 解不等式①,得:x ≤313, 解不等式②,得:x ≥2,则2≤x ≤313, ∴x 取值为2或3.当x =2时,购买所需资金为:850×2+700×13=10800(元),当x =3时,购买所需资金为:850×3+700×12=10950(元),∴最省钱的购买方案为:购甲型设备2台,乙型设备13台.【点睛】本题考查了一元一次不等式组及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系.要会用分类的思想来解决讨论方案的问题.33.解不等式组3222(1)33x x x x -<⎧⎨-+≥⎩①②,并将它的解集在数轴表示出来.【答案】x ≤1,将解集表示在数轴上见解析.【解析】【分析】先求出每个不等式的解集,再求出不等式组的解集,最后在数轴上画出来【详解】解不等式①,得:x <2,解不等式②,得:x ≤1,将解集表示在数轴上如下:【点睛】此题考查在数轴上表示不等式的解集和解一元一次不等式组,解题关键在于先求出不等式的解集34.解不等式组43315x x x x -≥⎧⎪-⎨>--⎪⎩,并把解集在数轴上表示出来. 【答案】见解析【解析】【分析】先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上,即可.【详解】解:由不等式(1)得,x≤1,由不等式(2)得,x>﹣2,所以不等式组的解集为﹣2<x≤1.用数轴表示为【点睛】本题考查解一元一次不等式组,在数轴上表示不等式的解集.35.(1+2)﹣(2)解不等式组:562(3) 351344x xx x-≤+⎧⎪⎨--⎪⎩<.【答案】(1)(2)x<2【解析】【分析】(1)根据二次根式的乘法和合并同类项可以解答本题;(2)根据解一元一次不等式组的方法可以解答本题.【详解】解:(1+2)﹣2 =+2 =-(2)562(3)351344x xx x-≤+⎧⎪⎨-<-⎪⎩①②,由不等式①,得x ≤4由不等式②,得x <2,∴原不等式组的解集是x <2.【点睛】本题考查二次根式的混合运算、解一元一次不等式组,解答本题的关键是明确它们各自的计算方法.36.(1)解方程组2313713x y x y +=⎧-=⎨⎩(2)解不等式组()102131x x x +>⎧+≥-⎨⎩【答案】(1){21x y ==-;(2)-1<x ≤3.【解析】【分析】(1)利用加减消元法解之即可,(2)分别解两个不等式,得到不等式的两个解集,找到其公共部分,就是不等式组的解集.【详解】 解:(1)2313713x y x y +=⎧⎨-=⎩①②, ①×3-②×2得:23y =-23,解得:y =-1,把y =-1代入①解得:x =2,原方程组的解集为:{21x y ==-,(2)()102131x x x >①②+⎧⎪⎨+≥-⎪⎩, 解不等式①得:x >-1,解不等式②得:x ≤3,即原不等式组的解集为:-1<x ≤3.【点睛】本题考查解一元一次不等式组和解二元一次方程组,解题的关键是正确掌握解一元一次不等式组和解二元一次方程组的方法.37.(1)解不等式组3(2)41213x x x x --≥⎧⎪+⎨>-⎪⎩ (2)已知A =222111x x x x x ++--- ①化简A②当x 满足不等式组1030x x -⎧⎨-<⎩且x 为整数时,求A 的值. (3)化简23651x x x x x+---- 【答案】(1) x ≤1;(2) 11x -,1;(3) 8x . 【解析】【分析】(1)根据解不等式组的方法可以解答本题;(2)①根据分式的减法可以化简A ;②根据不等式组和原分式可以确定x 的值,然后代入化简后A 的值即可解答本题;(3)根据分式的减法可以化简题目中的式子.【详解】解:(1)3(2)4121,3x x x x --≥⎧⎪⎨+>-⎪⎩①② 由不等式①,得x ≤1,由不等式②,得x <4,故原不等式组的解集为x ≤1;(2)①A =222111x x x x x ++---, ()()()21,111x x x x x +=-+-- 1,11x x x x +=--- 1,1x x x +-=- 11;x =- ②由不等式组1030x x -≥⎧⎨-<⎩,得 1≤x <3,∵x 满足不等式组1030x x -≥⎧⎨-<⎩且x 为整数,(x ﹣1)(x +1)≠0, 解得,x =2,当x =2时,A 1 1.21==-(3)23651x x x x x+---- ()()()3165,1x x x x x -+-+=- ()3365,1x x x x x -+--=- ()()81,1x x x -=- 8.x= 【点睛】本题考查分式的化简求值、解一元一次不等式,解答本题的关键是明确分式化简求值的方法和解不等式组的方法.38.