高中数学教师说课稿范例--古典概型(赵亮)

合集下载

古典概型 说课稿 教案 教学设计

古典概型  说课稿  教案 教学设计

古典概型【明目标、知重点】1.了解基本事件的特点;2.理解古典概型的概念及特点;3.会应用古典概型概率公式解决简单的概率计算问题.【填要点、记疑点】1.基本事件的特点(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和.2.古典概型的概念如果某概率模型具有以下两个特点:(1)试验中所有可能出现的基本事件只有有限个;(2)每个基本事件出现的可能性相等;那么我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型.3.古典概型的概率公式对于任何事件A ,P (A )=A 包含的基本事件的个数基本事件的总数. 【探要点、究所然】[情境导学] 香港著名电影演员周润发在影片《赌神》中演技高超,他扮演的赌神在一次聚赌中,曾连续十次抛掷骰子都出现6点,那么如果是你随机地来抛掷骰子,连续3次、4次、…、10次都是6点的概率有多大?本节我们就来探究这个问题. 探究点一 基本事件思考1 抛掷两枚质地均匀的硬币,有哪几种可能结果?连续抛掷三枚质地均匀的硬币,有哪几种可能结果?答 (正,正),(正,反),(反,正),(反,反);(正,正,正),(正,正,反), (正,反,正),(反,正,正),(正,反,反),(反,正,反), (反,反,正),(反,反,反).思考2 上述试验中的每一个结果都是随机事件,我们把这类事件称为基本事件.在一次试验中,任何两个基本事件是什么关系?答 由于任何两种结果都不可能同时发生,所以它们的关系是互斥关系.思考3 在连续抛掷三枚质地均匀的硬币的试验中,随机事件“出现两次正面和一次反面”,“至少出现两次正面”分别由哪些基本事件组成?答 (正,正,反),(正,反,正),(反,正,正);(正,正,正),(正,正,反),(正,反,正),(反,正,正).例1从字母a、b、c、d中任意取出两个不同字母的试验中,有哪些基本事件?事件“取到字母a”是哪些基本事件的和?解所求的基本事件有6个,A={a,b},B={a,c},C={a,d}, D={b,c},E ={b,d},F={c,d};“取到字母a”是基本事件A、B、C的和,即A+B+C.反思与感悟基本事件有如下两个特点:(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和.跟踪训练1做投掷2颗骰子的试验,用(x,y)表示结果,其中x表示第一颗骰子出现的点数,y表示第2颗骰子出现的点数.写出:(1)试验的基本事件;(2)事件“出现点数之和大于8”;(3)事件“出现点数相等”;(4)事件“出现点数之和等于7”.解(1)这个试验的基本事件共有36个,如下:(1,1),(1,2),(1,3)(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2, 6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6, 5),(6,6).(2)“出现点数之和大于8”包含以下10个基本事件:(3,6),(4,5),(4,6),(5,4),(5,5),(5,6),(6,3),(6,4),(6,5),(6,6).(3)“出现点数相等”包含以下6个基本事件:(1,1),(2,2),(3,3),(4,4),(5,5),(6,6).(4)“出现点数之和等于7”包含以下6个基本事件:(1,6),(2,5),(3,4),(4,3),(5,2),(6,1).探究点二古典概型思考1抛掷一枚质地均匀的硬币,每个基本事件出现的可能性相等吗?答基本事件有两个,正面朝上和正面朝下,由于质地均匀,因此基本事件出现的可能性是相等的.思考2抛掷一枚质地均匀的骰子,有哪些基本事件?每个基本事件出现的可能性相等吗?答这个试验的基本事件有6个,正面出现的点数为1,2,3,4,5,6,由于质地均匀,因此基本事件出现的可能性是相等的.思考3上述试验的共同特点是什么?答(1) 试验中所有可能出现的基本事件只有有限个;(2) 每个基本事件出现的可能性相等.