北师大版高三数学等比数列专项练习

合集下载

北师大版高中数学必修五同步练测:1.3等比数列(含答案解析).docx

北师大版高中数学必修五同步练测:1.3等比数列(含答案解析).docx

高中数学学习材料鼎尚图文*整理制作§3 等比数列(北京师大版必修5)建议用时 实际用时满分 实际得分45分钟100分一、选择题(每小题5分,共30分)1.2b ac =是c b a 、、成等比数列的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件2.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列,则a 2等于 ( )A.-4B.-6C.-8D.-10 3.设4321,,,a a a a 成等比数列,其公比为2,则432122a a a a ++的值为()A .41 B .21 C .81 D .14.等比数列{}n a 中,===+q a a a a 则,8,63232()A .2B .21C .2或21D .-2或21-5.在等比数列{a n }中,S 4=1,S 8=3,则a 17+a 18+a 19+a 20的值是( )A 、14B 、16C 、18D 、20 6.已知等比数列{}n a 的首项为8,n S 是其前 项的和,某同学经计算得S 2=20,S 3=36,S 4=65,后来该同学发现其中一个数算错了,则该数为 ( ) A.S 1 B.S 2 C .S 3 D.S 4 二、填空题(每小题5分,共20分)7、已知在等比数列{}n a 中,各项均为正数,且,7,13211=++=a a a a 则数列{}n a 的通项公式是_________=n a8.在正项等比数列{}n a 中,15353225a a a a a a ++=,则35a a +=_______. 9.在等比数列{}n a 中, 若,75,393==a a 则10a __________.10.在等比数列{}n a 中, 若101,a a 是方程06232=--x x 的两根,则47a a ⋅ ___________.三、解答题(本大题共4小题,共50分) 11.(12分)在等比数列{}n a 的前n 项和中,1a 最小,且128,66121==+-n n a a a a ,前n 项和126=n S ,求n 和公比q.12、(12分)一个有穷等比数列的首项为1,项数为偶数,如果其奇数项的和为85,偶数项的和为170, 求此数列的公比和项数.13.(13分)设数列{a n }的前 项的和S n =31(a n -1) (n ).(1)求a 1,a 2; (2)求证数列{a n }为等比数列.14.(13分)设a 1 1,a 235,a n +2 35a n +1 32a n (n 1,2,…),令b n =a n +1 a n (n 1,2…).(1)求数列{b n }的通项公式;(2)求数列{na n }的前n 项的和S n .§3 等比数列(北京师大版必修5)答题纸得分:一、选择题题号 1 2 3 4 5 6答案二、填空题7. ; 8. ;9. ; 10. .三、解答题11.12.13.14.§3 等比数列(北京师大版必修5) 答案一、选择题1.B 解析:当c b a 、、有0时就不成等比数列.2.B 解析:由题意,设1232422,2,4a a a a a a =-=+=+, ∴ 2222(2)(4)(2)a a a -+=+,解得26a =-,选B . 3.A 解析:1211341122212884a a a a a a a a ++==++.4.C 解析:由题意知23,a a 为方程2680x x -+=的两根,解得23322,42,4a a a a ====或,所以公比为2或21. 5.B 解析: , , 成等比数列,根据已知关系可推得 ..6.C 解析: 显然S 1是正确的.假设后三个数均未算错,则a 1=8,a 2=12,a 3=16,a 4=29,可知a 22≠a 1a 3,故S 2、S 3中必有一个数算错了.若S 2算错了,则a 4=29=a 1q 3,3292q =,显然S 3=36≠8(1+q +q 2),矛盾.只可能是S 3算错了,此时由a 2=12得32q =,a 3=18,a 4=27,S 4=S 2+18+27=65,满足题设. 二、填空题 7.12-n 解析:由,7,13211=++=a a a a 得 ∴ (负值舍去).∴ .8.5 解析:所给式子可整理为22233553535()2()()25,5a a a a a a a a ++=+=+=. 9.3375± 解析:63310925,5,755q q a a q ==±=⋅=±. 10.2- 解析:由等比数列性质知471102a a a a ==-. 三、解答题11.解:因为{}n a 为等比数列,所以 ,所以, ,且 ,解得 , .依题意知1≠q ,21261,1261=⇒=--∴=q qqa a S n n .6,6421=∴=-n q n .12.解:设此数列的公比为 ,项数为2n ,则22222(1)1()85,170,11n na q q S S q q--====--奇偶 2221122,85,2256,28,14nn S a q n S a -======-偶奇 ∴,2=q 项数为8 .13.解: (1)由)1(3111-=a S ,得)1(3111-=a a , ∴=1a 21-.又)1(3122-=a S ,即)1(31221-=+a a a ,得412=a .(2)当n >1时,),1(31)1(3111---=-=--n n n n n a a S S a 得,211-=-n n a a 所以{}n a 是首项为21-,公比为21-的等比数列. 14.解:(1)因为121+++-=n n n a a b 1115222()3333n n n n n n a a a a a b +++=--=-=, 故{ }是公比为32的等比数列,且故,32121=-=a a b ),2,1()32( ==n b nn .(2)由得nn n n a a b )32(1=-=+)()()(121111a a a a a a a a n n n n n -++-+-=--++])32(1[232)32()32()32(21n n n -=++++=- , 注意到,11=a 可得),2,1(3231 =-=-n a n nn .记数列}32{11--n n n 的前 项和为T n ,则1222222212(),2()()333333n n n n T n T n -=+⋅++⋅=+⋅++⋅,2112222221()()()3[1()](),3333333n n n n n T n n -=++++-=--两式相减得 1112122(3)29[1()]3()93333(3)223(12)2(1)1823nn n n n n n n n n n T n n S a a na n T n n -+-+=--=-+=+++=+++-=++-故从而.。

高中数学1.3.1等比数列同步精练北师大版必修5【含答案】

高中数学1.3.1等比数列同步精练北师大版必修5【含答案】

高中数学 1.3.1 等比数列同步精练 北师大版必修5基础巩固1下列说法中正确的是( )A .一个数列每一项与它的前一项的比都等于常数,这个数列就叫等比数列B .一个数列每一项与它的前一项的比都等于同一个常数,这个数列就叫等比数列C .一个数列从第2项起,每一项与它的前一项的比都等于常数,这个数列就叫等比数列D .一个数列从第2项起,每一项与它的前一项的比都等于同一个常数,这个数列就叫等比数列2公差不为零的等差数列{a n }的前n 项和为S n .若a 4是a 3与a 7的等比中项,S 8=32,则S 10等于( )A .18B .24C .60D .903设{a n }是公比为q 的等比数列,|q |>1,令b n =a n +1(n =1,2,…),若数列{b n }有连续四项在集合{-53,-23,19,37,82}中,则6q =__________.4已知数列{a n }满足:lg a n =3n +5,求证:{a n }是等比数列. 5在等比数列{a n }中,(1)已知a 3=9,a 6=243,求a 5; (2)已知a 1=98,a n =13,q =23,求n .6某厂生产微机,原计划第一季度每月增加台数相同,在生产过程中,实际上二月份比原计划多生产10台,三月份比原计划多生产25台,这样三个月产量成等比数列.而第3个月的产量是原计划第一季度总产量的一半少10台,问该厂第一季度实际生产微机多少台?综合过关7已知等差数列{a n }的公差d ≠0,它的第1、5、17项顺次成等比数列,则这个等比数列的公比是( )A .4B .3C .2 D.128设{a n }是公差不为0的等差数列,a 1=2,且a 1,a 3,a 6成等比数列,则{a n }的前n 项和S n 等于( )A.n 24+7n 4B.n 23+5n3 C.n 22+3n4D .n 2+n9首项为3的等比数列{a n },它的第n 项为48,第2n -3项为192,问从第几项起各项的绝对值都超过100?10设关于x 的一元二次方程a n x 2-a n +1x +1=0(n ∈N +)有两根α,β,且满足6α-2αβ+6β=3.(1)试用a n 表示a n +1;(2)求证:{a n -23}是等比数列;(3)当a 1=76时,求数列{a n }的通项公式.能力提升11等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2. (1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S n n(n ∈N +),求证:数列{b n }中任意不同的三项都不可能成为等比数列. 12已知数集A ={a 1,a 2,…,a n }(1≤a 1<a 2<…<a n ,n ≥2)具有性质P :对任意的i ,j (1≤i ≤j ≤n ),a i a j 与a ja i两数中至少有一个属于A .(1)分别判断数集{1,3,4}与{1,2,3,6}是否具有性质P ,并说明理由; (2)证明:a 1=1,且a 1+a 2+…+a na -11+a -12+…+a -1n=a n ; (3)证明:当n =5时,a 1,a 2,a 3,a 4,a 5成等比数列.参考答案1解析:很明显仅有D 符合等比数列的定义. 答案:D2解析:由a 24=a 3a 7,则⎩⎪⎨⎪⎧a 1+3d 2=a 1+2d a 1+6d ,8a 1+562d =32,解得d =2,a 1=-3,所以S 10=10a 1+902d =60.答案:C3解析:{a n }有连续四项在集合{-54,-24,18,36,81}中,但仅有四项-24,36,-54,81成等比数列,公比为q =-32,6q =-9.答案:-94分析:利用等比数列的定义证明a n +1a n=q (常数). 证明:由lg a n =3n +5,得a n =103n +5,∴a n +1a n =10n ++5103n +5=1 000=常数. ∴{a n }是等比数列.5分析:由已知条件列出关于a 1,q 的方程(或方程组),或有关量的方程(或方程组). 解:(1)∵a 6=a 3q 3,∴q 3=27.∴q =3.∴a 5=a 6·13=81.(2)∵a n =a 1qn -1,∴13=98·(23)n -1.∴(23)n -1=(23)3.∴n =4. 6分析:可根据等差数列、等比数列的条件列出方程组得出所求.解:根据已知,可设该厂第一季度原计划3个月生产微机台数分别为x -d ,x ,x +d (d >0),则实际上这3个月生产微机台数分别为x -d ,x +10,x +d +25,由题意得⎩⎪⎨⎪⎧x +2=x -d x +d +,x +d +25=3x2-10,解得x =90,d =10.则该厂第一季度实际生产微机(x -d )+(x +10)+(x +d +25)=3x +35=3×90+35=305(台). 7解析:设公差为d ,则a 25=a 1a 17,即(a 1+4d )2=a 1(a 1+16d ),整理,得a 1=2d . 所以a 5a 1=a 1+4d a 1=2d +4d2d=3.答案:B8解析:a 23=a 1a 6,设数列{a n }的公差为d ,则(2+2d )2=2(2+5d ),解得d =12或d =0(舍去),所以数列{a n }的前n 项和S n =2n +n n -2×12=n 24+7n 4. 答案:A9解:设公比为q ,则⎩⎪⎨⎪⎧3q n -1=48,3q 2n -4=192,即⎩⎪⎨⎪⎧ q n -1=16,q 2n -4=64.①②①2÷②得q 2=4, ∴⎩⎪⎨⎪⎧q =2,n =5,或⎩⎪⎨⎪⎧q =-2,n =5.∴由|a n |=3×2n -1>100,得n ≥7,即从第7项起各项的绝对值都超过100.10分析:(1)根据一元二次方程根与系数的关系列出关于a n 和a n +1的等量关系;(2)转化为证明a n +1-23a n -23=常数;(3)先求出{a n -23}的通项公式,再求出{a n }的通项公式.(1)解:由题意,得⎩⎪⎨⎪⎧α+β=an +1an,αβ=1an,又6α-2αβ+6β=3,∴6(α+β)-2αβ=3. ∴6a n +1a n -2a n =3.∴a n +1=12a n +13. (2)证明:∵a n +1=12a n +13,∴a n +1-23=12(a n -23),即a n +1-23a n -23=12.∴{a n -23}是等比数列.(3)解:当a 1=76时,a 1-23=12,则{a n -23}是以12为首项,以12为公比的等比数列.∴a n -23=(12)n .∴a n =23+(12)n.11分析:(1)求出公差即可写出数列{a n }的通项a n 与前n 项和S n ;(2)利用反证法证明.(1)解:由已知,得⎩⎨⎧a 1=2+1,3a 1+3d =9+32,解得d =2,则a n =2+1+(n -1)2=2n -1+2,S n =n (2+1)+n n -22=n (n +2).(2)证明:由(1)得b n =S nn=n + 2.假设数列{b n }中存在三项b p ,b q ,b r (p ,q ,r 互不相等)成等比数列,则b 2q =b p b r , 即(q +2)2=(p +2)(r +2). ∴(q 2-pr )+(2q -p -r )2=0.∵p ,q ,r ∈N +,∴⎩⎪⎨⎪⎧q 2-pr =0,2q -p -r =0.∴(p +r2)2-pr =0.∴(p -r )2=0.∴p =r ,与p ≠r 矛盾.∴数列{b n }中任意不同的三项都不可能成等比数列. 12分析:(1)a i a j 与a j a i两数中至少有一个属于A 是指:数集A 中的任意两个数的积与和中至少有一个属于A ,且数集A 中的任意数的平方与自身的商中至少有一个属于A ,则对数集{1,3,4}与{1,2,3,6}中的元素验证即可;(2)转化为证明a n a n ∉A ,则说明1=a n a n∈A ,利用已知证得a n a k=a n -k +1,从而获得等式;(3)利用(2)验证从第二项起,每一项与前一项的比都等于a 2.(1)解:由于3×4与43均不属于数集{1,3,4},∴数集{1,3,4}不具有性质P .由于1×2,1×3,1×6,2×3,62,63,11,22,33,66都属于数集{1,2,3,6},∴数集{1,2,3,6}具有性质P .(2)证明:∵A ={a 1,a 2,…,a n }具有性质P , ∴a n a n 与a n a n中至少有一个属于A . 由于1≤a 1<a 2<…<a n , ∴a n a n -a n =a n (a n -1)>0. ∴a n a n >a n , 故a n a n ∉A .从而1=a n a n∈A ,∴a 1=1. ∵1=a 1<a 2<…<a n , ∴a k a n >a n ,故a k a n ∉A (k =2,3,…,n ).由A 具有性质P 可知a n a k∈A (k =1,2,3,…,n ). ∴a n a n <a n a n -1<…<a n a 2<a na 1.又1=a 1<a 2<…<a n (n ≥2), ∴a n a n =1=a 1,a n a n -1=a 2,…,a n a 2=a n -1,a na 1=a n . ∴a n a n +a n a n -1+…+a n a 2+a na 1=a 1+a 2+…+a n -1+a n . ∴(a -1n +a -1n -1+…+a -12+a -11)a n =a 1+a 2+…+a n -1+a n . ∴a 1+a 2+…+a na -11+a -12+…+a -1n=a n . (3)证明:由(2)知,当n =5时,有a 5a 4=a 2,a 5a 3=a 3,即a 5=a 2a 4=a 23. ∵1=a 1<a 2<…<a 5, ∴a 3a 4>a 2a 4=a 5.∴a 3a 4∉A . 由A 具有性质P 可知a 4a 3∈A .由a 2a 4=a 23,得a 3a 2=a 4a 3∈A ,且1<a 3a 2=a 2, ∴a 4a 3=a 3a 2=a 2.∴a 5a 4=a 4a 3=a 3a 2=a 2a 1=a 2,即a 1,a 2,a 3,a 4,a 5是首项为1,公比为a 2的等比数列.第二课时基础巩固1在等比数列{a n }中,a 4=2,a 5=1,则公比q 等于( ) A.12B .1C .2D .4 2等比数列{a n }的各项都为正数,且a 5a 6+a 4a 7=18,log 3a 1+log 3a 2+…+log 3a 10等于( )A .12B .10C .8D .2+log 353各项均为实数的等比数列{a n }中,a 2=1,a 4=9,则a 3=________. 4等比数列{a n }中,a 2 009a 2 010a 2 011=8,则a 2 010=______.5在83和272之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为______.6等比数列{a n }中,a 1=1,a 9=6 561,求a 5的值.7设{a n }是各项均为正数的等比数列,b n =log 2a n ,若b 1+b 2+b 3=3,b 1·b 2·b 3=-3,求此等比数列的通项公式a n .综合过关8(1)在各项均为正的等比数列{a n }中,a 3·a 9=4,a 6·a 10+a 3·a 5=41,求a 4+a 8的值; (2)在等比数列{a n }中,a 5,a 9是方程7x 2-18x +7=0的两个根,求a 7.9三个互不相等的实数成等差数列,如果适当排列这三个数,又可成为等比数列,且这三个数的和为6,求这三个数.能力提升10设数列{a n }的首项为a 1=1,前n 项和S n 满足关系式3tS n -(2t +3)S n -1=3t (t >0,n =2,3,4,…).(1)求证:数列{a n }是等比数列;(2)设数列{a n }的公比为f (t ),作数列{b n },使b 1=1,b n =f (1b n -1),n =2,3,4,…,求b n .参考答案1解析:q =a 5a 4=12.答案:A2解析:a 5a 6+a 4a 7=2a 5a 6=18,所以a 5a 6=9.所以log 3a 1+log 3a 2+…+log 3a 10=log 3(a 1a 2…a 10)=log 3[(a 1a 10)(a 2a 9)…(a 5a 6)]=log 395=10.答案:B3解析:a 23=a 2a 4=9,则a 3=±3. 答案:±34解析:a 2 009a 2 010a 2 011=a 32 010=8,∴a 2 010=2. 答案:25解析:先求公比q ,把三个数用a 1,q 表示或利用性质求解. 方法一:设这个等比数列为{a n }, 其公比为q ,a 1=83,a 5=272=a 1q 4=83·q 4.∴q 4=8116,q 2=94.∴a 2·a 3·a 4=a 1q ·a 1q 2·a 1q 3=a 31·q 6=(83)3·(94)3=63=216.方法二:设这个等比数列为{a n },公比为q , 则a 1=83,a 5=272,加入的三项分别为a 2,a 3,a 4,由题意a 1,a 3,a 5也成等比数列, ∴a 23=83×272=36.故a 3=6.∴a 2·a 3·a 4=a 23·a 3=a 33=216. 答案:2166分析:可以先解出公比q ,再求a 5,或利用等比中项求解. 解法一:∵a 9=a 1q 8=6 561, ∴q =±3.∴a 5=a 1q 4=1×(±3)4=81.解法二:∵a 5是a 1与a 9的等比中项, ∴a 25=a 1a 9=6 561.∴a 5=±81.而a 5=-81不合题意,应舍去,∴a 5=81.7分析:需由已知条件求出公比q 和某一项,再求通项公式. 解:由b 1+b 2+b 3=3得log 2(a 1·a 2·a 3)=3. ∴a 1·a 2·a 3=23=8. ∵a 22=a 1·a 3, ∴a 2=2.又∵b 1·b 2·b 3=-3, 设等比数列{a n }的公比为q ,得log 2(2q)·log 22·log 2(2·q )=-3,解得q =4或14.∴所求等比数列{a n }的通项公式为:a n =a 2·q n -2=22n -3或25-2n .8分析:(1)此题应考虑使用等比数列的性质求解,即若m 、n 、p 、q ∈N +,且m +n =p +q ,则a m ·a n =a p ·a q ;(2)应用a 27=a 5·a 9求解,但应注意a 7的符号.解:(1)∵{a n }为等比数列,且3+9=4+8,6+10=2×8,3+5=2×4, ∴a 3·a 9=a 4·a 8=4,a 6·a 10=a 28,a 3·a 5=a 24. ∴a 6·a 10+a 3·a 5=a 28+a 24=41,a 4·a 8=4. ∴(a 4+a 8)2=41+2×4=49,且a n >0. ∴a 4+a 8=7.(2)∵a 5,a 9是方程7x 2-18x +7=0的两个根, ∴⎩⎪⎨⎪⎧a 5+a 9=187,a 5·a 9=1.∴a 5,a 9>0.又∵a 27=a 5·a 9=1,且a 7=a 5·q 2>0, ∴a 7=1.9分析:由题意可设三个数为a -d ,a ,a +d ,再结合等比中项知识讨论上述三个数哪一个可能为排列之后等比数列的中间项.解:由题意,这三个数成等差数列,可设分别为a -d ,a ,a +d . ∴a -d +a +a +d =6.∴a =2,这三个数分别为2-d,2,2+d . 若2-d 为等比中项,则有(2-d )2=2(2+d ). 解之得,d =6或d =0(舍去),此时三数为-4,2,8. 若2+d 是等比中项,则有(2+d )2=2(2-d ),解之得,d =-6或d =0(舍去),此时三个数为8,2,-4. 若2为等比中项,则22=(2+d )(2-d ), 解得d =0(舍去).综上可知,这三个数是-4,2,8. 10解:(1)由S 1=a 1=1,S 2=1+a 2, 得3t (1+a 2)-(2t +3)=3t , 得a 2=2t +33t ,∴a 2a 1=2t +33t.又3tS n -(2t +3)S n -1=3t , ①3tS n -1-(2t +3)S n -2=3t , ② ①-②得3ta n -(2t +3)a n -1=0, ∴a n a n -1=2t +33t,n =2,3,4,…. 所以{a n }是一个首项为1,公比为2t +33t 的等比数列.(2)由f (t )=2t +33t =23+1t得b n =f (1b n -1)=23+b n -1, 可见{b n }是一个首项为1,公差为23的等差数列,于是b n =1+23(n -1)=2n +13.。