某体育用品商店欲购进A 、B 两种品牌的足球进行销售,若购进A 种品牌的足球50个,B 种品牌的足球25个,需花费成本4250元;若购进A 种品牌的足球15个,B 种品牌的足球10个,需花费成本1450元.(1)求购进A 、B 两种品牌的足球每个各需成本多少元;(2)根据市场调研,A 种品牌的足球每个售价90元,B 种品牌的足球每个售价120元,该体育用品商店购进A 、B 两种品牌的足球进行销售,恰好用了7000元的成本.正值俄罗斯世界怀开赛,为了回馈新老顾客,决定A 品牌足球按售价降低20元出售,B 品牌足球按售价的7折出售,且保证利润不低于2000元,问A 种品牌的足球至少购进多少个.【答案】(1)购买一个A 种品牌的足球需要50元,购买一个B 种品牌的足球需要70元;(2)A 种品牌的足球至少购进63个.【解析】【分析】(1)设A 种品牌足球的单价为x 元,B 种品牌足球的单价为y 元,根据“购进A 种品牌的足球50个,B 种品牌的足球25个,需花费成本4250元;若购进A 种品牌的足球15个,B 种品牌的足球10个,需花费成本1450元”可得出关于x 、y 的二元一次方程组,解方程组即可得出结论;(2)设购买A 种足球a 个,根据题意可得出关于a 的一元一次不等式,解不等式可得出a 的取值范围,由此即可得出结论.【详解】解:(1)设A 种品牌足球的单价为x 元,B 种品牌足球的单价为y 元,依题意得: 5025425015101450,x y x y +=⎧⎨+=⎩解得: 5070.x y =⎧⎨=⎩答:购买一个A 种品牌的足球需要50元,购买一个B 种品牌的足球需要70元;(2)设购买A 种足球a 个,可得:()()7000509020501200.7702000,70a a ---+⨯-⨯≥ 解得:a ≥60, 因为700050,70a a -均为整数, 所以a 的最小整数值是63,答:A 种品牌的足球至少购进63个【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)根据数量关系找出关于x 、y 的二元一次方程组;(2)根据数量关系找出关于a 的一元一次不等式.本题属于中档题,难度不大,解决该题型题目时,根据数量关系列出方程(方程组、不等式或不等式组)是关键.39.解不等式组131322378x x x ⎧->-⎪⎨⎪-≤⎩,并把解集在数轴上表示出来. 【答案】2<x ≤5,见解析.【解析】【分析】分别求出每一个不等式的解集,根据口诀:大小小大中间找确定不等式组的解集,再在数轴上将解集表示出来即可.【详解】 解:解不等式131322x x ->-,得:x >2, 解不等式3x ﹣7≤8,得:x ≤5,则不等式组的解集为2<x ≤5,将解集表示在数轴上如下:【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.40.甲、乙两家超市以相同的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲超市累计购买商品价格总额超出300元之后,超出部分按原价的八折优惠;在乙超市累计购买商品价格总额超出200元之后,超出部分按原价的九折优惠.若顾客累计购买商品价格总额超出300元,到哪家超市购物花费少?【答案】(1)顾客累计购买商品价格总额超出400元时,到甲超市购物花费少;(2)顾客累计购买商品价格总额超出300元而不到400元时,到乙超市购物花费少;(3)顾客累计购买商品价格总额为400元时,到两家超市购物花费一样.【解析】【分析】设顾客累计购买商品价格总额为x(x>300)元,由题意得到200+0.9(x ﹣200)=300+0.8(x﹣300),分甲超市购物花费少,乙超市购物花费少,两家超市购物花费一样,分别进行求解.【详解】设顾客累计购买商品价格总额为x(x>300)元,(1)若到甲超市购物花费少,则200+0.9(x﹣200)>300+0.8(x﹣300),解得x>400,即顾客累计购买商品价格总额超出400元时,到甲超市购物花费少.(2)若到乙超市购物花费少,则200+0.9(x﹣200)<300+0.8(x﹣300),解得x<400,即顾客累计购买商品价格总额超出300元而不到400元时,到乙超市购物花费少.(3)若200+0.9(x﹣200)=300+0.8(x﹣300),解得x=400,即顾客累计购买商品价格总额为400元时,到两家超市购物花费一样.【点睛】本题考查一元一次不等式的应用,解题的关键是读懂题意,列出不等式,再分情况讨论.。
