14压杆稳定-2010解析

合集下载

压杆的稳定性分析与设计PPT精选文档

压杆的稳定性分析与设计PPT精选文档
给定受载方式,杆件工作极限载荷
给定材料、给定尺寸,杆件自身承压极限载荷
17
11.2.2 其他刚性支承细长压杆临界载荷的 通用公式
(1) 解析解方法 不同刚性支承条件下的压杆,由静力学平衡方法得到的平衡微 分方程和端部的约束条件都可能各不相同,确定临界载荷的表 达式亦因此而异,但基本分析方法和分析过程却是相同的。
19
F
2EI
l
2
4 2 EI l2
2
20
F
2EI
0.7l 2
21
FPcr
2 EI
l 2
适用范围:只有在微弯曲状态下压杆仍 然处于弹性状态时成立。
对于两端为固定铰支链的约束,
μ=1
对于一端固定另一端自由的细长压杆,
μ=2
对于一端固定另一端为固定铰支链的细长杆,μ=0.7
对于两端固定的细长杆,
F Fcr
F Fcr [n ]st
nw
Fcr F
[n]st
[n]st是稳定安全系数,是随λ而变化的, λ越大,[n]st也越大。同时 [n]st一般大于强度安全系数。
nw为压杆的工作安全系数。它表示压杆的临界载荷Pcr与所受的轴向压 力P的比值应不小于它的稳定安全系数[n]st,以上这种稳定计算方法称 为安全系数法。
30
11.3.4 临界应力总图 与 λP 、λs值的确定
P
2E P
小柔度杆 中柔度杆 大柔度杆
s
a s
b
31
11.4 压杆稳定条件及其应用
构件的强度问题取决于危险截面上危险点的应力,所以强 度条件是从一点的应力出发的。
但是压杆稳定问题,既不存在危险截面,也不存在危险点, 其危险标志就是失稳,要使得压杆不失稳,应该使得作用在杆 上的压力F小于压杆的临界应力Fcr,故压杆的稳定条件是:

压杆稳定解析课件

压杆稳定解析课件
160.3
查表13-1,得 0.276, 与 0.289 相差不大
故可选28a工字钢,校核其稳定性
F 45.1MPa [ ] 46.92MPa
A
例6: 图示梁杆结构,材料均为Q235钢。AB梁为14号
工字钢,BC杆为 d=20mm的圆杆。已知: F=25kN,
l1=1.25m,l2=0.55m,E=206GPa,p=200MPa, s=235MPa,n=1.4,nst=1.8。求校核该结构是否安全。
二﹑欧拉公式应用中的几个问题
(1)Fcr与EI成正比,与l2 成反比,且与杆端约束有 关。 Fcr越大,压杆稳定性越好,越不容易失稳;
(2)杆端约束情况对Fcr的影响,是 通过长度系数μ来实现的。要根据实 际情况选择适当的μ 。
(3)当压杆在两个形心主惯性平面内 的杆端约束情况相同时,则失稳一定 发生在最小刚度平面,即I 最小的纵 向平面。
y z x
轴销
y z
x
轴销
解:xy面内,两端视作铰支,μ = 1,iz = 4.14 cm
z
l
iz
1 2 4.14 102
48.3
y z
x
轴销
xz面内,两端视作固定端,μ = 0.5,查表iy= 1.52cm
y
l
iy
0.5 2 1.52 102
65.8
显然 z y
压杆将在xz平面内失稳 而 p 100,u s 60
lw
x
O
y
M(x) Fcr=F
w
w = Asinkx +Bcoskx (d)
Fcr
k2=Fcr / EI 两个边界条件:
w = Asinkx +Bcoskx

压杆稳定小结

压杆稳定小结

压杆稳定小结1、 压杆稳定的概念稳定平衡是指干扰撤去后可恢复的原有平衡;反之则为不稳定平衡。

压杆稳定性是指压杆保持或恢复原有平衡状态的能力。

压杆的临界压力是指压杆由稳定平衡转变为不稳定平衡时所受轴向压力的界限值,用cr F 来表示。

2、 细长中心受压直杆的临界力在线弹性和小变形条件下,根据压杆的挠曲线近似微分方程,结合压杆的边界条件,可推导得到使压杆处于微弯状态平衡的最小压力值,即压杆的临界压力欧拉公式可写成统一的形式:22)(l EIF crμπ=式中μ为长度因数。