高中数学第一章数列1.3等比数列1.3.1.2习题精选北师大版必修

高中数学第一章数列1.3等比数列1.3.1.2习题精选北师大版必修

第2课时等比数列的性质及应用课后篇巩固探究A组1.在等比数列{a n}中,a5=3,则a2·a8=()A.3B.6C.8D.9解析:a2·a8==32=9.答案:D2.若1,a1,a2,4成等差数列,1,b1,b2,b3,4成等比数列,则的值等于()A.-B.C.±D.解析:∵=1×4=4,∴b2=2或b2=-2(舍去).又a2-a1==1,∴=-.答案:A3.若互不相等的实数a,b,c成等差数列,c,a,b成等比数列,且a+3b+c=10,则a等于()A.4B.2C.-2D.-4解析:由解得a=-4或a=2.又当a=2时,b=2,c=2,与题意不符,故a=-4.答案:D4.在等比数列{a n}中,a1=1,公比|q|≠1.若a m=a1a2a3a4a5,则m=()A.9B.10C.11D.12解析:因为{a n}是等比数列,所以a1a5=a2a4=,于是a1a2a3a4a5=.从而a m==(q2)5=q10=1×q11-1,故m=11.答案:C5.在正项等比数列{a n}中,=81,则等于()A. B.3 C.6 D.9解析:∵=81,∴=81,∴=81.∵数列各项都是正数,∴=9.答案:D6.在等差数列{a n}中,公差d≠0,且a1,a3,a9成等比数列,则=.解析:由题意知a3是a1和a9的等比中项,∴=a 1a9,∴(a1+2d)2=a1(a1+8d),得a1=d,∴.答案:7.在1和100之间插入n个正数,使这(n+2)个数成等比数列,则插入的这n个正数的积为.解析:设插入的n个正数为a1,a2,…,a n.设M=1·a1·a2·…·a n·100,则M=100·a n·a n-1·…·a1·1,∴M2=(1×100)n+2=100n+2,∴M=10=10n+2,∴a1·a2·…·a n=10n.答案:10n8.导学号33194020在表格中,每格填上一个数字后,使每一横行成等差数列,每一纵行成等比数列,所有公比相等,则a+b+c的值为.解析:设公比为q,由题意知q=,q2=.第四行最后一个数为.因为每一行成等差数列,所以2×2=1+,即bc=6.因为,所以所以所以q=.又=q3=,所以a=8,a+b+c=.答案:9.三个互不相等的实数成等差数列,如果适当排列这三个数,又可成为等比数列,且这三个数的和为6,求这三个数.解由题意,这三个数成等差数列,可设这三个数分别为a-d,a,a+d(d≠0),∴a-d+a+a+d=6,∴a=2,∴这三个数分别为2-d,2,2+d.若2-d为等比中项,则有(2-d)2=2(2+d).解得d=6或d=0(舍去),此时三个数分别为-4,2,8;若2+d是等比中项,则有(2+d)2=2(2-d),解得d=-6或d=0(舍去),此时三个数分别为8,2,-4.10.已知等比数列{b n}与数列{a n}满足b n=(n∈N+).(1)判断{a n}是何种数列;(2)若a8+a13=m,求b1.b2 (20)解(1)设数列{b n}的公比为q,则q>0.∵b n=,∴b1=,∴b n=·q n-1,∴·q n-1=. ①将两边取以3为底的对数得a n=log3(·q n-1)=a1+(n-1)log3q=log3b1+(n-1)log3q.∴数列{a n}是以log3b1为首项,log3q为公差的等差数列.(2)∵a1+a20=a8+a13=m,∴a1+a2+…+a20==10m,∴b 1·b2·…·b20=·…·==310m.B组1.已知0<a<b<c,且a,b,c成等比数列,n为大于1的整数,则log a n,log b n,log c n()A.成等差数列B.成等比数列C.各项倒数成等差数列D.以上都不对解析:∵a,b,c成等比数列,∴b2=ac,又=log n a+log n c=log n ac=log n b2=2log n b=,∴log a n,log b n,log c n的各项倒数成等差数列.故选C.答案:C2.一个等比数列的前三项的积为3,最后三项的积为9,且所有项的积为729,则该数列的项数是()A.13B.12C.11D.10解析:设该等比数列为{a n},其前n项积为T n,则由已知得a1·a2·a3=3,a n-2·a n-1·a n=9,(a1·a n)3=3×9=33,∴a1·a n=3,又T n=a1·a2·…·a n-1·a n,T n=a n·a n-1·…·a2·a1,∴=(a1·a n)n,即7292=3n,∴n=12.答案:B3.在等比数列{a n}中,|a1|=1,a5=-8a2,且a5>a2,则a n等于()A.(-2)n-1B.-(-2)n-1C.±(-2)n-1D.-(-2)n解析:∵|a1|=1,∴a1=1或a1=-1.∵a5=-8a2=a2·q3,∴q3=-8,∴q=-2.又a5>a2,即a2q3>a2,∴a2<0.而a2=a1q=a1·(-2)<0,∴a1=1.故a n=a1·(-2)n-1=(-2)n-1.答案:A4.已知等比数列{a n}满足a n>0,n=1,2,…,且a5·a2n-5=22n(n≥3),则当n≥1时,log2a1+log2a3+…+log2a2n-1=()A.n(2n-1)B.(n+1)2C.n2D.(n-1)2解析:由等比数列的性质可得=a5·a2n-5=22n=(2n)2,∵a n>0,∴a n=2n,故数列首项a1=2,公比q=2,故log2a1+log2a3+…+log2a2n-1=log2(a1·a3·…·a2n-1)=log2[(a1)n q0+2+4+…+2n-2]=log2[2n·]=log2=log2=n2,故选C.答案:C5.导学号33194021在数列{a n}中,a1=2,当n为奇数时,a n+1=a n+2;当n为偶数时,a n+1=2a n-1,则a12=()A.32 C.34 C.66 D.64解析:依题意,a1,a3,a5,a7,a9,a11构成以2为首项,2为公比的等比数列,故a11=a1×25=64,a12=a11+2=66.故选C.答案:C6.在等比数列{a n}中,已知a9=-2,则此数列的前17项之积为.解析:∵a1a2a3·…·a17=(a1·a17)(a2·a16)·…·a9=·…·a9==(-2)17=-217.答案:-2177.已知数列{a n}是公差不为零的等差数列,且a5,a8,a13是等比数列{b n}中相邻的三项,若b2=5,求数列{b n}的通项公式.解∵{a n}是等差数列,∴a5=a1+4d,a8=a1+7d,a13=a1+12d.∵a5,a8,a13是等比数列{b n}中相邻的三项,∴=a 5a13,即(a1+7d)2=(a1+4d)(a1+12d),解得d=2a1.∴q=,b2=b1q=5,b1=5,b1=3,∴b n=3·.8.导学号33194022已知两个等比数列{a n},{b n}满足a1=a(a>0),b1-a1=1,b2-a2=2,b3-a3=3.(1)若a=1,求数列{a n}的通项公式;(2)若数列{a n}唯一,求a的值.解(1)设{a n}的公比为q,则b1=1+a1=1+a=2,b2=2+aq=2+q,b3=3+aq2=3+q2.由b1,b2,b3成等比数列,得(2+q)2=2(3+q2),即q2-4q+2=0,解得q1=2+,q2=2-,故{a n}的通项公式为a n=(2+)n-1或a n=(2-)n-1.(2)设{a n}的公比为q,则由(2+aq)2=(1+a)·(3+aq2),得aq2-4aq+3a-1=0,由a>0得,Δ=4a2+4a>0,故方程aq2-4aq+3a-1=0有两个不同的实根.又{a n}唯一,故方程必有一根为0,代入上式得a=.。

