必修五正余弦定理公式1

合集下载

解三角形知识点

解三角形知识点

《必修五》解三角形知识点归纳一、正弦定理 正弦定理:2sin sin sin a b cR A B C=== 文字语言:在一个三角形中,各边和它所对角的正弦的比相等. 符号语言:2sin sin sin a b cR A B C=== 特点:对称美、和谐美 (一)理解定理1、正弦定理:在△ABC 中,2sin sin sin sin sin sin a b c a b cR A B C A B C++====++【在这个式子当中,已知两边和一角或已知两角和一边,可以求出其它所有的边和角,从而知正弦定理的基本作用是进行三角形中的边角互化】2、正弦定理的基本作用:①已知三角形的任意两角及其一边可以求其他边,如角化边sin sin b Aa B=②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin a BA b= 3、常用公式及其结论⑴正弦定理包含三个等式sin sin a b A B =,sin sin b c B C =,sin sin a c A C=每一个等式中都包含四个量,可以“知三求一” (2)三内角和为180︒即180A B C ︒++=,222A B C π+=- (3)两边之和大于第三边,两边之差小于第三边,,;,,.a b c a c b b c a a b c b c a a c b +>+>+>-<-<-< (4)面积公式:2111sin sin sin 2sin sin sin 2224abcS ab C bc A ac B R A B C R===== ⑸三角函数的恒等变形:sin()sin A B C +=,cos()cos A B C +=- ,()tan tan A B C +=-,sincos 22A B C +=,cos sin 22A B C+=,tan tan 22A B C +=,tan tan +tan tan tan tan A B C A B C +=⋅⋅ ⑹C B A c b a sin :sin :sin ::= ⑺角化边: C R c B R b A R a sin 2sin 2sin 2===⑻边化角:RcC Rb B Ra A 2sin 2sin 2sin ===⑼在△ABC 中,①若B b A a cos cos =,则△ABC 是等腰三角形或直角三角形; ②若B a A b cos cos =,则△ABC 是等腰三角形;③若222cos cos +cos 1A B C +=或cos cos cos a A b B c C +=,则△ABC 是直角三角形.⑽在△ABC 中,sin sin sin A B C a b c A B C >>⇔>>⇔>>(二)题型:使用正弦定理解三角形共有三种题型题型1: 利用正弦定理公式原型解三角形题型2: 利用正弦定理公式的变形(边角互化)解三角形:关于边或角的齐次式可以直接边角互化.例如:222222sin 3sin 2sin 32A B C a b c +=⇒+=题型3: 三角形解的个数的讨论 方法一:画图看方法二:通过正弦定理解三角形,利用三角形内角和与三边的不等关系检验解出的结果是否符合实际意义,从而确定解的个数.(三)三角形内角平分线定理:△ABC 中,AD 是A ∠的角平分线,则DCBDAC AB = 我们知道,当一个三角形已知任意两角和一边时,根据全等三角形的判定定理可以得知这个三角形就是唯一确定的,也就是可解的.先由三角形内角和定理求出第三个角,再由正弦定理计算另两边.另外,一个三角形的三边之间必须满足:任意两边之和大于第三步且任意两边之差小于第三边.当已知一个三角形的三边时,已知的三条边必须满足上面的条件才能够作出三角形.否则作不出三角形,当然也无法解三角形.从上面的探讨可以得知,已知三角形的三边要解三角形时,必须满足三边关系,解三角形才有意义.当已知三边时,连续利用余弦定理的推论求出较小边的对角,再用三角形内角和求出第三个角. 如果已知三角形的两边及其夹角,那么根据三角形的判定定理我们知道这个三角形是唯一确定的,也就是可解的.我们可以利用余弦定理计算第三边,用余弦定理的推论或正弦定理计算其余两个角. 如果已知任意两边及其中一边的对角如何来解三角形呢?我们先看下面的例题: 例题:已知:在△ABC 中,22,25,133,a cm b cm A ︒===解三角形. 解:22,25,133a cm b cm A ︒===∴根据正弦定理,得sin 25sin133sin 0.831122b A B a ︒==≈ 0180B ︒︒<< ∴56.21B ︒≈,或123.79B ︒≈ 180A B C ︒++= ∴9.21C ︒=-或76.79C ︒=-【师】:问题出在哪里呢?【生】:分析已知条件,我们注意到,133a b A ︒<=,是一个钝角,根据三角形的性质应该有A B <,因而B 也是一个钝角.而在一个三角形中是不可能存在两个钝角的.【师】:从上面的分析我们发现,在已知三角形的两边及其中一边的对角解三角形时,在某些条件下会出现无解的情形.如:①已知32,2,60===O b a A ,求B (有一个解);②已知32,2,60===O a b A ,求B (有两个解)二、余弦定理(一)知识与工具:余弦定理:222222222222222222cos 22cos 2cos cos 22cos cos 2b c a A bc a b c bc A a c b b a c ac B B ac c a b ab C a b c C ab ⎧+-=⎪⎧=+-⎪+-⎪⎪=+-⇒=⎨⎨=+-⎪⎪⎩+-⎪=⎪⎩(二)题型:使用余弦定理解三角形共有三种现象的题型题型1:利用余弦定理公式的原型解三角形题型2:利用余弦定理公式的变形(边角互换)解三角形:凡在同一式子中既有角又有边的题,要将所有角转化成边或所有边转化成角,在转化过程中需要构造公式形式。