人教版七年级下册数学不等式与不等式组知识点
不等式与不等式组知识点归纳上大附中 何小龙一、不等式的概念1.不等式:用不等号表示不等关系的式子,叫做不等式。
2.不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。
3.不等式的解集:对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。
4.解不等式:求不等式的解集的过程,叫做解不等式。
5.用数轴表示不等式的解集。
二、不等式的基本性质1.不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
2.不等式两边都乘以(或除以)同一个正数,不等号的方向不变。
3.不等式两边都乘以(或除以)同一个负数,不等号的方向改变。
说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。
②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立。
例:1.已知不等式3x-a ≤0的正整数解恰是1,2,3,则a 的取值范围是 。
2.已知关于x 的不等式组⎩⎨⎧-≥->-1250x a x 无解,则a 的取值范围是 。
3.不等式组⎪⎩⎪⎨⎧>+≤+0221042x x 的整数解为 。
4.如果关于x 的不等式(a-1)x<a+5和2x<4的解集相同,则a 的值为 。
5.已知关于x 的不等式组⎪⎩⎪⎨⎧<++>+01234a x x x 的解集为2<x ,那么a 的取值范围是 。
6.当x 时,代数式52+x 的值不大于零7.若x <1,则22+-x 0(用“>”“=”或“”号填空)8.不等式x 27->1,的正整数解是9. 不等式x ->10-a 的解集为错误!未找到引用源。
<3,则a10.若a >b >c ,则不等式组⎪⎩⎪⎨⎧c x b x ax 的解集是 11.若不等式组⎩⎨⎧--3212 b x a x 的解集是-1<x <1,则错误!未找到引用源。
人教版七年级数学下册一元一次不等式组(基础) 知识讲解
人教版七年级数学下册一元一次不等式组(基础)知识讲解【学习目标】1.理解不等式组的概念;2.会解一元一次不等式组,并会利用数轴正确表示出解集;3.会利用不等式组解决较为复杂的实际问题,感受不等式组在实际生活中的作用.【要点梳理】要点一、不等式组的概念定义:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组.如2562010xx->⎧⎨-<⎩,7021163159xxx->⎧⎪+>⎨⎪+<⎩等都是一元一次不等式组.要点诠释:(1)这里的“几个”不等式是两个、三个或三个以上.(2)这几个一元一次不等式必须含有同一个未知数.要点二、解一元一次不等式组1. 一元一次不等式组的解集:一元一次不等式组中几个不等式的解集的公共部分叫做这个一元一次不等式组的解集.要点诠释:(1)找几个不等式的解集的公共部分的方法是先将几个不等式的解集在同一数轴上表示出来,然后找出它们重叠的部分.(2)有的一元一次不等式组中的各不等式的解集可能没有公共部分,也就是说有的不等式组可能出现无解的情况.2.一元一次不等式组的解法解一元一次不等式组的方法步骤:(1)分别求出不等式组中各个不等式的解集.(2)利用数轴求出这些不等式的解集的公共部分即这个不等式组的解集.要点三、一元一次不等式组的应用列一元一次不等式组解应用题的步骤为:审题→设未知数→找不等关系→列不等式组→解不等式组→检验→答.要点诠释:(1)利用一元一次不等式组解应用题的关键是找不等关系.(2)列不等式组解决实际问题时,求出不等式组的解集后,要结合问题的实际背景,从解集中联系实际找出符合题意的答案,比如求人数或物品的数目、产品的件数等,只能取非负整数.【典型例题】类型一、不等式组的概念1.某小区前坪有一块空地,现想建成一块面积大于48平方米,周长小于34米的矩形绿化草地,已知一边长为8米,设其邻边为x,请你根据题意写出x必须满足的不等式.【思路点拨】由题意知,x必须满足两个条件①面积大于48平方米.②周长小于34米.故必须构建不等式组来体现其不等关系.【答案与解析】解:依题意得:8482(8)34.xx>⎧⎨+<⎩【总结升华】建立不等式组的条件是:当感知所求的量同时满足几个不等关系时,要建立不等式组,建立不等式组的意义与建立方程组的意义类似.