北京北京师范大学附属实验中学等比数列基础测试题题库doc

北京北京师范大学附属实验中学等比数列基础测试题题库doc

一、等比数列选择题1.正项等比数列{}n a 满足:241a a =,313S =,则其公比是( ) A .14B .1C .12D .132.已知正项等比数列{}n a 的公比不为1,n T 为其前n 项积,若20172021T T =,则20202021ln ln a a =( ) A .1:3B .3:1C .3:5D .5:33.数列{}n a 是等比数列,54a =,916a =,则7a =( ) A .8B .8±C .8-D .14.已知各项均为正数的等比数列{}n a ,若543264328a a a a +--=,则7696a a +的最小值为( ) A .12B .18C .24D .325.已知等比数列{}n a 中,1354a a a ⋅⋅=,公比q =,则456a a a ⋅⋅=( ) A .32B .16C .16-D .32-6.已知各项均为正数的等比数列{}n a 的前4项和为30,且53134a a a =+,则3a =( ) A .2B .4C .8D .167.已知公比大于1的等比数列{}n a 满足2420a a +=,38a =.则数列(){}111n n n a a -+-的前n 项的和为( )A .()2382133n n +--B .()23182155n n +---C .()2382133n n ++-D .()23182155n n +-+-8.明代朱载堉创造了音乐学上极为重要的“等程律”.在创造律制的过程中,他不仅给出了求解三项等比数列的等比中项的方法,还给出了求解四项等比数列的中间两项的方法.比如,若已知黄钟、大吕、太簇、夹钟四个音律值成等比数列,则有大吕=大吕=太簇.据此,可得正项等比数列{}n a 中,k a =( )A.n -B.n -C. D. 9.公比为(0)q q >的等比数列{}n a 中,1349,27a a a ==,则1a q +=( ) A .1B .2C .3D .410.已知{}n a 是各项均为正数的等比数列,121a a +=,344a a +=,则5678a a a a +++=( )A .80B .20C .32D .255311.题目文件丢失!12.已知数列{}n a 为等比数列,12a =,且53a a =,则10a 的值为( ) A .1或1-B .1C .2或2-D .213.十九世纪下半叶集合论的创立,奠定了现代数学的基础.著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间[0,1]均分为三段,去掉中间的区间段12(,)33,记为第一次操作;再将剩下的两个区间1[0,]3,2[,1]3分别均分为三段,并各自去掉中间的区间段,记为第二次操作;…,如此这样,每次在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷,剩下的区间集合即是“康托三分集”.若使去掉的各区间长度之和不小于910,则需要操作的次数n 的最小值为( )(参考数据:lg 20.3010=,lg30.4771=)A .4B .5C .6D .714.已知等比数列{}n a 的通项公式为2*3()n n a n N +=∈,则该数列的公比是( )A .19B .9C .13D .315.若数列{}n a 是等比数列,且17138a a a =,则311a a =( ) A .1 B .2 C .4 D .8 16.已知1,a ,x ,b ,16这五个实数成等比数列,则x 的值为( )A .4B .-4C .±4D .不确定17.已知等比数列的公比为2,其前n 项和为n S ,则33S a =( ) A .2B .4C .74D .15818.设b R ∈,数列{}n a 的前n 项和3nn S b =+,则( ) A .{}n a 是等比数列B .{}n a 是等差数列C .当1b ≠-时,{}n a 是等比数列D .当1b =-时,{}n a 是等比数列19.已知等比数列{}n a ,7a =8,11a =32,则9a =( ) A .16B .16-C .20D .16或16-20.已知q 为等比数列{}n a 的公比,且1212a a =-,314a =,则q =( ) A .1- B .4C .12-D .12±二、多选题21.题目文件丢失! 22.题目文件丢失!23.已知等差数列{}n a ,其前n 项的和为n S ,则下列结论正确的是( ) A .数列|n S n ⎧⎫⎨⎬⎩⎭为等差数列 B .数列{}2na 为等比数列C .若,()m n a n a m m n ==≠,则0m n a +=D .若,()m n S n S m m n ==≠,则0m n S += 24.若数列{}n a 的前n 项和是n S ,且22n n S a =-,数列{}n b 满足2log n n b a =,则下列选项正确的为( ) A .数列{}n a 是等差数列B .2nn a =C .数列{}2na 的前n 项和为21223n +-D .数列11n n b b +⎧⎫⎨⎬⋅⎩⎭的前n 项和为n T ,则1n T <25.设{}n a 是无穷数列,1n n n A a a +=+,()1,2,n =,则下面给出的四个判断中,正确的有( )A .若{}n a 是等差数列,则{}n A 是等差数列B .若{}n A 是等差数列,则{}n a 是等差数列C .若{}n a 是等比数列,则{}n A 是等比数列D .若{}n A 是等差数列,则{}2n a 都是等差数列26.记单调递增的等比数列{a n }的前n 项和为S n ,若2410a a +=,23464a a a =,则( )A .112n n n S S ++-= B .12n n aC .21nn S =-D .121n n S -=-27.已知集合{}*21,A x x n n N==-∈,{}*2,nB x x n N ==∈将AB 的所有元素从小到大依次排列构成一个数列{}n a ,记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的可能取值为( ) A .25B .26C .27D .2828.在等比数列{a n }中,a 5=4,a 7=16,则a 6可以为( )A .8B .12C .-8D .-1229.已知数列{}n a 的前n 项和为n S 且满足11130(2),3n n n a S S n a -+=≥=,下列命题中正确的是( ) A .1n S ⎧⎫⎨⎬⎩⎭是等差数列 B .13n S n=C .13(1)n a n n =--D .{}3n S 是等比数列30.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件11a >,781a a ⋅>,87101a a -<-,则下列结论正确的是( ) A .01q << B .791a a ⋅> C .n S 的最大值为9SD .n T 的最大值为7T31.已知数列{} n a 满足11a =,121++=+n n a a n ,*n N ∈, n S 是数列1 n a ⎧⎫⎨⎬⎩⎭的前n 项和,则下列结论中正确的是( ) A .()21121n nS n a -=-⋅ B .212n n S S =C .2311222n n n S S ≥-+ D .212n n S S ≥+32.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并满足条件1201920201,1a a a >>,20192020101a a -<-,下列结论正确的是( )A .S 2019<S 2020B .2019202010a a -<C .T 2020是数列{}n T 中的最大值D .数列{}n T 无最大值33.记单调递增的等比数列{}n a 的前n 项和为n S ,若2410a a +=,23464a a a =,则( )A .112n n n S S ++-=B .12n naC .21nn S =- D .121n n S -=-34.已知等比数列{}n a 的公比为q ,前n 项和0n S >,设2132n n n b a a ++=-,记{}n b 的前n 项和为n T ,则下列判断正确的是( ) A .若1q =,则n n T S = B .若2q >,则n n T S > C .若14q =-,则n n T S > D .若34q =-,则n n T S >35.对于数列{}n a ,若存在正整数()2k k ≥,使得1k k a a -<,1k k a a +<,则称k a 是数列{}n a 的“谷值”,k 是数列{}n a 的“谷值点”,在数列{}n a 中,若98na n n=+-,下面哪些数不能作为数列{}n a 的“谷值点”?( ) A .3B .2C .7D .5【参考答案】***试卷处理标记,请不要删除一、等比数列选择题 1.D 【分析】根据241a a =,由2243a a a =,解得31a =,再根据313S =求解.【详解】因为正项等比数列{}n a 满足241a a =,由于2243a a a =,所以231a =,31a =,211a q =.因为313S =, 所以1q ≠. 由()()31231111a q S a q q q-==++-得22131q q q =++, 即21210q q --=, 解得13q =,或14q =-(舍去). 故选:D 2.A 【分析】由20172021T T =得20182019202020211a a a a =,由等比数列性质得20182021201920201a a a a ==,这样可把2020a 和2021a 用q 表示出来后,可求得20202021ln ln a a . 【详解】{}n a 是正项等比数列,0n a >,0n T ≠,*n N ∈,所以由2017202120172018201920202021T T T a a a a ==⋅,得20182019202020211a a a a =,所以20182021201920201a a a a ==,设{}n a 公比为q ,1q ≠,22021201820213()1a a a q ==,2202020192020()1a a a q==,即322021a q =,122020a q =,所以1220203202121ln ln ln 123ln 3ln ln 2qa q a q q ===. 故选:A . 【点睛】本题考查等比数列的性质,解题关键是利用等比数列性质化简已知条件,然后用公比q 表示出相应的项后可得结论. 3.A 【分析】分析出70a >,再结合等比中项的性质可求得7a 的值. 【详解】设等比数列{}n a 的公比为q ,则2750a a q =>,由等比中项的性质可得275964a a a ==,因此,78a =.故选:A. 4.C 【分析】将已知条件整理为()()22121328a q q q -+=,可得()22183221q q a q +=-,进而可得()4427612249633221q a a a q q q q +=+=-,分子分母同时除以4q ,利用二次函数的性质即可求出最值. 【详解】因为{}n a 是等比数列,543264328a a a a +--=,所以432111164328a q a q a q a q +--=,()()2221232328a q q q q q ⎡⎤+-+=⎣⎦, 即()()22121328a q q q -+=,所以()22183221q q a q +=-,()()465424761111221248242496963323212121q a a a q a q a q q q a q q a q q q +=+=+=⨯==---,令210t q =>,则()222421211t t t q q -=-=--+, 所以211t q==,即1q =时2421q q -最大为1,此时242421q q -最小为24, 所以7696a a +的最小值为24, 故选:C 【点睛】易错点睛:本题主要考查函数与数列的综合问题,属于难题.解决该问题应该注意的事项: (1)数列是一类特殊的函数,它的图象是一群孤立的点;(2)转化以函数为背景的条件时,应该注意题中的限制条件,如函数的定义域,这往往是很容易被忽视的问题;(3)利用函数的方法研究数列中的相关问题时,应准确构造相应的函数,注意数列中相关限制条件的转化. 5.A 【分析】由等比数列的通项公式可计算得出()6456135a a a q a a a ⋅⋅=⋅⋅,代入数据可计算得出结果.【详解】由6326456135135432a a a a q a q a q a a a q ⋅⋅=⋅⋅⋅⋅⋅=⋅⋅⋅=⨯=.故选:A. 6.C 【分析】根据等比数列的通项公式将53134a a a =+化为用基本量1,a q 来表示,解出q ,然后再由前4项和为30求出1a ,再根据通项公式即可求出3a . 【详解】设正数的等比数列{}n a 的公比为()0q q >,因为53134a a a =+,所以4211134a q a q a =+,则42340q q --=,解得24q =或21q =-(舍),所以2q,又等比数列{}n a 的前4项和为30,所以23111130a a q a q a q +++=,解得12a =, ∴2318a a q ==.故选:C . 7.D 【分析】根据条件列出方程组可求出等比数列的公比和首项,即可得到数列的通项公式,代入()111n n n a a -+-可知数列为等比数列,求和即可.【详解】因为公比大于1的等比数列{}n a 满足2420a a +=,38a =,所以31121208a q a q a q ⎧+=⎨=⎩,解得2q,12a =,所以1222n nn a -=⨯=,()()()111111222111n n n n n n n n a a ++-+--+=⋅⋅-=∴--,(){}111n n n a a -+∴-是以8为首项,4-为公比的等比数列,()23357921118[1(4)]8222222(1)1(4)155n n n n n n S -++---∴=-+--++⋅==+---, 故选:D 【点睛】关键点点睛:求出等比数列的通项公式后,代入新数列,可得数列的通项公式,由通项公式可知数列为等比数列,根据等比数列的求和公式计算即可. 8.C 【分析】根据题意,由等比数列的通项公式,以及题中条件,即可求出结果. 【详解】因为三项等比数列的中项可由首项和末项表示,四项等比数列的第2、第3项均可由首项和末项表示,所以正项等比数列{}n a 中的k a 可由首项1a 和末项n a 表示,因为11n n a a q -=,所以q =所以111111k k n n k a a a a a ---⎛⎫ ⎪⎛== ⎭⎝⎝1111n k k n n na a----==⋅ 故选:C. 9.D 【分析】利用已知条件求得1,a q ,由此求得1a q +. 【详解】依题意222111131912730a a q a q a a q q q ⎧⋅===⎧⎪=⇒⎨⎨=⎩⎪>⎩,所以14a q +=. 故选:D 10.A 【分析】由条件求出公比q ,再利用前4项和和公比求5678a a a a +++的值. 【详解】根据题意,由于{}n a 是各项均为正数的等比数列,121a a +=,()234124a a q a a +==+,∴24q =,0q >,2q则()()456781234161480a a a a q a a a a +++=+++=+=.故选:A11.无12.C 【分析】根据等比数列的通项公式,由题中条件,求出公比,进而可得出结果. 【详解】设等比数列{}n a 的公比为q ,因为12a =,且53a a =,所以21q =,解得1q =±, 所以91012a a q ==±.故选:C. 13.C 【分析】依次求出第次去掉的区间长度之和,这个和构成一个等比数列,再求其前n 项和,列出不等式解之可得. 【详解】第一次操作去掉的区间长度为13;第二次操作去掉两个长度为19的区间,长度和为29;第三次操作去掉四个长度为127的区间,长度和为427;…第n 次操作去掉12n -个长度为13n 的区间,长度和为123n n -,于是进行了n 次操作后,所有去掉的区间长度之和为1122213933nn n n S -⎛⎫=++⋅⋅⋅+=- ⎪⎝⎭,由题意,902131n⎛⎫-≥ ⎪⎝⎭,即21lg lg 1031n ≤=-,即()lg3lg21n -≥,解得:115.679lg3lg 20.47710.3010n ≥=≈--,又n 为整数,所以n 的最小值为6. 故选:C . 【点睛】本题以数学文化为背景,考查等比数列通项、前n 项和等知识及估算能力,属于中档题. 14.D 【分析】利用等比数列的通项公式求出1a 和2a ,利用21a a 求出公比即可 【详解】设公比为q ,等比数列{}n a 的通项公式为2*3()n n a n N +=∈,则31327a ==,42381a ==,213a q a ∴==, 故选:D 15.C 【分析】根据等比数列的性质,由题中条件,求出72a =,即可得出结果. 【详解】因为数列{}n a 是等比数列,由17138a a a =,得378a =,所以72a =,因此231174a a a ==.故选:C. 16.A 【分析】根据等比中项的性质有216x =,而由等比通项公式知2x q =,即可求得x 的值. 【详解】由题意知:216x =,且若令公比为q 时有20x q =>,∴4x =, 故选:A 17.C 【分析】利用等比数列的通项公式和前n 项和公式代入化简可得答案 【详解】解:因为等比数列的公比为2,所以31312311(12)7712244a S a a a a --===⋅, 故选:C 18.D 【分析】根据n S 与n a 的关系求出n a ,然后判断各选项. 【详解】由题意2n ≥时,111(3)(3)23nn n n n n a S S b b ---=-=+-+=⨯,13n na a +=(2)n ≥, 113a Sb ==+,若212333a a b⨯==+,即1b =-,则{}n a 是等比数列,否则不是等比数列,也不是等差数列, 故选:D . 【点睛】关键点点睛:本题考查等比数列的定义.在由1n n n a S S -=-求通项时,2n ≥必须牢记,11a S =它与(2)n a n ≥的求法不相同,因此会影响{}n a 的性质.对等比数列来讲,不仅要求3423a a a a ==,还必须满足3212a a a a =. 19.A 【分析】根据等比数列的通项公式得出618a q =,10132a q=且10a >,再由819a a q ==.【详解】设等比数列{}n a 的公比为q ,则618a q =,10132a q=且10a >则81916a q a ====故选:A 20.C 【分析】利用等比通项公式直接代入计算,即可得答案; 【详解】()211142211111122211121644a a q a q q q q a q a q ⎧⎧=-=--⎪⎪⎪⎪⇒⇒=⇒=-⎨⎨⎪⎪=⋅=⎪⎪⎩⎩,故选:C.二、多选题 21.无 22.无23.ABC 【分析】设等差数列{}n a 的首项为1a ,公差为d , ()11n a a n d +-=,其前n 项和为()112n n n S na d -=+,结合等差数列的定义和前n 项的和公式以及等比数列的定义对选项进行逐一判断可得答案. 【详解】 设等差数列{}n a 的首项为1a ,公差为d , ()11n a a n d +-= 其前n 项和为()112n n n S na d -=+ 选项A.112n S n a d n -=+,则+1111+1222n n S S n n d a d a d n n -⎛⎫⎛⎫-=+-+= ⎪ ⎪⎝⎭⎝⎭(常数) 所以数列|n S n ⎧⎫⎨⎬⎩⎭为等差数列,故A 正确.选项B. ()1122na n da +-=,则112222n n n na a a d a ++-==(常数),所以数列{}2n a为等比数列,故B正确.选项C. 由,m n a n a m ==,得()()1111m na a m d na a n d m ⎧=+-=⎪⎨=+-=⎪⎩ ,解得11,1a m n d =+-=-所以()()()111110m n a a n m d n m n m +=++-=+-++-⨯-=,故C 正确. 选项D. 由,m n S n S m ==,则()112n n n n S a d m -=+=,()112m m m m S a d n -=+=将以上两式相减可得:()()()2212dm n a m m n n n m ⎡⎤-+---=-⎣⎦()()()112dm n a m n m n n m -+-+-=-,又m n ≠所以()1112d a m n ++-=-,即()1112d m n a +-=--()()()()()()()111112m n m n m n dS m n a m n a m n a m n +++-=++=+++--=-+,所以D 不正确. 故选:ABC 【点睛】关键点睛:本题考查等差数列和等比数列的定义的应用以及等差数列的前n 项和公式的应用,解答本题的关键是利用通项公式得出()()1111m na a m d na a n d m ⎧=+-=⎪⎨=+-=⎪⎩,从中解出1,a d ,从而判断选项C ,由前n 项和公式得到()112n n n n S a d m -=+=,()112m m m m S a d n -=+=,然后得出()1112dm n a +-=--,在代入m n S +中可判断D ,属于中档题. 24.BD 【分析】根据22n nS a =-,利用数列通项与前n 项和的关系得1,1,2n n S n a S n =⎧=⎨≥⎩,求得通项n a ,然后再根据选项求解逐项验证. 【详解】当1n =时,12a =,当2n ≥时,由22n n S a =-,得1122n n S a --=-, 两式相减得:12n n a a -=, 又212a a =,所以数列{}n a 是以2为首项,以2为公比的等比数列, 所以2nn a =,24nn a =,数列{}2na的前n 项和为()141444143n n n S +--'==-, 则22log log 2nn n b a n ===,所以()1111111n n b b n n n n +==-⋅⋅++,所以 1111111 (11123411)n T n n n =-+-++-=-<++, 故选:BD 【点睛】方法点睛:求数列的前n 项和的方法 (1)公式法:①等差数列的前n 项和公式,()()11122n n n a a n n S na d +-==+②等比数列的前n 项和公式()11,11,11nn na q S a q q q=⎧⎪=-⎨≠⎪-⎩;(2)分组转化法:把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.(3)裂项相消法:把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. (4)倒序相加法:把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广.(5)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列对应项之积构成的,则这个数列的前n 项和用错位相减法求解.(6)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解. 25.AD 【分析】利用等差数列的通项公式以及定义可判断A 、B 、D ;利用等比数列的通项公式可判断B. 【详解】对于A ,若{}n a 是等差数列,设公差为d ,则()1111122n n n a n d a nd A a a a nd d +=+=+-++=+-, 则()()111222212n n A A a nd d a n d d d --=+--+--=⎡⎤⎣⎦, 所以{}n A 是等差数列,故A 正确; 对于B ,若{}n A 是等差数列,设公差为d ,()11111n n n n n n n n A a a a a a a A d +-+--=-=-+-=+,即数列{}n a 的偶数项成等差数列,奇数项成等差数列,故B 不正确,D 正确. 对于C ,若{}n a 是等比数列,设公比为q , 当1q ≠-时, 则11111n n n n n n n n n na q a A a a a qq a A a a --+--+=+++==, 当1q =-时,则10n n n A a a ++==,故{}n A 不是等比数列,故C 不正确; 故选:AD 【点睛】本题考查了等差数列的通项公式以及定义、等比数列的通项公式以及定义,属于基础题. 26.BC 【分析】根据数列的增减性由所给等式求出1a d 、,写出数列的通项公式及前n 项和公式,即可进行判断.【详解】数列{a n }为单调递增的等比数列,且24100a a +=>,0n a ∴>23464a a a =,2364a ∴=,解得34a =,2410a a +=,4410q q∴+=即22520q q -+=,解得2q或12, 又数列{a n }为单调递增的等比数列,取2q,312414a a q ===, 12n na ,212121n n n S -==--,()1121212n n nn n S S ++-=---=.故选:BC 【点睛】本题考查等比数列通项公式基本量的求解、等比数列的增减性、等比数列求和公式,属于基础题. 27.CD 【分析】由题意得到数列{}n a 的前n 项依次为231,2,3,2,5,7,2,9,利用列举法,结合等差数列以及等比数列的求和公式,验证即可求解. 【详解】由题意,数列{}n a 的前n 项依次为231,2,3,2,5,7,2,9,利用列举法,可得当25n =时,AB 的所有元素从小到大依次排列构成一个数列{}n a ,则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,37,39,2,4,8,16,32,可得52520(139)2(12)40062462212S ⨯+-=+=+=-,2641a =,所以2612492a =,不满足112n n S a +>; 当26n =时,AB 的所有元素从小到大依次排列构成一个数列{}n a ,则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,37,39,41,2,4,8,16,32,可得52621(141)2(12)44162503212S ⨯+-=+=+=-,2743a =,所以2612526a =,不满足112n n S a +>; 当27n =时,AB 的所有元素从小到大依次排列构成一个数列{}n a ,则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,37,39,41,43,2,4,8,16,32,可得52722(143)2(12)48462546212S ⨯+-=+=+=-,2845a =,所以2712540a =,满足112n n S a +>;当28n =时,AB 的所有元素从小到大依次排列构成一个数列{}n a ,则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,37,39,41,43,45,2,4,8,16,32,可得52823(145)2(12)52962591212S ⨯+-=+=+=-,2947a =,所以2812564a =,满足112n n S a +>,所以使得112n n S a +>成立的n 的可能取值为27,28. 故选:CD. 【点睛】本题主要考查了等差数列和等比数列的前n 项和公式,以及“分组求和法”的应用,其中解答中正确理解题意,结合列举法求得数列的前n 项和,结合选项求解是解答的关键,着重考查推理与运算能力. 28.AC 【分析】求出等比数列的公比2q =±,再利用通项公式即可得答案; 【详解】5721624a q q a ==⇒=±, 当2q时,65428a a q ==⨯=,当2q =-时,654(2)8a a q ==⨯-=-, 故选:AC. 【点睛】本题考查等比数列通项公式的运算,考查运算求解能力,属于基础题. 29.ABD 【分析】由1(2)n n n a S S n -=-≥代入已知式,可得{}n S 的递推式,变形后可证1n S ⎧⎫⎨⎬⎩⎭是等差数列,从而可求得n S ,利用n S 求出n a ,并确定3n S 的表达式,判断D . 【详解】因为1(2)n n n a S S n -=-≥,1130n n n n S S S S ---+=,所以1113n n S S --=, 所以1n S ⎧⎫⎨⎬⎩⎭是等差数列,A 正确;公差为3,又11113S a ==,所以133(1)3n n n S =+-=,13n S n =.B 正确; 2n ≥时,由1n n n a S S -=-求得13(1)n a n n =-,但13a =不适合此表达式,因此C 错;由13n S n =得1311333n n n S +==⨯,∴{}3n S 是等比数列,D 正确.故选:ABD . 【点睛】本题考查等差数列的证明与通项公式,考查等比数列的判断,解题关键由1(2)n n n a S S n -=-≥,化已知等式为{}n S 的递推关系,变形后根据定义证明等差数列.30.AD 【分析】根据题意71a >,81a <,再利用等比数列的定义以及性质逐一判断即可. 【详解】因为11a >,781a a ⋅>,87101a a -<-, 所以71a >,81a <,所以01q <<,故A 正确.27981a a a =<⋅,故B 错误;因为11a >,01q <<,所以数列{}n a 为递减数列,所以n S 无最大值,故C 错误; 又71a >,81a <,所以n T 的最大值为7T ,故D 正确. 故选:AD 【点睛】本题考查了等比数列的性质、定义,考查了基本知识的掌握情况,属于基础题. 31.CD 【分析】根据数列{} n a 满足11a =,121++=+n n a a n ,得到1223+++=+n n a a n ,两式相减得:22n n a a +-=,然后利用等差数列的定义求得数列{} n a 的通项公式,再逐项判断.【详解】因为数列{} n a 满足11a =,121++=+n n a a n ,*n N ∈, 所以1223+++=+n n a a n , 两式相减得:22n n a a +-=,所以奇数项为1,3,5,7,….的等差数列; 偶数项为2,4,6,8,10,….的等差数列; 所以数列{} n a 的通项公式是n a n =, A. 令2n =时, 311111236S =++=,而 ()1322122⨯-⋅=,故错误; B. 令1n =时, 213122S =+=,而 11122S =,故错误;C. 当1n =时, 213122S =+=,而 31132222-+=,成立,当2n ≥时,211111...23521n n S S n =++++--,因为221n n >-,所以11212n n >-,所以111111311...1 (352148222)n n n ++++>++++=--,故正确; D. 因为21111...1232n n S S n n n n-=+++++++,令()1111...1232f n n n n n=+++++++,因为()111111()021*******f n f n n n n n n +-=+-=->+++++,所以()f n 得到递增,所以()()112f n f ≥=,故正确; 故选:CD 【点睛】本题主要考查等差数列的定义,等比数列的前n 项和公式以及数列的单调性和放缩法的应用,还考查了转化求解问题的能力,属于较难题. 32.AB 【分析】由已知确定0q <和1q ≥均不符合题意,只有01q <<,数列{}n a 递减,从而确定20191a >,202001a <<,从可判断各选项.【详解】当0q <时,22019202020190a a a q =<,不成立;当1q ≥时,201920201,1a a >>,20192020101a a -<-不成立;故01q <<,且20191a >,202001a <<,故20202019S S >,A 正确;2201920212020110a a a -=-<,故B 正确;因为20191a >,202001a <<,所以2019T 是数列{}n T 中的最大值,C ,D 错误; 故选:AB 【点睛】本题考查等比数列的单调性,解题关键是确定20191a >,202001a <<. 33.BC 【分析】先求得3a ,然后求得q ,进而求得1a ,由此求得1,,n n n n a S S S +-,进而判断出正确选项. 【详解】由23464a a a =得3334a =,则34a =.设等比数列{}n a 的公比为()0q q ≠,由2410a a +=,得4410q q+=,即22520q q -+=,解得2q或12q =.又因为数列{}n a 单调递增,所以2q,所以112810a a +=,解得11a =.所以12n na ,()1122112n n n S ⨯-==--,所以()1121212n n nn n S S ++-=---=.故选:BC 【点睛】本题考查等比数列的通项公式、等比数列的性质及前n 项和,属于中档题.34.BD 【分析】先求得q 的取值范围,根据q 的取值范围进行分类讨论,利用差比较法比较出n T 和n S 的大小关系. 【详解】由于{}n a 是等比数列,0n S >,所以110,0a S q =>≠, 当1q =时,10n S na =>,符合题意; 当1q ≠时,()1101n n a q S q-=>-,即101nq q ->-,上式等价于1010n q q ⎧->⎨->⎩①或1010n q q ⎧-<⎨-<⎩②.解②得1q >.解①,由于n 可能是奇数,也可能是偶数,所以()()1,00,1q ∈-.综上所述,q 的取值范围是()()1,00,-+∞.2213322n n n n b a a a q q ++⎛⎫=-=- ⎪⎝⎭,所以232n n T q q S ⎛⎫=- ⎪⎝⎭,所以()2311222n n n n T S S q q S q q ⎛⎫⎛⎫-=⋅--=⋅+⋅- ⎪ ⎪⎝⎭⎝⎭,而0n S >,且()()1,00,q ∈-⋃+∞.所以,当112q -<<-,或2q >时,0n n T S ->,即n n T S >,故BD 选项正确,C 选项错误. 当12(0)2q q -<<≠时,0n n T S -<,即n n T S <. 当12q =-或2q 时,0,n n n n T S T S -==,A 选项错误.综上所述,正确的选项为BD. 故选:BD 【点睛】本小题主要考查等比数列的前n 项和公式,考查差比较法比较大小,考查化归与转化的数学思想方法,考查分类讨论的数学思想方法,属于中档题. 35.AD【分析】计算到12a =,232a =,32a =,474a =,565a =,612a =,727a =,898a =,根据“谷值点”的定义依次判断每个选项得到答案. 【详解】98n a n n =+-,故12a =,232a =,32a =,474a =,565a =,612a =,727a =,898a =. 故23a a <,3不是“谷值点”;12a a >,32a a >,故2是“谷值点”;67a a >,87a a >,故7是“谷值点”;65a a <,5不是“谷值点”.故选:AD . 【点睛】本题考查了数列的新定义问题,意在考查学生的计算能力和应用能力.。