我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型.例2 某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环、……、命中5环和不中环.你认为这是古典概型吗?为什么?解 不是古典概型,因为试验的所有可能结果只有7个,而命中10环、命中9环、……、命中5环和不中环的出现不是等可能的(为什么?),即不满足古典概型的第二个条件.反思与感悟 判断一个试验是不是古典概型要抓住两点:一是有限性;二是等可能性. 跟踪训练2 从所有整数中任取一个数的试验中“抽取一个整数”是古典概型吗? 解 不是,因为有无数个基本事件.探究点三 古典概型概率公式问题 在古典概型下,每一基本事件的概率是多少?随机事件出现的概率如何计算? 思考1 在抛掷硬币试验中,如何求正面朝上及反面朝上的概率?答 出现正面朝上的概率与反面朝上的概率相等,即P (“正面朝上”)=P (“反面朝上”).由概率的加法公式,得P (“正面朝上”)+P (“反面朝上”)=P (必然事件)=1,因此P (“正面朝上”)=P (“反面朝上”)=12, 即P (出现正面朝上)=12=“出现正面朝上”所包含的基本事件的个数基本事件的总数. 思考2 在抛掷骰子的试验中,如何求出现各个点的概率?答 出现各个点的概率相等,即P (“1点”)=P (“2点”)=P (“3点”)=P (“4点”)=P (“5点”)=P (“6点”),反复利用概率的加法公式,我们有P (“1点”)+P (“2点”)+P (“3点”)+P (“4点”)+P (“5点”)+P (“6点”)=P (必然事件)=1.所以P (“1点”)=P (“2点”)=P (“3点”)=P (“4点”)=P (“5点”)=P (“6点”)=16. 进一步地,利用加法公式还可以计算这个试验中任何一个事件的概率,例如,P (“出现偶数点”)=P (“2点”)+P (“4点”)+P (“6点”)=16+16+16=12. 即P (“出现偶数点”)=“出现偶数点”所包含基本事件的个数”/基本事件的总数;P (“出现不小于2点”)=“出现不小于2点”所包含的基本事件的个数”/基本事件的总数.P (A )=事件A 所包含的基本事件的个数/基本事件的总数.思考3 从集合的观点分析,如果在一次试验中,等可能出现的所有n 个基本事件组成全集U ,事件A 包含的m 个基本事件组成子集A ,那么事件A 发生的概率P (A )等于什么?特别地,当A =U ,A =∅时,P (A )等于什么?答 P (A )=m n;当A =U 时,P (A )=1;当A =∅时,P (A )=0. 例3 单选题是标准化考试中常用的题型,一般是从A ,B ,C ,D 四个选项中选择一个正确答案.如果考生掌握了考查的内容,他可以选择唯一正确的答案,假设考生不会做,他随机地选择一个答案,则他答对的概率是多少?解 由于考生随机地选择一个答案,所以他选择A ,B ,C ,D 哪一个选项都有可能,因 此基本事件总数为4,设答对为随机事件A ,由于正确答案是唯一的,所以事件A 只包含一个基本事件,所以P (A )=14. 反思与感悟 解答概率题要有必要的文字叙述,一般要用字母设出所求的随机事件,要写出所有的基本事件及个数,写出随机事件所包含的基本事件及个数,然后应用公式求出.跟踪训练3 某种饮料每箱装6听,如果其中有2听不合格,质检人员依次不放回地从某箱中随机抽出2听,求检测出不合格产品的概率.解 只要检测的2听中有1听不合格,就表示查出了不合格产品.分为两种情况,1听不合格和2听都不合格.1听不合格:A 1={第一次抽出不合格产品},A 2={第二次抽出不合格产品}2听都不合格:A 12={两次抽出不合格产品} .而A 1、A 2、A 12是互斥事件,用A 表示“抽出的2听饮料中有不合格产品”,则A =A 1∪A 2∪A 12,从而P (A )=P (A 1)+P (A 2)+P (A 12),因为A 1中的基本事件的个数为8,A 2中的基本事件的个数为8,A 12中的基本事件的个数为2,全部基本事件的总数为30,所以P (A )=830+830+230=0.6.。