几种常见细长压杆的临界力可见,杆端约束越强,杆的长度因数越小。

l μ为相当长度,可理解为压杆的挠曲线两个拐点之间的直线距离。

(d)(d)(d)3、 压杆的临界应力总图(1) 压杆的临界应力压杆在临界力作用下,其横截面上的平均应力称为压杆的临界应力, crcr F Aσ=(2) 欧拉公式的适用范围线弹性范围,()22cr cr p 22F EI E A l A ππσσλμ===≤ 即p λλ≥= 时,欧拉公式才能适用。

通常称p λλ≥的压杆为大柔度压杆或细长压杆。

(3) 压杆的柔度(或长细比)i l μλ=是一无量纲的量。

一般情况下,由于杆端约束(μ)或惯性半径(i )的不同,压杆在不同的纵向平面内具有不同的柔度值,压杆失稳首先发生在柔度最大的纵向平面内。

(4) 临界应力总图压杆的临界应力随柔度λ变化的λσ-cr 图称为临界应力总图。

大柔度杆p λλ≥,临界应力低于比例极限,可按欧拉公式计算,22λπσEcr= ;中柔度杆p s λλλ≤≤,临界应力超过比例极限,可按经验公式计算,如直线公式: λσb a cr -=,其中a 、b 为与材料有关的常数。

或钢结构设计中采用的抛物线公式,以及折减弹性模量理论进行计算;图13-12小柔度杆s λλ≤(或b λ),临界应力达极限应力:塑性材料s cr σσ=,脆性材料cr b σσ=,属于强度问题。

15-1 压杆稳定(10年)解析

15-1 压杆稳定(10年)解析

定义
稳定平衡:去掉干扰后,能恢复到原直线形式的平 衡位置。 不稳定平衡:去掉干扰后,不能恢复到原直线形式平 衡位置。 临界力:压杆从稳定平衡过渡到不稳定平衡轴线压力 的临界值。 Pcr: 临界载荷(critical load)——压杆破坏载荷
17
理想压杆:
1)杆件轴线是理想直线;
2)无初弯曲; 3)载荷沿轴线方向作用,无偏心; 4)材料均匀。
2 EI
(2l )
2
Pcr
2 EI
l2
32
长度系数μ
=1
0.7
=0.5
=2
=1
0.5l
支承对压杆临界载荷的影响
各种支承压杆临界载荷的通用公式
P cr =
( l)2
2EI
一端自由,一端固定 =2.0
一端铰支,一端固定 =0.7 两端固定 两端铰支
=0.5 =1.0
P Pcr
实际压杆实验曲线
O
ymax
24
讨论
4. 精确微分方程 P
P Pcr
P Pcr
精确微分方程
P 1.015 Pcr
M 3 2 2 EI (1 y )
y
B
近似微分方程
实际压杆实验曲线
5. 欧拉公式的应用条件:
o
1.理想压杆;
2.线弹性、比例极限以内; 3. 平面弯曲。
边界条件为: x 0, y y 0; x l , y y 0
34
P
M0
P
M0
M0 c , P
d 0,
kl 2n 并 kl n
kl 2n
为求最小临界力,“k”应取除零以外的最小值,即取:

压杆稳定PPT课件

压杆稳定PPT课件
E20G0P , a设计要求的强度安全系数 n2,
稳定安全系数 nst3。试求容许荷载 P 的值。
A 2m
C 3m
P
B
h3.5m
D
35
解:1)由平衡条件可得
A
P NCD
2.5
2m
C 3m
D
2)按强度条件确定 [P]
P
B
h3.5m
N CD σ A σ n sπ 4 (D 2 d 2) 3K 40 N
Q
解:一、分析受力
1500
500
取CBD横梁研究
A
N Cr
A
Cr
A 2E 2
2m
46K9N
D
C 3m
P
B
h3.5m
稳定条件
Pcr P
nst
[N]NCr15K6 N nst
[N] [P] 62.5KN
2.5
38Leabharlann 2mC 3mPB
h3.5m
D
[P] = 62.5KN
39
例:托架,AB杆是圆管,外径D=50mm,内径d=40mm, 两端为球铰,材料为A3钢,E=206GPa,p=100。若规定 nst=3,试确定许可荷载Q。
4
实际上,当压力不到 40N 时,钢尺就被压弯。可见, 钢尺的承载能力并不取决轴向压缩的抗压刚度, 而是与 受压时变弯 有关。
5
稳定平衡与不稳定平衡的概念 当 P小于某一临界值Pcr,撤去横向力后,杆的轴线将 恢复其原来的直线平衡形态,压杆在直线形态下的
平衡是 稳定平衡。
6
P Q
PPcr
P
PPcr
2E cr 2 2. 中 长 杆 ( s p ), 用 经 验 公 式