等比数列练习-北师大版高考理科数学一轮复习测试

等比数列练习-北师大版高考理科数学一轮复习测试

核心素养测评三十九等比数列(30分钟60分)一、选择题(每小题5分,共25分)1.已知数列a,a(1-a),a(1-a)2,…是等比数列,则实数a满足的条件是 ( )A.{a|a≠1}B.{a|a≠0或a≠1}C.{a|a≠0}D.{a|a≠0且a≠1}【解析】选D.由等比数列定义可知a≠0且1-a≠0,即a≠0且a≠1.【变式备选】数列{a n}满足:a n+1=λa n-1(n∈N*,λ∈R且λ≠0),若数列{a n-1}是等比数列,则λ的值等于( )A.1B.-1C.D.2【解析】选D.由a n+1=λa n-1,得a n+1-1=λa n-2=λ(a n-).由于数列{a n-1}是等比数列,所以=1,得λ=2. 2.公元前5世纪,古希腊哲学家芝诺发表了著名的阿基里斯悖论.他提出让乌龟在阿基里斯前面1 000米处开始,和阿基里斯赛跑,并且假定阿基里斯的速度是乌龟的10倍.当比赛开始后,若阿基里斯跑了1000米,此时乌龟便领先他100米;当阿基里斯跑完下一个100米时,乌龟仍然领先他10米;当阿基里斯跑完下一个10米时,乌龟仍然领先他1米……所以阿基里斯永远追不上乌龟.按照这样的规律,若阿基里斯和乌龟的距离恰好为10-2米时,乌龟爬行的总距离(单位:米)为( )A. B.C. D.【解析】选B.由题意知,乌龟每次爬行的距离(单位:米)构成等比数列,且首项a1=100,公比q=,易知a5=10-2,则乌龟爬行的总距离(单位:米)为S5===.3.已知各项不为0的等差数列{a n}满足a6-+a8=0,数列{b n}是等比数列,且b7=a7,则b2·b8·b11=( )A.1B.2C.4D.8【解析】选D.由等差数列的性质得a6+a8=2a7.由a6-+a8=0可得a7=2,所以b7=a7=2.由等比数列的性质得b2b8b11=b2b7b12==23=8.【变式备选】已知方程(x2-mx+2)(x2-nx+2)=0的四个根组成以为首项的等比数列,则等于( )A. B.或C. D.以上都不对【解析】选B.设a,b,c,d是方程(x2-mx+2)(x2-nx+2)=0的四个根,不妨设a<c<d<b,则a·b=c·d=2,a=,故b=4,根据等比数列的性质,得到:c=1,d=2,则m=a+b=,n=c+d=3或m=c+d=3,n=a+b=,则=或=.4.已知等比数列{a n}的前n项和S n=a·3n-1+b,则= ( )A.-3B.-1C.1D.3【解析】选A.因为等比数列{a n}的前n项和S n=a·3n-1+b,所以a1=S1=a+b,a2=S2-S1=3a+b-a-b=2a,a3=S3-S2=9a+b-3a-b=6a,因为等比数列{a n}中,=a1a3,所以(2a)2=(a+b)×6a,解得=-3.5.已知三角形的三边构成等比数列,它们的公比为q,则q的一个可能值为 ( )A. B. C. D.【解析】选C.设三角形的三边分别为a,aq,aq2,其中q>0.则由三角形三边不等关系知:当q>1时.a+aq>a·q2,即q2-q-1<0所以<q<,所以1<q<.当0<q<1时.a为最大边.aq+a·q2>a,则q2+q-1>0,所以q>或q<-,所以<q<1.当q=1时,满足题意,综上知,C满足题意.【变式备选】在递增的等比数列{a n}中,已知a1+a n=34,a3·a n-2=64,且前n项和S n=42,则n等于( ) A.3 B.4 C.5 D.6【解析】选A.因为{a n}为等比数列,所以a3·a n-2=a1·a n=64.又a1+a n=34,所以a1,a n是方程x2-34x+64=0的两根,解得或又因为{a n}是递增数列,所以由S n===42,解得q=4.由a n=a1q n-1=2×4n-1=32,解得n=3.二、填空题(每小题5分,共15分)6.已知等比数列{a n}的前n项和为S n,且a1+a3=,a2+a4=,则=________________. 【解析】设{a n}的公比为q,因为所以由①②可得=2,所以q=,将q=代入①得a1=2,所以a n=2×=,所以S n==4,所以==2n-1.答案:2n-1【变式备选】在等比数列{a n}中,已知a1=-1,a4=64,则q=________________,S4=________________.【解析】因为a4=a1·q3,所以q3=-64,q=-4,S4===51.答案:-4 517.(2019·全国卷Ⅰ)记S n为等比数列{a n}的前n项和.若a1=,=a6,则S5=________________.【解析】设等比数列的公比为q,由已知a1=,=a6,所以=q5,又q≠0,所以q=3,所以S5===.答案:【变式备选】等比数列{a n}的各项均为实数,其前n项和为S n.已知S3=,S6=,则a8=________________.【解析】设等比数列{a n}的公比为q,则由S6≠2S3得q≠1,则S3==,S6==,解得q=2,a1=,则a8=a1q7=×27=32.答案:328.若等比数列{a n}的各项均为正数,且a10a11+a9a12=2e5,则ln a1+ln a2+…+ln a20=________________.【解析】因为数列{a n}为等比数列,且a10a11+a9a12=2e5,所以a10a11+a9a12=2a10a11=2e5,所以a10a11=e5,所以ln a1+ln a2+…+ln a20=ln(a1a2a20)=ln(a10a11)10=ln(e5)10=lne50=50.答案:50三、解答题(每小题10分,共20分)9.(2018·全国卷Ⅲ)等比数列中,a1=1,a5=4a3.(1)求的通项公式.(2)记S n为的前n项和.若S m=63,求m.【解析】(1)设{a n}的公比为q,由题设得a n=q n-1.由已知得q4=4q2,解得q=0(舍去),q=-2或q=2.故a n=(-2)n-1或a n=2n-1.(2)若a n=(-2)n-1,则S n=.由S m=63得(-2)m=-188,此方程没有正整数解.若a n=2n-1,则S n=2n-1.由S m=63得2m=64,解得m=6.综上,m=6.10.(2020·郑州模拟)已知等比数列{a n}的公比q>0,其前n项和为S n,且S5=62,a4,a5的等差中项为3a3.(1)求数列{a n}的通项公式.(2)设b n=,求数列{b n}的前n项和T n.【解析】(1)因为a4+a5=6a3,所以a1q3+a1q4=6a1q2,即q2+q-6=0,解得q=2或q=-3(舍去).所以S5==31a1=62,a1=2,所以a n=2·2n-1=2n.(2)因为b n===,所以T n=b1+b2+…+b n====-.(15分钟35分)1.(5分)中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗,苗主责之粟五斗.羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我的羊所吃的禾苗只有马的一半.”马主人说:“我的马所吃的禾苗只有牛的一半.”打算按此比率偿还,他们各应偿还多少?已知牛、马、羊的主人各应偿还粟a升,b升,c升,1斗为10升,则下列判断正确的是( )A.a,b,c成公比为2的等比数列,且a=B.a,b,c成公比为2的等比数列,且c=C.a,b,c成公比为的等比数列,且a=D.a,b,c成公比为的等比数列,且c=【解析】选D.由题意可得,a,b,c成公比为的等比数列,b=a,c=b,三者之和为50升,故4c+2c+c=50,解得c=.【变式备选】已知等比数列{a n}的公比q=2,前100项和为S100=90,则其偶数项a2+a4+…+a100为( )A.15B.30C.45D.60【解析】选D.S100=a1+a2+…+a100=90,设S=a1+a3+…+a99,则2S=a2+a4+…+a100,所以S+2S=90,S=30,故a2+a4+…+a100=2S=60.2.(5分)在等比数列{a n}中,a2,a16是方程x2-6x+2=0的根,则= ( )A.-B.-C. D.-或【解析】选D.由题意可得a2a16=2,又由等比数列的性质可知a2a16==2,所以a9=±,所以==a9=±.【变式备选】在等比数列{a n}中,a3,a15是方程x2-6x+8=0的根,则= ( )A.2B.2C.1D.-2【解析】选A.由题知,a3+a15=6>0,a3a15=8>0,则a3>0,a15>0,由等比数列的性质知a1a17=a3a15=8=⇒a9=±2.设等比数列{a n}的公比为q,则a9=a3q6>0,故a9=2,故==2.3.(5分)(2019·全国卷Ⅰ)记S n为等比数列{a n}的前n项和.若a1=1,S3=,则S4=________________.【解析】设等比数列的公比为q,由已知S3=a1+a1q+a1q2=1+q+q2=,即q2+q+=0,解得q=-,所以S4===.答案:【变式备选】设{a n}是公比为q的等比数列,S n是它的前n项和,若{S n}是等差数列,则q为________________. 【解析】若q=1,则S n=na1,所以{S n}是等差数列;若q≠1,则当{S n}是等差数列时,一定有2S2=S1+S3,所以2·=a1+,即q3-2q2+q=0,故q(q-1)2=0,所以q=0或q=1,而q≠0,q≠1,所以此时不成立.综上可知,q=1.答案:14.(10分)已知数列{a n}是各项均为正数的等比数列,若a1=1,a2a4=16.(1)设b n=log2a n,求数列{b n}的通项公式.(2)求数列{a n·b n}的前n项和S n.【解析】(1)因为a1=1,a2·a4=16,由等比数列的性质可得,a2·a4==16且a n>0,所以a3=4,所以q2==4,所以q=2或q=-2(舍去),所以a n=2n-1,因为b n=log2a n=log22n-1=n-1,所以b n=n-1.(2)由(1)得a n·b n=(n-1)·2n-1,S n=0·20+1·21+2·22+…+(n-1)·2n-1①2S n=0·21+1·22+…+(n-2)·2n-1+(n-1)·2n②①-②得-S n=2+22+23+…+2n-1-(n-1)·2n=-(n-1)·2n=2n(2-n)-2所以S n=(n-2)·2n+2.5.(10分)已知数列{a n}的前n项和为S n,且a n=(n∈N*).(1)若数列{a n+t}是等比数列,求t的值.(2)求数列{a n}的通项公式.【解析】(1)当n=1时,由a1==得a1=1;当n≥2时,a n=S n-S n-1=2a n-n-2a n-1+(n-1),即a n=2a n-1+1,所以a2=3,a3=7.依题意得(3+t)2=(1+t)(7+t),解得t=1,当t=1时,a n+1=2(a n-1+1),n≥2,即{a n+1}为等比数列成立,故实数t 的值为1.(2)由(1)知当n≥2时,a n+1=2(a n-1+1),又因为a1+1=2,所以数列{a n+1}是首项为2,公比为2的等比数列,所以a n+1=2×2n-1=2n,所以a n=2n-1.【变式备选】1.已知在正项数列{a n}中,a1=2,点A n(,)在双曲线y2-x2=1上,数列{b n}中,点(b n,T n)在直线y=-x+1上,其中T n是数列{b n}的前n项和.(1)求数列{a n}的通项公式.(2)求证:数列{b n}是等比数列.【解析】(1)由点A n在y2-x2=1上知a n+1-a n=1,所以数列{a n}是一个以2为首项,1为公差的等差数列,所以a n=a1+(n-1)d=2+n-1=n+1.(2)因为点(b n,T n)在直线y=-x+1上,所以T n=-b n+1,①所以T n-1=-b n-1+1(n≥2).②①-②得b n=-b n+b n-1(n≥2),所以b n=b n-1,所以b n=b n-1(n≥2),在①式中令n=1,得T1=b1=-b1+1,所以b1=,所以{b n}是一个以为首项,以为公比的等比数列.2.已知首项为的等比数列{a n}的前n项和为S n(n∈N*),且-2S2,S3,4S4成等差数列.(1)求数列{a n}的通项公式.(2)证明:S n+≤(n∈N*).【解析】(1)设等比数列{a n}的公比为q,因为-2S2,S3,4S4成等差数列,所以2S3=4S4-2S2,即S3=2S4-S2,即S4-S3=S2-S4,可得2a4=-a3,于是q==-.又a1=,所以等比数列{a n}的通项公式为a n=×=(-1)n-1·.(2)由(1)知,S n=1-,S n+=1-+=当n为奇数时,S n+随n的增大而减小,所以S n+≤S1+=.当n为偶数时,S n+随n的增大而减小,所以S n+≤S2+=.故对于n∈N*,有S n+≤.1.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为( )A. fB. fC. fD. f【解析】选D.这13个单音构成了一个以f为首项,为公比的等比数列,所以a n=a1q n-1=f·()n-1,即a8= f.2.(2020·郑州模拟)设首项为1的数列{a n}的前n项和为S n,且a n=若S m>2 020,则正整数m的最小值为( )A.15B.16C.17D.18【解析】选C.由题意知a2k=a2k-1+1,a2k+1=2a2k+1,所以a2k+1=2(a2k-1+1)+1=2a2k-1+3,即a2k+1+3=2(a2k-1+3).又a1+3=4,所以数列是以4为首项,2为公比的等比数列,所以a2k-1=4·2k-1-3,a2k=4·2k-1-2,所以S奇=a1+a3+…+a2k-1=-3k=2k+2-4-3k,S偶=a2+a4+…+a2k=2k+2-4-2k,所以S2k=S奇+S偶=2k+3-8-5k.当k=8时,S16=2 000<2 020.又a17=1021,所以S17=3 021>2 020,故正整数m的最小值为17.。

北师大文科数学高考总复习练习:等比数列及其前n项和 含答案

北师大文科数学高考总复习练习:等比数列及其前n项和 含答案

第3讲等比数列及其前n项和基础巩固题组(建议用时:40分钟)一、选择题1.已知{a n},{b n}都是等比数列,那么() A.{a n+b n},{a n·b n}都一定是等比数列B.{a n+b n}一定是等比数列,但{a n·b n}不一定是等比数列C.{a n+b n}不一定是等比数列,但{a n·b n}一定是等比数列D.{a n+b n},{a n·b n}都不一定是等比数列解析两个等比数列的积仍是一个等比数列.答案 C2.在等比数列{a n}中,如果a1+a4=18,a2+a3=12,那么这个数列的公比为()A.2 B.12C.2或12D.-2或12解析设数列{a n}的公比为q,由a1+a4a2+a3=a1(1+q3)a1(q+q2)=1+q3q+q2=(1+q)(1-q+q2)q(1+q)=1-q+q2q=1812,得q=2或q=12.故选C.答案 C3.(教材改编)一个蜂巢里有1只蜜蜂.第1天,它飞出去找回了5个伙伴;第2天,6只蜜蜂飞出去,各自找回了5个伙伴……如果这个找伙伴的过程继续下去,第6天所有的蜜蜂都归巢后,蜂巢中一共有________只蜜蜂() A.55 986 B.46 656C.216 D.36解析设第n天蜂巢中的蜜蜂数量为a n,根据题意得数列{a n}成等比数列,a1=6,q=6,所以{a n}的通项公式a n=6×6n-1,到第6天,所有的蜜蜂都归巢后,蜂巢中一共有a6=6×65=66=46 656只蜜蜂,故选B.答案 B4.(2015·全国Ⅱ卷)已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=() A.21 B.42 C.63 D.84解析设等比数列{a n}的公比为q,则由a1=3,a1+a3+a5=21得3(1+q2+q4)=21,解得q2=-3(舍去)或q2=2,于是a3+a5+a7=q2(a1+a3+a5)=2×21=42,故选B.答案 B5.设各项都是正数的等比数列{a n},S n为前n项和,且S10=10,S30=70,那么S40等于() A.150 B.-200C.150或-200 D.400或-50解析依题意,数列S10,S20-S10,S30-S20,S40-S30成等比数列,因此有(S20-S10)2=S10(S30-S20).即(S20-10)2=10(70-S20),故S20=-20或S20=30,又S20>0,因此S20=30,S20-S10=20,S30-S20=40,故S40-S30=80.S40=150.故选A.答案 A二、填空题6.(2017·安庆模拟)在等比数列{a n}中,S n表示前n项和,若a3=2S2+1,a4=2S3+1,则公比q等于________.解析 两式相减得a 4-a 3=2a 3,从而求得a 4a 3=3.即q =3.答案 37.在各项均为正数的等比数列{a n }中,若a 2=1,a 8=a 6+2a 4,则a 6的值是________.解析 因为a 8=a 2q 6,a 6=a 2q 4,a 4=a 2q 2,所以由a 8=a 6+2a 4得a 2q 6=a 2q 4+2a 2q 2,消去a 2q 2,得到关于q 2的一元二次方程(q 2)2-q 2-2=0,解得q 2=2,q 2=-1舍去,a 6=a 2q 4=1×22=4. 答案 48.已知各项均为正数的等比数列{a n }的前n 项和为S n ,若S 4=3S 2,a 3=2,则a 7=________.解析 设等比数列{a n }的首项为a 1,公比为q ,显然q ≠1且q >0,因为S 4=3S 2,所以a 1(1-q 4)1-q =3a 1(1-q 2)1-q ,解得q 2=2,因为a 3=2,所以a 7=a 3q 4=2×22=8. 答案 8 三、解答题9.在等比数列{a n }中,a 2=3,a 5=81. (1)求a n ;(2)设b n =log 3a n ,求数列{b n }的前n 项和S n . 解 (1)设{a n }的公比为q ,依题意得 ⎩⎨⎧ a 1q =3,a 1q 4=81,解得⎩⎨⎧a 1=1,q =3. 因此,a n =3n -1.(2)因为b n =log 3a n =n -1,所以数列{b n }的前n 项和S n =n (b 1+b n )2=n 2-n 2.10.(2017·合肥模拟)设{a n }是公比为q 的等比数列.(1)推导{a n }的前n 项和公式;(2)设q ≠1,证明数列{a n +1}不是等比数列. 解 (1)设{a n }的前n 项和为S n , 当q =1时,S n =a 1+a 1+…+a 1=na 1; 当q ≠1时,S n =a 1+a 1q +a 1q 2+…+a 1q n -1,① qS n =a 1q +a 1q 2+…+a 1q n ,② ①-②得,(1-q )S n =a 1-a 1q n ,∴S n =a 1(1-q n)1-q,∴S n =⎩⎨⎧na 1,q =1,a 1(1-q n )1-q ,q ≠1.(2)假设{a n +1}是等比数列,则对任意的k ∈N +, (a k +1+1)2=(a k +1)(a k +2+1), a 2k +1+2a k +1+1=a k a k +2+a k +a k +2+1,a 21q 2k +2a 1q k =a 1qk -1·a 1q k +1+a 1q k -1+a 1q k +1, ∵a 1≠0,∴2q k =q k -1+q k +1.∵q ≠0,∴q 2-2q +1=0,∴q =1,这与已知矛盾. 故数列{a n +1}不是等比数列.能力提升题组 (建议用时:20分钟)11.在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n 等于( )A .12B .13C .14D .15 解析 设数列{a n }的公比为q ,由a 1a 2a 3=4=a 31q 3与a 4a 5a 6=12=a 31q 12, 可得q 9=3,a n -1a n a n +1=a 31q3n -3=324, 因此q 3n -6=81=34=q 36, 所以n =14,故选C.答案 C12.(2016·临沂模拟)数列{a n}中,已知对任意n∈N+,a1+a2+a3+…+a n=3n -1,则a21+a22+a23+…+a2n等于()A.(3n-1)2 B.12(9n-1)C.9n-1 D.14(3n-1)解析∵a1+a2+…+a n=3n-1,n∈N+,n≥2时,a1+a2+…+a n-1=3n-1-1,∴当n≥2时,a n=3n-3n-1=2·3n-1,又n=1时,a1=2适合上式,∴a n=2·3n-1,故数列{a2n}是首项为4,公比为9的等比数列.因此a21+a22+…+a2n=4(1-9n)1-9=12(9n-1).答案 B13.(2017·南昌模拟)在等比数列{a n}中,a2=1,则其前3项的和S3的取值范围是________.解析当q>0时,S3=a1+a2+a3=1+a1+a3≥1+2a1a3=1+2a22=3,当且仅当a1=a3=1时等号成立.当q<0时,S3=a1+a2+a3=1+a1+a3≤1-2a1a3=1-2a22=-1,当且仅当a1=a3=-1时等号成立.所以,S3的取值范围是(-∞,-1]∪[3,+∞).答案(-∞,-1]∪[3,+∞)14.(2015·四川卷)设数列{a n}(n=1,2,3,…)的前n项和S n满足S n=2a n-a1,且a1,a2+1,a3成等差数列.(1)求数列{a n }的通项公式;(2)记数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为T n ,求使得|T n -1|<11 000成立的n 的最小值.解 (1)由已知S n =2a n -a 1, 有a n =S n -S n -1=2a n -2a n -1(n ≥2), 即a n =2a n -1(n ≥2),所以q =2. 从而a 2=2a 1,a 3=2a 2=4a 1,又因为a 1,a 2+1,a 3成等差数列,即a 1+a 3=2(a 2+1), 所以a 1+4a 1=2(2a 1+1),解得a 1=2,所以,数列{a n }是首项为2,公比为2的等比数列, 故a n =2n . (2)由(1)得1a n=12n ,所以T n =12+122+…+12n =12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=1-12n . 由|T n -1|<11 000,得⎪⎪⎪⎪⎪⎪1-12n -1<11 000, 即2n >1 000,因为29=512<1 000<1 024=210,所以n ≥10, 于是,使|T n -1|<11 000成立的n 的最小值为10.。

年高中数学第一章数列.等比数列..第课时等比数列的性质达标练习北师大版必修

年高中数学第一章数列.等比数列..第课时等比数列的性质达标练习北师大版必修

1.3.1 第2课时 等比数列的性质[A 根底达标]1.等比数列{a n }的公比q =-14,a 1=2,那么数列{a n }是( ) A .递增数列B .递减数列C .常数列D .摆动数列解析:选D.由于公比q =-14<0,所以数列{a n }是摆动数列. 2.等比数列{a n }中,a 2=4,a 7=116,那么a 3a 6+a 4a 5的值是 ( ) A .1B .2 C.12 D .14解析:选C.a 3a 6=a 4a 5=a 2a 7=4×116=14, 所以a 3a 6+a 4a 5=12. 3.在等比数列{a n }中,a 7·a 12=5,那么a 8·a 9·a 10·a 11等于( )A .10B .25C .50D .75解析:选B.法一:因为a 7·a 12=a 8·a 11=a 9·a 10=5,所以a 8·a 9·a 10·a 11=52=25.法二:由得a 1q 6·a 1q 11=a 21q 17=5,所以a 8·a 9·a 10·a 11=a 1q 7·a 1q 8·a 1q 9·a 1q 10=a 41·q 34=(a 21q 17)2=25.4.计算机的价格不断降低,假设每件计算机的价格每年降低13,现在价格为8 100元的计算机3年后的价格可降低为( )A .300元B .900元C .2 400元D .3 600元 解析:选C.降低后的价格构成以23为公比的等比数列.那么现在价格为8 100元的计算机3年后的价格可降低为8 100×⎝ ⎛⎭⎪⎫233=2 400(元). 5.等比数列{a n }中,a 3a 11=4a 7,数列{b n }是等差数列,且b 7=a 7,那么b 5+b 9等于( )A .2B .4C .8D .16解析:选C.等比数列{a n }中,a 3a 11=a 27=4a 7,解得a 7=4,等差数列{b n }中,b 5+b 9=2b 7=2a 7=8.6.在等比数列{a n }中,各项均为正数,且a 6a 10+a 3a 5=41,a 4a 8=5,那么a 4+a 8=________. 解析:因为a 6a 10=a 28,a 3a 5=a 24,所以a 28+a 24=41.又因为a 4a 8=5,a n >0,所以a 4+a 8=〔a 4+a 8〕2 =a 24+2a 4a 8+a 28=51. 答案:517.在3和一个未知数间填上一个数,使三数成等差数列,假设中间项减去6,那么成等比数列,那么此未知数是________.解析:设此三数为3,a ,b ,那么⎩⎪⎨⎪⎧2a =3+b ,〔a -6〕2=3b , 解得⎩⎪⎨⎪⎧a =3b =3或⎩⎪⎨⎪⎧a =15,b =27.所以这个未知数为3或27. 答案:3或278.设x ,y ,z 是实数,9x ,12y ,15z 成等比数列.且1x ,1y ,1z 成等差数列,那么x z +z x的值是________.解析:由题意可得⎩⎪⎨⎪⎧〔12y 〕2=9x ×15z ,2y =1x +1z ,所以y =2xz x +z ,所以⎝ ⎛⎭⎪⎫24xz x +z 2=135xz ,化简得15x 2+15z 2=34xz ,两边同时除以15xz 可得x z +z x =3415. 答案:34159.三个互不相等的数成等差数列,如果适当排列这三个数,又可成为等比数列,这三个数和为6,求这三个数.解:由,可设这三个数为a -d ,a ,a +d ,那么a -d +a +a +d =6,所以a =2,这三个数可表示为2-d ,2,2+d ,①假设2-d 为等比中项,那么有(2-d )2=2(2+d ),解之得d =6,或d =0(舍去).此时三个数为-4,2,8.。