【高清课堂:第二讲一元一次不等式组的解法370096 例2】举一反三:【变式】直接写出解集:(1)2,3xx>⎧⎨>-⎩的解集是______;(2)2,3xx<⎧⎨<-⎩的解集是______;(3)2,3xx<⎧⎨>-⎩的解集是_______;(4)2,3xx>⎧⎨<-⎩的解集是_______.【答案】(1)2x>;(2)3x<-;(3)32x-<<;(4)空集.类型二、解一元一次不等式组2. 解下列不等式组(1)313112123x xx x+<-⎧⎪⎨++≤+⎪⎩①②(2)213(1)4x x x+>-≥-.【思路点拨】解不等式组时,要先分别求出不等式组中每个不等式的解集,然后画数轴,找它们解集的公共部分,这个公共部分就是不等式组的解集.【答案与解析】解:(1)解不等式①,得x<-2解不等式②,得x≥-5故原不等式组的解集为-5≤x<-2.其解集在数轴上表示如图所示.(2)原不等式可变为:213(1)3(1)4x xx x+>-⎧⎨-≥-⎩①②解①得:4x<解②得:12 x≥-故原不等式组的解集为14 2x-≤<.【总结升华】确定一元一次不等式组解集的常用方法有两种:(1)数轴法:运用数轴法确定不等式组的解集,就是将不等式组中的每一个不等式的解集在数轴上表示出来,然后找出它们的公共部分,这个公共部分就是此不等式组的解集;如果没有公共部分,则这个不等式组无解,这种方法体现了数形结合的思想,既直观又明了,易于掌握.(2)口诀法:为了便于快速找出不等式组的解集,结合数轴将其总结为朗朗上口的四句口诀:同大取大、同小取小、大小小大中间找,大大小小无解了.举一反三:【变式】(2015•江西样卷)解不等式组,并把解集在数轴上表示出来.【答案】解:,∵解不等式①得:x≤1,解不等式②得:x>﹣2,∴不等式组的解集为:﹣2<x≤1.在数轴上表示不等式组的解集为:类型三、一元一次不等式组的应用3. “六·一”儿童节,学校组织部分少先队员去植树.学校领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有多少棵.【思路点拨】设有x名学生,则由第一种植树法,知道一共有(4x +37)棵树;第二种植树法中,前(x-1)名学生中共植6(x-1)棵树;最后一名学生植树的数量是:[(4x +37)- 6(x-1)]棵,这样,我们就探求到第一个不等量关系:最后一人有树植,说明第二种植树法中前(x-1)名学生植树的数量要比树木总数少,即(4x +37)>6(x-1);第二种植树法中,最后一名学生植树的数量不到3棵,也就是说[(4x +37)- 6(x-1)]<3,或者理解为:[(3x +8)- 5(x-1)]≤2,这样,我们就又找到了第二个不等量关系式.到此,不等式组即建立起来了,接下来就是解不等式组.【答案与解析】解:设有x 名学生,根据题意,得:4376114376132x x x x +>-⎧⎨+--<⎩()()()()(), 不等式(1)的解集是:x <2121;不等式(2)的解集是:x >20,所以,不等式组的解集是:20<x <2121,因为x 是整数,所以,x=21,4×21+37=121(棵)答:这批树苗共有121棵.【总结升华】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系. 举一反三:【变式】一件商品的成本价是30元,若按原价的八八折销售,至少可获得10%的利润;若按原价的九折销售,可获得不足20%的利润,此商品原价在什么范围内?【答案】解:设这件商品原价为x 元,根据题意可得: 88%303010%90%303020%x x ≥+⨯⎧⎨<+⨯⎩ 解得:37.540x ≤<答:此商品的原价在37.5元(包括37.5元)至40元范围内.4.(2015•桂林)“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样).(1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案.【思路点拨】(1)设每本文学名著x 元,动漫书y 元,根据题意列出方程组解答即可;(2)根据学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,列出不等式组,解答即可.【答案与解析】解:(1)设每本文学名著x 元,动漫书y 元,可得:,解得:,答:每本文学名著和动漫书各为40元和18元;(2)设学校要求购买文学名著x 本,动漫书为(x+20)本,根据题意可得:,解得:,因为取整数,所以x 取26,27,28;方案一:文学名著26本,动漫书46本;方案二:文学名著27本,动漫书47本;方案三:文学名著28本,动漫书48本.