高中数学正弦余弦公式大全

高中数学正弦余弦公式大全

正弦定理和余弦定理一:基础知识理解1 .正弦定理分类内容定理===2 R ( R 是△ ABC 外接圆的半径 )变形公式① a = 2 R sin _ A , b = 2 R sin _ B , c = 2 R sin _ C ,② sin A ∶ sin B ∶ sin C =a ∶ b ∶ c ,③ sin A =,sin B =,sin C =解决的问题① 已知两角和任一边,求其他两边和另一角,② 已知两边和其中一边的对角,求另一边的对角2 .余弦定理分类内容定理在△ ABC 中,有 a 2 = b 2 + c 2 -2 bc cos _ A ;b 2 = a 2 +c 2 -2 ac cos _ B ; c 2 = a 2 + b 2 -2 ab cos _ C 变形公式cos A =;cos B =;cos C =解决的问题① 已知三边,求各角;② 已知两边和它们的夹角,求第三边和其他两个角3 .三角形中常用的面积公式( 1 ) S = ah ( h 表示边 a 上的高 );( 2 ) S = bc sin A = ac sin B = ab sin C ;( 3 ) S = r ( a + b + c )( r 为三角形的内切圆半径 ).二:基础知识应用演练1 .( 2012·广东高考 ) 在△ ABC 中,若∠ A = 60°,∠ B = 45°, BC = 3 ,则 AC =()A . 4B . 22 .在△ ABC 中, a =, b = 1 , c = 2 ,则 A 等于 ()A . 30°B . 45°C . 60°D . 75°3 .( 教材习题改编 ) 在△ ABC 中,若 a = 18 , b = 24 , A = 45°,则此三角形有 ()A .无解B .两解C .一解D .解的个数不确定4 .( 2012·陕西高考 ) 在△ ABC 中,角 A , B , C 所对边的长分别为 a , b , c .若 a = 2 , B =, c = 2 ,则 b = ________.5 .△ ABC 中, B = 120°, AC = 7 , AB = 5 ,则△ ABC 的面积为________ .解析:1 选B 由正弦定理得:=,即=,所以 AC = × =2 .2 选C ∵ cos A ===,又∵ 0°< A <180°,∴ A =60°.3 选B ∵ =,∴ sin B = sin A = sin 45°,∴ sinB = .又∵ a < b ,∴ B 有两个.4 由余弦定理得 b 2 = a 2 + c 2 -2 ac cos B =4+12-2×2×2 × =4,所以 b =2.答案:25、解析:设 BC = x ,由余弦定理得49=25+ x 2 -10 x cos 120°,整理得 x 2+5 x -24=0,即 x =3.因此 S △ ABC = AB × BC ×sin B = ×3×5× = . 答案:小结: ( 1 ) 在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ ABC 中,A > B ⇔ a > b ⇔ sin A >sin B .( 2 ) 在△ ABC 中,已知 a 、 b 和 A 时,解的情况如下:A 为锐角 A 为钝角或直角图形关系式 a = b sin A b sin A < a < b a ≥ b a > b解的个数一解两解一解一解三、典型题型精讲(1)利用正弦、余弦定理解三角形[例1] ( 2012·浙江高考 ) 在△ ABC 中,内角 A , B , C 的对边分别为 a , b ,c ,且 b sin A = a cos B .( 1 ) 求角 B 的大小; ( 2 ) 若 b = 3 , sin C = 2sin A ,求 a , c 的值.解析: ( 1 ) 由 b sin A = a cos B 及正弦定理=,得sinB = cos B ,所以tan B =,所以 B = .(2) 由 sin C =2sin A 及=,得 c = 2 a . 由 b =3 及余弦定理 b 2 = a 2 + c 2 -2 ac cos B ,得 9= a 2 + c 2 - ac . 所以 a =, c =2 .思考一下:在本例 ( 2 ) 的条件下,试求角 A 的大小.方法小结:1 .应熟练掌握正、余弦定理及其变形.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.2 .已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.试题变式演练 1 .△ ABC 的三个内角 A , B , C 所对的边分别为 a , b , c , a sin A sin B + b cos 2 A = a .( 1 ) 求;( 2 ) 若 c 2 = b 2 + a 2 ,求 B .解: ( 1 ) 由正弦定理得,sin 2 A sin B +sin B cos 2 A = sin A ,即 sin B ( sin 2 A +cos 2 A ) = sin A .故 sin B = sin A ,所以= .( 2 ) 由余弦定理和 c 2 = b 2 + a 2 ,得 cos B = .由 (1) 知 b 2 = 2 a 2 ,故 c 2 =(2+ ) a 2 . 可得 cos 2 B =,又 cos B >0,故 cos B =,所以 B =45°.(2)利用正弦、余弦定理判定三角形的形状[例2] 在△ ABC 中 a , b , c 分别为内角 A , B , C 的对边,且2 a sin A =( 2 b + c ) sin B +( 2 c + b ) sin C .( 1 ) 求 A 的大小;( 2 ) 若sin B + sin C = 1 ,试判断△ ABC 的形状.[ 解析 ] ( 1 ) 由已知,根据正弦定理得 2 a 2 = ( 2 b + c ) · b + ( 2 c + b ) c ,即a 2 = b 2 + c 2 + bc .由余弦定理得 a 2 = b 2 + c 2 -2 bc cos A ,故 cos A =-,∵ 0< A <180°,∴ A =120°.(2) 由 (1) 得 sin 2 A =sin 2 B +sin 2 C +sin B sin C =又 sin B +sin C =1,解得 sin B =sin C = .∵ 0°< B <60°,0°< C <60°,故 B = C ,∴△ ABC 是等腰的钝角三角形.方法小结:依据已知条件中的边角关系判断三角形的形状时,主要有如下两种方法:( 1 ) 利用正、余弦定理把已知条件转化为边边关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状;( 2 ) 利用正、余弦定理把已知条件转化为内角的三角函数间的关系,通过三角函数恒等变形,得出内角的关系,从而判断出三角形的形状,此时要注意应用 A + B + C =π这个结论.[注意] 在上述两种方法的等式变形中,一般两边不要约去公因式,应移项提取公因式,以免漏解.试题变式演练 ( 2012·安徽名校模拟 ) 已知△ ABC 的三个内角 A , B , C 所对的边分别为 a , b , c ,向量 m =( 4 ,- 1 ), n =,且m · n = .( 1 ) 求角 A 的大小;( 2 ) 若 b + c = 2 a = 2 ,试判断△ ABC 的形状.解:( 1 ) ∵ m = ( 4,-1 ) , n =,∴ m · n =4cos 2 -cos 2 A =4·- ( 2cos 2 A -1 ) =-2cos 2 A +2cos A +3.又∵ m · n =,∴ -2cos 2 A +2cos A +3=,解得 cos A =. ∵ 0< A < π ,∴ A = .(2) 在△ ABC 中, a 2 = b 2 + c 2 -2 bc cos A ,且 a =,∴ ( ) 2 =b 2 +c 2 -2 bc ·= b 2 + c 2 -bc . ①又∵ b + c =2 ,∴ b =2 - c ,代入① 式整理得 c 2 - 2 c +3=0,解得 c =,∴ b =,于是 a = b = c =,即△ ABC 为等边三角形.(3)与三角形面积有关的问题[例3] ( 2012·新课标全国卷 ) 已知 a , b , c 分别为△ ABC 三个内角 A , B ,C 的对边, a cos C + a sin C - b - c = 0.( 1 ) 求 A ;( 2 ) 若 a = 2 ,△ ABC 的面积为,求 b , c .[ 解 ] ( 1 ) 由 a cos C + a sin C - b - c =0及正弦定理得sin A cos C + sin A sin C -sin B -sin C =0.因为 B =π- A - C ,所以 sin A sin C -cos A sin C -sin C =0.由于sin C ≠0,所以sin = . 又0< A <π,故 A = .( 2 ) △ ABC 的面积 S = bc sin A =,故 bc =4.而 a 2 = b 2 + c 2 -2 bc cos A ,故 b 2 + c 2 =8. 解得 b = c =2.方法小结:1 .正弦定理和余弦定理并不是孤立的.解题时要根据具体题目合理选用,有时还需要交替使用.2 .在解决三角形问题中,面积公式 S = ab sin C = bc sin A = ac sin B 最常用,因为公式中既有边也有角,容易和正弦定理、余弦定理结合应用.试题变式演练 ( 2012·江西重点中学联考 ) 在△ ABC 中, cos 2 A = cos 2 A -cos A .( 1 ) 求角 A 的大小;( 2 ) 若 a = 3 , sin B = 2sin C ,求 S △ ABC .解: ( 1 ) 由已知得 ( 2cos 2 A -1 ) =cos 2 A -cos A ,则cos A = .因为0< A <π,所以 A = .( 2 ) 由=,可得==2,即 b = 2 c .所以cos A ===,解得 c =, b =2 ,所以 S △ ABC = bc sin A = ×2 × × = .课后强化与提高练习(基础篇-必会题)1 .在△ ABC 中, a 、 b 分别是角 A 、 B 所对的边,条件“ a < b ”是使“cosA >cosB ”成立的 ()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2 .( 2012·泉州模拟 ) 在△ ABC 中, a , b , c 分别是角 A , B , C 所对的边.若 A =, b = 1 ,△ ABC 的面积为,则 a 的值为 ()A . 1B . 23 .( 2013·“江南十校”联考 ) 在△ ABC 中,角 A , B , C 所对的边分别为 a , b ,c ,已知 a = 2 , c = 2 , 1 +=,则 C =()A . 30°B . 45°C . 45°或135°D . 60°4 .( 2012·陕西高考 ) 在△ ABC 中,角 A , B , C 所对边的长分别为 a , b , c ,若 a 2 + b 2 = 2 c 2 ,则cos C 的最小值为 ()D .-5 .( 2012·上海高考 ) 在△ ABC 中,若sin 2 A + sin 2 B <sin 2 C ,则△ ABC 的形状是 ()A .锐角三角形B .直角三角形C .钝角三角形D .不能确定6 .在△ ABC 中,角 A 、 B 、 C 所对的边分别是 a 、 b 、 c .若 b = 2 a sin B ,则角 A 的大小为________ .解析:由正弦定理得sin B =2sin A sin B ,∵ sin B ≠0,7 .在△ ABC 中,若 a = 3 , b =, A =,则 C 的大小为________ .8 .( 2012·北京西城期末 ) 在△ ABC 中,三个内角 A , B , C 的对边分别为 a ,b ,c .若 b = 2 , B =, sin C =,则 c = ________ ; a = ________.9 .( 2012·北京高考 ) 在△ ABC 中,若 a = 2 , b + c = 7 , cos B =-,则 b = ________.10 .△ ABC 的内角 A , B , C 的对边分别为 a , b , c , a sin A + c sin C -a sin C =b sin B .( 1 ) 求 B ;( 2 ) 若 A = 75°, b = 2 ,求 a , c .11 .( 2013·北京朝阳统考 ) 在锐角三角形 ABC 中, a , b , c 分别为内角 A , B ,C 所对的边,且满足 a - 2 b sin A = 0.( 1 ) 求角 B 的大小;( 2 ) 若 a + c = 5 ,且 a > c , b =,求 ·的值.12 .( 2012·山东高考 ) 在△ ABC 中,内角 A , B , C 所对的边分别为 a , b ,c ,已知sin B ( tan A + tan C )= tan A tan C .( 1 ) 求证: a , b , c 成等比数列;( 2 ) 若 a = 1 , c = 2 ,求△ ABC 的面积 S .课后强化与提高练习(提高篇-选做题)1 .( 2012·湖北高考 ) 设△ ABC 的内角 A , B , C 所对的边分别为 a , b , c .若三边的长为连续的三个正整数,且 A > B > C , 3 b = 20 a cos A ,则sin A ∶ sin B ∶ sin C 为 ()A .4 ∶ 3 ∶ 2B .5 ∶ 6 ∶ 7C .5 ∶ 4 ∶ 3D .6 ∶ 5 ∶ 42 .( 2012·长春调研 ) 在△ ABC 中,角 A , B , C 的对边分别为 a , b , c ,已知4sin 2 - cos 2 C =,且 a + b = 5 , c =,则△ ABC 的面积为________ .3 .在△ ABC 中,角 A , B , C 的对边分别为 a , b , c ,且满足 ( 2 b - c ) cos A - a cos C = 0.( 1 ) 求角 A 的大小;( 2 ) 若 a =, S △ ABC =,试判断△ ABC 的形状,并说明理由.选做题1 .已知 a , b , c 分别是△ ABC 的三个内角 A , B , C 所对的边.若 a = 1 ,b =, A + C = 2 B ,则sin C = ________.2 .在△ ABC 中, a = 2 b cos C ,则这个三角形一定是 ()A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形3 .在△ ABC 中,角 A , B , C 所对的边分别为 a , b , c ,已知cos 2 C =- .( 1 ) 求sin C 的值;( 2 ) 当 a = 2 , 2sin A = sin C 时,求 b 及 c 的长.4 .设△ ABC 的内角 A , B , C 所对的边长分别为 a , b , c ,且cos B =, b = 2.( 1 ) 当 A = 30°时,求 a 的值;( 2 ) 当△ ABC 的面积为3时,求 a + c 的值.课后强化与提高练习(基础篇-必会题)解析1 解析:选C a < b ⇔ A < B ⇔ cos A >cos B .2 解析:选D 由已知得 bc sin A = ×1× c ×sin =,解得 c = 2 ,则由余弦定理可得 a 2 = 4 + 1 - 2×2×1×cos =3 ⇒ a = .3 解析:选B 由1 +=和正弦定理得 cos A sin B +sin A cos B=2sin C cos A ,即 sin C =2sin C cos A ,所以 cos A =,则 A =60°. 由正弦定理得=,则 sin C =,又 c < a ,则 C <60°,故 C =45°.4 解析:选 C 由余弦定理得 a 2 + b 2 - c 2 =2 ab cos C ,又 c 2 =( a 2 + b 2 ),得 2 ab cos C = ( a 2 + b 2 ),即 cos C =≥ = .6 解析:选 C 由正弦定理得 a 2 + b 2 < c 2 ,所以 cos C =<0,所以 C 是钝角,故△ ABC 是钝角三角形.∴ sin A =,∴ A =30°或 A =150°. 答案:30°或 150°7 解析:由正弦定理可知 sin B ===,所以 B =或 ( 舍去 ),所以 C =π - A - B =π --= . 答案:8 解析:根据正弦定理得=,则 c ==2 ,再由余弦定理得 b 2 = a 2 + c 2 -2 ac cos B ,即 a 2 - 4 a -12=0,( a +2)( a -6)=0,解得 a =6 或 a =-2( 舍去 ).答案:2 69 解析:根据余弦定理代入 b 2 =4+(7- b ) 2 -2×2×(7- b )× ,解得b =4. 答案:410 解:(1) 由正弦定理得 a 2 + c 2 - ac = b 2 . 由余弦定理得 b 2 = a 2 +c 2 -2 ac cos B .故cos B =,因此 B =45°.(2)sin A =sin(30°+45°)=sin 30°cos 45°+cos 30°sin 45°= .故 a = b × ==1+, c = b × =2×= .1 1 解:(1) 因为 a -2 b sin A =0,所以 sin A -2sin B sin A =0,因为sin A ≠0,所以 sin B = . 又 B 为锐角,所以 B = .( 2 ) 由 ( 1 ) 可知, B = .因为 b = .根据余弦定理,得7= a 2 + c 2 -2 ac cos ,整理,得 ( a + c ) 2 - 3 ac =7.由已知 a + c =5,得 ac =6.又 a > c ,故 a =3, c =2.于是cos A ===,所以 ·=| |·| |cos A = cb cos A=2× × =1.12 解: ( 1 ) 证明:在△ ABC 中,由于sin B ( tan A +tan C ) =tan A tan C ,所以sin B = ·,因此sin B ( sin A cos C +cos A sin C ) =sin A sin C ,所以 sin B sin( A + C )=sin A sin C .又 A + B + C =π ,所以 sin( A + C )=sin B ,因此 sin 2 B =sin A sin C .由正弦定理得 b 2 = ac ,即 a , b , c 成等比数列.( 2 ) 因为 a =1, c =2,所以 b =,由余弦定理得cos B ===,因为0< B <π,所以sin B ==,故△ ABC 的面积 S = ac sin B = ×1×2× = .课后强化与提高练习(提高篇-选做题)解析1 解析:选D 由题意可得 a > b > c ,且为连续正整数,设 c = n , b = n +1,a = n +2 ( n >1,且n ∈ N * ) ,则由余弦定理可得3 ( n +1 ) =20 ( n +2 ) ·,化简得7 n 2 -13 n -60=0,n ∈ N * ,解得 n =4,由正弦定理可得sin A ∶ sin B ∶ sin C =a ∶ b ∶ c =6 ∶ 5 ∶ 4.2 解析:因为4sin 2 -cos 2 C =,所以2[1-cos( A + B )]-2cos 2 C +1=,2+2cos C -2cos 2 C +1=,cos 2 C -cos C +=0,解得cos C = .根据余弦定理有cos C ==,ab = a 2 + b 2 -7 , 3 ab = a 2 + b 2 +2 ab -7= ( a + b ) 2 -7=25-7=18,ab =6,所以△ ABC 的面积 S △ ABC = ab sin C = ×6× =.答案:3 解: ( 1 ) 法一:由 ( 2 b - c ) cos A - a cos C =0及正弦定理,得(2sin B -sin C )cos A -sin A cos C =0,∴ 2sin B cos A -sin( A + C )=0,sin B (2cos A -1)=0. ∵ 0< B < π ,∴ sin B ≠0,∴ cos A =. ∵ 0< A < π ,∴ A= .法二:由 (2 b - c )cos A - a cos C =0,及余弦定理,得 (2 b - c )·- a ·=0,整理,得 b 2 + c 2 - a 2 = bc ,∴ cos A ==,∵ 0<A < π ,∴ A = .(2) ∵ S △ ABC = bc sin A =,即 bc sin =,∴ bc =3,①∵ a 2 = b 2 + c 2 -2 bc cos A , a =, A =,∴ b 2 + c 2 =6,② 由①② 得 b = c =,∴△ ABC 为等边三角形.选择题解析1 解析:在△ ABC 中, A + C =2 B ,∴ B =60°. 又∵ sin A ==,∴ A =30°或 150°( 舍 ),∴ C =90°,∴ sin C =1.答案:12 解析:选A 法一: ( 化边为角 ) 由正弦定理知:sin A =2sin B cos C ,又 A =π -( B + C ),∴ sin A =sin( B + C )=2sin B cos C .∴ sin B cos C +cos B sin C =2sin B cos C ,∴ sin B cos C -cos B sin C =0,∴ sin ( B - C ) =0.又∵ B 、 C 为三角形内角,∴ B = C .法二: ( 化角为边 ) 由余弦定理知cos C =,∴ a =2 b ·=,∴ a 2 = a 2 + b 2 - c 2 ,∴ b 2 = c 2 ,∴ b = c .3 解: ( 1 ) 因为cos 2 C =1-2sin 2 C =-,且0< C <π,所以sin C = .( 2 ) 当 a =2 , 2sin A =sin C 时,由正弦定理=,得 c =4.由cos 2 C =2cos 2 C -1=-,及0< C <π得cos C =± .由余弦定理 c 2 = a 2 + b 2 -2 ab cos C ,得 b 2 ± b -12=0,解得 b =或2 ,所以或4 解: ( 1 ) 因为cos B =,所以sin B = .由正弦定理=,可得=,所以 a = .( 2 ) 因为△ ABC 的面积 S = ac ·sin B ,sin B =,所以 ac =3, ac =10.由余弦定理得 b 2 = a 2 + c 2 -2 ac cos B ,得4= a 2 + c 2 - ac = a 2 + c 2 -16,即 a 2 + c 2 =20.所以 ( a + c ) 2 - 2 ac =20, ( a + c ) 2 =40.所以 a + c =2 .。