【走向高考】高三数学一轮总复习 6-3等比数列同步练习 北师大版

【走向高考】高三数学一轮总复习 6-3等比数列同步练习 北师大版

6-3等比数列基 础 巩 固一、选择题1.(文)已知等比数列{a n }的公比为正数,且a 3·a 9=2a 25,a 2=2,则a 1=( ) A .2 B. 2 C.22D.12[答案] B[解析] ∵a 3·a 9=(a 6)2=2a 25, ∴(a 6a 5)2=2,又{a n }的公比为正数, ∴q =a 6a 5= 2.∴a 1=a 2q= 2.(理)(2013·唐山一中第一学期第二次月考)已知各项均为正数的等比数列{a n },a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6=( )A .5 2B .7C .6D .4 2 [答案] A[解析] ∵{a n }为正项等比数列,∴a 1a 2a 3,a 4a 5a 6,a 7a 8a 9成等比数列,且a 4a 5a 6>0, ∴a 4a 5a 6=a 1a 2a 3a 7a 8a 9=52,故选A. 2.已知{a n }满足:a 1=1,a n +1a n =12,则数列{a n }是( ) A .递增数列 B .递减数列 C .常数列 D .无法确定[答案] B[解析] ∵a 1=1,q =a n +1a n =12, ∴0<q <1,故{a n }为递减数列.3.(2012·新课标理,5)已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=( ) A .7 B .5 C .-5 D .-7[答案] D[解析] 本题考查了等比数列的性质及分类讨论思想.a 4+a 7=2,a 5a 6=a 4a 7=-8⇒a 4=4,a 7=-2或a 4=-2,a 7=4,a 4=4,a 7=-2⇔a 1=-8,a 10=1⇔a 1+a 10=-7, a 4=-2,a 7=4⇒a 10=-8,a 1=1⇔a 1+a 10=-7.4.(文)一个等比数列前三项的积为2,最后三项的积为4,且所有项的积为64,则该数列有( )A .13项B .12项C .11项D .10项[答案] B[解析] 设前三项分别为a 1,a 1q ,a 1q 2,后三项分别为a 1q n -3,a 1qn -2,a 1qn -1,所以前三项之积a 31q 3=2,后三项之积a 31q3n -6=4.所以两式相乘,得a 61q3(n -1)=8,即a 21qn -1=2.又a 1·a 1q ·a 1q 2·…·a 1q n -1=64,a n 1qn (n -1)2=64,即(a 21qn -1)n=642,即2n =642.所以n=12,本题利用通项公式转化为基本量a 1,q 的关系加以解决,利用基本量沟通已知和所求是常用的方法,注意体会.(理)设数列{x n }满足log 2x n +1=1+log 2x n (n ∈N +),且x 1+x 2+…+x 10=10,记{x n }的前n 项和为S n ,则S 20=( )A .1 025B .1 024C .10 250D .10 240[答案] C[解析] ∵log 2x n +1=1+log 2x n (n ∈N +), ∴log 2x n +1=log 2(2x n ), ∴x n +1=2x n ,x n +1x n=2(n ∈N +), 又x n >0(n ∈N +),所以数列{x n }是公比为2的等比数列,由x 1+x 2+…+x 10=10得到x 1=10210-1, 所以S 20=x 1-2201-2=10×(210+1)=10 250.5.各项均为正数的等比数列{a n }的前n 项和为S n ,若S n =2,S 3n =14,则S 4n 等于( ) A .80 B .30 C .26 D .16[答案] B[解析] 据等比数列性质:S n ,S 2n -S n ,S 3n -S 2n ,S 4n -S 3n 成等比数列,则(S 2n -S n )2=S n ·(S 3n -S 2n ), ∵S n =2,S 3n =14,∴(S 2n -2)2=2×(14-S 2n ). 又S 2n >0得S 2n =6,又(S 3n -S 2n )2=(S 2n -S n )(S 4n -S 3n ),∴(14-6)2=(6-2)·(S 4n -14).解得S 4n =30.6.在数列{a n }中,a n +1=ca n (c 为非零常数),且前n 项和为S n =3n+k ,则实数k 的值为( )A .0B .1C .-1D .2[答案] C[解析] 据题意知数列为等比数列,又当公比q ≠1时,等比数列前n 项和公式为S n =a 1-q n1-q=a 11-q -a 11-q q n,令a 11-q=a ,则有S n =a -aq n ,故若S n =k +3n,则k =-1,此外本题可由已知得数列前3项,利用3项为等比数列即可求得k 值.二、填空题7.(2012·江西文,13)等比数列{a n }的前n 项和为S n ,公比不为1.若a 1=1,且对任意的n ∈N +都有a n +2+a n +1-2a n =0,则S 5=________.[答案] 11[解析] 本题考查了等比数列通项公式,求和公式等, 设{a n }公比为q ,则a n +2+a n +1 -2a n =a 1q n +1+a 1q n -2a 1qn -1=0,所以q 2+q -2=0,即q=-2,q =1(舍去),∴S 5=1--51--=11.8.在等比数列{a n }中,已知对任意正整数n ,a 1+a 2+a 3+…+a n =2n-1,则a 21+a 22+…+a 2n 等于________.[答案] 13(4n-1)[解析] 由a 1+a 2+a 3+…+a n =2n-1, ∴a 1=1,a 2=2,q =2 又∵{a n }是等比数列∴{a 2n }也是等比数列,首项为1,公比为4 ∴a 21+a 22+…+a 2n =1-4n1-4=13(4n-1).三、解答题9.成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n }中的b 3、b 4、b 5.(1)求数列{b n }的通项公式;(2)若数列{b n }的前n 项和为S n ,求证:数列{S n +54}是等比数列.[解析] (1)设成等差数列的三个正数分别为a -d ,a ,a +d . 依题意,得a -d +a +a +d =15,解得a =5. 所以{b n }中的b 3,b 4,b 5依次为7-d,10,18+d . 依题意,有(7-d )(18+d )=100, 解得d =2或d =-13(舍去). 故{b n }的第3项为5,公比为2.由b 3=b 1·22,即5=b 1·22,解得b 1=54.所以{b n }是以54为首项,2为公比的等比数列,其通项公式为b n =54·2n -1=5·2n -3.(2)数列{b n }的前n 项和S n =54-2n1-2=5·2n -2-54,即S n +54=5·2n -2,所以S 1+54=52, S n +1+54S n +54=5·2n -15·2n -2=2, 因此{S n +54}是以52为首项,公比为2的等比数列.能 力 提 升一、选择题1.(文)在正项等比数列{a n }中,若a 2·a 4·a 6·a 8·a 10=32,则log 2a 7-12log 2a 8=( )A.18B.16C.14D.12[答案]D[解析] ∵a 2·a 4·a 6·a 8·a 10=32,∴a 6=2, ∴log 2a 7-12log 2a 8=log 2a 7a 8=log 2a 6a 8a 8=log 2a 6=log 22=12.(理)在各项均为正数的等比数列{a n }中,a 2,12a 3,a 1成等差数列,则a 4+a 5a 3+a 4的值为( )A.5-12 B.5+12C.1-52D.5-12或5+12[答案] B[解析] 设{a n }的公比为q ,则q >0. ∵a 2,12a 3,a 1成等差数列,∴a 3=a 1+a 2,∴a 1q 2=a 1+a 1q , ∵a 1≠0,∴1+q =q 2, 又∵q >0,∴q =5+12, ∴a 4+a 5a 3+a 4=q =5+12. 2.(2012·北京文,6)已知数列{a n }为等比数列,下面结论中正确的是( ) A .a 1+a 3≥2a 2 B .a 21+a 23≥2a 22 C .若a 1=a 3,则a 1=a 2 D .若a 3>a 1,则a 4>a 2 [答案] B[解析] 本题考查了等比数列、均值不等式等知识,可用排除法求解.当a 1<0,q <0时,a 1<0,a 2>0,a 3<0,所以A 错误;而当q =-1时,C 错误;当q <0时由a 3>a 1得a 3q <a 1q ,即a 4<a 2,与D 项矛盾,所以B 项正确.二、填空题3.若数列{a n }满足a 1,a 2-a 1,a 3-a 2,…,a n -a n -1,…,是首项为1,公比为2的等比数列,则a n 等于________.[答案] 2n-1 [解析] a n -a n -1=a 1qn -1=2n -1,即⎩⎪⎨⎪⎧a 2-a 1=2a 3-a 2=22…a n -a n -1=2n -1相加:a n -a 1=2+22+…+2n -1=2n-2,∴a n =2n -2+a 1=2n-1.4.(2012·辽宁文,14)已知等比数列{a n }为递增数列,若a 1>0,且2(a n +a n +2)=5a n +1,则数列{a n }的公比q =________.[答案] 2[解析] 本题考查了等比数列的通项公式. ∵{a n }是递增的等比数列,且a 1>0, ∴q >1,又∵2(a n +a n +2)=5a n +1, ∴2a n +2a n q 2=5a n q , ∵a n ≠0, ∴2q 2-5q +2=0, ∴q =2或q =12(舍去),∴公比q 为2.(理)(2012·辽宁理,14)已知等比数列{a n }为递增数列,且a 25=a 10,2(a n +a n +2)=5a n +1,则数列{a n }的通项公式a n =________.[答案] 2n[解析] 本题考查等比数列通项公式的求法. 由题意,a 25=a 10,则(a 1q 4)2=a 1q 9,∴a 1=q . 又∵2(a n +a n +2)=5a n +1,∴2q 2-5q -2=0,∵q >1,∴q =2,a 1=2, ∴a n =a 1·qn -1=2n.三、解答题5.(2012·陕西文,16)已知等比数列{a n }的公比q =-12.(1)若a 3=14,求数列{a n }的前n 项和;(2)证明:对任意k ∈N +,a k ,a k +2,a k +1成等差数列. [解析] (1)由a 3=a 1q 2=14及q =-12,得a 1=1,所以数列{a n }的前n 项和S n =1×[1--12n]1--12=2+-12n -13.(2)证明:对任意k ∈N +, 2a k +2-(a k +a k +1)=2a 1qk +1-(a 1qk -1+a 1q k)=a 1qk -1(2q 2-q -1),由q =-12得2q 2-q -1=0,故2a k +2-(a k +a k +1)=0.所以,对任意k ∈N +,a k ,a k +2,a k +1成等差数列. 6.(文)已知等比数列{a n }中,a 1=13,公比q =13.(1)S n 为{a n }的前n 项和,证明:S n =1-a n2;(2)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列{b n }的通项公式. [解析] (1)因为a n =13×⎝ ⎛⎭⎪⎫13n -1=13n ,S n =13⎝ ⎛⎭⎪⎫1-13n 1-13=1-13n 2,所以S n =1-a n2.(2)b n =log 3a 1+log 3a 2+…+log 3a n =-(1+2+…+n ) =-n n +2.所以{b n }的通项公式为b n =-n n +2.(理)等比数列{a n }的各项均为正数,且2a 1+3a 2=1,a 23=9a 2a 6. (1)求数列{a n }的通项公式;(2)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列{1b n}的前n 项和.[解析] (1)设数列{a n }的公比为q . 由a 23=9a 2a 6得a 23=9a 24,所以q 2=19.由条件可知q >0,故q =13,由2a 1+3a 2=1得2a 1+3a 1q =1,所以a 1=13,故数列{a n }的通项公式为a n =13n .(2)b n =log 3a 1+log 3a 2+…+log 3a n =-(1+2+…+n )=-n n +12.故1b n =-2nn +1=-2(1n -1n +1), 1b 1+1b 2+…+1b n =-2[(1-12)+(12-13)+…+(1n -1n +1)]=-2nn +1. 所以数列{1b n }的前n 项和为-2n n +1.7.已知等比数列{a n }的前n 项和为S n =k ·2n+m ,k ≠0,且a 1=3. (1)求数列{a n }的通项公式;(2)设b n =n a n求数列{b n }的前n 项和T n . [解析] (1)依题意有⎩⎪⎨⎪⎧3=2k +m , ①3+a 2=4k +m , ②3+a 2+a 3=8k +m . ③解得a 2=2k ,a 3=4k , ∴公比为q =a 3a 2=2, ∴a 23=2,∴k =3,代入①得m =-3, ∴a n =3·2n -1.(2)解b n =n a n =n3·2n -1,T n =13(1+22+322+…+n2n -1),④12T n =13(12+222+…+n -12n -1+n2n ),⑤ ④-⑤得12T n =13(1+12+122+…+12n -1-n2n ),T n=23⎝⎛⎭⎪⎫-12n1-12-n 2n =43(1-12n -n2n +1).。

高中数学第一章数列1.3等比数列1.3.1.1习题精选北师大版必修

高中数学第一章数列1.3等比数列1.3.1.1习题精选北师大版必修

第1课时等比数列的定义和通项公式课后篇巩固探究1.若{a n}是等比数列,则下列数列不是等比数列的是()A.{a n+1}B.C.{4a n}D.{}答案:A2.在等比数列{a n}中,2a4=a6-a5,则公比是()A.0B.1或2C.-1或2D.-1或-2解析:设公比为q(q≠0),由已知得2a1q3=a1q5-a1q4,∴2=q2-q,∴q2-q-2=0,∴q=-1或q=2.答案:C3.若一个等比数列的首项为,末项为,公比为,则这个数列的项数为()A.3B.4C.5D.6解析:在等比数列中,∵,∴n-3=1,即n=4,故选B.答案:B4.若数列{a n}满足a n+1=4a n+6(n∈N+)且a1>0,则下列数列是等比数列的是()A.{a n+6}B.{a n+1}C.{a n+3}D.{a n+2}解析:由a n+1=4a n+6可得a n+1+2=4a n+8=4(a n+2),因为a1>0,所以a n>0,从而a n+2>0(n∈N+),因此=4,故{a n+2}是等比数列.答案:D5.在等比数列{a n}中,若a5·a6·a7=3,a6·a7·a8=24,则a7·a8·a9的值等于()A.48B.72C.144D.192解析:设公比为q,由a6·a7·a8=a5·a6·a7·q3,得q3==8.所以a7·a8·a9=a6·a7·a8·q3=24×8=192.答案:D6.数列{a n}是公差不为0的等差数列,且a1,a3,a7为等比数列{b n}的连续三项,则数列{b n}的公比为()A. B.4 C.2 D.解析:∵a1,a3,a7为等比数列{b n}中的连续三项,∴=a 1·a7.设{a n}的公差为d,则d≠0,∴(a1+2d)2=a1(a1+6d),∴a1=2d.∴公比q==2,故选C.答案:C7.(2017全国3高考)设等比数列{a n}满足a1+a2=-1,a1-a3=-3,则a4=.解析:设{a n}的公比为q,则由题意,得解得故a4=a1q3=-8.答案:-88.设数列{a n}是等比数列,公比q=2,则的值是.解析:∵q=2,∴2a1=a2,2a3=a4,∴.答案:9.已知数列{a n}满足a9=1,a n+1=2a n(n∈N+),则a5=.解析:由a n+1=2a n(n∈N+)知,数列{a n}是公比q==2的等比数列.所以a5=a1q4=.答案:10.若数列{a n}为等差数列,且a2=3,a5=9,则数列一定是数列(填“等差”或“等比”).解析:设{a n}的公差为d,则解得于是a n=2n-1,从而=2·,设b n=2·,则,故一定是等比数列.答案:等比11.导学号33194017在等比数列{a n}中,a1·a9=256,a4+a6=40,则公比q=.解析:∵a1a9=q8,a4a6=a1q3·a1q5=q8,∴a1a9=a4a6.可得方程组解得∴q2=或q2==4.∴q=±或q=±2.答案:-2,2,-12.在等比数列{a n}中,已知a1=2,a4=16.(1)求数列{a n}的通项公式;(2)若a3,a5分别为等差数列{b n}的第3项和第5项,试求数列{b n}的通项公式.解(1)设{a n}的公比为q(q≠0),由已知得16=2·q3,解得q=2,∴a n=a1·q n-1=2×2n-1=2n.(2)由(1)得a3=8,a5=32,则b3=8,b5=32,设{b n}的公差为d,则有解得∴b n=-16+12(n-1)=12n-28.13.导学号33194018已知关于x的二次方程a n x2-a n+1x+1=0(n∈N+)的两根α,β满足6α-2αβ+6β=3,且a1=1.(1)试用a n表示a n+1;(2)求证:数列为等比数列;(3)求数列{a n}的通项公式.(1)解因为α,β是方程a n x2-a n+1x+1=0(n∈N+)的两根,所以又因为6α-2αβ+6β=3,所以6a n+1-3a n-2=0.所以a n+1=a n+.(2)证明因为a n+1=a n+⇒a n+1-a n-为常数,且a1-,所以为等比数列.(3)解令b n=a n-,则{b n}为等比数列,公比为,首项b1=a1-,所以b n=.所以a n=b n+.所以数列{a n}的通项公式为a n=.14.导学号33194019容积为a L(a>1)的容器盛满酒精后倒出1 L,然后加满水,再倒出1 L混合溶液后又用水加满,如此继续下去,问第n次操作后溶液的浓度是多少?当a=2时,至少应倒出几次后才可能使酒精浓度低于10%?解开始的浓度为1,操作一次后溶液的浓度是a1=1-.设操作n次后溶液的浓度是a n,则操作n+1次后溶液的浓度是a n+1=a n.所以{a n}构成以a1=1-为首项,q=1-为公比的等比数列.所以a n=,即第n次操作后溶液的浓度是.当a=2时,由a n=,得n≥4.因此,至少应倒4次后才可以使酒精浓度低于10%.。

