INFERRING AUDITORY NEURONAL RESPONSE PROPERTIES FROM NETWORK MODELS
不同频率ASSR、ABR和40 Hz AERP反应阈值的比较及其法医学应用
不同频率ASSR、ABR和40 Hz AERP反应阈值的比较及其法医学应用张馨元;罗方亮;程龙龙;熊妍荷;刘技辉【期刊名称】《法医学杂志》【年(卷),期】2021(37)6【摘要】目的探讨听性稳态反应(auditory steady-state response,ASSR)与听性脑干反应(auditory brain⁃stem response,ABR)、40 Hz听觉相关电位(40 Hz auditory event related potential,40 Hz AERP)的频率特性和反应阈值之间的关系及法医学应用价值。
方法选择听力正常的志愿者30名(60耳),在标准隔声屏蔽室内,进行纯音测听(pure tone audiometry,PTA)阈值和ASSR、ABR、40 Hz AERP反应阈值测试,并采用SPSS 22.0软件对结果进行统计分析。
结果0.5 kHz 和1.0 kHz频率,40 Hz AERP反应阈值与PTA阈值具有较好的相关性,并且优于ASSR和ABR反应阈值。
2.0kHz和4.0kHz频率,ASSR和ABR反应阈值与PTA 阈值具有较好的相关性,并且优于40 Hz AERP反应阈值。
结论判断0.5 kHz和1.0 kHz频率的听力,建议采用40 Hz AERP和ASSR综合判断受试者的PTA阈值;判断2.0 kHz和4.0 kHz频率的听力,建议采用ABR和ASSR综合判断受试者的PTA阈值。
通过ASSR、ABR、40 Hz AERP的组合可提高听觉功能评价的准确性。
【总页数】5页(P813-816)【作者】张馨元;罗方亮;程龙龙;熊妍荷;刘技辉【作者单位】中国医科大学法医学院法医临床学教研室;辽宁大学司法鉴定研究院辽宁大学司法鉴定中心;大连大学附属中山医院;上海挚爱护理站【正文语种】中文【中图分类】R76【相关文献】1.Click-ABR及40-Hz最大声输出无反应儿童的ASSR测试结果分析2.ABR未引出的低月龄儿的ASSR、40Hz-AERP分析3.听觉脑干反应(ABR)及40Hz听觉相关电位(40HzAERP)对客观听阈检测的法医学研究4.Click-ABR及40-Hz最大声输出无反应儿童的ASSR测试结果分析5.ABR、40Hz-AERP和ASSR与主观纯音听阈测定的相关性研究因版权原因,仅展示原文概要,查看原文内容请购买。
对侧刺激声影响畸变产物耳声发射的临床意义
对侧刺激声影响畸变产物耳声发射的临床意义李玲香;崔晓波;孙学威;高晶【期刊名称】《中华耳鼻咽喉头颈外科杂志》【年(卷),期】2001(036)001【摘要】@@研究不同种类对侧刺激声对不同患者畸变产物耳声发射(distortion product otoacoustic emission,DPOAE)的抑制作用,探讨其临床应用价值。
rn 一、材料和方法rn 1.研究对象:20例(40耳)健康人,25例(27耳)梅尼埃病患者,符合上海会议诊断标准[1],20例(28耳)低频感音神经性聋患者以及5例(5耳)蜗后性聋患者(其中听神经瘤3耳、脑干病变2耳),以上受试者均排除外耳及中耳疾患,均能引出明确的DPOAE。
均行纯音测听、声导抗测试以及听性脑干反应(auditory brainstem response,ABR)检查。
rn 2.测试方法:对侧刺激声为3种:白噪声、窄带噪声、纯音均由声刺激器Rasia(GSIGrason-stadler,美国)产生,经耳塞式耳机(EAR.Ton 3A,美国)给予对侧耳,窄带噪声的中心频率为1.5 Hz,以便获得最佳观察效果[2]。
3种刺激声压级均为65 dB SPL,测试前各仪器强度及频谱均经声学校准。
rn 3.采用ILO92型耳声发射分析仪(Nicolet,美国)测试DPOAE,探测音为2个不同频率的纯音,L1=60 dB SPL,L2=50 dB SPL,采用f2/f1=1.20原始音频率测试DPOAE。
先测试不加对侧声时的DPOAE,再测试给予对侧声白噪声、窄带噪声、纯音时的DPOAE。
均以随机顺序给予对侧声,每条曲线均叠加32次以上,以DPOAE幅值下降0.5 dB SPL以上为抑制阳性,测试在双层屏蔽室内进行,受试者平卧、放松、安静呼吸;将DPOAE曲线上显示1.5 Hz振幅变化为准测出其受抑制幅度,实验数据采用F-Q检验。
【总页数】2页(P67-68)【作者】李玲香;崔晓波;孙学威;高晶【作者单位】呼和浩特内蒙古医学院第一附属医院耳鼻咽喉科;呼和浩特内蒙古医学院第一附属医院耳鼻咽喉科;呼和浩特内蒙古医学院第一附属医院耳鼻咽喉科;呼和浩特内蒙古医学院第一附属医院耳鼻咽喉科【正文语种】中文【中图分类】R76【相关文献】1.不同类型及强度的对侧声刺激对畸变产物耳声发射的影响 [J], 王洪田;钟乃川2.对侧刺激声影响畸变产物耳声发射临床意义的探讨 [J], 姜舒;崔晓波;陈海燕3.对侧白噪声刺激声对畸变产物耳声发射的影响 [J], 高飞4.急性单侧耳鸣患者对侧白噪声刺激对畸变产物耳声发射的影响 [J], 刘敏;苏振忠;陈锡辉;熊观霞;周蔚;江广理5.不同种类对侧刺激声对畸变产物耳声发射的影响 [J], 姜舒;崔晓波;陈海燕;陶呼因版权原因,仅展示原文概要,查看原文内容请购买。
MEWS评分在急诊留观患者护理决策中的作用分析
MEWS评分在急诊留观患者护理决策中的作用分析一、MEWS评分的概念简化急诊患者危重度评估(Modified Early Warning Score,MEWS)是一种通过观察生命体征来评估患者病情变化的评分系统。
MEWS评分包括呼吸频率、心率、收缩压、体温和意识状态五个指标,通过对这些指标进行评分,并将评分结果相加,来评估患者的病情变化程度。
当评分结果高于一定阈值时,就需要及时采取相应的护理措施,以避免患者病情的进一步恶化。
MEWS评分系统简单易行、操作方便,因此在临床中得到了广泛的使用。
二、MEWS评分在急诊留观患者护理决策中的作用1. 及时发现患者病情变化在急诊留观患者的护理过程中,患者病情的变化可能随时发生,而且有些变化可能相当微弱,容易被忽略。
通过对患者进行定期的MEWS评分,可以及时监测患者的生命体征指标,并将评分结果及时记录在案。
一旦发现患者的MEWS评分升高,就可以及时采取护理措施,以防止患者病情的进一步恶化。
MEWS评分在急诊留观患者护理决策中可以起到及时发现患者病情变化的作用。
2. 提高护理质量MEWS评分可以帮助医护人员及时发现患者的病情变化,有利于提高护理质量。
通过对患者进行定期的MEWS评分,可以及时发现患者的病情变化,及时采取相应的护理措施,有利于减少医疗事故的发生,提高医疗质量和护理效果。
3. 促进医护人员间的交流在急诊留观患者的护理决策中,医护人员之间的交流配合是至关重要的。
通过对患者进行定期的MEWS评分,可以使医护人员更好地了解患者的病情变化情况,并及时进行交流,共同制定护理方案,有利于提高医护人员之间的沟通和配合,促进医护团队的协作效率。
三、MEWS评分在急诊留观患者护理决策中的局限性1. 评分标准不够客观MEWS评分系统主要通过对患者的生命体征指标进行评分,存在一定的主观性。
不同的医护人员可能会对患者的生命体征指标进行评判时存在主观性,因此可能会对评分结果产生一定的误差。
大脑皮层结构与认知功能之间的相关性解析
大脑皮层结构与认知功能之间的相关性解析概述大脑皮层是大脑中最外层的一层神经组织,负责执行许多重要的认知功能。
理解大脑皮层结构与认知功能之间的相关性对于揭示人类智力和认知能力的基础至关重要。
本文将解析大脑皮层的结构以及它与认知功能之间的关系。
大脑皮层的结构大脑皮层是大脑的外包层,占据了大脑体积的绝大部分。
它具有复杂的神经元网络,由六个主要的皮层区组成。
这六个区域包括:顶叶、额叶、颞叶、枕叶、脑岛和扣带回。
每个区域在大脑中负责不同的认知功能。
大脑皮层的结构与功能区划顶叶位于大脑的最上部,包含了中央回和前额叶回。
它负责高级认知功能,如推理、决策和问题解决。
额叶位于大脑的前部,包括额叶上、下、内侧和外侧区域。
额叶与情绪调节、记忆、注意力和决策制定密切相关。
颞叶位于大脑的侧面,包括颞叶上、颞叶中央和颞叶下区域。
它负责听觉处理、语言理解、面部识别和长期记忆。
枕叶位于大脑的后部,包括枕叶下和枕叶上区域。
它参与视觉处理和空间认知。
脑岛位于大脑的侧面,被额叶、顶叶和颞叶所环绕。
脑岛参与对自主神经系统的调节,以及情感处理和社会情境识别。
扣带回位于大脑的中央,环绕着中央回。
它与运动控制相关,特别是肌肉调节和复杂的运动协调。
大脑皮层结构与认知功能的关系大脑皮层的各个区域与不同的认知功能密切相关。
通过研究大脑活动、脑损伤和脑成像技术,我们可以更好地理解这种关系。
对于高级认知功能,例如语言理解和记忆,多个大脑区域同时参与。
例如,额叶和颞叶的协同活动在语言理解中起着重要作用。
额叶负责词汇处理,颞叶则参与语义理解和长期记忆。
在感知和知觉方面,大脑皮层中的不同区域协同工作以制定准确的认知。
视觉感知涉及到枕叶和颞叶的合作,而听觉感知则需要颞叶和额叶的协同作用。
决策和注意力也依赖于大脑皮层的多个区域之间的交互作用。
额叶和顶叶区域参与了注意力的调节和决策制定,而枕叶和颞叶则负责进行感知和信息的整合。
此外,大脑皮层的前额叶在情感调节和社交能力方面起着重要作用。
水杨酸钠致耳鸣大鼠的行为学及听性脑干反应改变
水杨酸钠致耳鸣大鼠的行为学及听性脑干反应改变陈抗松;廖华;杨希林;陈建新;解为全;吴莎【摘要】Objective To observe behavioral changes and auditory brainstcm response ( ABR) changes of tinnitus rat model induced by salicylate. Methods Eighteen rats were randomly divided into three groups: control group,saline group and salicylate group with 6 rats for each. The salicylate group was injected intrapcritoncaiiy by salicylate on dose of 350 mg/kg at 8:00 am every day and the saline group was managed with saline on same dose at the same time. Animal behaviours were observed respectively by automatic tracking system on day one before injection, 14 days and 28 days after onset. In the present study, ABR was also tested by TDT at 1 day before injection,7 days, 14 days,28 days after onset for rats in the salicylate group. Results Compared with the control group and the saline group, the basic index of animal behaviour in Psychopharmacoiogy were markedly difference in the salicylate group(P<0. 