压杆的稳定ppt

压杆的稳定ppt

定义
01
边界条件是指压杆在支撑条件下的限制条件,如固定、自由、
简支等。
描述
02
不同的边界条件对压杆的稳定性产生不同的影响。例如,固定
边界条件下的压杆比自由边界条件下的压杆更稳定。
影响因素
03
边界条件对压杆稳定性的影响主要表现在支撑反力的分布和大
小上,从而影响压杆的临界载荷和屈曲载荷。
03
压杆稳定性问题的解决策略
合理选择材料和截面形状
选择高强度材料
如合金钢、不锈钢等,能够提高压杆的屈服强度和抗拉强度 ,增加压杆的稳定性。
选择合适的截面形状
如圆形、方形、工字形等,能够改变压杆的截面面积和惯性 矩,进而改变压杆的稳定性。
对压杆进行合理支撑和固定
增加支撑点
通过在压杆的适当位置增加支撑点,能够提高压杆的稳定性,防止其发生屈 曲变形。
船舶设计
在船舶设计中,压杆被用于船体结构的支撑和固定。特 别是在海洋环境中,压杆的稳定性对于抵御海浪冲击和 保证船舶的安全至关重要。
地下工程
在隧道、地铁等地下工程中,压杆被用于支撑和固定土 石方及结构物。其稳定性对于保障地下工程的稳定性和 安全性至关重要。
06
总结与展望
总结
压杆稳定的定义
压杆稳定的重要性
05
压杆稳定性问Leabharlann 的工程应用建筑结构中的压杆稳定性问题
建筑物的支撑结构
在建筑设计中,压杆常被用于支撑和固定建筑结构,如桥梁、高层建筑等。其稳定性直接 影响到建筑物的安全性和使用寿命。
抗风和抗震设计
在地震或强风天气中,建筑物的压杆稳定性显得尤为重要。压杆能够提供必要的支撑力, 帮助建筑物抵御自然灾害。
定义

压杆稳定——精选推荐

压杆稳定——精选推荐

第9章 压杆稳定一、基本知识点(一)弹性稳定平衡的概念1.弹性体平衡的稳定性弹性体保持原有平衡状态的能力称为弹性平衡的稳定性。

(1)稳定平衡 系统处于平衡形态。

若对原有平衡形态有微小位移,其弹性恢复力(或力矩)使系统恢复原有的平衡形态,则称系统原有平衡形态是稳定的。

(2)不稳定平衡 系统处于平衡形态。

若对原有平衡形态有微小位移,其弹性恢复力(或力矩)不足以使系统恢复原有的平衡形态,即系统不再回复原有的平衡形态,则称系统原有平衡形态是不稳定的。

2.压杆的稳定性(1)压杆的稳定性 受压杆件保持原有直线平衡状态的能力称为压杆的稳定性。

(2)力学模型 中心受压直杆,在微小的横向干扰力作用下发生弯曲变形,撤去横向干扰力后能恢复原来的直线平衡状态,则称压杆原来的直线平衡形态为稳定平衡。

(3)临界压力 系统由稳定平衡过渡到不稳定平衡的临界值,用cr F 。

设压杆的压力为F ,若cr F F <,则压杆为稳定平衡;若cr F F >,则压杆失稳;若cr F F =,则压杆处于临界状态,为不稳定平衡。

(二)细长中心受压直杆的临界压力与临界应力1.两端球铰细长压杆临界压力(1)在临界状态两端球铰细长压杆的弹性曲线方程为一个半波正弦方程:x lA w πsin= (9-1)(2)临界压力公式:22l EIF cr π=(9-2)2.其他不同杆端约束的细长压杆临界压力(1)临界压力的欧拉公式:()22l EIF cr μπ= (9-3) 式中l μ称为计算长度,μ称为长度因数,其于杆的两端约束情况有关。