【总结升华】此题主要考查了二元一次方程组的应用,不等式组的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.【高清课堂:实际问题与一元一次不等式组409416 例2】举一反三:【变式】A 地果农收获荔枝30吨,香蕉13吨,现计划租用甲、乙两种货车共10辆,将这批水果全部运往B 地. 已知甲种货车可装荔枝4吨和香蕉1吨,乙种货车可装荔枝香蕉各2吨.(1)若要安排甲、乙两种货车时有几种方案?请你帮助设计出来.(2)若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输费1300元,那么选择哪种方案使运费最少?运费最少是多少?【答案】解:(1)设租甲种货车x 辆,则租乙种货车(10x -)辆,依题意得:42(10)302(10)13x x x x +-≥⎧⎨+-≥⎩,解得57x ≤≤, 又x 为整数,所以5x =或6或7,∴有三种方案:方案1:租甲种货车5辆,乙种货车5辆;方案2:租甲种货车6辆,乙种货车4辆;方案3:租甲种货车7辆,乙种货车3辆.(2)运输费用:方案1:2000×5+1300×5=16500(元);方案2:2000×6+1300×4=17200(元);方案3:2000×7+1300×3=17900(元).∴方案1运费最少,应选方案1.。
人教版初一数学下册《数轴在不等式的应用》教案
一元一次不等式组的解集一般为下表的四种情 形,试填下表:(设a >b ) 二、用数轴求不等式(组)的特殊解3x _91:不等式x - 2 >江竺 的最大整数解为2三、由不等式(组)中解的情况,确定不等式(组) 中字母的值或取值范围 根据下列条件,分别求出a 的值或取值范围3x + a1) 已知不等式x - 2 :-江上 的解集是XV5;22) 已知不等式x - 2 >竺乜 的解满足x <523) 已知不等式%-2>竺乜只有3个正整数解2-1 0 1 2 3 4 5-4-a6教师演示教师提示这3各题的区别与练习,在学生自主思 考的基础上,通过数轴演示符合题意的情况。
(可以动画演示)学生口答,体会数轴求不等式 组解集的直观特点。
通过教师演示,学生发现 b v a 到无解的演变学 习 流 程学 习 流 程学生求解,建议画数轴与不画 数轴对 比体会数轴的直观作 用。
学生求解,一位同学黑板演算, 教师讲解时在这位同学的演算 基础上改变,让学生发现三个 题的区别,以提高审题能力, 同时体会数轴在解决问题中的 直观形象作用。
三•应用与展示跟踪练习:1. 不等式组[X-的整数解为x+2c102. 已知关于x的不等式组只有2个整数解,求m的取值范围3. 已知关于x的不等式组的解集为x>5,求m的取值范围fx-2>3'x + 2< 3m 学生练习,运用类比方法来体会与运用数轴来解决数学问题。
树立数轴这一工具来解;x-2>3决不等式(组)问题的意识,l + 2 = 3m 从中体会数形结合思想的运用。
4. 已知关于x的不等式组!x-2〉3+ 2 a 3m 的解集为x>6,求m的取值范围--- ------ ---- 1 ・・I・4 5 6 73m-^8 9教师在学生练习的基础上用数轴演示问题,学生借助演示提高运用数轴来解决问题的能力。
拓展训练1•已知关于x的不等式组[x-2>m有解,求△ 一8 c3m m范围2•已知关于x的不等式组!x-2>m|x—8 c3m 有整数解仅为1,2,3,求m的范围------ - ---- -1・■丨---------- ---- - 》-1 0 2+m 1 2 33m+84 5教师在学生练习的基础上用数轴演示问题,学生观察,教师提问学生说明解法。
人教版初中数学七年级下册第九章《不等式与不等式组》小结教案
课题:第九章不等式与不等式组小结一、教材地位:不等式的知识是初中阶段在一元一次方程和二元一次方程组的学习之后,进一步探究现实世界数量关系的重要内容,应用不等式的基本性质解一元一次不等式(组)是学生应该掌握的基本运算技能,为学生的进一步学习函数、方程和不等式的后续学习奠定基础。
二、学情分析:学生在七年级已经学习一元一次方程和二元一次方程组的基础上学习不等式与不等式组,本节主要引导学生对一元一次不等式(组)的解及其解法的小结,对学生在数学及其生活里不等式内容的进一步的总结。
以数学建模为主要思想,进一步地培养学生分析问题和解题能力。