高中数学必修五公式整理

高中数学必修五公式整理

高中数学必修五公式声明:本文非原创,由于界面阅读感不好而本人进行重新排版。

第一章 三角函数一.正弦定理:2(sin sin sin a b cR R A B C===为三角形外接圆半径) 变形:2sin (sin )22sin (sin )22sin (sin )2a a R A A R b b R B B R c c R C C R ⎧==⎪⎪⎪==⎨⎪⎪==⎪⎩推论:::sin :sin :sin a b c A B C =二.余弦定理:三.三角形面积公式:111sin sin sin ,222ABC S bc A ac B ab C ∆===第二章 数列一.等差数列: 1.定义:a n+1-a n =d (常数)2.通项公式:()d n a a n ∙-+=11或()d m n a a m n ∙-+=3.求和公式:()()d n n n n a a a S n n 21211-+=+=4.重要性质(1)a a a a q p n m q p n m +=+⇒+=+(2) m,2m,32m m m S S S S S --仍成等差数列二.等比数列:1.定义:)0(1≠=+q q a a nn 2.通项公式:q a a n n 11-∙=或q a a mn m n -∙=3.求和公式: )(1q ,1==na S n )(1q 11)1(11≠--=--=qqa a q q a S n n n2222222222cos 2cos 2cos a b c bc Ab ac ac B c a b ab C =+-=+-=+-222222222cos 2cos 2cos 2b c a A bca cb B aca b c C ab+-=+-=+-=4.重要性质(1)a a a a q p n m q p n m =⇒+=+(2)()m,2m,32q 1m m m m S S S S S --≠-仍成等比数列或为奇数三.数列求和方法总结:1.等差等比数列求和可采用求和公式(公式法).2.非等差等比数列可考虑(分组求和法) ,(错位相减法)等转化为等差或等比数列再求和, 若不能转化为等差或等比数列则采用(拆项相消法)求和.注意(1):若数列的通项可分成两项之和(或三项之和)则可用(分组求和法)。