(2)几种常见的杆端约束长度因数3.柔度(长细比) 压杆的长度l 乘以与杆端约束有关的长度因数μ,与横截面惯性半径i 之比,即ilμλ=(9-4) 4.细长压杆临界应力的欧拉公式22λπσE= (9-5)(三)压杆的分类与临界应力总图1.欧拉公式的适用范围欧拉公式是根据挠曲线近似微分方程建立的,二该方程仅适用于杆内应力不超过比例极限P σ的情况,因此,欧拉公式的适用范围为P cr σσ≤。

压杆稳定

压杆稳定

178第二十三章 压杆稳定一、 内容提要1、稳定的概念压杆的稳定性:压杆保持初始直线平衡状态的能力。

压杆的失稳:压杆丧失直线形状的平衡状态。

临界载荷:保持压杆稳定平衡时杆件所能承受的最大外力。

2、临界应力的计算大柔度杆( )中柔度杆( )小柔度杆( ) 说明:(1)压杆的临界应力在稳定问题中相当于强度问题中的极限应力,是确定稳定许用应力的依据。

(2)一种材料的极限应力是由材料本身的性质决定的。

压杆的临界应力除决定于材料外,还与杆的柔度有关,(3)根据 的值判断压杆的类别(大柔度杆、中柔度杆或小柔度杆),选用相应的计算临界力的公式。

3、压杆的稳定计算压杆的稳定性条件其中 安全系数法折减系数法说明(1)与强度问题类似,稳定计算也存在三方面的问题:稳定校核、截面设计、计算许可载荷。

(2)杆件丧失稳定是一种整体性行为,横截面的局部削弱对稳定的临界应力影响不大,因此在稳定计算时采用横截面的毛面积。

二、 基本要求1. 明确稳定平衡、不稳定平衡和临界载荷的概念,理解两端铰支压杆临界载荷公式的推导过程。

2. 理解长度系数的力学意义,熟练掌握四种常见的约束形式下细长压杆的临界载荷的计算。

p s λλλ≤≤p λλ>s λλ<22λπσE cr =λσb a cr -=scr σσ=λ[]crA N σσ≤=[]w crcr n σσ=[][]σϕσ=cr1793. 明确压杆柔度、临界应力和临界应力总图的概念,熟练掌握大柔度、中柔度和小柔度三类压杆的判别方法及其临界载荷的计算和稳定性的校核方法。

4. 了解根据压杆稳定性条件设计杆件截面的折减系数法。

5. 了解提高压杆稳定性的主要措施。

三、 典型例题分析例1 三根圆截面压杆直径均为 ,材料为 钢, MPa b 12.1=), , , , 两端均为铰支,长度分别为 且 , 试计算各杆的临界力。

解 (1)有关数据(2)计算各杆的临界力1杆 属大柔度杆2杆 属中柔度杆3杆属小柔度杆mm d 160=MPa E5102⨯=MPa p 200=σMPa s 240=σ,,,321l l l m l l l 542321===,304(MPa a =3A 2222210202.016.044mm d A -⨯==⨯==ππ45441022.316.06464md I -⨯=⨯==ππm d i 04.0416.04===1=μ10010200102611=⨯⨯==πσπλpp E5712.1240304=-=-=ba ss σλ10012504.05111=>=⨯==p il λμλKNl EIP cr 2540)(212==μπ5.6204.05.2122=⨯==il μλMPab a cr 2342=-=λσKNA P cr cr 46801021023426=⨯⨯⨯=⋅=-σ2.3104.025.1133=⨯==il μλ180例2 截面为 的矩形木柱,长 , 。

压杆稳定

压杆稳定

压杆稳定一、压杆稳定的概念压杆的稳定性,是指受压杆件保持其原有平衡状态的能力。

压杆不能保持原有平衡状态的现象,称为丧失稳定,简称失稳。

压杆处于稳定平衡和不稳定平衡之间的临界状态时,其轴向压力称为临界力或临界荷载,用表示。

临界力是判别压杆是否会失稳的重要指标。

二、两端铰支细长压杆的临界力两端为铰支的细长压杆,如图所示。

取图示坐标系,并假设压杆在临界荷载作用下,在xy平面内处于微弯平衡状态。

两端铰支细长压杆的临界荷载为称为欧拉公式。

在两端支承各方向相同时,杆的弯曲必然发生在抗弯能力最小的平面内,所以,式(1)中的惯性矩I应为压杆横截面的最小惯性矩;对于杆端各方向支承情况不同时,应分别计算,然后取其最小者作为压杆的临界荷载。