三、教学目标:(一)知识与技能目标:1、巩固运用不等式的性质;2、会运用不等式的基本性质,解一元一次不等式(组),并会借助数轴确定不等式(组)的解集;3、会巧用解集确定字母系数。
(二)过程与方法目标:1、通过学生解不等式,暴露易犯的错误,针对共性解决问题;2、注重渗透知识形成中蕴涵的数学思想、方法和思维策略;(三)情感与态度目标:1、让学生领会数形结合、分类讨论等解题思想;2、感受数学与生活密切相关,提高学习数学的积极性;四、教学重点:一元一次不等式(组)的概念、性质及解一元一次不等式(组);五、教学难点:巧用解集确定字母系数,体验运用数形结合、分类讨论的思想方法,六、教学策略:本节课将采用“兵教兵”及多媒体演示等方式来突出重点,突破难点.设计典型例题,学生通过“兵教兵”的方式发现问题并展开探索交流.在学生把握基本内容的基础上,教师引导学生进一步提炼,构建知识体系,科学地进行小结与归纳.在此基础上,通过师生之间、生生之间的交流,使学生对数学思想方法的认识更深刻,对解决问题的策略把握得更灵活。
七、教学准备:教师多媒体,学生学具准备。
教学过程一、小测比一比谁做得最快、最好1、解不等式 , 并把解集在数轴上表示出来;2、求不等式组 的整数解。
设计意图:1、根据学生新课的学习,对不等式与不等式组的计算掌握较好,所以通过小测的形式检测;让学生明白本章的重点之一(不等式与不等式组的计算)是否过关;2、通过“兵教兵”的形式,让之前没过关的学生全部通过;3、通过小老师的批改及“兵教兵”时发现的错误,再请他们小结计算过程的易错点。
人教版七年级数学下册知识点大全
人教版七年级数学下册知识点大全第五章相交线与平行线5.1.1相交线1、如果两条直线只有一个公共点,就说这两条直线相交,该公共点叫做两直线的交点。
2、如果两个角有一个公共边,并且它们的另一边互为反向延长线,那么这两个角互为邻补角。
性质:邻补角互补。
(两条直线相交有4对邻补角。
)3、如果两个角的顶点相同,并且两边互为反向延长线,那么这两个角互为对顶角。
性质:对顶角相等。
(两条直线相交,有2对对顶角。
)5.1.2垂线4、当两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。
其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
5、由直线外一点向直线引垂线,这点与垂足间的线段叫做垂线段。
(要找垂线段,先把点来看。
过点画垂线,点足垂线段。
)6、垂线段是垂线上的一部分,它是线段,一端是一个点,另一端是垂足。
7、垂线画法:①放:放直尺,直尺的一边要与已知直线重合;②靠:靠三角板,把三角板的一直角边靠在直尺上;③移:移动三角板到已知点;④画线:沿着三角板的另一直角边画出垂线.8、垂线性质1:过一点有且只有一条直线与已知直线垂直。
9、过一点画已知线段(或射线)的垂线,就是画这条线段(或射线)所在直线的垂线.10、连接直线外一点与直线上各点的所有线段中,垂线段最短。
(垂线段最短.)11、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
5.1.3同位角、同旁内角、内错角12、同位角:如果两个角都在被截的两条直线的同方向,并且都在截线的同侧,即它们的位置相同,这样的一对角叫做同位角。
形如字母“F”。
13、内错角:如果两个角分别在被截的两条直线之间(内),并且分别在截线的两侧(错),这样的一对角叫做内错角。
形如字母“Z”。
14、同旁内角:如果两个角都在被截直线之间(内),并且都在截线的同侧(同旁),这样的一对角叫做同旁内角。
形如字母“U”。
5.2.1平行线15、在同一平面内,不相交的两条直线叫做平行线,记作:a∥b。
小学数学-小学七年级数学下册-不等式及其解集
人教版 数学 七年级 下册9.1不等式/9.1不等式9.1.1不等式及其解集9.1不等式/很多人在自己的童年生活中,都做过跷跷板的游戏,当一个大人和一个小孩同时坐上等臂长的跷跷板的两边时会发生什么现象呢?导入新知9.1 不等式/1. 了解不等式概念和不等式的解.2. 理解不等式的解集,能正确表示不等式的解集.素养目标3. 培养数感,渗透数形结合的思想.知识点1不等式的概念现实生活中,数量之间存在着相等与不相等的关系.例如,小明的身高为155cm,小聪的身高为156cm ,则我们可以用不等号“>”或“<”来表示他们的身高之间的关系.如:156 > 155或155 < 156.155cm156cm【思考】如图所示,处于平衡状态的托盘天平的右盘放上一质量为50g的砝码,左盘放上一个圆球后向左倾斜,问圆球的质量x g与质量为50g的砝码之间具有怎样关系?