(完整版)必修五;正弦定理与余弦定理

(完整版)必修五;正弦定理与余弦定理

必修五:正弦定理和余弦定理一:正弦定理1:定理内容:在一个三角形中,各边的长和它所对角的正弦的比相等,即R Cc B b A a 2sin sin sin ===(R 是三角形外接圆半径) 2:公式变形(1)R Aa C B A cb a 2sin sin sin sin ==++++ (2)⎪⎩⎪⎨⎧C R c B R b A R a sin 2sin 2sin 2===或R c C R b B R a A 2sin ,2sin ,2sin === (3)⎪⎩⎪⎨⎧B c C b A c C a A b B a sin sin sin sin sin sin ===(4)Rabc A bc B ac C ab S ABC 4sin 21sin 21sin 21====∆ 以下是ABC ∆内的边角关系:熟记(5)B A B A b a >⇔>⇔>sin sin (大边对大角)(6)B A B A cos cos <⇔>(7)⎪⎩⎪⎨⎧+=+=+=)sin(sin )sin(sin )sin(sin B A C C A B C B A 思考A cos 与)cos(C B +的关系(8)2cos 2sin C B A += (9)若AD 是ABC ∆的角平分线,则AC DC AB DB = 思考题:1:若B A sin sin =,则B A ,有什么关系?2:若B A 2sin 2sin =,则B A ,有什么关系?3:若B A cos cos =,则B A ,有什么关系?4:若21sin >A ,则角A 的范围是什么?解三角形:已知三角形的几个元素,求其他元素的过程叫做解三角形.例1:已知ABC ∆,根据下列条件,解三角形.(1)10,45,60=︒=∠︒=∠a B A .(2)︒=∠==120,4,3A b a .(3)︒=∠==30,4,6A b a .(4)︒=∠==30,16,8A b a .(5)︒=∠==30,4,3A b a .思考:在已知“边边角”的情况下,如何判断三角形多解的情况判断方法:(1)用正弦定理:比较正弦值与1的关系(2)作图法:用已知角所对的高与已知角所对的边长比较.练习:(1)若︒=∠==45,12,6A b a ,则符合条件的ABC ∆有几个?(2)若︒=∠==30,12,6A b a ,则符合条件的ABC ∆有几个?(3)若︒=∠==45,12,9A b a ,则符合条件的ABC ∆有几个?例2:根据下列条件,判断三角形形状.(1)C B A 222sin sin sin =+.(2)C B A cos sin 2sin =(3)B b A a cos cos =(4)A b B a tan tan 22=二:余弦定理1:定理内容:三角形任何一边的平方等于其他两边的平方和减去这两边与它们夹角的余弦的积的两倍.即A bc c b a cos 2222-+=B ac c a b cos 2222-+=C ab b a c cos 2222-+= 另一种形式:bca cb A 2cos 222-+=. 请写出另两个:例1:根据下列条件,解三角形.(1)在ABC ∆中,︒=∠==120,4,5C b a ,求边c .(2)在ABC ∆中,︒=∠==60,8,5C b a ,求边c .(3)在ABC ∆中,8,7,5===c b a ,求最大角与最小角的和.(4)在ABC ∆中,13:8:7sin :sin :sin =C B A ,求C cos .(5)在ABC ∆中,8,120,34=+︒=∠=b a C c ,求ABC ∆的面积.(6)在ABC ∆中,34,60,4=︒=∠=∆ABC S C c ,求ABC ∆的周长.(7)在ABC ∆中,1)(22=--bcc b a ,求A ∠. (8)在ABC ∆中,4,3,2===c b a ,判断ABC ∆的形状.(9)求证:在ABC ∆中,)cos cos cos (2222C ab B ac A bc c b a ++=++.(10)求证:平行四边形两对角线的平方和等于它各边的平方和.。

高中数学必修五1.1正弦定理和余弦定理 课件 (共34张PPT)

高中数学必修五1.1正弦定理和余弦定理 课件 (共34张PPT)

两种途径 根据所给条件确定三角形的形状,主要有两种途径: (1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角 转换.
双基自测 1.(人教A版教材习题改编)在△ABC中,A=60° ,B=75° ,a =10,则c等于( A.5 2 10 6 C. 3 ). B.10 2 D.5 6
a 解析 由A+B+C=180° ,知C=45° ,由正弦定理得: sin A = c 10 c 10 6 sin C,即 3= 2.∴c= 3 . 2 2 答案 C
sin A cos B 2.在△ABC 中,若 a = b ,则 B 的值为( A.30° 解析 B.45° C.60° D.90°
4. 已知两边和其中一边的对角, 解三角形时, 注意解的情况. 如 已知 a,b,A,则 A 为锐角 图形 A 为钝角或直角
关系 式 解的 个数
a<b sin A a=bsin A
bsin A<a< b 两解
a≥b a>b a≤b
无解
一解
一解 一解 无解
一条规律 在三角形中,大角对大边,大边对大角;大角的正弦值也较大, 正弦值较大的角也较大,即在△ABC 中,A>B⇔a>b⇔sin A >sin B. 两类问题 在解三角形时,正弦定理可解决两类问题:(1)已知两角及任一 边,求其它边或角; (2) 已知两边及一边的对角,求其它边或 角.情况(2)中结果可能有一解、两解、无解,应注意区分.余 弦定理可解决两类问题:(1)已知两边及夹角求第三边和其他两 角;(2)已知三边,求各角.
正弦定理和余弦定理
基础梳理 a b c 1.正弦定理:sin A=sin B=sin C=2R,其中 R 是三角形外接 圆的半径.由正弦定理可以变形为: (1)a∶b∶c=sin A∶sin B∶sin C; (2)a= 2Rsin A ,b= 2Rsin B ,c= 2Rsin C ; a b c (3)sin A=2R,sin B=2R,sin C=2R等形式,以解决不同的三 角形问题.

人教版高中数学必修五正弦定理和余弦定理课件

人教版高中数学必修五正弦定理和余弦定理课件

解的情况
A为钝角或直角
a>b a≤b
一解 无解
a<bsinA
无解
A为锐角
a=bsinA bsinA<a<b
一解 两解
a≥b
一解
思考 : 在ABC中, a x, b 2, A 450,若这个三角形有
两解,则x的取值范围是 _____2_,_2____
正弦定理的推论: =2R (R为△ABC外接圆半径) (边换角)
在已知三边和一个角的情况下:求另一个角 ㈠用余弦定理推论,解唯一,可以免去判断舍取。 ㈡用正弦定理,计算相对简单,但解不唯一,要进行 判断舍取。
练习1:在△ABC中,已知
解:
=31+18 =49
∴b=7
练习2:
在△ABC中, a 7,b 4 3, c 13 ,求△ABC的最小角。
解:
72 (4 13)2 ( 13)2 274 3
二、可以用正弦定理解决的两类三角问题: (1)知两角及一边,求其它的边和角; (2)知三角形任意两边及其中一边的对角,求其它
的边和角(注意判断解的个数)
思考:你能用正弦定理来解释为什么在三角形中越大
的角所对的边就越大吗?
分析:设△ABC的三个角所对边长分别是a、b、c,
且∠A≥∠B≥∠C,
(1)若△ABC是锐角或直角三角形 ∵正弦函数y=sinx在 [0, ]上是增函数 2
2A 2k 2B 或 2A 2k 2B(k Z)
0 A,B ,∴k 0,则A B或A+B=
故△ABC为等腰三角形或直角三角形.
2
针对性练习 1、已知△ABC中,sin2A=sin2B+sin2C,且 b sinB=c sinC,则△ABC的形状是

正余弦定理

正余弦定理

正余弦定理正弦余弦定理,又叫三角形正弦/余弦定理,是在人们研究三角函数时发现的。

它是一个严格有据的公理,指出了任意三角形中三条边和与它们相角的正弦、余弦以及其它三角函数之间的关系。

正弦余弦定理的特殊形式是两条边的平方之和等于另外一条边的平方。

它用公式表示为:a² + b² = c²这里,a和b是两条对角线,而c是两面对角线构成的直角的边。

这个定理可以被证明用数学的方法:设有一个三角形 ABC,它的角A,B,C的正弦分别为sinA,sinB,sinC,余弦分别为cosA,cosB,cosC,另外,它有三条边a,b,c组成,则正弦余弦定理可以写成sinA·sinB + sinB·sinC + sinC·sinA = 1 - cosA·cosB - cosB·cosC - cosC·cosA也可以把它简化为:这时,我们只需要令垂直边a,b,c取值,把它们代入上面的函数,我们就可以得到正弦余弦定理:a²sin²A + b²sin²B + c²sin²C = a²cos²A + b²cos²B + c²cos²C这个定理的特殊情形是两条边的平方之和等于另外一条边的平方。