古典概型(说课稿)

古典概型(说课稿)

3.2.1古典概型说课稿今天我说课的题目是《古典概型》,下面我将从教材分析、学生学习情况分析、教学目标分析、教学重难点分析、教法与学法分析、教学过程分析这六块进行重点介绍。

一、教材分析本节课是高中数学必修3(人教A版)第三章3.2.1古典概型的内容,教学安排是2课时,本节是第一课时。

本节是学生在初中阶段学习了概率初步,在高中阶段学习随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下进行教学的。

古典概型是一种最基本的概率模型,它曾是概率论发展初期的主要研究对象,在概率论中占有相当重要的地位。

它的引入,使我们可以解决等可能事件的概率,而且可以得到概率的精确值,同时避免了大量的重复试验。

学好古典概型有利于理解概率的概念,为其它概率知识的学习奠定基础,并能够解释生活中的一些问题。

二、学生学习情况分析有利因素在此之前学生已经学习了随机事件的概率,概率的意义和概率的基本性质,在学习中接触了大量的概率实例,在理论上和实践上都有了较深刻的理解和认识,由于与实际联系密切,教学中已积累了学生在概率学习中的浓厚兴趣,这些是学习本课的有利因素。

和老教材的区别在于,学生是在尚未学习排列组合的情况下学习概率的。

不利因素学生学习的困难在于,对古典概型的两个特征理解不够深刻,一看到试验包含的基本事件是有限个就用古典概型的公式求概率,没有验证“每个基本事件的出现是等可能的”这个条件;另外对基本事件的总数的计算容易产生重复或遗漏。

三、教学目标分析知识与技能目标⑴理解古典概型,通过试验理解基本事件的概念和特点,通过实例抽象出古典概型的两个特点,推导出古典概型下概率的计算公式。

⑵会用列举法计算一些随机事件所含的基本事件数及会计算事件发生的概率。

过程与方法目标经历公式的推倒过程,体验由特殊到一般的数学思想方法的应用。

情感、态度与价值观目标用有现实意义的实例,激发学生的学习兴趣,培养学生勇于探索,善于发现和归纳的学习品质。

四、教学重点、难点分析重点:理解古典概型及其概率计算公式。

古典概型说课稿参考模板范本

古典概型说课稿参考模板范本

古典概型(说课稿)各位评委下午好!今天我说课的题目是《古典概型》。

接下来我将从:教材分析,教学目标,教法学法,教学过程,作业布置、教学评价六方面来阐述我这节课的设计。

一、教材分析:《古典概型》位于苏教版必修三第三章第二节。

是在学习随机事件之后,几何概型之前。

所以本节内容是随机事件知识的延续,也是学习几何概型的基础。

本节课所讲的基本概率知识,是以后数学学习中不可缺少的部分,也是今后高考的必考内容。

二、教学目标:(1)正确理解基本事件的概念,准确求出基本事件及其个数;(2)在数学建模的过程中,正确理解古典概型的两个特点;(3)推导和掌握古典概型的概率计算公式,感受化归的重要思想,会用列举法计算一些随机事件所含的基本事件数及其事件发生的概率,学会运用数形结合、分类讨论的思想解决概率的计算问题。

教学重点:1、理解古典概型的概念;2、利用古典概型概率公式求解随机事件的概率。

难点:1、判断一个随机试验是否为古典概型;2、古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。

三、教法学法分析教学方法在教学中以问题为核心,采取引导发现法,通过“提出问题、思考问题、解决问题”的教学过程,借助实物试验、多媒体课件引导学生进行试验探究、观察类比、概括归纳古典概型的概念及其概率公式,再通过具体问题的提出和解决,来激发学生的学习兴趣,调动学生的主体能动性,让每一个学生充分地参与到学习活动中来。

学生学法学生通过“试验观察、思考探究、归纳总结”的自主学习解惑过程,体验了从特殊到一般的数学思维过程,体会学以致用和数学的严谨之美,增强学习的兴趣和信心。

四、教学过程一、提出问题、情景引入二、类比归纳、引出概念三、例题分析、加深理解四、练习反馈、强化目标五、总结概括、提炼精华上述五个方面由表及里、由浅入深,层层递进。

从数到形,螺旋上升。

多层次、多角度地加深对概念的理解,进行对重点难点的突破。

提高学生学习的兴趣,以达到良好的教学效果一) 提出问题、情景引入课前模拟实验:教学活动:老师布置学生分组实验,并提出2个问题;学生实验并回答问题,科代表统汇总结果和问题答案课前模拟试验:(1)抛掷一枚质地均匀的硬币,观察哪个面朝上的试验。

高中数学《古典概型》教学设计及说课稿模板

高中数学《古典概型》教学设计及说课稿模板

高中数学《古典概型》教学设计及说课稿模板《古典概型》教学设计一、教学目标【知识与技能】会判断古典概型,会用列举法计算一些随机事件所含的基本事件数和试验中基本事件的总数;能够利用概率公式求解一些简单的古典概型的概率。

【过程与方法】通过从实际问题中抽象出数学模型的过程,提升从具体到抽象,从特殊到一般的分析问题的能力。

【情感态度与价值观】在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是的科学态度和锲而不舍的求学精神。

二、教学重难点【教学重点】古典概型的概念以及概率公式。

【教学难点】如何判断一个试验是否是古典概型;分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。

三、教学过程(一)导入概念复习回顾:同学们,我们刚刚学习了基本事件的概念,那么什么是基本事件?基本事件又有什么特点呢?有没有人能举一个例子呢?例:列举出下列几个随机事件中的基本事件。