我们很容易知道圆球的质量大于砝码的质量,即x > 50.一辆匀速行驶的汽车在11 :20距离A地50千米,要在12 :00之前驶过A地,车速应满足什么条件?A50千米11 :2012 :0040分钟=2/3小时设车速是x千米/时从时间上看,汽车要在12:00之前驶过A地,则以这个速度行驶50千米所用的时间不到2/3小时,即从路程上看,汽车要在12:00之前驶过A地,则以这个速度行驶2/3小时的路程要超过50千米,即①②分析:【思考】下列式子有什么区别?区别:①只有(4)的式子里含有“=”符号;②除了(4)的式子里含有“>”或“<”或“≥”或“≤”或“≠”符号;(1)(2)(3)x ≠50(4)x =5(5)x ≥9(6)x ≤10共同点:l 式子里含有不是“=”的符号.l 式子里没有“=”号;观察 , ,x≥9,x ≠50,x ≤10想一想它们有什么共同点?用不等号(<,>,≥,≤,≠)连接的式子叫做不等式.例1 判断下列式子是不是不等式:① -1<3; ② -x +2=4;③ 3x ≠ 4y ; ④ 6 > 2;⑤ 2x -3; ⑥ 2m < n.是;不是;是;是;不是;是.素养考点 1不等式的识别9.1不等式/下列式子哪些是不等式?哪些不是不等式?为什么?①-2<5;②x+3>6;③4x-2y≤0;④a-2b;⑤a+b≠c;⑥5m+3=8;⑦8+4<7;⑧ .巩固练习答:①②③⑤⑦⑧是不等式,④⑥不是,因为④不含不等号,⑥是等式.9.1 不等式/(1) a 与1的和是正数;(2)y 的2倍与1的和小于3;(3) y 的3倍与x 的2倍的和是非负数(4) x 乘以3的积加上2最多为5.(1) a +1>0;(2)2y +1<3;(3)3y +2x ≥0;(4)3x +2≤5.例2 用不等式表示:解:素养考点 2用不等式表示数量关系探究新知9.1不等式/用不等式表示:(1)a是正数 ;(2)a是非正数 ;(3)a与5和小于7 ; (4)a与2的差不小于-1;a >0;a ≤0;a + 5 < 7;a -2 ≥-1.巩固练习交流:下面给出的数中,能使不等式x >50成立吗?你还能找出其他的数吗?20, 40, 50, 100. 当x=20,20<50, 不成立;当x=40,40<50, 不成立;当x=50,50=50, 不成立;当x=100,100>50, 成立.解:知识点 2不等式的解和解集我们曾经学过“使方程两边相等的未知数的值是方程的解”,与方程类似 , 能使不等式成立的未知数的值叫不等式的解.代入法是检验某个值是否是不等式的解的简单、实用的方法.例如:100是x >50的解.判断下列数中哪些是不等式 的解:60,73,74.9,75.1,76,79,80,90.你还能找出这个不等式的其他解吗?这个不等式有多少个解?(2)你从表格中发现了什么规律?(1)你发现了哪些数是这个不等式的解?x 607374.975.176798090不是是是不是不是是是是无数个一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解集.【讨论】1.不等式的解和不等式的解集是一样的吗?2.不等式的解与解不等式一样吗?求不等式的解集的过程叫解不等式.满足一个不等式的未知数的某个值满足一个不等式的未知数的所有值个体全体如:x=3是2x-3<7的一个解如:x<5是2x-3<7的解集某个解定是解集中的一员解集一定包括了某个解不等式的解与不等式的解集的区别与联系联系不等式的解不等式的解集区别定义特点形式例 下列说法正确的是( )A. x =3是2x +1>5的解B. x =3是2x +1>5的唯一解C. x =3不是2x +1>5的解D. x =3是2x+1>5的解集A 素养考点 1不等式的解和解集的判断9.1 不等式/解:3.2,4.8,8,12是不等式的解;-4,-2.5,0,1,2.5,3不是.下列数中,哪些是不等式x +3﹥6的解?哪些不是?-4,-2.5,0,1,2.5,3,3.2,4.8,8,12.巩固练习9.1 不等式/判断下列说法是否正确?(1) x =2是不等式x +3<4的解; ( )(2) 不等式x +1<2的解有无穷多个; ( )(3) x =3是不等式3x <9的解; ( )(4) x =2是不等式3x <7的解集. ( )√×××巩固练习第一种:用式子(如x >2),即用最简形式的不等式 (如x >a 或x <a )来表示.第二种:用数轴,一般标出数轴上某一区间,其中的点对应的数值都是不等式的解.