正弦余弦定理的最后结果可以结合几何图形,因此也可以在教学中作为一个案例来解释它的意义。

三角形正弦/余弦定理也在经济学、扭矩学,以及建筑学等诸多学科中有重要的应用。

它甚至可以被用来求出大多数三角形内各个未知角和边的度量值。

比如,对一个给定的角A和AB长度,正弦余弦定理可以用来求出同一组角A内的另外两个角的大小,以及CB的长度。

必修五正余弦定理公式

必修五正余弦定理公式

B1.1 正弦、余弦定理一、知识点1.正弦定理:2sin sin sin a b cR A B C===外(R 为外接圆的半径) (1)C R c B R b A R a sin 2,sin 2,sin 2=== C B A c b a s i n :s i n :s i n ::=注意:利用正弦定理,可以解决以下两类问题:(1)已知两角和任一边,求其他两边和一角; (2)已知两边和其中一边的对角,求另一边的对角;有三种情况:bsinA<a<b 时有两解;a=bsinA 或a=b 时有 解;a<bsinA 时无解 2.余弦定理:a 2=b 2+c 2-2bccosA , 222cos 2b c aA bc+-=;3、面积公式:S=21a bsinC=21bcsinA=21c a sinB 利用余弦定理,可以解决以下两类问题:(1)已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。

二、例题【例1】(1)在ABC ∆中,已知A=45,B=30,c=10,求b ; (2)在ABC ∆中,已知A= 45,2,2==b a ,求B ;【例2】(1)在ABC ∆中,已知,7:5:3::=c b a 求ABC ∆的最大角;(2)在ABC ∆中,已知,3:2:::x c b a =求ABC ∆为锐角三角形时x 的取值范围。

【例3】在ΔABC 中,已知a=3,b=2,B=45°,求A,C 和边c 及其面积。

【例4】已知⊙O 的半径为R ,,在它的内接三角形ABC 中,有()()B b aC A R sin 2sin sin 222-=-成立,求△ABC面积S 的最大值.【例5】不解三角形,判断下列三角形解的个数(1) 120,4,5===A b a (2)150,14,7===A b a (3)60,10,9===A b a (4)135,72,50===C b c三、练习1.在ABC ∆中,角,,AB C 的对边分别为,,a b c ,已知,13A a b π===,则c =()A.1B.212.在△ABC 中,A=︒60,b=1,且面积为3,则=++++CB A cb a sin sin sin ( )A. 338B. 3392 C. 3326 D. 323.在△ABC 中,若2cos B sin A =sin C ,则△ABC 的形状一定是A.等腰直角三角形B.直角三角形C.等腰三角形D.等边三角形4. 已知△ABC 中,a=1,b=3,A=︒30,则角B 等于( )A. ︒60B. ︒60或︒120C. ︒30或︒150D. ︒1205.在△ABC 中,a 、b 、c 分别是A 、B 、C 的对边,且2223a bc c b =++,则A 等于( )A. ︒60B. ︒30C. ︒120D. ︒1506、 在△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,若ac B b c a 3tan )(222=-+,则角B 的值为( )(1)6π B. 3π C. 6π或65π D. 3π或32π 7、满足条件a=4,b=23,A=︒45的△ABC 的个数是 ( )A. 1个B. 2个C. 无数个D. 不存在8、在△ABC 中,已知5,8==AC BC ,三角形面积为12,则=C 2cos .9、在ABC ∆中,若120A ∠=,5AB =,7BC =,则ABC ∆的面积S =_________10、 在ABC ∆中,C B A ∠∠∠、、所对的边长分别为c b a 、、,满足条件222a bc c b=-+和321+=b c ,求A ∠和B tan 的值.11、若c b a 、、是△ABC 的三边,直线0=++c by ax 与圆122=+y x 相离,试判断△ABC 的形状。

高中正余弦公式大全

高中正余弦公式大全

高中正余弦公式大全
怎么写
高中正弦余弦公式是高中数学中常用之一的几何公式,它表达了一个点在一个三角形里的三个边之间的关系。

下面是正弦余弦公式的大全:
1、正弦公式:sinA=a/c,其中a是三角形里对角线b所在边的长度,c是三角形里另外两边的长度之和;
2、余弦公式:cosA=b/c,其中b是三角形里对角线a所在边的长度,c是三角形里另外两边的长度之和;
3、正切公式:tanA=a/b,其中a是三角形里对角线b所在边的长度,b是三角形里对角线a所在边的长度;
4、反正弦公式:arcsinA=a/c,其中a是三角形里对角线b所在边的长度,c是三角形里另外两边的长度之和;
5、反余弦公式:arccosA=b/c,其中b是三角形里对角线a所在边的长度,c是三角形里另外两边的长度之和;
6、反正切公式:arctanA=a/b,其中a是三角形里对角线b所在边的长度,b是三角形里对角线a所在边的长度。

正常求解三角形角度时除了用正弦余弦公式,求出角度A的大小之外,还需要根据角的类型的不同,另外解出两个角的大小,即:
如果A是锐角,则有B+C=90°;
如果A是钝角,则有B+C=180°;
如果A是直角,则有B=90°或C=90°。

除此之外,也有一些特殊的情况,在这种情况下就不能使用正弦余弦公式了,比如在求解某个三角形角度时已知一个角的度数,那么可以用反三角函数来求解,如:已知A=30°,则有sinA=1/2,cosA=根号3/2,tanA=1/根号3。

以上就是高中正弦余弦公式的大全,如果想要深入了解此公式的用法,还需要更多的实际操作。

高一数学必修五知识点总结归纳

高一数学必修五知识点总结归纳

必修五知识点总结归纳(一)解三角形1、正弦定理:在 C 中,a、 b 、c分别为角、、C的对边, R为 C 的外接圆的半径,则有a b c2R .sin sin sin C正弦定理的变形公式:①a2R sin, b2R sin, c2Rsin C ;② sin a, sin b, sin C c;2R2R2R③a : b : c sin: sin: sin C ;④a b c a b c.sin sin sin C sin sin sin C2、三角形面积公式:S C 1bc sin1ab sin C1ac sin.2223C中,有a b c2bc cos b a c2ac cos,、余弦定理:在222,222 c2a2b22ab cosC .4、余弦定理的推论:cos b2c2a2,cosa2c2b2a2b2c2 2bc2ac,cosC2ab.5、射影定理:a b cosC c cos B,b a cosC c cos A, c a cosB b cos A6、设a、b、c是 C 的角、、 C 的对边,则:①若a2b2c2,则 C90;②若 a2b2c2,则 C90 ;③若 a2b2c2,则 C 90 .(二 )数列1、数列:按照一定顺序排列着的一列数.2、数列的项:数列中的每一个数.3、有穷数列:项数有限的数列.4、无穷数列:项数无限的数列.5、递增数列:从第 2 项起,每一项都不小于它的前一项的数列.a n 1a n06、递减数列:从第 2 项起,每一项都不大于它的前一项的数列.a n 1a n07、常数列:各项相等的数列.8、摆动数列:从第 2 项起,有些项大于它的前一项,有些项小于它的前一项的数列.9、数列的通项公式:表示数列a n的第 n 项与序号 n 之间的关系的公式.10、数列的递推公式:表示任一项a n与它的前一项a n 1(或前几项)间的关系的公式.11、如果一个数列从第 2 项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差.12、由三个数a,, b 组成的等差数列可以看成最简单的等差数列,则称为 a 与b的等差中项.若 b a c,则称 b 为a与c的等差中项.213、若等差数列a n的首项是 a1,公差是d,则 a n a1n 1 d .14、通项公式的变形:①a n a m n m d ;② a1a n n 1 d ;③d a n a1 ;a n a1a n am .n1④ n1;⑤ dd n m15、若a n是等差数列,且 m n p q(m、n、 p 、q*),则 a m a n a p a q;若 a n是等差数列,且2n p q (n、 p 、q*),则 2a n a p a q.16、等差数列的前n 项和的公式:①S n n a1a n;② S n na1n n 1d .2217、等差数列的前n 项和的性质:①若项数为*,则 S2 n n a n a n 12n n,且S偶S奇nd ,S奇a n.S偶a n1②若项数为2n 1 n*,则 S2 n 12n 1 a n,且 S奇S偶 a n,S奇nS偶n1(其中 S奇na n, S偶n 1 a n).18、如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,则这个数列称为等比数列,这个常数称为等比数列的公比.19、在a与b中间插入一个数G ,使a, G , b 成等比数列,则G 称为a与 b 的等比项.若 G2ab ,则称 G 为a与 b 的等比中项.注意: a 与b的等比中项可能是G 20、若等比数列a n的首项是a1,公比是q,则a n a1q n 1.21、通项公式的变形:①a n a m q n m;② a1 a n q n 1;③ q n 1an ;④q n man.a1a m22、若a n m n p q (m、n、 p 、q *a n a p a q;是等比数列,且),则 a m 若 a n是等比数列,且2n p q (n、 p 、q*),则 a n2a p a q.23、等比数列a n的前 n 项和的公式:S n24、等比数列的前n 项和的性质:①若项数为na1q1a11q n a a q.1n q 11q1q2n n*,则S偶q .S奇② S n m S n q n S m.③ S n, S2 n S n, S3n S2n成等比数列(S n0 ).(三)不等式1、a b 0 a b ; a b 0a b ; a b 0 a b .2① a b b a ;②a b,b c a c;③ a b a c b c ;、不等式的性质:④ a b,c 0ac bc , a b, c0ac bc ;⑤ a b, c d a c b d ;⑥ a b 0, c d 0ac bd ;⑦a b0a n b n n, n 1 ;⑧ a b 0n a n b n, n 1 .3、一元二次不等式:只含有一个未知数,并且未知数的最高次数是 2 的不等式.4、二次函数的图象、一元二次方程的根、一元二次不等式的解集间的关系:判别式b24ac000二次函数y ax2bx ca0 的图象一元二次方程 ax 2bx 有两个相异实数根有两个相等实数根x b x1x2b没有实数根12c 0a0 的根1,22a x x2aax2bx c0x x x1或 x x2x x bR一元二次a02a 不等式的解集ax2bx c0x x1x x2a0若二次项系数为负,先变为正5、设a、b是两个正数,则ab称为正数 a 、b的算术平均数,ab 称为正数 a 、b的2几何平均数.6若 a0, b0,则a b2ab,即abab.、均值不等式定理:27、常用的基本不等式:①a2b22ab a, b R;② ab a2b2a, b R ;220;④ a2b22③ ab a b a0,b a b a,b R .2228x、y 都为正数,则有、极值定理:设⑴若 x y s (和为定值),则当 x y 时,积 xy 取得最大值s2.4⑵若 xy p (积为定值),则当 x y 时,和 x y 取得最小值2p .。