01) at 14 days and 28 days after onset, while there was no significant difference between the control group and the saline group (P>0. 05). Within the salicylate group, the ABR threshold after injection were significantly higher than that before experiment ,and the longer the injection,the higher the ABR thresholds. At 7 days after onset, there were no statistical difference on latencies of each wave and intcrpcak latency intervals we could recorded (P>0. 05) . Compared with the ABR results before experiment and at 7 days, there were significant differences on the above latencies and intervals at 14 daysand 28 days(P<0. 05). Conclusion The changes of behavioral features of rat model of tinnitus induced by salicylatc indicate that tinnitus affects the psychological condition of animals in a degree. The ABR test provide objective evidence for the toxic effect and abnormal electric activities on peripheral brainstcm auditory pathway of rat after long-term and high - dose salicylatc injection.%目的观察水杨酸钠致耳鸣大鼠模型的行为学和听性脑干反应的改变,探讨耳鸣与精神行为异常的关系.方法 18只成年Wistar大鼠随机分为对照组、盐水组和水杨酸组,每组6只.水杨酸组每天按时腹腔注射350 mg/kg的水杨酸钠1次,连续28天,盐水组每天同一时间腹腔注射等量生理盐水,对照组不注射任何药物,观察各组大鼠注射前1天、注射第14、28天的旷场行为,并在实验前1天、注射第7、14、28天对水杨酸组大鼠进行ABR检测.结果注射水杨酸钠第14、28天,与盐水组和对照组比较,水杨酸组大鼠除粪便数量增加外,总行程、平均速度、直立次数、中央格停留时间、体重增长量、摄食量、24 h液体消耗量和糖水偏爱均显著降低(P<0.01);盐水组与对照组比较,各旷场行为差异无统计学意义(P>0.05).水杨酸组大鼠注射前和注射第7、14、28天ABR反应阈分别为36.67±4.08、50.00±5.48、64.17±8.61、75.00±4.47 dB SPL,差异均有统计学意义(均P<0.05),注射第14天与注射前、注射第7天比较,水杨酸组大鼠ABR波Ⅰ、Ⅱ、Ⅲ、Ⅴ潜伏期均延长(P<0.05),而各波间期差异无统计学意义(P>0.05);注射第28天与注射前、注射第7天比较,各波潜伏期及Ⅲ-Ⅴ、Ⅰ-Ⅴ波间期延长,差异有统计学意义(P<0.05),与注射第14天比较,各波潜伏期及Ⅰ-Ⅲ波间期差异无统计学意义(P<0.05),而Ⅲ-Ⅴ、Ⅰ-Ⅴ波间期延长(P<0.05).结论水杨酸钠致耳鸣大鼠的旷场行为表现异常,在一定程度上可反映耳鸣对其精神心理的影响;长期注射水杨酸钠可导致大鼠ABR反应阈升高,波潜伏期延长.【期刊名称】《听力学及言语疾病杂志》【年(卷),期】2013(021)002【总页数】4页(P163-166)【关键词】水杨酸;耳鸣;动物行为学;听性脑干反应【作者】陈抗松;廖华;杨希林;陈建新;解为全;吴莎【作者单位】武汉大学人民医院耳鼻咽喉-头颈外科,武汉,430060;武汉大学人民医院耳鼻咽喉-头颈外科,武汉,430060;武汉大学人民医院耳鼻咽喉-头颈外科,武汉,430060;武汉大学人民医院精神卫生中心;武汉大学人民医院耳鼻咽喉-头颈外科,武汉,430060;武汉大学人民医院耳鼻咽喉-头颈外科,武汉,430060【正文语种】中文【中图分类】R764.45耳鸣是耳科临床最常见的症状之一,耳鸣与心理因素密切相关,严重耳鸣可能使患者产生烦恼、焦虑、抑郁等不良情绪且在无意识中不断增强,继而耳鸣被感知为令人厌烦的信号,使精神紧张或抑郁加剧并形成恶性循环的条件反射[1]。
炎症前因子在缺血性脑卒中早期病情进展中作用研究
炎症前因子在缺血性脑卒中早期病情进展中作用研究陈岩;郭荷娜;李伟;宋允章【摘要】Objective:To study the relationship between the exponential factors of inflammation and neurological worsening in early stage of ischemic stroke. Methods:The study observed the scrum level of intcrlcukin 6 (IL-6), intcrlcukin 18(IL-18) and high-sensitivity C-Rcactivc Protcin(hs-CRP) in the 37 cases with progressing ischemic stroke and 95 cases with non- progressing ischemic stroke. Results; Compared with that in non- progressing ischemic stroke group, the scrum level of IL-6, IL-18 and hs-CRP were increased obviously in the progressing ischemic stroke group. IL-18 was list in the Logistic regression model. Conclusion; The high level ofIL-6, IL-18 and hs-CRP play an important role in the pathogencsis of progressing ischemic stroke. Kspccially, IL-18 may be an important factorin the development of progressing ischemic stroke. To positively inhibit such inflammatory response may be an important means to suppress neurological worsening in early stage of ischemic stroke.%目的:探讨炎症前因子与缺血性脑卒中早期病情进展的关系.方法:检测37 例进展性脑梗死、95例非进展性脑梗死患者周围血清中白介素-6(IL-6)、白介素-18(IL-18)、hs-CRP水平.结果:进展性脑梗死组血清IL-6、IL-18、hs-CRP水平明显高于非进展性脑梗死组,其中IL-18进入Logistic回归模型.结论:炎症前因子IL-6、IL-18、hs-CRP的高表达在缺血性脑卒中的发病中具有重要作用,特别是IL-18是进展性脑梗死发生发展的重要因素.积极的采取措施抑制这种炎症反应可能是抑制缺血性脑卒中早期神经功能缺损恶化的重要手段.【期刊名称】《陕西医学杂志》【年(卷),期】2012(041)011【总页数】3页(P1462-1463,1532)【关键词】卒中/病理生理学;脑缺血/病理生理学;白细胞介素6/分析;白细胞介素18/分析;C反应蛋白质/分析【作者】陈岩;郭荷娜;李伟;宋允章【作者单位】陕西省人民医院神经内二科,西安,710068;陕西省人民医院神经内二科,西安,710068;陕西省人民医院神经内二科,西安,710068;陕西省人民医院神经内二科,西安,710068【正文语种】中文【中图分类】R743进展性卒中常常导致早期神经功能恶化,与不良预后密切相关[1]。
所示。即基底膜的不同部位只对声波...
基于听觉外周模型与高阶统计量的语音流检测哈尔滨工程大学硕士学位论文基于听觉外周模型与高阶统计量的语音流检测姓名:申丽然申请学位级别:硕士专业:计算机应用技术指导教师:李雪耀20030201哈尔滨.科人学硕十学位论文摘要语音流检测是语音信号处理的重要内容之~,它直接关系到语音识别系统的性能。
至今为止,传统的语音流检测技术在安静环境下或较为稳定的噪声环境下,具有优良的效果,但在随机多变的恶劣环境下,检测的效果不尽理想。
本文研究的内容是各种随机噪声下的语音流检测。
所用的实验数据来自真实现场的录音。
涉及噪声种类繁多,如脉冲噪声、周期噪声、高斯噪声白、有色、非高斯噪声及其更为复杂的非平稳噪声。
本文主要工作如下:对人耳的听觉特性及人的听觉心理用于噪声抑制作了较为深入的研究。
用滤波器去掉相对于语音信号的频谱不变或缓慢变化的通道噪声,在此基础上用.技术对语音流进行了特征提取。
利用高阶累积量对高斯噪声的免疫能力,特别是对对称分布噪声的压制能力,研究了高阶累积量在语音流检测中的应用。
针对非平稳、非高斯的情况,本文提出了一种新的语音特征提取方法一一方差谱法。
它充分利用了语音信号的短时平稳特性和短时自相关特性。
能够有效的将语音信号和噪声信号分丌。
对以上三种特征提取的方法作了有机的结合,使他们优势互补达到更佳的效果。
把具有很好的泛化能力的支持向量机用于语音流和噪声的分类。
基于真实数据的大量的实验表明本文提出的算法很好的抑制了各种噪声优于传统的语音流检测方法。
关键词:语音流检测;高阶累积量;?;听觉感知;支持向量机哈尔滨:程人学硕十学位论文. ...,..,,, .,:/ ?,。
.,,? ,..一 ,, .;;?;:哈尔滨‘释大学硕学位论文第章绪论.课题研究的目的和意义语音流检测是一个古老的问题,最早可以追溯到酌世纪,但至今没有得到完全的解决。
语音流检测在语音信号处理中有着举足轻重的地位。
只有在『确的检测出语音流的情况下,其它的后续工作诸如语音识别、话者别爿有意义。
脑干听觉诱发电位在儿科临床的应用
•综述.脑干听觉诱发电位在儿科临床的应用李文涛曲歌王江涛(综述)梁建民(审校)吉林大学第一医院小儿神经科,长春130021通信作者:梁建民,Email:liangjm@【摘要】在小儿中枢神经系统疾病中,如高胆红素血症、缺血缺氧性脑病、巨细胞病毒感染、脑瘫等均可导致脑干听觉系统神经纤维变性坏死,髓鞘破坏,造成听力损害。