1.从a,b,c,d,中任取两个不同的字母的试验。

2.有五根细长的木棒,长度分别为1,3,5,7,9,任取三根。

3.掷两枚硬币,可能出现的结果。

(二)探究新知提问:这三个例子有什么共同点?通过学生自主探究,合作交流,师生共同归纳总结共同点,引出古典概型概念。

(1)试验中所有可能出现的基本事件只有有限个;(有限性)(2)每个基本事件出现的可能性相等。

(等可能性)我们将具有这两个特点的概率模型称为古典概率概型,简称古典概型。

(三)巩固提高判断下列试验是否为古典概型?为什么?(1)射击运动员向一靶心进行射击,这一试验的结果只有有限个,命中10环,命中9环,….命中1环和命中0环(即不命中)。

(2)有红心1,2,3和黑桃4,5共5张扑克牌,将其牌点向下置于桌上,现从中任意抽取一张。

(3)向一个圆面内随机地投一个点,如果该点落在圆面内任意一点都是等可能的。

(四)深入探究引导学生思考分析,从a,b,c,d,中任取两个不同的字母的试验,字母a被选中的基本事件是什么?那字母a被选中的概率是多少?字母a被选中的所有基本事件为(a,b)、(a,c)、(a,d)。

高中数学说课——古典概型比赛说课稿

高中数学说课——古典概型比赛说课稿

3.2.1 古典概型说课稿各位评委,老师大家好!我是,我说课的内容是人教A版、必修3、第三章概率的第二节、古典概型第一课时。

针对本节课我将以教什么?怎么教?为什么这么教为主旨,从教材分析、学情分析、教法学法分析、教学过程设计以及评价反思五方面进行介绍。

一.教材分析1.教材的地位和作用古典概型是一种古老而特殊的概率模型,可以说没有古典概型的研究就没有概率学的产生。

它的引入既能避免大量的重复试验,又能得到概率的精确值;学习它有利于深入理解概率的概念,有利于厘清学生生活中困惑的概率问题。

古典概型也是学习几何概型的基础,在概率教学中有着承上启下的作用。

根据新课改对“三维目标”的整体要求,整合确定本节课的教学目标。

1、知识与技能目标会用列举法计算一些随机事件所含基本事件的个数理解并掌握古典概型的概念及其概率计算公式;2、过程与方法目标通过两个课前数学试验让学生理解古典概型的特征,观察类比各个实验结果,归纳、猜想、证明出古典概型概率计算公式,体验由特殊到一般的化归思想。

3、情感态度和价值观目标通过各种有趣的、贴近生活的概率素材,激发学生学习概率的热情。

在古典概型概念探究和辨析时采用团队协作的方式,使学生感受与他人合作的重要性。

根据学生的认知发展水平,结合学情制定教学重点:理解并掌握古典概型的概念及其概率计算公式的应用;教学难点:如何判断一个实验是否是古典概型以及确定基本事件的个数。

二.学情分析在知识上,学生已经了解概率的意义,掌握了概率的基本性质,会用互斥事件的概率加法公式,这三者形成了学生认知的“最近发展区”,有利于自主学习。

在能力上,高一学生已经具备了一定的归纳、猜想能力,但数学应用意识仍不足。

情感上,在教师激励下多数学生能积极主动参与自主学习,但由于能力发展不均衡,仍有小部分学生心有余而力不足.三.教法学法分析为实现高效课堂的目标,我设计了娱乐化的数学实验、引导学生自主学习、合作探究,分组展示、直至产生质疑、参与点评,尽可能增加学生课堂参与度,将时间、空间还给学生。

高二上册数学古典概型说课稿范文:第三章古典概型说课稿

高二上册数学古典概型说课稿范文:第三章古典概型说课稿

高二上册数学古典概型说课稿范文:第三章古典概型说课稿一、教材分析^p本节课人教版普通高中课程标准实验教科书数学必修3第三章概率第二节古典概型的第一课时。

古典概型是在随机事件的概率之后,几何概型之前进行教学的。

古典概型是一种理想的数学模型,也是一种最基本的概率模型,它的引入避免了大量的重复试验,而且得到的是概率准确值,有利于理解概率的概念,有利于计算一些简单事件的概率,有利于解释生活中的一些现象与问题。

而接下来要学习的几何概型与古典概型有很多相通之处,学好古典概型可以为学习几何概型奠定基础,起到了承前启后的作用。

古典概型在高等数学中概率论中也占有相当重要的地位,为学生学习高等数学做好衔接和铺垫。

二、学情分析^p认知分析^p :能力分析^p :学生已经具备了一定的归纳、猜想能力,但数学的理性的思维能力和应用意识仍需提高.但对知识的理解和方法的掌握在一些细节上不完备,反映在解题中就是思维不慎密,过程不完整,解决问题的能力还略显单薄。