高中数学第一章数列1.3等比数列1.3.2习题精选北师大版必修.doc

高中数学第一章数列1.3等比数列1.3.2习题精选北师大版必修.doc

3.2等比数列的前n项和课后篇巩固探究A组1.设{a n}是公比为正数的等比数列,若a1=1,a5=16,则数列{a n}前7项的和为()A.63B.64C.127D.128解析:设公比为q(q>0),则1·q4=16,解得q=2(q=-2舍去).于是S7==127.答案:C2.设S n为等比数列{a n}的前n项和,已知3S3=a4-2,3S2=a3-2,则公比q等于()A.3B.4C.5D.6解析:由题意知,两式相减,得3a3=a4-a3,即4a3=a4,则q==4.答案:B3.若数列{a n}的前n项和S n=a n-1(a∈R,且a≠0),则此数列是()A.等差数列B.等比数列C.等差数列或等比数列D.既不是等差数列,也不是等比数列解析:当n=1时,a1=S1=a-1;当n≥2时,a n=S n-S n-1=(a n-1)-(a n-1-1)=a n-a n-1=a n-1(a-1).当a-1=0,即a=1时,该数列为等差数列,当a≠1时,该数列为等比数列.答案:C4.公比q≠-1的等比数列的前3项,前6项,前9项的和分别为S3,S6,S9,则下面等式成立的是()A.S3+S6=S9B.=S3·S9C.S3+S6-S9=D.=S3(S6+S9)解析:由题意知S3,S6-S3,S9-S6也成等比数列.∴(S6-S3)2=S3(S9-S6),整理得=S3(S6+S9).答案:D5.已知{a n}是首项为1的等比数列,S n是{a n}的前n项和,且9S3=S6,则数列的前5项和为()A.或5B.或5C.D.解析:设{a n}的公比为q.由9S3=S6知q≠1,于是,整理得q6-9q3+8=0,所以q3=8或q3=1(舍去),于是q=2.从而是首项为=1,公比为的等比数列.其前5项的和S=.答案:C6.设等比数列{a n}的前n项和为S n,若a1=1,S6=4S3,则a4=.解析:设等比数列{a n}的公比为q,很明显q≠1,则=4·,解得q3=3,所以a4=a1q3=3.答案:37.已知lg x+lg x2+…+lg x10=110,则lg x+lg2x+…+lg10x=.答案:2 0468.已知在等比数列{a n}中,a2=2,a5=,则a1a2+a2a3+…+a n a n+1=.解析:设数列{a n}的公比为q,由a2=2,a5=a2q3=,得q=,∴a1==4.∵=q2=为常数(n≥2),∴数列{a n a n+1}是以a1a2=4×2=8为首项,以为公比的等比数列,∴a1a2+a2a3+…+a n a n+1=(1-4-n).答案:(1-4-n)9.(2017北京高考)已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(1)求{a n}的通项公式;(2)求和:b1+b3+b5+…+b2n-1.解(1)设等差数列{a n}的公差为d.因为a2+a4=10,所以2a1+4d=10.解得d=2.所以a n=2n-1.(2)设等比数列{b n}的公比为q.因为b2b4=a5,所以b1qb1q3=9.解得q2=3.所以b2n-1=b1q2n-2=3n-1.从而b1+b3+b5+…+b2n-1=1+3+32+…+3n-1=.10.导学号33194023已知等差数列{a n}满足a n+1>a n(n∈N+),a1=1,该数列的前三项分别加上1,1,3后顺次成为等比数列{b n}的前三项.(1)求数列{a n},{b n}的通项公式;(2)设T n=+…+(n∈N+),求T n.解(1)设d,q分别为等差数列{a n}的公差、等比数列{b n}的公比,由题意知,a1=1,a2=1+d,a3=1+2d,分别加上1,1,3得2,2+d,4+2d,∴(2+d)2=2(4+2d),∴d=±2.∵a n+1>a n,∴d>0,∴d=2.∴a n=2n-1(n∈N+).由此可得b1=2,b2=4,b3=8,∴q=2.∴b n=2n(n∈N+).(2)∵T n=+…+=+…+,①∴T n=+…+,②由①-②得T n=+…+,∴T n=1+=3-=3-.B组1.已知等比数列{a n}的前n项和为S n,则下列一定成立的是()A.若a3>0,则a2 017<0B.若a4>0,则a2 016<0C.若a3>0,则S2 017>0D.若a4>0,则S2 016>0解析:若a3>0,则a3=a1q2>0,因此a1>0,当公比q>0时,任意n∈N+,a n>0,故有S2 017>0,当公比q<0时,q2 017<0,则S2 017=>0,故答案为C.答案:C2.已知数列前n项的和S n=2n-1,则此数列奇数项的前n项的和是()A.(2n+1-1)B.(2n+1-2)C.(22n-1)D.(22n-2)解析:由S n=2n-1知当n=1时,a1=21-1=1.当n≥2时,a n=S n-S n-1=2n-1,当n=1时也适合,∴a n=2n-1.∴奇数项的前n项和为S n=(4n-1)=(22n-1).答案:C3.等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,则数列{a n}的公比为.解析:由S1,2S2,3S3成等差数列知4S2=S1+3S3,即4(a1+a2)=a1+3(a1+a2+a3),整理得3a3-a2=0,∴,则数列{a n}的公比为.答案:4.设数列{x n}满足lg x n+1=1+lg x n(n∈N+),且x1+x2+…+x100=100,则x101+x102+…+x200=.解析:由lg x n+1=1+lg x n,得lg x n+1=lg(10x n),即=10.故x101+x102+…+x200=q100(x1+x2+…+x100)=10100×100=10102.答案:101025.已知等比数列{a n}是递增数列,S n是{a n}的前n项和.若a1,a3是方程x2-5x+4=0的两个根,则S6=.解析:∵x2-5x+4=0的两根为1和4,又{a n}为递增数列,∴a1=1,a3=4,q=2.∴S6==63.答案:636.导学号33194024数列{a n}的前n项和记为S n,a1=t,点(S n,a n+1)在直线y=3x+1上,n∈N+.(1)当实数t为何值时,数列{a n}是等比数列;(2)在(1)的结论下,设b n=log4a n+1,c n=a n+b n,T n是数列{c n}的前n项和,求T n.解(1)∵点(S n,a n+1)在直线y=3x+1上,∴a n+1=3S n+1,a n=3S n-1+1(n>1,且n∈N+),a n+1-a n=3(S n-S n-1)=3a n,∴a n+1=4a n,n>1,a2=3S1+1=3a1+1=3t+1,∴当t=1时,a2=4a1,数列{a n}是等比数列.(2)在(1)的结论下,a n+1=4a n,a n+1=4n,b n=log4a n+1=n,c n=a n+b n=4n-1+n,T n=c1+c2+…+c n=(40+1)+(41+2)+…+(4n-1+n)=(1+4+42+…+4n-1)+(1+2+3+…+n)=.7.导学号33194025设数列{b n}的前n项和为S n,且b n=2-2S n,数列{a n}为等差数列,且a5=14,a7=20.(1)求数列{b n}的通项公式;(2)若c n=a n·b n(n=1,2,3…),T n为数列{c n}的前n项和,求T n.解(1)由b n=2-2S n,令n=1,则b1=2-2S1,又S1=b1,所以b1=.当n≥2时,由b n=2-2S n及b n-1=2-2S n-1,可得b n-b n-1=-2(S n-S n-1)=-2b n,即.所以{b n}是以为首项,为公比的等比数列,于是b n=.(2)由数列{a n}为等差数列,公差d=(a7-a5)=3,可得a n=3n-1.从而c n=a n·b n=2(3n-1)·,所以T n=2,①T n=2. ②①-②得,T n=2=2=,T n=.。

北师大版高中数学必修五《等比数列》同步测试题.docx

北师大版高中数学必修五《等比数列》同步测试题.docx

北师大必修五《等比数列》同步测试题姓名: 得分:一.选择题1. 在各项都为正数的等比数列{a n }中,首项a 1=3 ,前三项和为21,则a 3+ a 4+ a 5=( )A 33B 72C 84D 1892.若lg a 、lg b 、lg c 成等差数列,则( )A .2a c b +=B .()1lg lg 2b a b =+ C .a 、 b 、c 成等差数列 D .a 、 b 、 c 成等比数列3.一个各项均为正数的等比数列,其任何项都等于它后面两项的和,则其公比是( )A .2B .12 C D .–12 4、已知由正数组成的等比数列{a n }中,公比q=2, a 1·a 2·a 3·…·a 30=245, 则a 1·a 4·a 7·…·a 28= ( )A 25B 210C 215D 2205.已知a 、 b R +∈,A 是a 、 b 的等差中项,G 是a 、 b 的等比中项,则( )A .ab AG ≤B .ab AG ≥ C.a b≤∣AG∣ D .a b>∣AG∣6、在等比数列{a n }中, a 1<0, 若对正整数n 都有a n <a n +1, 那么公比q 的取范围是( )A q>1B 0<q<1C q<0D q<17.若数列{}n a 是等比数列,下列命题正确的个数为( )① {}2n a 、{}2n a 均为等比数列; ②{}ln n a 成等差数列; ③1n a ⎧⎫⎨⎬⎩⎭、{}n a 成等比数列; ④{}n ca 、{}n a k ±均为等比数列 A .4B .3C . 2D .1 8.公比1q ≠的等比数列的前n 项和公式恒等于11n a a +-,则这样的数列( )A .不存在B .必存在,且公比可确定而首项不能确定C .必存在,且公比不确定而首项确定D .必存在,但公比和首项均不能确定9、已知等差数列{a n }的公差d ≠0,且a 1, a 3, a 9成等比数列,则1042931a a a a a a ++++的值是( ) A 1415 B 1312 C 1613 D 1615 10.某企业在1996年初贷款M 万元,年利率为m ,从该年末开始,每年偿还的金额都是a 万元,并恰好在10年间还清,则a 的值等于( )A .()()1010111M m m ++- B .()101Mmm + C .()()1010111Mm m m ++- D .()1011Mmm +-二.填空题11、 在83和272之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为__________12.等比数列中{}n a ,公比1q ≠±,200100S =,则40201S q =+______. 13.数列{}n a 的前n项的和S n =3n 2+ n+1,则此数列的通项公式a n =_______.14.各项均为正数的等比数列{}n a 中,569a a ⋅=,则3132310log log log a a a +++=L ___15、数列{}n a 是等比数列,下列四个命题:①2{}n a 、2{}n a 是等比数列;②{ln }n a 是等差数列;③1{}na 、{||}n a 是等比数列;④{}n ka 、{}n a k +(0)k ≠是等比数列。

高中数学第一章数列第3.1节《等比数列》同步测试题北师大版必修5(2021学年)

高中数学第一章数列第3.1节《等比数列》同步测试题北师大版必修5(2021学年)

高中数学第一章数列第3.1节《等比数列》同步测试题北师大版必修5 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第一章数列第 3.1节《等比数列》同步测试题北师大版必修5)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第一章数列第3.1节《等比数列》同步测试题北师大版必修5的全部内容。

第3。

1节《等比数列》同步测试题1.已知等比数列{}n a 满足12a =, 234a a +=,则456a a a ++=( ) A 。

-48 B。

48 C. 48或-6 D. —48或6 【答案】D2.等比数列{a n}的各项都是正数, 3a 1, 12a 3,2a2成等差数列,则8967a a a a +=+ ( )A. 6 B 。

7 C 。

8 D. 9 【答案】D3.在等比数列{}n a 中,若22a =, 334a =,则115721a a a a +=+( )A. 12 B 。

23 C。

32D. 2 【答案】A4.设{a n}是由正数组成的等比数列,且a 4a7+a5a6=18,l og 3a 1+ log 3a 2+…+ log 3a 10=( ) A 。

12 B 。

10 C 。

8 D 。

32log 5+ 【答案】B5.在等比数列{a n }中,a 1=1,a 5=4,则a 3=( ) A. 2 B. -2 C. ±2 D .【答案】B6.已知等比数列{}n a 中, 11a =, 356a a +=,则57a a +=( ) A 。

12 B. 10 C 。

122 D. 62【答案】A7.在等比数列{an}中,已知a6a 13=2则a 6a 7a8a 9a 10a11a 12a 13等于( ) A。

高中数学 1_3_2 等比数列的前n项和同步精练 北师大版必修51

高中数学 1_3_2 等比数列的前n项和同步精练 北师大版必修51

高中数学 1.3.2 等比数列的前n 项和同步精练 北师大版必修5基础巩固1等比数列{a n }中,如果公比q >1,那么等比数列{a n }是( ) A .递增数列 B .递减数列C .常数列D .无法确定数列的增减性2在等比数列{a n }(n ∈N +)中,若a 1=1,a 4=18,则该数列的前10项和为( )A .2-128B .2-129C .2-1210 D .2-1211 3在等比数列{a n }中,S n 表示前n 项和,若a 3=2S 2+1,a 4=2S 3+1,则公比q 等于( ) A .3 B .-3 C .-1 D .14等比数列{a n }的公比q >0.已知a 2=1,a n +2+a n +1=6a n ,则{a n }的前4项和S 4=__________.5设等比数列{a n }的公比q =12,前n 项和为S n ,则S 4a 4=__________.6某工厂去年1月份的产值为a 元,月平均增长率为p ,求这个工厂去年全年产值的总和.7等比数列{a n }的前n 项和为S n ,已知S 1,S 2,S 3成等差数列. (1)求{a n }的公比q ; (2)若a 1-a 3=3,求S n .8(2009高考全国卷Ⅱ,文13)设等比数列{a n }的前n 项和为S n ,若a 1=1,S 6=4S 3,则a 4=__________.综合过关9在等比数列{a n }中,a 1=2,前n 项和为S n ,若数列{a n +1}也是等比数列,则S n 等于( ) A .2n +1-2 B .3nC .2nD .3n-110令f (n )=log (n +1)(n +2)(n ∈N +),如果对k (k ∈N +),满足f (1)f (2)…f (k )为整数,则称k 为“好数”,那么区间[1,2 010]内所有“好数”的和M =______.11求和:9+99+999+…+999…99n 个9.12设{a n }是由正数组成的等比数列,S n 是其前n 项和.求证:log 0.5S n +log 0.5S n +22>log 0.5S n+1. 能力提升13“一尺之棰,日取其半,万世不竭”.怎样用学过的知识来说明它?参考答案1答案:D2解析:设公比为q ,则⎩⎪⎨⎪⎧a 1=1,a 1q 3=18,解得q =12.则该数列的前10项和为S 10=a 11-q101-q=1-12101-12=2-129.答案:B3解析:两等式相减得a 4-a 3=2a 3, 从而求得a 4a 3=3=q . 答案:A4解析:a n +2+a n +1=a n q 2+a n q =6a n ,所以q 2+q =6,解得q =2或q =-3(舍去),所以a 1=a 2q =12,所以S 4=121-241-2=152. 答案:1525解析:S 4a 4=a 1[1-124]1-12[a 1123]=15.答案:156解:该工厂去年2月份的产值为a (1+p )元,3月、4月、…的产值分别为a (1+p )2、a (1+p )3、…,去年12个月的产值组成以a 为首项,(1+p )为公比的等比数列.因此,该厂去年全年的总产值为S 12=a [1-1+p 12]1-1+p=a [1+p12-1]p,即该工厂去年全年的总产值为a [1+p12-1]p元.7解:(1)依题意有,a 1+(a 1+a 1q )=2(a 1+a 1q +a 1q 2)由于a 1≠0,故2q 2+q =0, 又q ≠0,从而q =-12.(2)由已知可得a 1-a 1(-12)2=3,解得a 1=4,从而S n =4[1--12n]1--12=83[1-(-12)n]. 8解析:设等比数列{a n }的公比为q ,很明显q ≠1,则1-q 61-q =41-q 31-q ,解得q 3=3,所以a 4=a 1q 3=3.答案:39解析:设等比数列{a n }的公比为q , (a 2+1)2=(a 1+1)(a 3+1),则 (a 1q +1)2=(a 1+1)(a 1q 2+1),即(2q +1)2=3(2q 2+1),解得q =1,则S n =2n . 答案:C10解析:设f (1)f (2)…f (k )=log 23log 34…log (k +1)(k +2)=log 2(k +2)=m ,则k =2m-2,又k ∈[1,2 010],则m ∈N +且1<m <11,所以M =(22-2)+(23-2)+…+(210-2)=(22+23+…+210)-2×9=221-291-2-18=2026.答案:2 02611分析:数列9,99,999,…不是等比数列,不能用公式求和,但将它转化成10-1,100-1,1 000-1,…就容易解决了.解:原式=(10-1)+(102-1)+…+(10n-1) =(10+102+ (10))-n =1010n -110-1-n=109(10n-1)-n . 12分析:对公比q 是否等于1分类讨论.证明:设{a n }的公比为q ,由题设,知a 1>0,q >0. (1)当q =1时,S n =na 1,则S n ·S n +2-S 2n +1=na 1·(n +2)a 1-(n +1)2a 21 =-a 21<0.(2)当q ≠1时,S n =a 11-q n 1-q,从而S n ·S n +2-S 2n +1 =a 211-q n1-qn +21-q2-a 211-q n +121-q2=-a 21q n<0.由(1)和(2)得S n ·S n +2<S 2n +1.根据对数函数的单调性,得log 0.5(S n ·S n +2)>log 0.5S 2n +1, 即log 0.5S n +log 0.5S n +22>log 0.5S n +1.13解:这句古话用现代文叙述是:一尺长的木棒,每天取它的一半,永远也取不完. 如果将每天取出的木棒长度排成一个数列,则得到一个首项a 1=12,公比q =12的等比数列,它的前n 项和为S n =12×[1-12n]1-12=1-(12)n.不论n 为何值,1-(12)n总小于1,这说明一尺长的木棒按上述方法永远也取不完.欢迎您的下载,资料仅供参考!。