传统听觉测试因患儿年龄小或疾病状态影响难以实施,尤其是确定小婴儿病变部位及损害程度较困难。
脑干听觉诱发电位(brainstem auditoryevoked potential,BAEP)是一种敏感且客观的神经电生理检查方法,对评估脑干听觉功能具有重要意义。
该文对儿科临床BAEP的应用进展进行综述。
【关键词】脑干听觉诱发电位;脑干;听力障碍基金项目:国家自然科学基金面上项目(81771396);国家自然科学基金青年基金项目(81801284);吉林省自然科学基金(白求恩专项)(20180101159JC)DOI:10.3760/cma.j.issn.1673-440&2020.12.009Application of brainstem auditory evoked potential in clinical pediatric practicesLi Wentao,Qu Ge,Wang Jiangtao,Liang JianminDepartment of Pediatric Neurology,First Hospital y Jilin University,Changchun130021,ChinaCorresponding author:Liang Jianmin,Emails liangjm@[Abstract】Diseases of central nervous system in childhood,such as hyperbilirubinemia,hypoxic-ischemic encephalopathy,cytomegalovirus infection,cerebral palsy,etc,can lead to nerve fiber degeneration,necrosis and myelin damage in brain stem auditory system,resulting in hearing impairment.It is difficult to determine the severity and location of hearing lesion due to the younger age of the patients when using traditionalhearing test.Brainstem auditory evoked potential(BAEP)is a kind of sensitive and objective neuroelectro-physiological method for evaluating auditory function of brainstem.In this paper,the progress of BAEP in pediatric clinical use is reviewed,to guide preferable assessment of the brainstem injury in clinical practices.[Key words]Brainstem auditory evoked potential;Brainstem;Hearing impairmentFund program:National Nature and Science Foundation(General Project)of China(81力1396);theNational Nature and Science Foundation(Youth Project)of China(81801284);the Nature and Science Foundation from the Science and Technology Department of Jilin Province(20180101159JC)DOI:10.3760/cma.j.issn.1673-4408.2020.12.009脑干听觉诱发电位(brainstem auditory evoked potential,BAEP)是20世纪70年代发展起来的一种非创伤性神经电生理诊断技术⑷。
Neuron overload and the juggling physician
Neuron overload and the juggling physicianDanielle Ofri aPatients often complain that their doctors don't listen. Although there are probably a few doctors who truly are tone deaf, most are reasonably empathic human beings, and I wonder why even these doctors seem prey to this criticism. I often wonder whether it is sheer neuron overload on the doctor side that leads to this problem. Sometimes it feels as though my brain is juggling so many competing details, that one stray request from a patient—even one that is quite relevant—might send the delicately balanced three-ring circus tumbling down.One day, I tried to work out how many details a doctor needs to keep spinning in her head in order to do a satisfactory job, by calculating how many thoughts I have to juggle in a typical office visit. Mrs Osorio is a 56-year-old woman in my practice. She is somewhat overweight. She has reasonably well-controlled diabetes and hypertension. Her cholesterol is on the high side but she doesn't take any medications for this. She doesn't exercise as much as she should, and her last DEXA scan showed some thinning of her bones. She describes her life as stressful, although she's been good about keeping her appointments and getting her blood tests. She's generally healthy, someone who'd probably be described as an average patient in a medical practice, not excessively complicated.Here are the thoughts that run through my head as I proceed through our 20-min consultation.Good thing she did her blood tests. Glucose is a little better. Cholesterol isn't great. May need to think about starting a statin. Are her liver enzymes normal?Her weight is a little up. I need to give her my talk about five fruits and vegetables and 30 min of walking each day.Diabetes: how do her morning sugars compare to her evening sugars? Has she spoken with the nutritionist lately? Has she been to the eye doctor? The podiatrist?Her blood pressure is good but not great. Should I add another BP med? Will more pills be confusing? Does the benefit of possible better blood pressure control outweigh the risk of her possibly not taking all of her meds?Her bones are a little thin on the DEXA. Should I start a bisphosphonate that might prevent osteoporosis? But now I'm piling yet another pill onto her, and one that requires detailed instructions. Maybe leave this until next time?How are things at home? Is she experiencing just the usual stress of life, or might there be depression or anxiety disorder lurking? Is there time for the depression questionnaire?Health maintenance: when was her last mammogram? PAP smear? Has she had a colonoscopy since she turned 50? Has she had a tetanus booster in the past 10 years? Does she qualify for a pneumonia vaccine?Ms Osorio interrupts my train of thought to tell me that her back has been aching for the past few months. From her perspective, this is probably the most important item in our visit, but the fact is that she's caught one of my neurons in mid-fire (the one that's thinking about her blood