三、各种支承情况下压杆临界力计算公式可以写成统一形式的欧拉公式式中:μ反映了杆端支承对临界力的影响,称为长度系数,μL称为相当长度。

一端自由,一端固定m=2.0;两端固定 m=0.5一端铰支,一端固定 m=0.7;两端铰支m=1.0四、压杆的临界应力(一)、临界应力与柔度将临界荷载除以压杆的横截面面积A,即可求得压杆的临界应力,即将截面对中性轴的惯性半径代入,--临界应力欧拉公式---柔度或长细比。

它是一个无量纲量。

λ值愈大,压杆就愈容易失稳。

(二)、欧拉公式的适用范围于是欧拉公式的适用范围可用柔度表示为是与压杆材料性质有关的量。

对于,钢制成的压杆,E=200GPa,,=100的压杆称为大柔度杆或细长杆,其临界力或临界应力可用欧拉公式来计算。

(三)、超出比例极限时压杆的临界应力1、经验公式式中:a、b是与材料的力学性能有关的两个常数,可以通过试验加以测定,使用时可从有关手册上查取。

2、临界应力总图&如果将临界应力与柔度之间的函数关系绘在~λ直角坐标系内,将得到临界应力随柔度变化的曲线图形,称为临界应力总图。

临界应力均随柔度λ的增大而呈逐渐衰减的变化规律。

也就是说压杆越细越长,就越容易失去稳定。

《压杆稳定教学》课件

《压杆稳定教学》课件

增加约束
总结词
通过增加支撑、固定或增加附加约束,可以 提高压杆的稳定性。
详细描述
约束是影响压杆稳定性的重要因素。通过增 加支撑、固定或附加约束,可以限制压杆的 自由度,从而增强其稳定性。例如,在压杆 的适当位置增加支撑或固定点,可以减小压 杆的弯曲变形,提高其稳定性。此外,通过 增加附加约束,如套箍或加强筋等,也可以 提高压杆的稳定性。
实验结果与分析
实验结果
通过实验观察和数据记录,得到不同条件下 压杆的稳定性表现。
结果分析
根据实验数据,分析影响压杆稳定性的因素 ,如压杆的材料、截面形状、长度、直径等 。通过对比不同条件下的实验结果,总结出
压杆稳定性的一般规律和特点。
THANKS
感谢观看
REPORTING
稳定性安全系数
通过比较临界载荷与实际载荷的大小,来判断压杆的 稳定性。
稳定性试验
通过试验的方法,对压杆进行稳定性测试,以验证其 在实际使用中的稳定性。
PART 02
压杆的分类与计算
REPORTING
长细比较小的压杆
弹性失稳
当受到垂直于杆轴的压力时,杆件会 弯曲并丧失承载能力。
临界压力
当压杆达到临界压力时,杆件将发生 屈曲。
PART 05
压杆稳定性的实验研究
REPORTING
实验目的与原理
实验目的
通过实验研究,掌握压杆稳定性的基本概念和原理,了解影响压杆稳定性的因 素。
实验原理
压杆稳定性是指细长杆在受到轴向压力时,抵抗弯曲变形的能力。当轴向压力 超过某一临界值时,压杆会发生弯曲变形,丧失稳定性。本实验通过观察不同 条件下压杆的变形情况,分析影响压杆稳定性的因素。
根据欧拉公式计算临界应力:$sigma_{cr} = frac{EI}{A}$
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

强度破坏和
cr a b
失稳同时发生 cr a b S S cr a b P P 临界应力总图
cr a b
2E cr 2
S 强度破坏
cr
cr s
S
cr s