情感分析^p :由于本章开始的内容起点低,坡度小,与实际联系紧密,多数学生对本章的学习有一定的兴趣,心里有想好好学习的意愿和信心。

三、教学目标在新课标让学生经历“学数学、做数学、用数学”的理念指导下,以教材为背景,我将本节课的教学目标分为以下三个方面:知识与技能:1.理解古典概型的概念2.利用古典概型求解随机事件的概率过程与方法:在教学过程中,进一步发展学发现问题,分析^p 问题,解决问题的能力;培养学生归纳、类比等合情推理能力;培养学生的应用能力与意识。

情感态度与价值观:激发学生学习数学的热情,培养学生勇于探索,善于发现的创新思想;结合问题的现实意义,培养学生的合作精神. 四、教学重点与难点重点:理解古典概型的概念及概率公式,并能简单应用。

难点:基本事件的理解。

对于本节课难点的确定我认真研读了教材和教参,开始确定了三个教学难点。

结合自己的教学经验并同组教师进行探讨后,最后确定为一个:基本事件的理解。

《古典概型》说课稿

《古典概型》说课稿

《古典概型》说课稿一、说教材《古典概型》是北师大版高中必修3第三章第二节第一课时的内容,这节内容的学习是建立在前面已经学习了随机事件的基础上进行学习的,古典概型是一种最基本的概率模型,学习好本节课内容有利于理解概率的概念和计算一些事件的概率,有利于解释生活中的一些问题,为后面几何概型的学习起到一个铺垫作用,具有承上启下的作用。

二、说学情接下来,我来谈谈我班学生情况。

高中的学生他们对于知识具有较好的理解能力和应用能力,理论知识比较扎实,并且他们喜欢合作、探讨式学习,对数学学习有较浓厚的兴趣。

在以往的学习中,学生的逻辑思维能力已经得到了一定的训练,对概率的思想已具备,本节课将进一步培养学生的数学能力。

三、教学目标【知识与技能】会判断古典概型,会用列举法计算一些随机事件所含的基本事件数和试验中基本事件的总数;能够利用概率公式求解一些简单的古典概型的概率。

【过程与方法】通过从实际问题中抽象出数学模型的过程,提升运用从具体到抽象,特殊到一般的分析问题的能力和解决问题的能力。

【情感态度与价值观】在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是地科学态度和锲而不舍的求学精神,在此过程中还可以增加学习数学的学习兴趣。

四、教学重难点【重点】古典概型的概念以及概率公式。

【难点】如何判断一个试验是否是古典概型。

五、教学方法根据本节课的教学目标、教材内容以及学生的认知特点,我采用启发式、探索式教学方法,意在帮助学生通过观察,自己动手,从实践中获得知识。

整个探究学习的过程充满了师生之间、学生之间的交流和互动,体现了教师是教学活动的组织者、引导者,而学生才是学习的主体。

六、教学过程教学过程是师生积极参与、交往互动、共同发展的过程,具体教学过程如下:(一)导入新课在这一环节,我会先带领学生一起复习一下上一节课我们学习的随机事件概念,并让学生说出相关的概念,然后我会拿出4个球(2个白球和2个黑球),这4个球除颜色外完全相同,白球代表奖品,4个人按顺序依次从中摸球并记录结果,每一个人摸到白球的概率一样吗?学生通过已有知识很容易说出概率一样。