sugar, which is segueing into the neuron that's preparing the diet-and-exercise discussion, which is intersecting with the one that's debating about initiating a statin). My instinct is to put one hand up and keep all interruptions at bay. It's not that I don't want to hear what she has to say, but the sensation that I'm juggling so many thoughts, and need to resolve them all before the clock runs down, that keeps me in moderate state of panic. What if I drop one—what if one of my thoughts evaporates while I address another concern? I'm trying to type as fast as I can, for the very sake of not letting any thoughts escape, but every time I turn to the computer to write, I'm not making eye contact with Mrs Osorio. I don't want my patient to think that the computer is more important than she is, but I have to keep looking toward the screen to get her lab results, check her mammogram report, document the progress of her illnesses, order the tests, refill her prescriptions.Then she pulls a form out her of bag: her insurance company needs this form for some reason or another. An innocent—and completely justified—request, but I feel that this could be the straw that breaks the camel's back, that the precarious balance of all that I'm keeping in the air will be simply unhinged. I nod, but indicate that we need to do her physical examination first. I barrel through the basics, then quickly check for any red-flag signs that might suggest that her back pain is anything more than routine muscle strain. I return to the computer to input all the information, mentally running through my checklist, anxious that nothing important slips from my brain's holding bay.I want to do everything properly and cover all our bases, but the more effort I place into accurate and thorough documentation, the less time I have to actually interact with my patient. A glance at the clock tells me that we've gone well beyond our allotted time. I stand up and hand Mrs Os orio her prescriptions. “What about my insurance form,” she asks. “It needs to be in by Friday, otherwise I might lose my coverage.” I clap my hand against my forehead; I've completely forgotten about the form she'd asked about just a few minutes ago.Studies have debunked the myth of multitasking in human beings. The concept of multitasking was developed in the computer field to explain the idea of a microprocessor doing two jobs at one time. It turns out that microprocessors are in fact linear, and actually perform only one task at a time. Our computers give the illusion of simultaneous action based on the microprocessor “scheduling” competing activities in a complicated integratedalgorithm. Like microprocessors, we humans can't actually concentrate on two thoughts at the same exact time. We merely zip back and forth between them, generally losing accuracy in the process. At best, we can juggle only a handful of thoughts in this manner. The more thoughts we juggle, the less we are able to attune fully to any given thought. To me, this is a recipe for disaster. Today I only forgot an insurance company form. But what if I'd forgotten to order her mammogram, or what if I'd refilled only five of her six medicines? What if I'd forgotten to fully explain the side-effects of one of her medications? The list goes on, as does the anxiety.At the end of the day, my mind spins as I try to remember if I've forgotten anything. Mrs Osorio had seven medical issues to consider, each of which required at least five separate thoughts: that's 35 thoughts. I saw ten patients that afternoon: that's 350. I'd supervised five residents that morning, each of whom saw four patients, each of whom generated at least ten thoughts. That's another 200 thoughts. It's not to say that we can't handle 550 thoughts in a working day, but each of these thoughts potentially carries great risk if improperly evaluated. If I do a good job juggling 98% of the time, that still leaves ten thoughts that might get lost in the process. Any one of those lost thoughts could translate into a disastrous outcome, not to mention a possible lawsuit. Most doctors are reasonably competent, caring individuals, but the overwhelming swirl of thoughts that we must keep track of leaves many of us in a perpetual panic that something serious might slip. This is what keeps us awake at night.There are many proposed solutions—computer-generated reminders, case managers, ancillary services. To me, the simplest one would be time. If I had an hour for each patient, I'd be a spectacular doctor. If I could let my thoughts roll linearly and singularly, rather than simultaneously and haphazardly, I wouldn't fear losing anything. I suspect that it would actually be more efficient, as my patients probably wouldn't have to return as frequently. But realistically, no one is going to hand me a golden hour for each of my patients. My