用数轴表示不等式的解集的步骤:第一步:画数轴;第二步:定界点;第三步:定方向.知识点 3不等式解集的表示方法【画一画】 利用数轴来表示下列不等式的解集.(1)x >-1;(2) x < .-101变式:已知x 的取值范围在数轴上表示如图,你能写出x 的取值范围吗?-2x <-2表示-1的点表示 的点方向向右方向向左空心圆表示不含此点探究新知9.1不等式/归纳总结用数轴表示不等式的解集,应记住下面的规律:1.大于向右画,小于向左画;2.>,<画空心圆.12例 直接写出x +4<6的解集,并在数轴上表示出来. 解:x <2.这个解集可以在数轴上表示为:解:(1)x <-4(2)x >4.0-44(1)(2)变式1:已知x 的解集如图所示,你能写出x 的解集吗?素养考点1在数轴上表示不等式解集变式2:直接写出不等式2x>8的解集,并在数轴上表示出来.解:x>4.这个解集在数轴上表示为:04变式3:直接写出不等式-2x>8的解集.解:x<-4.巩固练习9.1不等式/在数轴上表示下列不等式的解集:(1) x>-1; (2) x≥-1;(3) x<-1; (4) x≤-1.分析:按画数轴,定界点,走方向的步骤作答.答案:如图:连接中考9.1不等式/语句“x的与x的和不超过5”可以表示为( )A A.B.C. D.1. 用不等式表示下列数量关系:(1)a 是正数;(2)x 比-3小;(3)两数m 与n 的差大于5.a > 0;x <-3;m-n >5.2.下列不是不等式5x -3<6的一个解的是( )A.1B.2C.-1D.-2B 基础巩固题3.在数轴上表示不等式3x>5的解集,正确的是( )AA 012 012CB 01212D4.判断下列式子是不是不等式:(1)-3>0; (2)4x+3y<0;(3)x=3; (4)x2+xy+y2;(5)x≠5; (6)x+2>y+5.解 : (1)(2)(5)(6)是不等式; (3)(4)不是不等式.5.直接写出下列不等式的解集.x +3>6的解集是 ;2x <18的解集是; x -2>0的解集是 .x >3x<9x >2解:当x =63时, ,不等式成立,所以x =63是不等式 的解 ; 当x =60时, ,不等式不成立,所以x =60不是不等式 的解;当x =54时, ,不等式不成立,x =63是不等式 的解吗?x =60呢?x =54呢? 能力提升题已知一支圆珠笔x 元,签字笔与圆珠笔相比每支贵y 元. 小华想要买3支圆珠笔和10支签字笔,若付50元仍找回若干元,则如何用含x ,y 的不等式来表示小华所需支付的金额与50元之间的关系?解: 3x +10(x+y )<50.拓广探索题9.1 不等式/不等式→实际问题中不等式的表示概念↓↓解、解集课堂小结9.1不等式/课后作业作业内容教材作业从课后习题中选取自主安排配套练习册练习。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
确定解集找数轴
山东 黄科华
我们知道,不等式的所有解组合在一起组成不等式的解集.一般来说,一个含未知数的不等式的解集是一个取值范围,可以在数轴上直观地表示出来.那么如何才能快速、准确地在数轴上表示不等式的解集呢?
简单来说,对于一个不等式,首先要求出这个不等式的解集;二是正确地画出一个数轴;三是将所得的不等式的解集在数轴上表示出来,这也是关键的一步.通过下面的演示,你就一目了然了.
例 把下列不等式的解集在数轴上表示出来.
(1)x <3;
(2)x ≥﹣212
. 分析:(1)是小于符号,并不包括3本身,所以在数轴上表示时,方向向左,且在3这点上是“空心”;
(2)是大于等于符号,包括﹣212 本身,所以在数轴上表示时,方向向右,且在﹣212
这点上是“实心”.
解:(1)因为解集x <3表示“所有小于3的数组成的全体”,所以在数轴上,用3左边的部分来表示,3这一点画成空心圆圈,表示不包括3这个数,如图1所示:
(2)因为解集x ≥﹣212 表示“所有大于或等于﹣212
的数组成的全体”,所以在数轴上用-212 的点及它的右边部分来表示,-212 这一点画成实心圆点,表示包括﹣212
这个数,如图2所示.
点评:求解此类问题时,准确地理解解集的含义是基础,正确地画出数轴并准确地表示是关键.
跟踪训练 利用不等式的性质解下列不等式,并在数轴上表示解集.
1.13 x ≥﹣23
x+6;
2.﹣12
x <﹣3;
3.2x ﹣7<5﹣2x ;
4.5x ﹣2>3(x+1)
答案
1.x ≥6,
2.x >6,
3.x<3,
4.x>52
,。