高中数学必修五-正弦定理与余弦定理

高中数学必修五-正弦定理与余弦定理

正弦定理与余弦定理知识集结知识元正弦定理公式知识讲解1.正弦定理【知识点的知识】1.正弦定理和余弦定理定理正弦定理余弦定理内容=2R(R是△ABC外接圆半径)a2=b2+c2﹣2bc cos A,b2=a2+c2﹣2ac cos B,c2=a2+b2﹣2ab cos C变形形式①a=2R sin A,b=2R sin B,c=2R sin C;②sin A=,sin B=,sin C=;③a:b:c=sin A:sin B:sin C;④a sin B=b sin A,b sin C=c sin B,a sin C=c sin A cos A=,cos B=,cos C=解决三角形的问题①已知两角和任一边,求另一角和其他两条边;②已知两边和其中一边的对角,求另一边和其他两角①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两角在△ABC中,已知a,b和角A时,解的情况A为锐角A为钝角或直角图形关系式a=b sin A b sin A<a<b a≥b a>b一解两解一解一解解的个数由上表可知,当A为锐角时,a<b sin A,无解.当A为钝角或直角时,a≤b,无解.2、三角形常用面积公式1.S=a•h a(h a表示边a上的高);2.S=ab sin C=ac sin B=bc sin A.3.S=r(a+b+c)(r为内切圆半径).【正余弦定理的应用】1、解直角三角形的基本元素.2、判断三角形的形状.3、解决与面积有关的问题.4、利用正余弦定理解斜三角形,在实际应用中有着广泛的应用,如测量、航海、几何等方面都要用到解三角形的知识(1)测距离问题:测量一个可到达的点到一个不可到达的点之间的距离问题,用正弦定理就可解决.解题关键在于明确:①测量从一个可到达的点到一个不可到达的点之间的距离问题,一般可转化为已知三角形两个角和一边解三角形的问题,再运用正弦定理解决;②测量两个不可到达的点之间的距离问题,首先把求不可到达的两点之间的距离转化为应用正弦定理求三角形的边长问题,然后再把未知的边长问题转化为测量可到达的一点与不可到达的一点之间的距离问题.(2)测量高度问题:解题思路:①测量底部不可到达的建筑物的高度问题,由于底部不可到达,因此不能直接用解直角三角形的方法解决,但常用正弦定理计算出建筑物顶部或底部到一个可到达的点之间的距离,然后转化为解直角三角形的问题.②对于顶部不可到达的建筑物高度的测量问题,我们可选择另一建筑物作为研究的桥梁,然后找到可测建筑物的相关长度和仰、俯角等构成三角形,在此三角形中利用正弦定理或余弦定理求解即可.点拨:在测量高度时,要理解仰角、俯角的概念.仰角和俯角都是在同一铅锤面内,视线与水平线的夹角.当视线在水平线之上时,成为仰角;当视线在水平线之下时,称为俯角.例题精讲正弦定理公式例1.已知△ABC中,角A,B,C所对的边分别是a,b,c.若A=45°,B=30°,a=,则b=()A.B.1 C.2 D.例2.在△ABC中,角A,B,C的对边分别为a,b,c,若,则B=()A.B.C.D.或例3.在△ABC中,已知三个内角为A,B,C满足sin A:sin B:sin C=3:5:7,则C=()A.90°B.120°C.135°D.150°利用正弦定理解三角形知识讲解【正余弦定理的应用】1、解直角三角形的基本元素.2、判断三角形的形状.3、解决与面积有关的问题.4、利用正余弦定理解斜三角形,在实际应用中有着广泛的应用,如测量、航海、几何等方面都要用到解三角形的知识例题精讲利用正弦定理解三角形例1.在△ABC中,a,b,c是内角A,B,C所对的边.若a>b,则下列结论不一定成立的()A.A>B B.sin A>sin BC.cos A<cos B D.sin2A>sin2B例2.在△ABC中,角A,B,C的对边分别是a,b,c,且,则角A的大小为()A.B.C.D.例3.在△ABC中,三内角A,B,C的对边分别为a,b,c,若sin B =b sin A,则a=()A .B .C.1 D.三角形面积公式的简单应用知识讲解1.余弦定理【知识点的知识】1.正弦定理和余弦定理定理正弦定理余弦定理内容=2R(R是△ABC外接圆半径)a2=b2+c2﹣2bc cos A,b2=a2+c2﹣2ac cos B,c2=a2+b2﹣2ab cos C变形形式①a=2R sin A,b=2R sin B,c=2R sin C;②sin A=,sin B=,sin C=;③a:b:c=sin A:sin B:sin C;④a sin B=b sin A,b sin C=c sin B,a sin C=c sin A cos A=,cos B=,cos C=解决三角形的问题①已知两角和任一边,求另一角和其他两条边;②已知两边和其中一边的对角,求另一边和其他两角①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两角A为锐角A为钝角或直角图形关系式a=b sin A b sin A<a<b a≥b a>b 解的个数一解两解一解一解由上表可知,当A为锐角时,a<b sin A,无解.当A为钝角或直角时,a≤b,无解.例题精讲三角形面积公式的简单应用例1.已知△ABC的内角A,B,C的对边分别为a,b,c,且(a+b)2=c2+ab,B=30°,a=4,则△ABC的面积为()A.4 B.3C.4D.6例2.设△ABC的三个内角A,B,C成等差数列,其外接圆半径为2,且有,则三角形的面积为()A.B.C.或D.或例3.在△ABC中角ABC的对边分别为a、b、c,cos C=,且a cos B+b cos A=2,则△ABC面积的最大值为()A.B.C.D.利用余弦定理解三角形当堂练习填空题练习1.如图,O在△ABC的内部,且++3=,则△ABC的面积与△AOC的面积的比值为_____.练习2.锐角△ABC的内角A,B,C的对边分别为a,b,c,已知c2-8=(a-b)2,a=2c sin A,则△ABC的面积为____.练习3.在△ABC中,内角A,B,C的对边分别为a,b,c,已知,则的最大值是____.解答题练习1.'在△ABC中,角A,B,C所对的边分别为a,b,c,且满足.(1)求角B的大小;(2)若D为AC的中点,且BD=1,求S△ABC的最大值.'练习2.'在△ABC中,角A、B、C的对边分别是a、b、c,若(a+c)sin B-b sin C=b cos A.(1)求角A;(2)若△ABC的面积为4,a=6,求△ABC的周长.'练习3.'△ABC内角A,B,C所对的边分别为a,b,c.若。

正弦定理余弦定理知识点

正弦定理余弦定理知识点

正弦定理余弦定理知识点正弦定理和余弦定理是三角形中常用的公式。

1.三角形中常用的公式包括:角度和公式A+B+C=π;海伦公式S=√(p(p-a)(p-b)(p-c)),其中 p=(a+b+c)/2;正弦定理a/sinA=b/sinB=c/sinC=2R,其中 R 为外接圆半径;余弦定理a²=b²+c²-2bccosA,b²=a²+c²-2accosB,c²=a²+b²-2abcosC。