choices seem to boil down to entertaining fewer thoughts, accepting decreased accuracy for each thought, giving up on thorough documentation, or having a constant headache from neuronal overload.These are the choices that practising physicians face every day, with every patient. Mostly we rely on our clinical judgment to prioritise, accepting the trade-off that is inevitable with any compromise. We attend to the medical issues that carry the greatest weight and then have to let some of the lesser ones slide, with the hope that none of these seemingly lesser ones masks something grave.Some computers have indeed achieved the goal of true multitasking, by virtue of having more than one microprocessor. In practice, that is like possessing an additional brain that can function independently and thus truly simultaneously. Unless the transplant field advances drastically, there is little hope for that particular deus ex machina. In some cases,having a dedicated and competent clinical partner such as a one-on-one nurse can come close to simulating a second brain, but most medical budgets don't allow for such staffing indulgence.As it stands, it seems that we will simply have to continue this impossible mental high-wire act, juggling dozens of clinical issues in our brains, panicking about dropping a critical one. The resultant neuronal overload will continue to present a distracted air to our patients that may be interpreted as us not listening, or perhaps not caring.When my computer becomes overloaded, it simply crashes. Usually, I reboot in a fury, angry about all my lost work. Now, however, I view my computer with a tinge of envy. It has the luxury of being able to crash, and of a reassuring, omniscient hand to press the reboot button. Physicians are permitted no such extravagance. I pull out the bottle of paracetamol tablets from my desk drawer and set about disabling the childproof cap. It's about the only thing I truly have control over.。
神经营养因子的血脑屏障通透性(译文)
Brain Research 788 _1998. 87–94研究报道神经营养因子的血脑屏障通透性Weihong Pan a,b,*, William A. Banks a,c, Abba J. Kastin a,ca VA Medical Center, New Orleans, LA 70112, USA1b Departments of Neuroscience and Neurology, Tulane UniÍersity School of Medicine, New Orleans, LA 70112, USAc Departments of Neuroscience and Medicine, Tulane UniÍersity School of Medicine, New Orleans, LA 70112, USA收稿日期:1997年12月9日摘要为了评价通过血源性神经营养因子提高中枢神经系统(CNS)的基本功能、治疗神经元退变的可能性,我们研究了血脑屏障(BBB)对神经营养因子的通透性。
我们研究发现,一些神经营养因子家族成员(NGF,βNGF,NT3和NT5)在小鼠体内可以通过血脑屏障到达脑实质。
不同神经营养因子的BBB通透性不同,NGF的通过速率最快,NT3最慢,而NGF的通过率是它的生物活性亚单位βNGF的两倍。
CNS不同区域的BBB通透性也不一样,颈髓的通过速率最快,而脑最慢。
NT3在体内、NGF在原位脑灌注系统中的自身抑制研究提示的通透饱和性,表明饱和性传输系统的存在。
研究表明,外周给予神经营养因子可能在中枢神经系统中发挥治疗作用。
关键词:神经营养因子;血脑屏障;脑;脊髓缩写词:ANOVA,方差分析;BBB,血脑屏障;BDNF,脑源性神经营养因子;CNS,中枢神经系统;HPLC,高效液相色谱法;i.p.,腹腔内注射;i.v.,静脉注射;LR/BSA,乳酸林格液/1%牛血清白蛋白;NGF,神经生长因子(7s);βNGF,β-神经生长因子;NT3,神经营养因子3;NT5,神经营养因子4/5;PBS,磷酸缓冲液;Tc-Alb,锝标记白蛋白;TFA,三氟醋酸;I-neurotrophin,碘化神经营养因子。
听觉来源提取的材料差异性:来自ERP的证据
听觉来源提取的材料差异性:来自ERP的证据1聂爱情1,郭春彦2,沈模卫11浙江大学心理与行为科学系,杭州 (310028)2首都师范大学心理系,北京 (100037)E-mail:guocy@摘要:采用事件相关电位方法,分别以图形和汉字作为实验材料,通过两个实验考察了项目再认与听觉来源提取新/旧效应的时空分布特征。
学习分别由不同性别声音读出的刺激后进行两类测验:一是判断视觉呈现的刺激是否已学的项目再认;二是将由某一性别声音读过的刺激判断为目标而将其它刺激判断为非目标的来源测验。
结果发现:与项目再认任务相比,图形和汉字的听觉来源提取的新/旧效应的持续时程更长、头皮分布更广;两类材料在前额区记录到明显的听觉来源提取新/旧效应,且不同材料的听觉来源提取新/旧效应有所不同;溯源分析结果显示,图形与汉字相应效应的差异可能源于颞区。
上述结果表明,听觉来源提取与项目再认的新/旧效应头皮分布关系与双重加工模型的观点相一致,且实验材料与声音特性共同调节听觉来源提取新/旧效应的时空分布特征。
关键词:听觉来源;项目再认;新/旧效应;ERPs;LORETA中图分类号:B842忘记或错报事件相关特性是经常会遇到的现象,如证人在作证时有时会把红头发的持枪罪犯描绘成红头发的旁观者或是黑头发的持刀者。
上述现象表明,人们对事件内容(content)与事件背景(context)的记忆产生了分离。
其中,有关事件内容的记忆称项目记忆(item memory),有关事件背景的记忆称来源记忆(source memory)[1]。
描述上述两种记忆关系的双重加工模型(dual-process model)指出,项目再认主要依赖于相对自动的熟悉(familiarity)加工完成;来源提取则不能自动完成,该任务需要依赖于有意识控制的回忆(recollection)加工完成[2]。
迄今为止,来源记忆与需要意识控制的回忆之间的密切关联已为行为研究[3]、遗忘症病人研究[4]、脑损伤病人研究[5]以及老龄化研究[6]所证实,表明项目记忆与来源记忆是在认知功能上分离的加工过程。
双背侧前额叶低频重复经颅刺激(rTMS)治疗精神分裂症顽固性幻听的疗效和安全性
临床医药文献杂志Journal of Clinical Medical2019 年 第 6 卷第 8 期2019 Vol.6 No.813双背侧前额叶低频重复经颅刺激(rTMS )治疗精神分裂症顽固性幻听的疗效和安全性王 硕(新乡医学院第二附属医院,河南 新乡 453002)【摘要】目的 探析双背侧前额叶低频重复经颅刺激(rTMS )治疗精神分裂症顽固性幻听的疗效和安全性。
方法 将2016年5月~2018年4月在我院接受治疗的40例精神分裂症顽固性幻听患者为主要对象,均行rTMS 治疗,对治疗前后的各项评分进行比较。
结果 治疗后患者的幻听评分显著低于治疗前,且PANSS 量表总分明显低于治疗前,患者治疗后的MMSE 评分明显高于治疗前,治疗前后相比存在显著差异 (P <0.05);两组不良反应发生率比较无明显差异(P >0.05)。
结论 精神分裂症顽固性幻听患者接受rTMS 治疗可获得理想效果,且安全性高,值得推广。