北京北京师范大学第二附属中学等比数列练习题(有答案)doc

北京北京师范大学第二附属中学等比数列练习题(有答案)doc

一、等比数列选择题1.在数列{}n a 中,12a =,对任意的,m n N *∈,m n m n a a a +=⋅,若1262n a a a ++⋅⋅⋅+=,则n =( )A .3B .4C .5D .6 2.设{a n }是等比数列,若a 1 + a 2 + a 3 =1,a 2 + a 3 + a 4 =2,则 a 6 + a 7 + a 8 =( ) A .6 B .16 C .32 D .64 3.若1,a ,4成等比数列,则a =( )A .1B .2±C .2D .2-4.已知等比数列{}n a 中,1354a a a ⋅⋅=,公比q =,则456a a a ⋅⋅=( ) A .32B .16C .16-D .32-5.已知数列{}n a 中,其前n 项和为n S ,且满足2n n S a =-,数列{}2n a 的前n 项和为n T ,若2(1)0n n n S T λ-->对*n N ∈恒成立,则实数λ的取值范围是( )A .()3,+∞B .()1,3-C .93,5⎛⎫ ⎪⎝⎭D .91,5⎛⎫- ⎪⎝⎭6.在等比数列{}n a 中,132a =,44a =.记12(1,2,)n n T a a a n ==……,则数列{}n T ( )A .有最大项,有最小项B .有最大项,无最小项C .无最大项,有最小项D .无最大项,无最小项7.记等比数列{}n a 的前n 项和为n S ,已知5=10S ,1050S =,则15=S ( ) A .180B .160C .210D .2508.各项为正数的等比数列{}n a ,478a a ⋅=,则2122210log log log a a a +++=( )A .15B .10C .5D .39.已知各项不为0的等差数列{}n a 满足26780a a a -+=,数列{}n b 是等比数列,且77b a =,则3810b b b =( )A .1B .8C .4D .210.已知公比大于1的等比数列{}n a 满足2420a a +=,38a =.则数列(){}111n n n a a -+-的前n 项的和为( )A .()2382133n n +--B .()23182155n n +---C .()2382133n n ++-D .()23182155n n +-+-11.题目文件丢失!12.设数列{}n a 的前n 项和为n S ,且()*2n n S a n n N =+∈,则3a=( )A .7-B .3-C .3D .713.已知等比数列{}n a 中,n S 是其前n 项和,且5312a a a +=,则42S S =( ) A .76B .32C .2132D .1414.已知等比数列{}n a 的前5项积为32,112a <<,则35124a a a ++的取值范围为( ) A .73,2⎡⎫⎪⎢⎣⎭B .()3,+∞C .73,2⎛⎫ ⎪⎝⎭D .[)3,+∞15.已知数列{}n a 为等比数列,12a =,且53a a =,则10a 的值为( ) A .1或1- B .1 C .2或2- D .2 16.已知1,a ,x ,b ,16这五个实数成等比数列,则x 的值为( )A .4B .-4C .±4D .不确定17.已知等比数列的公比为2,其前n 项和为n S ,则33S a =( ) A .2B .4C .74D .15818.已知等比数列{}n a ,7a =8,11a =32,则9a =( ) A .16B .16-C .20D .16或16-19.等比数列{}n a 中各项均为正数,n S 是其前n 项和,且满足312283S a a =+,416a =,则6S =( )A .32B .63C .123D .12620.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件11a >,667711,01a a a a -><-,则下列结论正确的是( ) A .681a a >B .01q <<C .n S 的最大值为7SD .n T 的最大值为7T二、多选题21.题目文件丢失!22.设首项为1的数列{}n a 的前n 项和为n S ,已知121n n S S n +=+-,则下列结论正确的是( )A .数列{}n a 为等比数列B .数列{}n S n +为等比数列C .数列{}n a 中10511a =D .数列{}2n S 的前n 项和为2224n n n +---23.设()f x 是定义在R 上恒不为零的函数,对任意实数x 、y ,都有()()()f x y f x f y +=,若112a =,()()*n a f n n N =∈,数列{}n a 的前n 项和n S 组成数列{}n S ,则有( ) A .数列{}n S 递增,且1n S < B .数列{}n S 递减,最小值为12C .数列{}n S 递增,最小值为12D .数列{}n S 递减,最大值为124.关于递增等比数列{}n a ,下列说法不正确的是( ) A .10a >B .1q >C .11nn a a +< D .当10a >时,1q >25.已知集合{}*21,A x x n n N==-∈,{}*2,nB x x n N ==∈将AB 的所有元素从小到大依次排列构成一个数列{}n a ,记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的可能取值为( ) A .25B .26C .27D .2826.已知等比数列{}n a 的公比0q <,等差数列{}n b 的首项10b >,若99a b >,且1010a b >,则下列结论一定正确的是( )A .9100a a <B .910a a >C .100b >D .910b b >27.已知数列{}n a 是等比数列,有下列四个命题,其中正确的命题有( ) A .数列{}n a 是等比数列 B .数列{}1n n a a +是等比数列 C .数列{}2lg n a 是等比数列D .数列1n a ⎧⎫⎨⎬⎩⎭是等比数列 28.已知数列{} n a 满足11a =,121++=+n n a a n ,*n N ∈, n S 是数列1 n a ⎧⎫⎨⎬⎩⎭的前n 项和,则下列结论中正确的是( ) A .()21121n nS n a -=-⋅ B .212n n S S =C .2311222n n n S S ≥-+ D .212n n S S ≥+29.在《增删算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关.”则下列说法正确的是( )A .此人第二天走了九十六里路B .此人第三天走的路程站全程的18C .此人第一天走的路程比后五天走的路程多六里D .此人后三天共走了42里路30.数列{}n a 是首项为1的正项数列,123n n a a +=+,n S 是数列{}n a 的前n 项和,则下列结论正确的是( ) A .313a = B .数列{}3n a +是等比数列C .43n a n =-D .122n n S n +=--31.已知数列{}n a 为等差数列,11a =,且2a ,4a ,8a 是一个等比数列中的相邻三项,记()0,1na n nb a q q =≠,则{}n b 的前n 项和可以是( )A .nB .nqC .()121n n n q nq nq q q ++---D .()21121n n n q nq nq q q ++++---32.已知数列{}n a 满足11a =,()*123nn na a n N a +=∈+,则下列结论正确的有( ) A .13n a ⎧⎫+⎨⎬⎩⎭为等比数列 B .{}n a 的通项公式为1123n n a +=-C .{}n a 为递增数列D .1n a ⎧⎫⎨⎬⎩⎭的前n 项和2234n n T n +=--33.等比数列{}n a 中,公比为q ,其前n 项积为n T ,并且满足11a >.99100·10a a ->,99100101a a -<-,下列选项中,正确的结论有( ) A .01q << B .9910110a a -< C .100T 的值是n T 中最大的D .使1n T >成立的最大自然数n 等于19834.等差数列{}n a 的公差为d ,前n 项和为n S ,当首项1a 和d 变化时,3813++a a a 是一个定值,则下列各数也为定值的有( ) A .7aB .8aC .15SD .16S35.将n 2个数排成n 行n 列的一个数阵,如图:该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中m >0).已知a 11=2,a 13=a 61+1,记这n 2个数的和为S .下列结论正确的有( )A .m =3B .767173a =⨯C .()1313j ij a i -=-⨯D .()()131314n S n n =+-【参考答案】***试卷处理标记,请不要删除一、等比数列选择题 1.C 【分析】令1m =,可得112+=⋅=n n n a a a a ,可得数列{}n a 为等比数列,利用等比数列前n 项和公式,求解即可. 【详解】因为对任意的,m n N *∈,都有m n m n a a a +=⋅,所以令1m =,则112+=⋅=n n n a a a a , 因为10a ≠,所以0n a ≠,即12n na a +=, 所以数列{}n a 是以2为首项,2为公比的等比数列,所以2(12)6212n -=-,解得n =5,故选:C 2.C 【分析】根据等比数列的通项公式求出公比2q ,再根据等比数列的通项公式可求得结果.【详解】设等比数列{}n a 的公比为q ,则234123()2a a a a a a q ++=++=,又1231a a a ++=,所以2q,所以55678123()1232a a a a a a q ++=++⋅=⨯=.故选:C . 3.B 【分析】根据等比中项性质可得24a =,直接求解即可. 【详解】由等比中项性质可得:2144a =⨯=,所以2a =±, 故选:B 4.A 【分析】由等比数列的通项公式可计算得出()6456135a a a q a a a ⋅⋅=⋅⋅,代入数据可计算得出结果.【详解】由6326456135135432a a a a q a q a q a a a q ⋅⋅=⋅⋅⋅⋅⋅=⋅⋅⋅=⨯=.故选:A. 5.D 【分析】由2n n S a =-利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,得到数列{}n a 是以1为首项,12为公比的等比数列,进而得到{}2n a 是以1为首项,14为公比的等比数列,利用等比数列前n 项和公式得到n S ,n T ,将2(1)0nn n S T λ-->恒成立,转化为()()321(1)210nnnλ---+>对*n N ∈恒成立,再分n 为偶数和n 为奇数讨论求解.【详解】当1n =时,112S a =-,得11a =; 当2n ≥时,由2n n S a =-, 得112n n S a --=-, 两式相减得112n n a a -=, 所以数列{}n a 是以1为首项,12为公比的等比数列. 因为112n n a a -=, 所以22114n n a a -=.又211a =,所以{}2n a 是以1为首项,14为公比的等比数列, 所以1112211212nn n S ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,11414113414nnn T ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-, 由2(1)0n n n S T λ-->,得214141(1)10234n nnλ⎡⎤⎡⎤⎛⎫⎛⎫---⨯->⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,所以221131(1)1022n nnλ⎡⎤⎡⎤⎛⎫⎛⎫---->⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,所以211131(1)110222n n n nλ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫----+>⎢⎥⎢⎥⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.又*n N ∈,所以1102n⎛⎫-> ⎪⎝⎭,所以1131(1)1022n n nλ⎡⎤⎡⎤⎛⎫⎛⎫---+>⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,即()()321(1)210nnnλ---+>对*n N ∈恒成立,当n 为偶数时,()()321210nnλ--+>,所以()()321321663212121nnn n n λ-+-<==-+++, 令6321n n b =-+,则数列{}n b 是递增数列,所以22693215λb <=-=+; 当n 为奇数时,()()321210nnλ-++>,所以()()321321663212121nnn n n λ-+--<==-+++,所以16332121λb -<=-=-=+, 所以1λ>-.综上,实数λ的取值范围是91,5⎛⎫- ⎪⎝⎭.故选:D. 【点睛】方法点睛:数列与不等式知识相结合的考查方式主要有三种:一是判断数列问题中的一些不等关系;二是以数列为载体,考查不等式的恒成立问题;三是考查与数列问题有关的不等式的证明.在解决这些问题时,往往转化为函数的最值问题. 6.B 【分析】首先求得数列的通项公式,再运用等差数列的求和公式求得n T ,根据二次函数的性质的指数函数的性质可得选项. 【详解】设等比数列{}n a 为q ,则等比数列的公比414141328a q a -===,所以12q =, 则其通项公式为:116113222n n n n a a q ---⎛⎫=⋅=⨯= ⎪⎝⎭,所以()()5611542212622222nn +n n n n n T a aa ---==⨯==,令()11t n n =-,所以当5n =或6时,t 有最大值,无最小值,所以n T 有最大项,无最小项. 故选:B. . 7.C 【分析】首先根据题意得到5S ,105S S -,1510S S -构成等比数列,再利用等比中项的性质即可得到答案. 【详解】因为{}n a 为等比数列,所以5S ,105S S -,1510S S -构成等比数列. 所以()()2155010=1050S --,解得15210S =. 故选:C 8.A 【分析】根据等比数列的性质,由对数的运算,即可得出结果. 【详解】 因为478a a ⋅=, 则()()52212221021210110log log log log ...log a a a a a a a a ⋅⋅⋅=+⋅++=()2475log 15a a =⋅=.故选:A. 9.B 【分析】根据等差数列的性质,由题中条件,求出72a =,再由等比数列的性质,即可求出结果. 【详解】因为各项不为0的等差数列{}n a 满足26780a a a -+=,所以27720a a -=,解得72a =或70a =(舍);又数列{}n b 是等比数列,且772b a ==,所以33810371178b b b b b b b ===.故选:B. 10.D 【分析】根据条件列出方程组可求出等比数列的公比和首项,即可得到数列的通项公式,代入()111n n n a a -+-可知数列为等比数列,求和即可.【详解】因为公比大于1的等比数列{}n a 满足2420a a +=,38a =,所以31121208a q a q a q ⎧+=⎨=⎩,解得2q,12a =,所以1222n nn a -=⨯=,()()()111111222111n n n n n n n n a a ++-+--+=⋅⋅-=∴--,(){}111n n n a a -+∴-是以8为首项,4-为公比的等比数列,()23357921118[1(4)]8222222(1)1(4)155n n n n n n S -++---∴=-+--++⋅==+---, 故选:D 【点睛】关键点点睛:求出等比数列的通项公式后,代入新数列,可得数列的通项公式,由通项公式可知数列为等比数列,根据等比数列的求和公式计算即可.11.无12.A 【分析】先求出1a ,再当2n ≥时,由()*2n n S a n n N=+∈得1121n n Sa n --=+-,两式相减后化简得,121n n a a -=-,则112(1)n n a a --=-,从而得数列{}1n a -为等比数列,进而求出n a ,可求得3a 的值【详解】解:当1n =时,1121S a =+,得11a =-, 当2n ≥时,由()*2n n S a n n N=+∈得1121n n Sa n --=+-,两式相减得1221n n n a a a -=-+,即121n n a a -=-,所以112(1)n n a a --=-,所以数列{}1n a -是以2-为首项,2为公比的等比数列,所以1122n n a --=-⨯,所以1221n n a -=-⨯+,所以232217a =-⨯+=-,故选:A 13.B【分析】由5312a a a +=,解得q ,然后由414242212(1)111(1)11a q S q q q a q S qq---===+---求解. 【详解】在等比数列{}n a 中,5312a a a +=, 所以421112a q a q a +=,即42210q q +-=, 解得212q =所以414242212(1)1311(1)121a q S q q q a q S q q---===+=---, 故选:B 【点睛】本题主要考查等比数列通项公式和前n 项和公式的基本运算,属于基础题, 14.C 【分析】由等比数列性质求得3a ,把35124a a a ++表示为1a 的函数,由函数单调性得取值范围. 【详解】因为等比数列{}n a 的前5项积为32,所以5332a =,解得32a =,则235114a a a a ==,35124a a a ++1111a a =++,易知函数()1f x x x=+在()1,2上单调递增,所以35173,242a a a ⎛⎫++∈ ⎪⎝⎭, 故选:C . 【点睛】关键点点睛:本题考查等比数列的性质,解题关键是选定一个参数作为变量,把待求值的表示为变量的函数,然后由函数的性质求解.本题蝇利用等比数列性质求得32a =,选1a 为参数. 15.C 【分析】根据等比数列的通项公式,由题中条件,求出公比,进而可得出结果. 【详解】设等比数列{}n a 的公比为q ,因为12a =,且53a a =,所以21q =,解得1q =±, 所以91012a a q ==±.故选:C. 16.A 【分析】根据等比中项的性质有216x =,而由等比通项公式知2x q =,即可求得x 的值. 【详解】由题意知:216x =,且若令公比为q 时有20x q =>,∴4x =, 故选:A 17.C 【分析】利用等比数列的通项公式和前n 项和公式代入化简可得答案 【详解】解:因为等比数列的公比为2,所以31312311(12)7712244a S a a a a --===⋅, 故选:C 18.A 【分析】根据等比数列的通项公式得出618a q =,10132a q=且10a >,再由819a a q ==.【详解】设等比数列{}n a 的公比为q ,则618a q =,10132a q=且10a >则81916a q a ====故选:A 19.D 【分析】根据等比数列的通项公式建立方程,求得数列的公比和首项,代入等比数列的求和公式可得选项. 【详解】设等比数列{}n a 的公比为(0)q q >.∵312283S a a =+, ∴123122()83a a a a a ++=+,即321260a a a --=. ∴2260q q --=,∴2q 或32q =-(舍去),∵416a =,∴4132a a q ==, ∴6616(1)2(12)126112a q S q --===--, 故选:D. 20.B 【分析】根据11a >,667711,01a a a a -><-,分0q < ,1q ≥,01q <<讨论确定q 的范围,然后再逐项判断. 【详解】若0q <,因为11a >,所以670,0a a <>,则670a a ⋅<与671a a ⋅>矛盾, 若1q ≥,因为11a >,所以671,1a a >>,则67101a a ->-,与67101a a -<-矛盾, 所以01q <<,故B 正确; 因为67101a a -<-,则6710a a >>>,所以()26870,1a a a =∈,故A 错误; 因为0n a >,01q <<,所以111n n a q a S q q=---单调递增,故C 错误; 因为7n ≥时,()0,1n a ∈,16n ≤≤时,1n a >,所以n T 的最大值为6T ,故D 错误; 故选:B 【点睛】关键点点睛:本题的关键是通过穷举法确定01q <<.二、多选题21.无22.BCD 【分析】由已知可得11222n n n n S n S nS n S n++++==++,结合等比数列的定义可判断B ;可得2n n S n =-,结合n a 和n S 的关系可求出{}n a 的通项公式,即可判断A ;由{}n a 的通项公式,可判断C ;由分组求和法结合等比数列和等差数列的前n 项和公式即可判断D . 【详解】因为121n n S S n +=+-,所以11222n n n n S n S nS n S n++++==++.又112S +=,所以数列{}n S n +是首项为2,公比为2的等比数列,故B 正确;所以2n n S n +=,则2nn S n =-.当2n ≥时,1121n n n n a S S --=-=-,但11121a -≠-,故A 错误;由当2n ≥时,121n n a -=-可得91021511a =-=,故C 正确;因为1222n n S n +=-,所以2311222...2221222 (2)2n n S S S n ++++=-⨯+-⨯++-()()()23122412122 (2)212 (22412)2n n n n n n n n n ++--⎡⎤=+++-+++=-+=---⎢⎥-⎣⎦ 所以数列{}2n S 的前n 项和为2224n n n +---,故D 正确. 故选:BCD . 【点睛】关键点点睛:在数列中,根据所给递推关系,得到等差等比数列是重难点,本题由121n n S S n +=+-可有目的性的构造为1122n n S S n n +++=+,进而得到11222n n n n S n S nS n S n++++==++,说明数列{}n S n +是等比数列,这是解决本题的关键所在,考查了推理运算能力,属于中档题, 23.AC 【分析】计算()f n 的值,得出数列{}n a 的通项公式,从而可得数列{}n S 的通项公式,根据其通项公式进行判断即可 【详解】 解:因为112a =,所以1(1)2f =,所以221(2)(1)4a f f ===, 31(3)(1)(2)8a f f f ===,……所以1()2n n a n N +=∈,所以11(1)122111212n n n S -==-<-, 所以数列{}n S 递增,当1n =时,n S 有最小值1112S a ==, 故选:AC 【点睛】关键点点睛:此题考查函数与数列的综合应用,解题的关键是由已知条件赋值归纳出数列{}n a 的通项公式,进而可得数列{}n S 的通项公式,考查计算能力和转化思想,属于中档题 24.ABC 【分析】由题意,设数列{}n a 的公比为q ,利用等比数列{}n a 单调递增,则111(1)0n n n a a a q q -+-=->,分两种情况讨论首项和公比,即可判断选项.【详解】由题意,设数列{}n a 的公比为q ,因为11n n a a q -=,可得111(1)0n n n a a a qq -+-=->,当10a >时,1q >,此时101nn a a +<<, 当10a <时,101,1nn a q a +<<>, 故不正确的是ABC. 故选:ABC. 【点睛】本题主要考查了等比数列的单调性.属于较易题. 25.CD 【分析】由题意得到数列{}n a 的前n 项依次为231,2,3,2,5,7,2,9,利用列举法,结合等差数列以及等比数列的求和公式,验证即可求解. 【详解】由题意,数列{}n a 的前n 项依次为231,2,3,2,5,7,2,9,利用列举法,可得当25n =时,AB 的所有元素从小到大依次排列构成一个数列{}n a ,则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,37,39,2,4,8,16,32,可得52520(139)2(12)40062462212S ⨯+-=+=+=-,2641a =,所以2612492a =,不满足112n n S a +>; 当26n =时,AB 的所有元素从小到大依次排列构成一个数列{}n a ,则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,37,39,41,2,4,8,16,32,可得52621(141)2(12)44162503212S ⨯+-=+=+=-,2743a =,所以2612526a =,不满足112n n S a +>; 当27n =时,AB 的所有元素从小到大依次排列构成一个数列{}n a ,则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,37,39,41,43,2,4,8,16,32,可得52722(143)2(12)48462546212S ⨯+-=+=+=-,2845a =,所以2712540a =,满足112n n S a +>; 当28n =时,AB 的所有元素从小到大依次排列构成一个数列{}n a ,则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,37,39,41,43,45,2,4,8,16,32,可得52823(145)2(12)52962591212S ⨯+-=+=+=-,2947a =,所以2812564a =,满足112n n S a +>,所以使得112n n S a +>成立的n 的可能取值为27,28. 故选:CD. 【点睛】本题主要考查了等差数列和等比数列的前n 项和公式,以及“分组求和法”的应用,其中解答中正确理解题意,结合列举法求得数列的前n 项和,结合选项求解是解答的关键,着重考查推理与运算能力. 26.AD 【分析】根据等差、等比数列的性质依次判断选项即可. 【详解】对选项A ,因为0q <,所以29109990a a a a q a q =⋅=<,故A 正确;对选项B ,因为9100a a <,所以91000a a >⎧⎨<⎩或9100a a <⎧⎨>⎩,即910a a >或910a a <,故B 错误;对选项C ,D ,因为910,a a 异号,99a b >,且1010a b >,所以910,b b 中至少有一个负数, 又因为10b >,所以0d <,910b b >,故C 错误,D 正确. 故选:AD 【点睛】本题主要考查等差、等比数列的综合应用,考查学生分析问题的能力,属于中档题. 27.ABD 【分析】分别按定义计算每个数列的后项与前项的比值,即可判断. 【详解】根据题意,数列{}n a 是等比数列,设其公比为q ,则1n na q a +=, 对于A ,对于数列{}n a ,则有1||n na q a ,{}n a 为等比数列,A 正确; 对于B ,对于数列{}1n n a a +,有211n n n na a q a a +-=,{}1n n a a +为等比数列,B 正确; 对于C ,对于数列{}2lg n a ,若1n a =,数列{}n a 是等比数列,但数列{}2lg n a 不是等比数列,C 错误;对于D ,对于数列1n a ⎧⎫⎨⎬⎩⎭,有11111n n n n a a a q a --==,1n a ⎧⎫⎨⎬⎩⎭为等比数列,D 正确. 故选:ABD . 【点睛】本题考查用定义判断一个数列是否是等比数列,属于基础题. 28.CD 【分析】根据数列{} n a 满足11a =,121++=+n n a a n ,得到1223+++=+n n a a n ,两式相减得:22n n a a +-=,然后利用等差数列的定义求得数列{} n a 的通项公式,再逐项判断.【详解】因为数列{} n a 满足11a =,121++=+n n a a n ,*n N ∈, 所以1223+++=+n n a a n , 两式相减得:22n n a a +-=,所以奇数项为1,3,5,7,….的等差数列; 偶数项为2,4,6,8,10,….的等差数列;所以数列{} n a 的通项公式是n a n =, A. 令2n =时, 311111236S =++=,而 ()1322122⨯-⋅=,故错误; B. 令1n =时, 213122S =+=,而 11122S =,故错误;C. 当1n =时, 213122S =+=,而 31132222-+=,成立,当2n ≥时,211111...23521n n S S n =++++--,因为221n n >-,所以11212n n >-,所以111111311...1 (352148222)n n n ++++>++++=--,故正确; D. 因为21111...1232n n S S n n n n-=+++++++,令()1111...1232f n n n n n=+++++++,因为()111111()021*******f n f n n n n n n +-=+-=->+++++,所以()f n 得到递增,所以()()112f n f ≥=,故正确;故选:CD 【点睛】本题主要考查等差数列的定义,等比数列的前n 项和公式以及数列的单调性和放缩法的应用,还考查了转化求解问题的能力,属于较难题. 29.ACD 【分析】若设此人第n 天走n a 里路,则数列{}n a 是首项为1a ,公比为12q =的等比数列,由6378S =求得首项,然后分析4个选项可得答案.【详解】解:设此人第n 天走n a 里路,则数列{}n a 是首项为1a ,公比为12q =的等比数列, 因为6378S =,所以1661(1)2=378112a S -=-,解得1192a =,对于A ,由于21192962a =⨯=,所以此人第二天走了九十六里路,所以A 正确; 对于B ,由于 3148119248,43788a =⨯=>,所以B 不正确;对于C ,由于378192186,1921866-=-=,所以此人第一天走的路程比后五天走的路程多六里,所以C 正确; 对于D ,由于4561111924281632a a a ⎛⎫++=⨯++= ⎪⎝⎭,所以D 正确, 故选:ACD 【点睛】此题考查等比数的性质,等比数数的前项n 的和,属于基础题. 30.AB 【分析】由已知构造出数列{}3n a +是等比数列,可求出数列{}n a 的通项公式以及前n 项和,结合选项逐一判断即可. 【详解】123n n a a +=+,∴()1323n n a a ++=+,∴数列{}3n a +是等比数列又∵11a =,∴()11332n n a a -+=+,∴123n n a +=-,∴313a =,∴()2412323412n n nS n n +-=-=---.故选:AB. 31.BD 【分析】设等差数列{}n a 的公差为d ,根据2a ,4a ,8a 是一个等比数列中的相邻三项求得0d =或1,再分情况求解{}n b 的前n 项和n S 即可. 【详解】设等差数列{}n a 的公差为d ,又11a =,且2a ,4a ,8a 是一个等比数列中的相邻三项∴2428a a a =,即()()()211137a d a d a d +=++,化简得:(1)0d d -=,所以0d =或1,故1n a =或n a n =,所以n b q =或nn b n q =⋅,设{}n b 的前n 项和为n S ,①当n b q =时,n S nq =;②当nn b n q =⋅时,23123n n S q q q n q =⨯+⨯+⨯+⋯⋯+⨯(1), 2341123n n qS q q q n q +=⨯+⨯+⨯+⋯⋯+⨯(2),(1)-(2)得:()()2311111n n n n n q q q S q q q q n q n q q++--=+++-⨯=-⨯-+⋅⋅,所以121122(1)(1)1(1)n n n n n n q q n q q nq nq q S q q q ++++-⨯+--=-=---,故选:BD【点睛】本题主要考查了等差等比数列的综合运用与数列求和的问题,需要根据题意求得等差数列的公差与首项的关系,再分情况进行求和.属于中等题型. 32.ABD 【分析】 由()*123nn na a n N a +=∈+两边取倒数,可求出{}n a 的通项公式,再逐一对四个选项进行判断,即可得答案. 【详解】因为112323n nn n a a a a ++==+,所以11132(3)n n a a ++=+,又11340a +=≠, 所以13n a ⎧⎫+⎨⎬⎩⎭是以4为首项,2位公比的等比数列,11342n n a -+=⨯即1123n n a +=-,故选项A 、B 正确. 由{}n a 的通项公式为1123n n a +=-知,{}n a 为递减数列,选项C 不正确.因为1231n na +=-,所以 1n a ⎧⎫⎨⎬⎩⎭的前n 项和23112(23)(23)(23)2(222)3n n n T n +=-+-++-=+++-22(12)2312234n n n n +-⨯-=⨯-=--.选项D 正确,故选:ABD 【点睛】本题考查由递推公式判断数列为等比数列,等比数列的通项公式及前n 项和,分组求和法,属于中档题. 33.ABD 【分析】由已知9910010a a ->,得0q >,再由99100101a a -<-得到1q <说明A 正确;再由等比数列的性质结合1001a <说明B 正确;由10099100·T T a =,而10001a <<,求得10099T T <,说明C 错误;分别求得1981T >,1991T <说明D 正确.【详解】 对于A ,9910010a a ->,21971·1a q ∴>,()2981··1a q q ∴>.11a >,0q ∴>.又99100101a a -<-,991a ∴>,且1001a <.01q ∴<<,故A 正确;对于B ,299101100100·01a a a a ⎧=⎨<<⎩,991010?1a a ∴<<,即99101·10a a -<,故B 正确; 对于C ,由于10099100·T T a =,而10001a <<,故有10099T T <,故C 错误; 对于D ,()()()()19812198119821979910099100·····991T a a a a a a a a a a a =⋯=⋯=⨯>, ()()()199121991199219899101100·····1T a a a a a a a a a a =⋯=⋯<,故D 正确.∴不正确的是C .故选:ABD . 【点睛】本题考查等比数列的综合应用,考查逻辑思维能力和运算能力,属于常考题. 34.BC 【分析】根据等差中项的性质和等差数列的求和公式可得出结果. 【详解】由等差中项的性质可得381383a a a a ++=为定值,则8a 为定值,()11515815152a a S a +==为定值,但()()11616891682a a S a a +==+不是定值.故选:BC. 【点睛】本题考查等差中项的基本性质和等差数列求和公式的应用,考查计算能力,属于基础题. 35.ACD 【分析】根据第一列成等差,第一行成等比可求出1361,a a ,列式即可求出m ,从而求出通项ij a , 再按照分组求和法,每一行求和可得S ,由此可以判断各选项的真假. 【详解】∵a 11=2,a 13=a 61+1,∴2m 2=2+5m +1,解得m =3或m 12=-(舍去), ∴a ij =a i 1•3j ﹣1=[2+(i ﹣1)×m ]•3j ﹣1=(3i ﹣1)•3j ﹣1,∴a 67=17×36,∴S =(a 11+a 12+a 13+……+a 1n )+(a 21+a 22+a 23+……+a 2n )+……+(a n 1+a n2+a n 3+……+a nn )11121131313131313nn n n a a a ---=+++---()()() 12=(3n ﹣1)•2312n n +-() 14=n (3n +1)(3n ﹣1) 故选:ACD.【点睛】本题主要考查等差数列,等比数列的通项公式的求法,分组求和法,等差数列,等比数列前n项和公式的应用,属于中档题.。