2.三角形中的边角不等关系:A>B⟺a>b,a+b>c,a-b<c。

3.正弦定理可用于以下情况:①已知两角和任一边,求其他两边及一角;②已知两边和其中一边对角,求另一边的对角;③几何作图时,存在多种情况。

4.已知两边和其中一边的对角解三角形的情况:(1)A为锐角,有一解;(2)A为锐角或钝角,当a>b时有一解。

5.余弦定理可用于以下情况:(1)已知三角形的三条边长,可求出三个内角;(2)已知三角形的两边及夹角,可求出第三边。

6.三角形面积公式为 S=1/2absinC=1/2bcsinA=1/2casinB。

在解题时,可以利用正弦定理或余弦定理判断三角形的形状,从中找到三角形中的边角关系,判断出三角形的形状。

例如,在△ABC 中已知 acosB=bcosA,利用扩充的正弦定理可以得到 sin(A-B)=0,因此 A=B,即△ABC 为等腰三角形。

练题:1.在△ABC 中,若 XXX2bcosBcosC,可判断三角形的形状。

2.在△ABC 中,已知 atanB=btanA,可判断三角形的形状。

3.已知△ABC 中,有 cosA+2cosCsinB=2,可判断三角形的形状。

解:由题意可得tanA=1,tanB=2,tanC=3则tan(A+B)=tan(180°-C)=tanC=-3tan(A+B)+tanC=-3+3=0又因为A、B、C为锐角,所以A+B+C=180°而tan(A+B+C)=\frac{tan(A+B)+tanC}{1-tan(A+B)tanC}=0所以A+B+C=180°综上所述,A+B+C=180°.3.在三角形ABC中,a、b、c分别为角A、B、C的对边。

正余弦定理公式大全

正余弦定理公式大全

正余弦定理公式大全正弦定理和余弦定理是解三角形问题时常用到的两个重要定理,它们可以帮助我们求解三角形的边长和角度,解决各种实际问题。

下面我们将详细介绍正弦定理和余弦定理的公式及应用。

首先,我们来看正弦定理。

对于任意三角形ABC,其三条边分别为a,b,c,对应的角分别为A,B,C。

正弦定理可以表示为:a/sinA = b/sinB = c/sinC。

其中,a/sinA = b/sinB = c/sinC这个比值关系被称为正弦定理的比值形式。

正弦定理告诉我们,一个三角形的每条边与其对立角的正弦值之比是相等的。

这个定理可以帮助我们求解三角形的边长和角度,应用非常广泛。

接下来,我们来看余弦定理。

对于任意三角形ABC,其三条边分别为a,b,c,对应的角分别为A,B,C。

余弦定理可以表示为:a^2 = b^2 + c^2 2bccosA。

b^2 = a^2 + c^2 2accosB。

c^2 = a^2 + b^2 2abcosC。

余弦定理告诉我们,一个三角形的每条边的平方与其余两条边的平方之差与对应的角的余弦值之积是相等的。

这个定理同样可以帮助我们求解三角形的边长和角度,解决各种实际问题。

在实际问题中,我们可以根据具体情况选择使用正弦定理或余弦定理来求解三角形的边长和角度。

在使用正弦定理和余弦定理时,我们需要注意角度的单位,通常情况下我们使用弧度制来计算。

在求解问题时,我们可以根据已知条件,利用正弦定理和余弦定理建立方程,然后求解方程,得到未知量的值。

在使用正弦定理和余弦定理时,我们需要注意角度的对应关系,确保计算结果的准确性。

总之,正弦定理和余弦定理是解三角形问题时常用到的两个重要定理,它们可以帮助我们求解三角形的边长和角度,解决各种实际问题。

希望本文介绍的正弦定理和余弦定理的公式及应用对您有所帮助。

正余弦定理,

正余弦定理,

正余弦定理,正余弦定理(TheLawofCosines)是一个几何定理,最早由法国数学家施特劳斯于1785年发现,是用来求解三角形里两边之间、两个角之间或三角形某边和某角之间的关系的一个公式。

它可以用来求出三角形里某边的长度,也可以用来求出两个角之间的夹角大小。

正余弦定理的形式可以用一个简单的公式来表达:a=b+c-2bccosA,其中a、b、c是三角形的三条边的长度,A是三角形的夹角。

由这个公式可以看出,正余弦定理在三角形里边和角之间的联系是:边的长度平方等于其它两边的长度的平方和减去两个边的乘积乘以两个边之间的夹角的余弦值。

正余弦定理的由来源于勾股定理,勾股定理(Pythagoras Theorem)是数学中著名的定理,主要提出内角和外角的关系。

它表明,在一个直角三角形中,斜边的长度平方等于边的两个长度的平方之和。

特劳斯在1785年年发现,在一个普通三角形中,如果以夹角的余弦代替内角的余弦,勾股定理仍然成立,这就是正余弦定理的来源。

正余弦定理的简要证明如下:在一个有三边的三角形ABC中,如果令三角形中边a=AB,b=BC,c=CA,那么可以用三角形内角的角度定义说,A+B+C=180°,即A+B=C或A=C-B,由此可知A=cos C-B。

由勾股定理又可得:a=b+c-2bccos A,两式相比,得a=b+c-2bccos(C-B),即得a=b+c-2bccosCcosB+2bcsin Csin B,此时,B为确定的值,而且sin B=1,因此,a=b+c-2bccosA,这正是正余弦定理的公式。

正余弦定理有着广泛的应用,尤其在几何学、物理学、天文学等领域中都有着重要的地位。

在几何学中,正余弦定理可以用来确定三角形的各边长度以及各角的大小;在物理学中,它可以用来计算例如电动力、重力等力在三角形结构中的作用;在天文学中,可以用来计算行星运动中某个时刻的位置,也可以计算太阳系中行驶的曲线。

必修五第一章正、余弦定理

必修五第一章正、余弦定理

ABCCBA 一、正弦定理及其变形:二、余弦定理及其推论:余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。

即 2222cos a b c bc A =+- 2222cos b a c ac B =+-2222cos c a b ab C =+-从余弦定理,又可得到以下推论:222cos 2+-=b c a A bc 222cos 2+-=a c b B ac 222cos 2+-=b a c C ba正弦定理:解两类三角形的问题:(1)已知两角及任一边(AAS/ASA ) (2)已知两边和一边的对角(SSA)余弦定理:解两类三角形的问题:(1) 已知两边及夹角。

(SAS)利用:2222cos a b c bc A =+-求解(2) 已知三边(SSS)利用:222cos 2+-=b c a A bc求解判断三角形解的情况2(sin sin sin a b c R R A B C===为三角形外接圆半径)12sin ,2sin ,2sin a R A b R B c R C ===()2sin ,sin ,sin 222a b c A B C R R R===()(边化角公式)(角化边公式)3::sin :sin :sin a b c A B C =()(2),,222A B C A B C A B C πππ+++=+=-=-(1),,(a b c b c a a c b+>+>+>即两边之和大于第三边,两边之差小于第三边)(3)sin()sin ,cos()cos sin cos ,cos sin2222A B C A B C A B C A B C+=+=-++==(4)sin sin (ABC A B a b A B ∆>⇔>⇔>在中,即大边对大角,大角对大边)ABC b A BCcABCab例1.在∆ABC 中,已知a,b,A ,讨论三角形解的情况分析:先由sin sin b A B a ==A absin 可进一步求出B 可能有锐角和钝角两种情况; 则0180()C A B =-+, 从而sin a Cc A=1. 当A 为钝角或直角时, 设A=︒133 (1).若a ≥b ,sin sin b AB a=<sinA 本来有可能是锐角、钝角 又因为a ≥b ,所以A>B,所以B 为锐角,所以三角形有且只有一解 (2)当a<b, sin sin b AB a=>sinA 有可能是锐角、钝角 又因为a<b,所以A<B,所以B>︒133,A+B>︒180,所以三角形无解 2.当A 为锐角时, (1).若a ≥b ,sin sin b AB a=<sinA 本来有可能是锐角、钝角 又因为a ≥b ,所以A>B,所以B 为锐角,所以三角形有且只有一解 如果a b <,那么可以分下面三种情况来讨论:分析:0<sin sin b AB a=1≤ , A<B,A 为锐角 (1)若sin a b A >,sin sin b AB =<1, 本来有可能是锐角、钝角,因为A<B,A 为锐角,则有两解;(2)若sin a b A =,sin sin b AB a ==1,B 为直角,则只有一解; (3)若sin a b A <,sin sin b AB =>1,则无解。

正弦余弦正切函数公式大全

正弦余弦正切函数公式大全

正弦余弦正切函数公式大全正弦、余弦和正切是三角函数中的基本函数,它们在很多数学和物理应用中都起到重要的作用。

下面是正弦、余弦和正切函数的详细公式。

1. 正弦函数(sine function)的公式:正弦函数表示一个单位圆上的点在y轴上的投影,它定义为斜边与斜边所在直角三角形的斜边的比值。

正弦函数的公式可以表示为:sin(x) = (e^ix - e^(-ix)) / (2i),其中i是虚数单位,e是自然对数的底。

2. 余弦函数(cosine function)的公式:余弦函数表示一个单位圆上的点在x轴上的投影,它定义为邻边与斜边所在直角三角形的斜边的比值。

余弦函数的公式可以表示为:cos(x) = (e^ix + e^(-ix)) / 23. 正切函数(tangent function)的公式:正切函数表示正弦函数与余弦函数的比值,它定义为斜边与邻边所在直角三角形的邻边的比值。