苏教版高中高二数学必修3《古典概型》说课稿

苏教版高中高二数学必修3《古典概型》说课稿

苏教版高中高二数学必修3《古典概型》说课稿一、编写目的和依据本文档是针对苏教版高中高二数学必修3教材中的《古典概型》进行的说课稿。

《古典概型》是高中数学必修课的一部分,主要介绍了古典概型的概念、性质、计数原理等内容。

通过本节课的学习,学生将会掌握古典概型的基本概念和计数方法,并能够应用于实际问题中。

本说课稿的编写依据是教育部发布的高中数学必修课程标准以及苏教版高中数学必修3教材,同时结合教材中的教学内容和教学目标进行编写。

二、教学目标1.知识与技能:–理解古典概型的基本概念;–掌握古典概型的性质和计数方法;–能够应用古典概型解决实际问题。

2.过程与方法:–注重培养学生的逻辑思维能力;–采用课堂讲授与情境模拟相结合的教学方法;–引导学生主动参与课堂讨论和思考。

3.情感态度与价值观:–培养学生的数学兴趣和创新精神;–引导学生认识到古典概型在真实生活中的应用价值。

三、教学内容和重点难点本节课的教学内容主要包括以下几个方面:1.古典概型的概念和性质:–古典概型的定义;–古典概型的性质和基本计数原理。

2.古典概型的计数方法:–基本计数法则;–排列与组合的计数方法。

本节课的重点和难点主要集中在古典概型的计数方法上,包括使用基本计数法则、排列和组合解决实际问题。

四、教学过程安排1. 导入与引入(5分钟)•利用问题情境引入古典概型的概念,并介绍古典概型在生活中的应用。

2. 知识点讲解(20分钟)•简要介绍古典概型的定义和性质;•通过示例解释古典概型的计数方法,并引导学生思考计数过程中的注意事项。

3. 计算练习(20分钟)•给出一些计数问题,让学生运用古典概型的计数方法进行计算练习;•引导学生讨论解题过程,加深对古典概型计数方法的理解。

4. 拓展应用(10分钟)•给出一些实际问题,让学生应用古典概型进行解决,并引导学生思考其应用场景和限制。

5. 总结与归纳(5分钟)•对本节课的主要内容进行总结和归纳,强调古典概型的概念、性质和计数方法。

古典概型说课稿0

古典概型说课稿0

古典概型一、教材分析:本节课选自普通高中课程标准实验教科书《数学》必修3§3.2节,《古典概型》共安排2课时,本节课是第1课时.是在学习了概率的意义和概率的基本性质的基础上,进一步研究古典概型的概率求法,以及古典概型在实践中的广泛应用。

古典概型是最基本的概率模型,也是重要数学模型之一,在概率论中有很重要的地位。

教学重点:1、古典概型及其概率计算公式。

2、将实际问题转化为古典概型。

教学难点:古典概型的判断。

二、目标分析:知识与技能:1、通过实例,让学生理解古典概型及其概率的计算公式。

2、会用列举法或图表法计算一些随机事件所含的基本事件数及事件发生的概率。

3、初步学会把实际问题转化为古典概型.过程与方法:1、通过实验,让学生感受实验结果的等可能性和有限性,引入古典概型。

2、让学生经历公式的推导过程,体验从特殊到一般的思想方法的应用。

3、在问题解决过程中,让学生领悟分类思想、集合思想、转化思想。

情态与价值:选用具有现实意义的例题,激发学生的学习兴趣和求知欲望,体会数学的趣味性和实用价值,增强应用意识,提高数学建模能力,形成理论联系实际的辨证唯物主义观点。

三、教法、学法分析教法:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式”。

本节课主要采用了问题教学法、引导发现法。

学法:要准确计算古典概型的概率,基本事件的确定是关键,学习本节时注意借助列举法计算基本事件总数和随机事件所包含的基本事件数。

基本事件出现的等可能性的理解与判断是难点,要通过试验、观察、分析来理解,使感性认识上升为理性认识。

四、教学设计板书设计五、评价分析:首先,通过两个典型试验,分析事件的构成,结合古典概型的特点推导古典概型概率计算公式,让学生经历知识探究过程,有助于培养学生揭示数学关系的能力。

其次,选用生活中的一些实际问题作为研究对象,真正落实“学习有用的数学”这一课程目标。

新课程理念要求教师应是教材的建设者,不应是教教材,而是用教材来教,创造性的使用教材是课程改革赋予新时代教师的使命。

高一数学说课教案--古典概型(赵亮)

高一数学说课教案--古典概型(赵亮)
内容
师生活动
理论依据或意图















提问:
(1)在例1的实验中,出现字母“d”的概率是多少?
出现字母“d”的概率为:
提问:
(2)在使用古典概型的概率公式时,应该注意什么?
归纳:
在使用古典概型的概率公式时,应该注意:
(1)要判断该概率模型是不是古典概型;
(2)要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。
在课上,学生展示模拟试验的操作方法和试验结果,并与同学交流活动感受。
教师最后汇总方法、结果和感受,并提出问题?
1.用模拟试验的方法来求某一随机事件的概率好不好?为什么?
不好,要求出某一随机事件的概率,需要进行大量的试验,并且求出来的结果是频率,而不是概率。
2.根据以前的学习,上述两个模拟试验的每个结果之间都有什么特点?
培养运用从具体到抽象、从特殊到一般的辩证唯物主义观点分析问题的能力,充分体现了数学的化归思想。启发诱导的同时,训练了学生观察和概括归纳的能力。通过用表格列出相同和不同点,能让学生很好的理解古典概型。从而突出了古典概型这一重点。
两个问题的设计是为了让学生更加准确的把握古典概型的两个特点。突破了如何判断一个试验是否是古典概型这一教学难点。
试验一:抛掷一枚质地均匀的硬币,分别记录“正面朝上”和“反面朝上”的次数,要求每个数学小组至少完成20次(最好是整十数),最后由科代表汇总;
试验二:抛掷一枚质地均匀的骰子,分别记录“1点”、“2点”、“3点”、“4点”、“5点”和“6点”的次数,要求每个数学小组至少完成60次(最好是整十数),最后由科代表汇总。