P
短粗杆

中长杆
细长杆SP来自讨论:A。 中柔度杆误用大柔度杆公式,则——
(A) 构件临界应力小于计算值,构件偏于危险;
(B)构件临界应力大于计算值,构件偏于危险; (C)构件临界应力大于计算值,构件偏于安全; 中长杆不能套 (D)构件临界应力小于计算值,构件偏于安全; 用细长杆公式
A。 大柔度杆误用中柔度杆公式,则——
解:
Iy 1 72 3 4 1.732cm 4 6 72cm i y xz 平面 I y A 24 12
1 200 y 115.5 iy 1.732 1 3 8 I 6 4 10 32cm xy 平面 z 12 z l 0.5 200 z 86.6 iz 1.732
Fcr E 2 cr A
2
2 E l p 100 柔度 p i
2E 细长杆(大柔度杆) P 失稳 (屈曲失效) cr 2
中长杆(中柔度杆) P S
a S a、b 材料常数 S b 短粗杆(小柔度杆)
安全系数法
1.8 3.0 钢材 [nst ] 2.8 3.2 木材 5.0 5.5 铸铁
压杆稳定的校核步骤
适用于细长杆
1. 计算惯性半径 i、长度因数 、柔度 ;
2. 计算 p 和 s 并与柔度比较,确定压杆性质 ;
3. 选用适当的临界应力公式计算 cr 及 F cr ;
作业 14-3 14-4
1 稳定的概念 平衡系统受到干扰偏离平衡位 置后,若去除干扰系统是否能够自 动恢复原有的平衡状态?
重点章节
2 细长压杆的临界力
2 欧拉 F EI cr 2 公式 ( l )
3 长度因数 (长度系数, 支座系数, 两端确定 约束系数) 两向兼顾
4 压杆的分类——临界应力总图
I i :惯性半径 i A
2
E cr 2
欧拉公式的 应用条件
2E cr l 2 ( ) i
l 柔度 i
E p
2
E cr 2 p
2
p
p
细长杆(大柔度杆)
低碳钢: p 100
用欧拉公式计算 cr 或 Fcr(临界应力并非均匀分布)
14-2 细长压杆的临界力——欧拉公式 y M ( x) Fcr y ( x) l
F
Fcr
Fcr
x
y M N
2 2
EI y( x) y k 2 y 0
2
k
Fcr
EI
y C1 sin kx C2 cos kx
x 0 : y 0 C2 0 x l : y 0 C1 0
2 EI Fcr 2 ( l )
长度因数
一端固定 一端自由
一端固定 两端铰支 一端铰支
两端固定
2
1
0.7
0.5
0.7 2
两端确定,两向兼顾
例14-2 矩形截面细长杆支撑刚性平台,l = 350 mm F
E = 200 GPa,求临界力 Fcr
解:在 x y 平面内 18 3 0.5 I z 6 324 mm 4 12 在 z y 平面内
第 14 章 压杆的稳定性
14-1 稳定的概念 平衡系统受到干扰偏离平衡位置后,若去除干扰 系统能够自动恢复原有的平衡状态,则称为稳定的平 衡;否则称为不稳定的平衡。
实验观察
F Fcr 稳定平衡
F Fcr 不稳定平衡
稳定性:弹性体
保持原有平衡状态的 能力。 失 稳:弹性体 丧失初始平衡状态的 现象。
l
2 Ix
6 183 2916 mm4 12
EI Fcr 2 ( l )
2
Fx 11.75kN
y 18 6
y x
Fz 20.88kN Fcr 2Fx
23.5kN
z
何为 细长杆
14-3 压杆的分类——临界应力总图 临界应力
2
Fcr 2 EI cr A ( l ) 2 A
y l
2 EI y Fcr 355.31kN 2 ( y l )
2 iz = 1.154cm 3
14-4 压杆稳定性校核——结构的临界载荷
F Fcr [nst ] , cr [nst ]
Fcr cr nst [nst ] , nst [nst ] F
3 3 bh 10 2 解: I 12 12
F
F
300
E I 200 10 10 2 Fcr 2 2 12 l 300 160 N
2 2 3
3
2
Fs s A 240 20 4800 N
10
F
Fs 30 Fcr
长度因数 (支座系数,约束系数)
(A)构件临界应力小于计算值,构件偏于危险;
(B)构件临界应力大于计算值,构件偏于危险; (C)构件临界应力大于计算值,构件偏于安全; 细长杆不能套 (D)构件临界应力小于计算值,构件偏于安全; 用中长杆公式
例14-3 矩形截面压杆在正视 图的平面里弯曲时,两端可 视为铰支,在顶视图的平面 里弯曲时,两端可视为固定, 求此压杆的临界力。
4. 计算安全系数并与许用安全系数比较; 5. 必要的强度校核。
例2-4
杆2
晾衣架受力如图所示, 2 已知:A1 1200 mm , 1 7MPa, 求许可吊重 F。
sin kl 0 ( n 1,2, )
n EI Fcr l2
2 y k y 0
Fcr
2 EI
l2
欧拉公式
n (奇异解) k l
y C1ekx C2 e kx
C1=C2=0 (平凡解)
例14-1 计算图示压杆的临界力(E = 200 GPa) F
相关文档
最新文档