正切函数的公式可以表示为:tan(x) = sin(x) / cos(x)除了这些基本函数,还有一些相关的函数公式。

4. 反正弦函数(arcsine function)的公式:反正弦函数是正弦函数的反函数,它求得的是一个角的正弦值等于给定值的角度。

反正弦函数的公式可以表示为:arcsin(x) = sin^(-1)(x) = x + x^3/6 + 3x^5/40 + 5x^7/112+ ...5. 反余弦函数(arccosine function)的公式:反余弦函数是余弦函数的反函数,它求得的是一个角的余弦值等于给定值的角度。

反余弦函数的公式可以表示为:arccos(x) = cos^(-1)(x) = π/2 - arcsin(x)6. 反正切函数(arctangent function)的公式:反正切函数是正切函数的反函数,它求得的是一个角的正切值等于给定值的角度。

反正切函数的公式可以表示为:arctan(x) = tan^(-1)(x) = x - x^3/3 + x^5/5 - x^7/7 + ...除了上述函数公式,三角函数还有一些重要的性质和公式,如和差公式、倍角公式和半角公式等。

三角形正余弦定理公式

三角形正余弦定理公式

三角形正余弦定理公式a/sinA = b/sinB = c/sinC余弦定理的公式如下:c^2 = a^2 + b^2 - 2abcosCb^2 = a^2 + c^2 - 2accosBa^2 = b^2 + c^2 - 2bccosA接下来,我们将推导上述公式。

首先,我们以正弦定理开始推导:根据正弦定理,我们知道a/sinA = b/sinB。

假设我们知道其中两个比值,我们可以通过比较这两个比值来推导出第三个比值。

将两个比值相等的两个方程进行等式转换:a/sinA = b/sinBb/sinB = c/sinC将第一个方程两边乘以sinB,第二个方程两边乘以sinA,可以得到:a*sinB = b*sinA将这两个等式相等的两个比值相减,可得到:a*sinB - b*sinA = 0我们可以得到:b*sinA = a*sinB这意味着边长a与角度A的正弦值相等于边长b与角度B的正弦值。

由此得到了正弦定理。

现在,让我们来推导余弦定理:在三角形ABC中,我们可以通过向量的内积来得到余弦值。

令向量AB为a,向量AC为b。

根据三角形余弦定理,我们有:c^2=,a-b,^2=(a-b)•(a-b)(这里的^2表示平方,,表示向量的模,•表示向量的内积)=a•a-a•b-b•a+b•b=,a,^2-2(a•b)+,b,^2将向量的长度记为边长,即a=,a,b=,b,得到:c^2=a^2-2(a•b)+b^2利用三角形余弦定理的定义,我们可以得到:a •b = ,a, * ,b, * cosC将其代入上式,可以得到:c^2 = a^2 - 2(,a, * ,b, * cosC) + b^2这样我们就得到了三角形余弦定理。

通过以上推导,我们得到了三角形正弦定理和余弦定理的公式。

在实际应用中,我们可以根据具体问题来选择合适的定理进行计算。

下面将通过一些解题示例来说明如何应用这些公式。

【解题示例】①已知一个三角形的两边分别为3和4,夹角为60度,求第三边的长度。

正余弦定理讲义

正余弦定理讲义

正余弦定理讲义正余弦定理是初中数学中的重要定理之一,它可以用来求解三角形中的边长和角度。

在本篇文章中,我们将详细介绍正余弦定理的概念、公式和应用。

一、概念正余弦定理是指在任意三角形ABC中,设a、b、c分别为三角形的三边,A、B、C分别为三角形的三个内角,则有以下两个公式: cos A = (b² + c² - a²) / 2bccos B = (a² + c² - b²) / 2ac其中,cos A和cos B分别为三角形的两个内角的余弦值,a、b、c 分别为三角形的三边的长度。

二、公式正余弦定理的公式可以用来求解三角形中的边长和角度。

例如,已知三角形的两个内角和一条边的长度,可以利用正余弦定理求解另外两条边的长度。

具体的计算方法如下:1. 已知两个内角和一条边的长度,求解另外两条边的长度。

假设已知三角形ABC中,∠A、∠B和边a的长度,要求求解边b和边c的长度。

根据正余弦定理,可以得到以下两个公式:b² = a² + c² - 2ac cos Bc² = a² + b² - 2ab cos C将已知的数据代入公式中,即可求解出未知的边长。

2. 已知三条边的长度,求解三个内角的大小。

假设已知三角形ABC中,边a、边b和边c的长度,要求求解∠A、∠B和∠C的大小。

根据正余弦定理,可以得到以下三个公式:cos A = (b² + c² - a²) / 2bccos B = (a² + c² - b²) / 2accos C = (a² + b² - c²) / 2ab将已知的数据代入公式中,即可求解出未知的角度。

三、应用正余弦定理在实际生活中有着广泛的应用。

例如,在建筑设计中,可以利用正余弦定理计算建筑物的高度和角度;在地理测量中,可以利用正余弦定理计算两个地点之间的距离和方位角度;在机械制造中,可以利用正余弦定理计算机械零件的尺寸和角度等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B
1.1 正弦、余弦定理
一、知识点
1.正弦定理:
2sin sin sin a b c
R A B C
===外(R 为外接圆的半径) (1)C R c B R b A R a sin 2,sin 2,sin 2=== C B A c b a sin :sin :sin ::=
注意:利用正弦定理,可以解决以下两类问题:(1)已知两角和任一边,求其他两边和一角; (2)已知两边和其中一边的对角,求另一边的对角;
有三种情况:bsinA<a<b 时有两解;a=bsinA 或a=b 时有 解;a<bsinA 时无解 2.余弦定理:a 2
=b 2
+c 2
-2bccosA , 222
cos 2b c a
A bc
+-=

3、面积公式:S=
21a bsinC=21bcsinA=2
1
c a sinB 利用余弦定理,可以解决以下两类问题:
(1)已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。

二、例题
【例1】(1)在ABC ∆中,已知A=ο
45,B=ο
30,c=10,求b ; (2)在ABC ∆中,已知A=ο45,2,2==b a ,求B ;
【例2】(1)在ABC ∆中,已知,7:5:3::=c b a 求ABC ∆的最大角;
(2)在ABC ∆中,已知,3:2:::x c b a =求ABC ∆为锐角三角形时x 的取值范围。

【例3】在ΔABC 中,已知a=3,b=2,B=45°,求A,C 和边c 及其面积。

【例4】已知⊙O 的半径为R ,,在它的内接三角形ABC 中,有(
)(
)
B b a
C A R sin 2sin sin 222-=-成立,求△ABC
面积S 的最大值.
【例5】不解三角形,判断下列三角形解的个数
(1)ο120,4,5===A b a (2)ο
150,14,7===A b a (3)ο
60,10,9===A b a (4)ο
135,72,50===C b c
三、练习
1.在ABC ∆中,角,,A B
C 的对边分别为,,a b c ,已知,1
A a b π
===,则c =( )
A.1
B.2
1
2.在△ABC 中,A=︒60,b=1,且面积为3,则
=++++C
B A c
b a sin sin sin ( )
A. 338
B. 3392
C. 3
326 D. 32
3.在△ABC 中,若2cos B sin A =sin C ,则△ABC 的形状一定是
A.等腰直角三角形
B.直角三角形
C.等腰三角形
D.等边三角形
4. 已知△ABC 中,a=1,b=3,A=︒30,则角B 等于( )
A. ︒60
B. ︒60或︒120
C. ︒30或︒150
D. ︒120
5.在△ABC 中,a 、b 、c 分别是A 、B 、C 的对边,且2
223a bc c b =++,则A 等于( )
A. ︒60
B. ︒30
C. ︒120
D. ︒150
6、 在△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,若ac B b c a 3tan )(2
22=
-+,则角B 的值为( )
(1)
6π B. 3π C. 6π或65π D. 3π或3
2π 7、满足条件a=4,b=23,A=︒45的△ABC 的个数是 ( )
A. 1个
B. 2个
C. 无数个
D. 不存在
8、在△ABC 中,已知5,8==AC BC ,三角形面积为12,则=C 2cos .
9、在ABC ∆中,若120A ∠=o

5AB =,7BC =,则ABC ∆的面积S =_________10、 在ABC ∆中,C B A ∠∠∠、、所对的边长分别为c b a 、、,满足条件222
a bc c b
=-+和
32
1
+=b c ,求A ∠和B tan 的值.
11、若c b a 、、是△ABC 的三边,直线0=++c by ax 与圆12
2=+y x 相离,试判断△ABC 的形状。

12、已知函数)2
||,0,0)(sin()(π
ϕωωϕω<
>>+=A x A x f 在一个周期内的图象 下图所示。

(1)求函数的解析式;
(2)设π<<x 0,且方程m x f =)(有两个不同的实数根,求实数m 的取值范围和这两个根的和。

.。

相关文档
最新文档