人教版古典概型说课稿

人教版古典概型说课稿

人教版古典概型说课稿一、说课背景与目标在人教版高中数学教材中,古典概型是一个重要的知识点,它不仅是概率论的基础,也是培养学生逻辑思维能力的重要内容。

通过本节课的学习,学生将能够理解古典概型的概念,掌握计算古典概型事件概率的方法,并能够运用这些知识解决实际问题。

二、教学内容与分析1. 古典概型的定义古典概型,又称为等可能概型,是指在一次试验中,所有基本事件发生的可能性相等的情况。

在这种情况下,我们可以通过计算各个事件发生的次数来确定其概率。

2. 计算方法对于古典概型,事件的概率可以通过该事件发生的基本事件数除以所有基本事件的总数来计算。

即 P(A) = m/n,其中 m 是事件 A 发生的基本事件数,n 是所有基本事件的总数。

3. 实际应用古典概型在现实生活中有广泛的应用,例如掷硬币、掷骰子等随机事件的概率计算,都可以通过古典概型的方法来解决。

三、教学目标1. 知识与技能学生能够准确理解古典概型的定义,并掌握其概率的计算方法。

2. 过程与方法通过实际问题的分析与解决,培养学生运用古典概型知识的能力。

3. 情感态度与价值观培养学生对数学学习的兴趣,激发学生探索数学问题的热情。

四、教学重点与难点1. 教学重点明确古典概型的定义,掌握其概率的计算公式。

2. 教学难点如何将抽象的数学概念与学生的生活实际相结合,提高学生的实际应用能力。

五、教学方法与手段1. 启发式教学通过提问和引导,激发学生的思考,帮助学生自主构建知识体系。

2. 案例分析结合具体的生活实例,分析问题,引导学生运用古典概型进行概率计算。

3. 小组讨论通过小组合作,让学生在交流中深化对古典概型的理解。

六、教学过程1. 导入新课通过掷硬币的例子,引出古典概型的概念。

2. 讲解概念详细解释古典概型的定义和特点,并通过板书进行强化。

3. 例题演示展示并解析几个典型的古典概型问题,让学生掌握计算方法。

4. 学生练习学生独立完成几个练习题,巩固所学知识。

《古典概型》说课稿(精品)

《古典概型》说课稿(精品)

课题项目占八\、《古典概型》说课稿古典概型本节课是高中数学3(必修)第三章概率的第二节古典概型的第一课时,是在随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的。

古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位。

学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题。

理解古典概型的概念及利用古典概型求解随机事件的概率。

如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。

1 .知识与技能(1)理解古典概型及其概率计算公式,(2)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。

2•过程与方法根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,理论依据或意图根据本节课的地位和作用以及新课程标准的具体要求,制订教学重点。

根据本节课的内容,即尚未学习排列组合,以及学生的心理特点和认知水平,制定了教学难点。

根据新课程标准,并结合学生心理发展的需求,以及人格、情感、价值观的具体要求制订而成。

这对激发学生学好数学概念,养成数学习惯,感受数学思想,提高数学能力起到了积极的作用。

观察类比各个试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用数形结合、分类讨论的思想解决概率的计算冋题。

3.情感态度与价值观概率教学的核心问题是让学生了解随机现象与概率的意义,加强与实际生活的联系,以科学的态度评价身边的一些随机现象。

适当地增加学生合作学习交流的机会,尽量地让学生自己举出生活和学习中与古典概型有关的实例。

使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是地科学态度和锲而不舍的求学精神。

师生活动理论依据或意图在课前,教师布置任务,以数学小组为单位,完成下面两个模拟试验:试验一:抛掷一枚质地均匀的硬币,分别记录“正面朝上”和“反面朝上”的次数,要求每个数学小组至少完成20次(最好是整学生展示模拟试验的操作方通过课前的模拟实验十数),最后由科代表汇总;试验二:抛掷一枚质地均匀的骰子,分别记录“ 1 点”、“2 点”、“ 3 点”、“4 点”、“5 点”和“6点”的次数,要求每个数学小组至少完成60次(最好是整十数),最后由科代表汇总。

人教版高中数学必修3《古典概型》说课稿(4)说课稿

人教版高中数学必修3《古典概型》说课稿(4)说课稿

人教版高中数学必修3《古典概型》说课稿(4)说课稿人教版高中数学必修3《古典概型》说课稿各位老师:大家好!我叫___,来自__。

我说课的题目是《古典概型》,内容选自于高中教材新课程人教A版必修3第三章第二节,课时安排为两个课时,本节课内容为第一课时。

下面我将从教材分析、教学目标分析、教法与学法分析、教学过程分析四大方面来阐述我对这节课的分析和设计:一、教材分析1.教材所处的地位和作用古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位。