【关键词】双背侧前额叶低频重复经颅刺激;精神分裂症顽固性幻听;疗效;安全性【中图分类号】R749.3 【文献标识码】A 【文章编号】ISSN.2095-8242.2019.08.13.02Efficacy and safety of low-frequency repetitive transcranial stimulation (rTMS) in the treatment of schizophrenia with refractory auditoryhallucinationsWANG Shuo(Second Affiliated Hospital of Xinxiang Medical College,Henan Xinxiang 453002,China)【Abstract 】Objective To investigate the efficacy and safety of low-frequency repetitive transcranial stimulation (rTMS) in the treatment of schizophrenia with anterior frontal lobe.Methods 40 patients with refractory auditory hallucinations of schizophrenia who were treated in our hospital from May 2016 to April 2018 were enrolled in the study. All patients underwent rTMS treatment and compared the scores before and after treatment.Results After treatment, the auditory hallucination score of patients was significantly lower than that before treatment, and the total score of PANSS was significantly lower than that before treatment. The MMSE score of patients after treatment was significantly higher than that before treatment, and there was significant difference before and after treatment (P <0.05).There was no significant difference in the incidence of adverse reactions between the two groups (P >0.05).Conclusion Patients with schizophrenia refractory auditory hallucinations can achieve ideal results with rTMS treatment, and they are safe and worth promoting.【Key words 】Double dorsal prefrontal lobe low frequency repetitive transcranial stimulation;Schizophrenia refractory auditory hallucinations;Efficacy;Safety精神分裂症是精神科临床上发病率较高的疾病,患者伴有思维、行为、情感多方面的障碍,患病率高、复发率高,迁延不愈,严重影响生活质量和社会安定。
Nr4a1激动剂胞孢子酮B挽救小鼠噪声性听力损失
·论著·Nr4a1激动剂胞孢子酮B 挽救小鼠噪声性听力损失苏波,赖彦冰,王晓迪,褚汉启,冰丹作者单位华中科技大学同济医学院附属同济医院耳鼻咽喉-头颈外科武汉430030基金项目湖北省重点研发计划(突发性耳聋预后预测与精准分型诊疗智能协同体系构建,No.2022BC A006);武汉市知识创新专项(婴幼儿耳聋筛查防治体系构建及遗传机制研究,No.2022022101015011);同济医院科研基金重点项目(慢性睡眠剥夺活化内耳巨噬细胞经由NLRP3/IL-1β/IL1R 导致听力损失,)收稿日期2023-12-25通讯作者冰丹didibing1981@No.2023A01摘要目的:探究核受体亚家族4A 组成员1(nuclear receptor subfamily 4group A member 1,Nr4a1)Nr4a1激动剂胞孢子酮B (cytosporone B ,Csn-B )对小鼠噪声暴露后听力损失的治疗作用。
方法:采用双氧水刺激HEI-OC1毛细胞系的方法构建氧化应激细胞模型;通过实时荧光定量PCR (quantitative real-time PCR ,qP-CR )检测细胞中Nr4a1的mRNA 表达水平;分别通过细胞计数试剂盒(cell counting kit-8,CCK8)及流式细胞术的方法检测细胞活力和细胞凋亡水平以评估Csn-B 预处理后经双氧水刺激的细胞状态。
构建小鼠噪声性听力损失模型,运用qPCR 和免疫荧光技术检测噪声暴露后Nr4a1在小鼠耳蜗中的表达;通过检测听性脑干反应(auditory brainstem response ,ABR )评估噪声暴露后以及Csn-B 连续治疗13d 后小鼠听力情况。
结果:双氧水刺激后HEI-OC1毛细胞中Nr4a1表达上升,细胞活力显著下降,凋亡水平显著升高;Csn-B 预处理HEI-OC1毛细胞经双氧水刺激,细胞活力显著高于对照组而凋亡水平则显著低于对照组。
暴力犯的疼痛共情更低来自ERP的证据
暴力犯的疼痛共情更低来自ERP的证据一、本文概述Overview of this article近年来,随着神经科学的发展,事件相关电位(Event-Related Potentials,简称ERP)技术在心理学和神经科学领域的应用越来越广泛。
本研究采用ERP技术,对暴力犯的疼痛共情能力进行了深入研究,旨在探讨暴力犯疼痛共情能力较低的神经生理机制。
本研究的结果对于理解暴力犯的心理特征,以及预防和干预暴力行为具有重要的理论和实践意义。
In recent years, with the development of neuroscience, Event Related Potentials (ERP) technology has been increasingly applied in the fields of psychology and neuroscience. This study used ERP technology to conduct anin-depth study on the pain empathy ability of violent offenders, aiming to explore the neurophysiological mechanisms underlying the lower pain empathy ability of violent offenders. The results of this study have important theoretical and practical significance for understanding the psychologicalcharacteristics of violent offenders, as well as for preventing and intervening in violent behavior.疼痛共情是指个体对他人疼痛状态的理解和共情反应,是人类社会交往中的重要组成部分。
刺激声音的听觉响应模式对清醒小鼠下丘神经元刺激特异性适应的影响
刺激声音的听觉响应模式对清醒小鼠下丘神经元刺激特异性适应的影响宋长宝;魏金星;李绿;肖中举【摘要】目的探究神经元对刺激声音听觉响应的发放模式本身是否影响刺激特异性适应(SSA)特性.方法以清醒小鼠的下丘神经元为研究对象,采用玻璃微电极贴附式记录下丘神经元在由两个不同频率(f1和f2)的纯音按不同重复概率随机组成的声音刺激序列下的听觉响应.并计算两个纯音总体或局部在标准刺激条件下的响应s(f1)与s(f2)即f1、f2作为标准声音时引起的神经元响应和在偏差刺激条件下的响应d(f1)与d(f2)即f1、f2作为偏差声音时引起的神经元响应.随后计算3个重要指标:(1)两个纯音的听觉响应强度差异指数(FDI);(2)频率特异的SSA指数(SI);(3)SSA 指数(CSI),最后对数据进行统计分析.结果 FDI较大神经元的CSI显著高于FDI较小的神经元(P<0.05),并且响应类型为初级响应型的神经元在不同时间段的SSA表现不同,相对于起始部分,持续部分的SSA显著地增高(P<0.05).结论刺激声音的听觉响应模式也是SSA的重要影响因素.%Objective To explore whether the pattern of neuron's auditory response to a sound stimulus affects the characteristics of stimulus-specific adaptation (SSA) in awake mice. Methods The auditory responses of the neurons in the inferior colliculus to sound stimuli were recorded using microelectrodes in awake mice. The sequence of sound stimuli consisted of random combinations of pure tones of two different frequencies (f1 and f2) with different repetition rates. The auditory responses of the neurons to standard and deviant stimuli were calculated, namely s(f2)/s(f2) and d(f1)/d(f2), respectively. Three indexes of the responses were also calculated, including the firingdifference index (FDI), frequency-specific index (SI), and common SSA index(CSI). Results The CSI of neurons with a greater FDI was significantly higher than that of neurons with a smaller FDI (P<0.05). The primary-like neurons showed different characteristics of SSAs in different time periods; SSA was significantly increased in the phase of sustained response compared with that at the onset of response (P<0.05). Conclusion The auditory response pattern to sound stimuli is also an important factor that affect SSA of inferior colliculus neurons in awake mice.【期刊名称】《南方医科大学学报》【年(卷),期】2018(038)001【总页数】6页(P69-74)【关键词】刺激特异性适应;响应模式;清醒小鼠;下丘神经元【作者】宋长宝;魏金星;李绿;肖中举【作者单位】南方医科大学基础医学院生理学教研室,广东广州 510515;南方医科大学基础医学院生理学教研室,广东广州 510515;南方医科大学基础医学院生理学教研室,广东广州 510515;南方医科大学基础医学院生理学教研室,广东广州510515【正文语种】中文在自然环境中,有效探测新奇出现的信息,例如突然出现的声音、闪光和气味等可能包含危险信号的感觉信息对动物的生存非常关键。
Neurology精彩病例分享:急性眩晕伴突聋,病因你万万想不到!