2021届北师大版(文科数学) 等比数列的性质 单元测试

2021届北师大版(文科数学)   等比数列的性质     单元测试

2021届北师大版(文科数学) 等比数列的性质 单元测试一、选择题1.等比数列中,a 5a 14=5,则a 8·a 9·a 10·a 11=( B ) A .10 B .25 C .50D .75[解析] a 8·a 11=a 9·a 10=a 5·a 14, ∴a 8·a 9·a 10·a 11=(a 5·a 14)2=25.2.在等比数列{a n }中,a 4=6,a 8=18,则a 12=( C ) A .24 B .30 C .54D .108[解析] ∵a 8=a 4q 4,∴q 4=a 8a 4=186=3,∴a 12=a 8·q 4=54.3.在等比数列{a n }中,a 3=2-a 2,a 5=16-a 4,则a 6+a 7的值为( B ) A .124 B .128 C .130D .132[解析] ∵a 2+a 3=2,a 4+a 5=16, 又a 4+a 5=(a 2+a 3)q 2,∴q 2=8. ∴a 6+a 7=(a 4+a 5)q 2=16×8=128.4.已知{a n }为等比数列,且a n >0,a 2a 4+2a 3a 5+a 4a 6=25,那么a 3+a 5等于( A ) A .5 B .10 C .15D .20[解析] ∵a 23=a 2a 4,a 25=a 4a 6, ∴a 23+2a 3a 5+a 25=25,∴(a 3+a 5)2=25, 又∵a n >0,∴a 3+a 5=5.5.(2020·济南高三检测)已知{a n }是等比数列,a 4·a 7=-512,a 3+a 8=124,且公比为整数,则公比q 为( B )A .2B .-2C .12D .-12[解析] a 4·a 7=a 3·a 8=-512,又a 3+a 8=124,所以⎩⎪⎨⎪⎧a 3=-4,a 8=128或⎩⎪⎨⎪⎧a 3=128,a 8=-4,因为公比为整数,故⎩⎪⎨⎪⎧a 3=-4,a 8=128,q 5=a 8a 3=-32,q =-2.6.在等比数列{a n }中,a n >a n +1,且a 7·a 11=6,a 4+a 14=5,则a 6a 16等于( A ) A .32 B .23 C .16D .6[解析] ∵⎩⎪⎨⎪⎧a 7·a 11=a 4·a 14=6a 4+a 14=5,解得⎩⎪⎨⎪⎧a 4=3a 14=2或⎩⎪⎨⎪⎧a 4=2a 14=3.又∵a n >a n +1,∴a 4=3,a 14=2.∴a 6a 16=a 4a 14=32. 二、填空题7.公差不为零的等差数列{a n }中,2a 3-a 27+2a 11=0,数列{b n }是等比数列,且b 7=a 7,则b 6b 8= 16 .[解析] ∵2a 3-a 27+2a 11=2(a 3+a 11)-a 27=4a 7-a 27=0, ∵b 7=a 7≠0,∴b 7=a 7=4.∴b 6b 8=b 27=16.8.等比数列{a n }中,a n >0,且a 5·a 6=9,则log 3a 2+log 3a 9= 2 .[解析] ∵a n >0,∴log 3a 2+log 3a 9=log 3(a 2a 9)=log 3(a 5a 6)=log 39=log 332=2. 三、解答题9.已知{a n }为等比数列,且a 1a 9=64,a 3+a 7=20,求a 11. [解析] ∵{a n }为等比数列,∴a 1·a 9=a 3·a 7=64,又a 3+a 7=20, ∴a 3,a 7是方程t 2-20t +64=0的两个根. ∴a 3=4,a 7=16或a 3=16,a 7=4, 当a 3=4时,a 3+a 7=a 3+a 3q 4=20, ∴1+q 4=5,∴q 4=4.当a 3=16时,a 3+a 7=a 3(1+q 4)=20, ∴1+q 4=54,∴q 4=14.∴a 11=a 1q 10=a 3q 8=64或1.10.已知{a n }是首项为19,公差为-2的等差数列,S n 为{a n }的前n 项和.(1)求通项公式a n 及S n ;(2)设{b n -a n }是首项为1,公比为3的等比数列,求数列{b n }的通项公式. [解析] (1)因为{a n }是首项为19,公差为-2的等差数列, 所以a n =19-2(n -1)=-2n +21,即a n =-2n +21;S n =19n +n n -12×(-2)=-n 2+20n ,即S n =-n 2+20n .(2)因为{b n -a n }是首项为1,公比为3的等比数列,所以b n -a n =3n -1,即b n =3n -1+a n =3n -1-2n +21.B 级 素养提升一、选择题1.已知2a=3,2b=6,2c=12,则a ,b ,c ( A ) A .成等差数列不成等比数列 B .成等比数列不成等差数列 C .成等差数列又成等比数列 D .既不成等差数列又不成等比数列[解析] 解法一:a =log 23,b =log 26=1+log 2 3,c =log 2 12=2+log 2 3.∴b -a =c -b .解法二:∵2a ·2c =36=(2b )2,∴a +c =2b ,∴选A .2.已知等比数列{a n }中,各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 9+a 10a 7+a 8=( C )A .1+ 2B .1- 2C .3+2 2D .3-2 2[解析] 设数列{a n }的公比为q ,由已知可得a 3=a 1+2a 2⇒q 2-2q -1=0,q =1+2或1-2(舍),则a 9+a 10a 7+a 8=q 2=(1+2)2=3+2 2. 3.设{a n }是由正数组成的等比数列,公比q =2,且a 1·a 2·a 3·…·a 30=230,那么a 3·a 6·a 9·…·a 30等于( B )A .210B .220C .216D .215[解析] 设A =a 1a 4a 7…a 28,B =a 2a 5a 8…a 29,C =a 3a 6a 9…a 30,则A 、B 、C 成等比数列,公比为q 10=210,由条件得A ·B ·C =230,∴B =210,∴C =B ·210=220.4.在数列{a n }中,a 1=2,当n 为奇数时,a n +1=a n +2;当n 为偶数时,a n +1=2a n -1,则a 12等于( C )A .32B .34C .66D .64[解析] 依题意,a 1,a 3,a 5,a 7,a 9,a 11构成以2为首项,2为公比的等比数列,故a 11=a 1×25=64,a 12=a 11+2=66.故选C .二、填空题5.已知{a n }是递增等比数列,a 2=2,a 4-a 3=4,则此数列的公比q = 2 . [解析] 本题主要考查等比数列的基本公式,利用等比数列的通项公式可解得.a 4-a 3=a 2q 2-a 2q =4,因为a 2=2,所以q 2-q -2=0,解得q =-1,或q =2. 因为{a n }为递增数列,所以q =2.6.如图,在等腰直角三角形ABC 中,斜边BC =22,过点A 作BC 的垂线,垂足为A 1;过点A 1作AC 的垂线,垂足为A 2;过点A 2作A 1C 的垂线,垂足为A 3;……,依此类推,设BA =a 1,AA 1=a 2,A 1A 2=a 3,…,A 5A 6=a 7,则a 7= 14.[解析] 由题意知数列{a n }是首项a 1=2,公比q =22的等比数列,则a 7=a 1q 6=2×(22)6=14. 三、解答题7.设{a n }是各项均为正数的等比数列,b n =log 2a n ,若b 1+b 2+b 3=3,b 1·b 2·b 3=-3,求此等比数列的通项公式a n .[解析] 由b 1+b 2+b 3=3,得log 2(a 1· a 2·a 3)=3, ∴a 1·a 2·a 3=23=8,∵a 22=a 1·a 3,∴a 2=2,又b 1·b 2·b 3=-3, 设等比数列{a n }的公比为q ,得log 2(2q )·log 2(2q )=-3.解得q =4或14,∴所求等比数列{a n }的通项公式为a n=a2·q n-2=22n-3或a n=25-2n.8.等差数列{a n}的前n项和为S n,已知S3=a22,且S1,S2,S4成等比数列,求{a n}的通项公式.[解析]设{a n}的公差为d.由S3=a22得3a2=a22,故a2=0或a2=3.由S1,S2,S4成等比数列得S22=S1S4.又S1=a2-d,S2=2a2-d,S4=4a2+2d,故(2a2-d)2=(a2-d)(4a2+2d).若a2=0,则d2=-2d2,所以d=0,此时S n=0,不合题意;若a2=3,则(6-d)2=(3-d)(12+2d),解得d=0或d=2.因此{a n}的通项公式为a n=3或a n=2n-1.。

高考数学一轮复习第5章数列第3节等比数列课时分层训练文北师大版

高考数学一轮复习第5章数列第3节等比数列课时分层训练文北师大版

课时分层训练(二十九) 等比数列A 组 基础达标 (建议用时:30分钟)一、选择题1.对任意等比数列{a n },下列说法一定正确的是( ) A .a 1,a 3,a 9成等比数列 B .a 2,a 3,a 6成等比数列 C .a 2,a 4,a 8成等比数列 D .a 3,a 6,a 9成等比数列D [由等比数列的性质得,a 3·a 9=a 26≠0,因此a 3,a 6,a 9一定成等比数列,选D.]2.(2016·重庆巴蜀中学3月模拟)我国古代有用一首诗歌形式提出的数列问题:远望巍巍塔七层,红灯向下成倍增.共灯三百八十一,请问塔顶几盏灯?( )A .5B .4C .3D .2C [设塔顶有x 盏灯,则由题意知x-271-2=381,解得x =3.故选C.]3.(2016·广东肇庆三模)在等比数列{a n }中,S n 表示前n 项和,若a 3=2S 2+1,a 4=2S 3+1,则公比q 等于( )A .-3B .-1C .1D .3D [两式相减得a 4-a 3=2a 3,从而求得a 4a 3=3,即q =3.]4.(2015·全国卷Ⅱ)已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2=( )A .2B .1 C.12D .18C [法一:∵a 3a 5=a 24,a 3a 5=4(a 4-1),∴a 24=4(a 4-1),∴a 24-4a 4+4=0,∴a 4=2.又∵q 3=a 4a 1=214=8,∴q =2,∴a 2=a 1q =14×2=12,故选C.法二:∵a 3a 5=4(a 4-1),∴a 1q 2·a 1q 4=4(a 1q 3-1), 将a 1=14代入上式并整理,得q 6-16q 3+64=0,解得q =2,∴a 2=a 1q =12,故选C.]5.(2017·合肥二次质检)已知等比数列{a n }的前n 项和为S n ,若a 2=12,a 3·a 5=4,则下列说法正确的是( )A .{a n }是递减数列B .{S n }是递减数列C .{a 2n }是递减数列D .{S 2n }是递减数列C [设等比数列{a n }的公比为q ,则a 3·a 5=a 2q ·a 2q 3=4,又因为a 2=12,所以q 4=136,则q 2=16,所以数列{a 2n }是首项为12,公比为16的等比数列,则数列{a 2n }为递减数列,故选C.]二、填空题6.若三个正数a ,b ,c 成等比数列,其中a =5+26,c =5-26,则b =__________.【导学号:66482254】1 [∵a ,b ,c 成等比数列,∴b 2=a ·c =(5+26)(5-26)=1.又b >0,∴b =1.]7.(2016·浙江高考)设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1=________,S 5=________.1 121 [∵a n +1=2S n +1,∴S n +1-S n =2S n +1, ∴S n +1=3S n +1,∴S n +1+12=3⎝⎛⎭⎪⎫S n +12,∴数列⎩⎨⎧⎭⎬⎫S n +12是公比为3的等比数列,∴S 2+12S 1+12=3.又S 2=4,∴S 1=1,∴a 1=1, ∴S 5+12=⎝ ⎛⎭⎪⎫S 1+12×34=32×34=2432,∴S 5=121.]8.(2017·深圳二次调研)《九章算术》中的“两鼠穿墙题”是我国数学的古典名题:“今有垣厚若干尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半,问何日相逢,各穿几何?”题意是“有两只老鼠从墙的两边打洞穿墙,大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半.”如果墙足够厚,S n 为前n 天两只老鼠打洞长度之和,则S n =__________尺.2n-12n -1+1 [依题意大老鼠每天打洞的距离构成以1为首项,2为公比的等比数列,所以前n 天大老鼠打洞的距离共为-2n1-2=2n -1.同理可得前n 天小老鼠打洞的距离共为1×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=2-12n -1,所以S n =2n-1+2-12n -1=2n-12n -1+1.]三、解答题9.数列{b n }满足:b n +1=2b n +2,b n =a n +1-a n ,且a 1=2,a 2=4. (1)求数列{b n }的通项公式; (2)求数列{a n }的前n 项和S n .【导学号:66482255】[解] (1)由b n +1=2b n +2,得b n +1+2=2(b n +2),2分 ∴b n +1+2b n +2=2, 又b 1+2=a 2-a 1+2=4, ∴数列{b n +2}是首项为4,公比为2的等比数列. ∴b n +2=4·2n -1=2n +1,∴b n =2n +1-2. 5分(2)由(1)知,a n -a n -1=b n -1=2n-2(n ≥2), ∴a n -1-a n -2=2n -1-2(n >2),…,a 2-a 1=22-2,∴a n -2=(22+23+ (2))-2(n -1),9分 ∴a n =(2+22+23+ (2))-2n +2=n-2-1-2n +2=2n +1-2n .∴S n =-2n 1-2-n+2n 2=2n +2-(n 2+n +4). 12分 10.已知数列{a n }的前n 项和为S n ,且S n =4a n -3(n ∈N *). (1)证明:数列{a n }是等比数列;(2)若数列{b n }满足b n +1=a n +b n (n ∈N *),且b 1=2,求数列{b n }的通项公式.【导学号:66482256】[解] (1)证明:依题意S n =4a n -3(n ∈N *),n =1时,a 1=4a 1-3,解得a 1=1. 2分因为S n =4a n -3,则S n -1=4a n -1-3(n ≥2), 所以当n ≥2时,a n =S n -S n -1=4a n -4a n -1, 整理得a n =43a n -1.又a 1=1≠0,所以{a n }是首项为1,公比为43的等比数列. 5分(2)由(1)知a n =⎝ ⎛⎭⎪⎫43n -1,由b n +1=a n +b n (n ∈N *),得b n +1-b n =⎝ ⎛⎭⎪⎫43n -1. 7分可得b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1)=2+1-⎝ ⎛⎭⎪⎫43n -11-43=3·⎝ ⎛⎭⎪⎫43n -1-1(n ≥2). 10分当n =1时也满足,所以数列{b n }的通项公式为b n =3·⎝ ⎛⎭⎪⎫43n -1-1(n ∈N *). 12分B 组 能力提升 (建议用时:15分钟)1.(2016·安徽安庆二模)数列{a n }满足:a n +1=λa n -1(n ∈N *,λ∈R 且λ≠0),若数列{a n -1}是等比数列,则λ的值等于( )【导学号:66482257】A .1B .-1 C.12D .2D [由a n +1=λa n -1,得a n +1-1=λa n -2=λ⎝ ⎛⎭⎪⎫a n -2λ.由于数列{a n -1}是等比数列,所以2λ=1,得λ=2.]2.(2016·广东肇庆三模)设数列{a n }(n =1,2,3,…)的前n 项和S n 满足S n +a 1=2a n ,且a 1,a 2+1,a 3成等差数列,则a 1+a 5=__________.【导学号:66482258】34 [由S n +a 1=2a n ,得a n =S n -S n -1=2a n -2a n -1(n ≥2),即a n =2a n -1(n ≥2).从而a 2=2a 1,a 3=2a 2=4a 1.又因为a 1,a 2+1,a 3成等差数列,所以a 1+a 3=2(a 2+1),所以a 1+4a 1=2(2a 1+1),解得a 1=2,所以数列{a n }是首项为2,公比为2的等比数列,故a n =2n,所以a 1+a 5=2+25=34.]3.设数列{a n }的前n 项和为S n ,n ∈N *.已知a 1=1,a 2=32,a 3=54,且当n ≥2时,4S n +2+5S n =8S n +1+S n -1.(1)求a 4的值;(2)证明:⎩⎨⎧⎭⎬⎫a n +1-12a n 为等比数列.[解] (1)当n =2时,4S 4+5S 2=8S 3+S 1,即4⎝ ⎛⎭⎪⎫1+32+54+a 4+5⎝ ⎛⎭⎪⎫1+32精品=8⎝ ⎛⎭⎪⎫1+32+54+1, 解得a 4=78.(2)证明:由4S n +2+5S n =8S n +1+S n -1(n ≥2), 4S n +2-4S n +1+S n -S n -1=4S n +1-4S n (n ≥2), 即4a n +2+a n =4a n +1(n ≥2). ∵4a 3+a 1=4×54+1=6=4a 2,∴4a n +2+a n =4a n +1(n ∈N *),∴a n +2-12a n +1a n +1-12a n=4a n +2-2a n +14a n +1-2a n =4a n +1-a n -2a n +14a n +1-2a n=2a n +1-a n a n +1-a n =12,∴数列⎩⎨⎧⎭⎬⎫a n +1-12a n 是以a 2-12a 1=1为首项,12为公比的等比数列.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档