Neurology精彩病例分享:急性眩晕伴突聋,病因你万万想不到!第一部分|FIRST一位42岁既往体健的女性突然出现右侧耳聋、眩晕和恶心,伴右耳闷,无明显的头痛或颈部疼痛。
既往体健,否认血管危险因素和神经耳科疾病,否认最近有头颈部外伤史。
神经学检查显示,暗室非固视下,可见微弱自发性下跳眼震。
在水平摇头和悬头位时,下跳眼震增强。
无凝视眼震及头偏斜。
床边水平甩头试验(HITs)和其他神经系统检查也正常。
纯音测听记录了右耳的严重感音神经性听力损失(SNHL),平均听阈为100 dB(图A)。
视频头脉冲检查显示,所有6个半规管(SCC)的头部脉冲增益正常,但右后半规管有微弱隐性扫视。
前庭温度试验、颈源性及眼源性前庭诱发肌源性电位以及主观视觉垂直测量结果均正常。
1. 感音神经性听力损失(SNHL)如何定位?第二部分|SECOND突发性SNHL可由任何涉及听觉投射的病变引起,但可从相关眩晕和眼震推断病变位置。
虽然良性阵发性位置性眩晕(BPPV)偶尔于突发性SNHL伴发,但头部直立位置的下跳性眼震、与位置改变不明显的眩晕性质以及既往无发作眩晕的病史,与良性阵发性位置性眩晕相矛盾。
原发性下跳性眼震可发生在累及后半规管投射系统或小脑下部病变时出现。
在没有任何中枢神经体征的情况下,右后半规管见隐形微弱扫视波提示累及后半规管或前庭下神经的病变。
由于耳蜗和后半规管解剖结构临近,故病变定位在此处可解释临床表现。
然而,下跳性眼震更常见于小脑下部病变,可导致中枢性孤立性眩晕,而无其他中枢神经症状。
因此,突发性SNHL伴眩晕可局限于内耳至桥小脑区。
(A)纯音测听术显示,初次出现时右耳有严重听力损失。
1.突发性SNHL伴或不伴眩晕的原因是什么?2.需要安排头颅检查吗?3.该病人导致突发性SNHL伴眩晕的最可能原因是什么?第三部分|THIRD突发性SNHL伴眩晕常见于血管性、创伤性和炎症性疾病。
因此,可能需要对大脑、颅内和颅外血管、迷路和内耳道进行磁共振检查。
原发性失眠患者易损脑区的静息态功能磁共振成像研究:一项基于激活似然估计法的Meta分析
原发性失眠患者易损脑区的静息态功能磁共振成像研究:一项基于激活似然估计法的Meta分析张琴;侯勇哲;张伟;王琳【期刊名称】《磁共振成像》【年(卷),期】2022(13)6【摘要】目的探讨应用静息态功能磁共振成像(resting state functional magnetic resonance imaging,rs-fMRI)技术研究原发性失眠(primary insomnia,PI)患者较为一致的易损脑区,从而揭示PI脑损伤可能的神经机制。
材料与方法检索2022年4月7日之前采用局部一致性(regional honogeneity,ReHo)及低频振幅/比率低频振幅/动态低频振幅(amplitude of low-frequency fluctuation/fraction amplitude of low-frequency fluctuation/dynamic amplitude of low-frequency fluctuation,ALFF/fALFF/dALFF)分析方法探讨PI 患者脑功能改变的文献,按照严格的纳排标准,采用激活似然估计法(activation likelihood estimation,ALE)对既往研究中PI患者相对于健康对照组(healthy controls,HCs)自发神经活动异常的脑区进行整合分析。
结果共纳入19篇文献20个研究(PI 706例,HCs 681例)。
结合ReHo及ALFF/fALFF/dALFF数据元分析结果显示,PI患者相对于HCs左侧梭状回和海马旁回活动增加(体素分别为3640、928 mm3,P<0.05),并未发现活动减低的脑区。
单独ALFF数据元分析结果显示,PI 患者相对于HCs左侧梭状回活动增加(体素为1360 mm3,P<0.05),并未发现活动减低的脑区。
单独ReHo数据元分析结果显示,PI患者相对于HCs并未出现任何活动增高或减低的脑区。
水杨酸钠致耳鸣大鼠脑海马区促肾上腺皮质激素释放因子的表达
水杨酸钠致耳鸣大鼠脑海马区促肾上腺皮质激素释放因子的表达解为全;廖华;杨希林;陈抗松;邹哲飞;李暐【期刊名称】《听力学及言语疾病杂志》【年(卷),期】2013(21)2【摘要】Objective To study the expression of corticotropin - releasing factor in rat's hippocampus to illustrate its effects involved in the pathology of salicylate induced tinnitus. Methods 30 healthy rats with hearing threshold below 30 dB SPL were randomly divided into three groups (10 cases for each). Group A: daily intrapcrito-ncal injection of 10% sodium salicylate solution (350 mg/kg) for 21 days. Group B: the same dose of salicylate sodium was injected for 14 days. Group C was the control group: equivalent quantity of saline was administered. We modified the method Jatrcboff developed to test the tinnitus of animals. After all rats had developed a stable conditioned reflex, we began to inject salicylate sodium and recorded the suppression ratio (R). ABR waveforms were recorded and hearing threshold was determined at the beginning of the first two days before the injection procedure, 2 hours after the first injection and the day injection procedure ended separately. Then all rats were beheaded and hippocampus was stripped. The expression of the CRF in rat's hippocampus was evaluated by Western blot analysis. Results Statistical analyses showed that R was significantly higher in group A andgroup B than group C (P<0. 05) on the former 3 days after reflex was established. Sodium salicylate caused a 30 dB auditory threshold shift (P<0.05) 2 h after injection. Sodium salicylatc also resulted in a 30 dB auditory threshold shift (P<0. 05) after injection procedure ended. The level of CRF expression elevated after salicylatc injection and it increased with the extension of period of drug use. Conclusion Salicylatc sodium can elevate the hearing threshold of the rats. The CRF expression increases in hippocampus of the sodium induced tinnitus rats. This indicates that CRF which is considered as a stress associated protein in the limbic system may play an important role in the pathology of tinnitus.%目的观察水杨酸纳致耳鸣大鼠海马区促肾上腺皮质激素释放因子(corticotropin-releasing factor,CRF)的表达,探讨其参与水杨酸钠致耳鸣的可能机制.方法将ABR反应阈<30 dB SPL的30只健康Wistar大鼠随机分为A、B、C三组,每组10只.A组注射 10%水杨酸钠溶液350 mg·kg-1·d-1,共注射21天,B组注射 10%水杨酸钠溶液350 mg·kg-1·d-1,共注射14天,C组(对照组)腹腔注射等量生理盐水14天.给药前采用改良的饮水抑制法对各组大鼠进行条件反射训练,条件反射消退期开始注射水杨酸钠并检测各组大鼠饮水抑制率(R值);分别于给药前两天、首次给药后2 h、给药结束后当天检测各组大鼠ABR反应阈,然后将大鼠处死并断头取脑,剥离海马区,采用Western blot方法检测CRF在各组大鼠海马区的表达.结果条件反射消退期1~3天A、B两组大鼠R值大于C组 (P<0.05),证明耳鸣大鼠模型建立成功;首次给药后2 h及给药结束后A、B两组ABR反应阈均较给药前提高了约30 dB(P<0.05),但A、B两组间ABR反应阈差异无统计学意义(P>0.05);大鼠脑海马区CRF表达量A 组>B组>C组(P<0.05).结论水杨酸钠注射致耳鸣大鼠的海马区情绪应激相关蛋白CRF表达增强,且随注射时间延长其表达量增加,提示CRF表达升高可能是边缘系统参与耳鸣的重要机制之一.【总页数】4页(P167-170)【作者】解为全;廖华;杨希林;陈抗松;邹哲飞;李暐【作者单位】武汉大学人民医院耳鼻咽喉-头颈外科,武汉,430060;武汉大学人民医院耳鼻咽喉-头颈外科,武汉,430060;武汉大学人民医院耳鼻咽喉-头颈外科,武汉,430060;武汉大学人民医院耳鼻咽喉-头颈外科,武汉,430060;武汉大学人民医院耳鼻咽喉-头颈外科,武汉,430060;武汉大学人民医院耳鼻咽喉-头颈外科,武汉,430060【正文语种】中文【中图分类】R764.45【相关文献】1.水杨酸钠致耳鸣大鼠的行为学及听性脑干反应改变 [J], 陈抗松;廖华;杨希林;陈建新;解为全;吴莎2.姜黄素对慢性应激大鼠不同脑区促肾上腺皮质激素释放因子表达的影响 [J], 马行;徐英;姚海燕;库宝善3.水杨酸钠致耳鸣大鼠下丘GDNF的表达 [J], 周爽; 廖华; 王文静; 杨琨; 汪雷; 杨希林4.水杨酸钠诱导耳鸣大鼠海马中TNF-α、IL-1β的表达 [J], 肖倩文;左健;葛佳丽;王采集;李雅兰;李婷;乔月华5.电针百会、腰奇穴对戊四氮致痫大鼠海马区脑电信号的影响 [J], 王轩;程为平;程光宇因版权原因,仅展示原文概要,查看原文内容请购买。
应用40Hz听觉相关电位与听性脑干反应评估听阈
应用40Hz听觉相关电位与听性脑干反应评估听阈范利华;孙红;朱广友;沈彦【期刊名称】《法医学杂志》【年(卷),期】2000(016)004【摘要】对42例74耳(正常听力组32耳,检案中主诉听力下降42耳)分别进行纯音测定,声导抗测定,听性脑干反应(AuditoryBrainstemResponse,ABR)及0.5~2kHz范围的40Hz听觉相关电位(40HertzAuditoryEvent-relatedPotential,40HzAERP)测定,对其中20耳进行睡眠及清醒两种状态的40HzAERP测定.将纯音听阈、40HzAERP反应阈、ABR反应阈三者之间进行比较分析.结果表明,正常听力耳40HzAERP反应阈值较纯音测听阈值高,在不同频率的校正值(差值)不同,0.5kHz为12.7±6.4(dBnHL);1kHz为14.7±6.3(dBnHL);2kHz 为15±5.6(dBnHL).ABR阈值比行为听阈高,校正值为8.9±5.3(dBnHL).睡眠状态时40HzAERP阈值较清醒状态阈值高,校正值为9.7±2.45(dBnHL).检案中主诉听力下降者主、客观语音频率均值之间明显不相符,误差率为61%.本研究表明单纯使用ABR、纯音测听中任何一种方法估计语音频率听阈均有一定的误差.【总页数】3页(P193-195)【作者】范利华;孙红;朱广友;沈彦【作者单位】司法部司法鉴定科学技术研究所,上海200063;复旦大学医学院附属眼耳鼻喉科医院听力室,上海200031;司法部司法鉴定科学技术研究所,上海200063;司法部司法鉴定科学技术研究所,上海200063【正文语种】中文【中图分类】DF795.1【相关文献】1.听性稳态反应与40Hz听觉相关电位在听阈评估中的比较 [J], 李孝鹏;魏崴;吴军;吕吉;司徒慧如2.应用40Hz听觉事件相关电位和听觉脑干诱发电位客观评定听阈的研究 [J], 刘威;刘技辉;唐武3.多频听觉稳态反应与40Hz听相关电位对儿童客观听阈评估的比较 [J], 张森;王斌全;皇甫辉4.40Hz听觉相关电位与听觉脑干诱发电位在听阈判定中的价值 [J], 郁波;顾爱明;蒋志毅;盛成;殷鹏5.听性脑干反应与40Hz听觉相关电位综合评估听觉阈值 [J], 张杰;文真;高景娥;邢建萍;栾建刚;张庆泉因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Department of Organismal Biology and Anatomy University of Chicago, Chicago, IL 60637
Abstract
Relating cell response to stimulus parameters is an important analytic method by which neural systems are understood. We inferred neurally encoded stimulus parameters by training arti cial neural networks to predict single cell response to auditory stimuli. A relatively simple time-delay architecture modeled each cell. For three cells, models successfully predict response to complex song stimuli based on optimization using much simpler arti cial stimuli. For these models, average error predicting song response is less than 40% of the cell's response variance. Model parameters are directly comparable to stimulus parameters and thereby estimate a neuron's spectro-temporal receptive eld. We show that variation in model parameters can be used to assess cell sensitivity to stimulus parameters.
1.0 s
Figure 1: Response (solid line) and model prediction (dashed line) of cell or331 plotted above the spectrogram of one song fragment (R2 = 0:77). The model was trained on arti cial stimuli only. units. This choice did not a ect model performance, but only the interpolation code induced weights that qualitatively t a cell's amplitude sensitivity derived from response to amplitude variation of white noise stimuli. Numerous network architectures were investigated, including time-delay neural networks (TDNNs) with several hidden units (Lang et al., 1990), linear feedforward and recurrent networks. Only TDNN and recurrent networks t the data well, and only the performance of the former extrapolated from arti cial stimuli to accurately predict response to natural stimuli. We trained TDNN networks having a single output unit, one to several hidden units, and delays of 0{186 ms. The architecture having a single hidden unit we hereafter refer to as the canonical architecture. Networks were trained using a gradient descent technique so that the output unit predicted a cell's ring rate (PSTH) in response to an acoustic stimulus. An example is shown in Figure 1. Twenty percent of the training data was reserved for cross-validation, and was therefore not used during training. Network parameter optimization was halted when the smoothed average sum squared error for the validation set increased. Cells vary widely in their overall responsiveness to stimuli. To evaluate model performance across cells we adopted the coe cient of determination, R2 = Pt Pt 1 ? ( T=0 (y(t) ? m(t))2 = T=0 (y(t) ? y(t))2 ), where y(t) is cell response, y(t) is mean cell response, m(t) is model prediction, and T is the stimulus duration. This measure varies between ?1 and 1.0 and indicates the size of error relative to variation inherent in a cell's response.
Methods
Single-unit neuronal data were collected extracellularly from three urethaneanesthetized zebra nches (Taeniopygia guttata) (Diekamp and Margoliash, 1991). Data were collected during presentation of 5{10 repetitions of broadband noise, tone bursts, harmonic stacks, frequency modulations, and amplitude modulated noise, as well as the bird's own song (BOS) and conspeci c songs. For each cell, a stimulus set typically comprised response to 10 repetitions of approximately 400 stimuli. We modeled only a subset comprising 14 cells that had simple tuning curves displaying tonic or phasic/tonic responses. The modeled responses were 3point averages of 6.4 ms peri-stimulus time histograms (PSTHs) scaled linearly onto the interval 0.1,0.9]. Stimuli were represented by separate spectral and amplitude codes. The spectral units comprised FFT bins of Hanning- ltered windows of 12.8 ms, stepped at 6.4 ms. Spectral range was limited to 500{8000 Hz, resulting in 43 spectral inputs per 6.4 ms frame. RMS amplitude (30{80dB) was represented by either a thermometer or interpolation code over 11 input
INFERRING AUDITORY NEURONAL RESPONSE PROPERTIES FROM NETWORK MODELS
Sven E. Anderson Peter L. Rauske Daniel Margoliash
sven@ pete@ dan@
Introduction
There is considerable evidence that the functional properties of neurons in a
sensory system vary along several peripheral to central hierarchical axes. In the auditory system, peripheral neurons typically respond to simple stimuli such as noise and tone bursts. At higher levels of the auditory system, neurons can exhibit complex responses for species-speci c combinations of spectral and temporal elements. Ironically, \top-down" analysis may be easier than analysis of species-speci c processing in neurons at intermediate levels, because neurons that exhibit well-characterized responses to simple stimuli may exhibit complex responses to complex stimuli. Techniques for elucidating cell properties that underly complex response include reverse correlation (De Boer and De Jongh, 1978), spectro-temporal receptive elds (Aertsen et al., 1980), and stimulus reconstruction (Bialek et al., 1991). Complex stimulus encoding can also be assessed using arti cial neural network architectures that are minimal and/or homologous with stimulus structure. We modeled neurons located in the thalamic zebra nch nucleus ovoidalis (OV). OV is tonotopically organized and many of its neurons respond most strongly to a characteristic frequency (CF) with a sustained response (Bigalke-Kunz et al., 1987). Other neurons have tonic, phasic/tonic, and inhibitory responses to stimuli. Response to complex stimuli such as song is quite complex, but is sometimes predictable from response to simple stimuli (Bankes and Margoliash, 1993). Our modeling of OV neurons addresses several general questions: (1) Can a model predict response to complex stimuli (e.g., bird song) from response to simple arti cial stimuli? (2) Are all cells having similar response pro les equally well modeled? (3) Do model parameters relate to stimulus parameters and thereby reveal cell sensitivities?