它承接着前面学过的随机事件的概率及其性质,又是以后学习条件概率的基础,起到承前启后的作用。

2.教学的重点和难点重点:理解古典概型及其概率计算公式。

难点:古典概型的判断及把一些实际问题转化成古典概型。

二、教学目标分析1.知识与技能目标(1)通过试验理解基本事件的概念和特点(2)在数学建模的过程中,抽离出古典概型的两个基本特征,推导出古典概型下的概率的计算公式。

2、过程与方法:经历公式的推导过程,体验由特殊到一般的数学思想方法。

3、情感态度与价值观:(1)用具有现实意义的实例,激发学生的学习兴趣,培养学生勇于探索,善于发现的创新思想。

(2)让学生掌握”理论来源于实践,并把理论应用于实践”的辨证思想。

三、教法与学法分析1、教法分析:根据本节课的特点,采用引导发现和归纳概括相结合的教学方法,通过提出问题、思考问题、解决问题等教学过程,观察对比、概括归纳古典概型的概念及其概率公式,再通过具体问题的提出和解决,来激发学生的学习兴趣,调动学生的主体能动性,让每一个学生充分地参与到学习活动中来。

2、学法分析:学生在教师创设的问题情景中,通过观察、类比、思考、探究、概括、归纳和动手尝试相结合,体现了学生的主体地位,培养了学生由具体到抽象,由特殊到一般的数学思维能力,形成了实事求是的科学态度。

㈠创设情景、引入新课在课前,教师布置任务,以小组为单位,完成下面两个模拟试验:试验一:抛掷一枚质地均匀的硬币,分别记录”正面朝上”和”反面朝上”的次数,要求每个数学小组至少完成20次(最好是整十数),最后由代表汇总;试验二:抛掷一枚质地均匀的骰子,分别记录”1点”、”2点”、”3点”、”4点”、”5点”和”6点”的次数,要求每个数学小组至少完成60次(最好是整十数),最后由代表汇总。

高中数学第三章第二节古典概型说课稿新人教A版必修

高中数学第三章第二节古典概型说课稿新人教A版必修

数学:人教A版必修3第三章第二节《古典概型》说课稿各位老师:大家好!我叫***,来自**。

我说课的题目是《古典概型》,内容选自于高中教材新课程人教A版必修3第三章第二节,课时安排为两个课时,本节课内容为第一课时。

下面我将从教材分析、教学目标分析、教法与学法分析、教学过程分析四大方面来阐述我对这节课的分析和设计:一、教材分析1.教材所处的地位和作用古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位。

它承接着前面学过的随机事件的概率及其性质,又是以后学习条件概率的基础,起到承前启后的作用。

2.教学的重点和难点重点:理解古典概型及其概率计算公式。

难点:古典概型的判断及把一些实际问题转化成古典概型。

二、教学目标分析1.知识与技能目标(1)通过试验理解基本事件的概念和特点(2)在数学建模的过程中,抽离出古典概型的两个基本特征,推导出古典概型下的概率的计算公式。

2、过程与方法:经历公式的推导过程,体验由特殊到一般的数学思想方法。

3、情感态度与价值观:(1)用具有现实意义的实例,激发学生的学习兴趣,培养学生勇于探索,善于发现的创新思想。

(2)让学生掌握“理论来源于实践,并把理论应用于实践”的辨证思想。

三、教法与学法分析1、教法分析:根据本节课的特点,采用引导发现和归纳概括相结合的教学方法,通过提出问题、思考问题、解决问题等教学过程,观察对比、概括归纳古典概型的概念及其概率公式,再通过具体问题的提出和解决,来激发学生的学习兴趣,调动学生的主体能动性,让每一个学生充分地参与到学习活动中来。

2、学法分析:学生在教师创设的问题情景中,通过观察、类比、思考、探究、概括、归纳和动手尝试相结合,体现了学生的主体地位,培养了学生由具体到抽象,由特殊到一般的数学思维能力,形成了实事求是的科学态度。

㈠创设情景、引入新课在课前,教师布置任务,以小组为单位,完成下面两个模拟试验:试验一:抛掷一枚质地均匀的硬币,分别记录“正面朝上”和“反面朝上”的次数,要求每个数学小组至少完成20次(最好是整十数),最后由代表汇总;试验二:抛掷一枚质地均匀的骰子,分别记录“1点”、“2点”、“3点”、“4点”、“5点”和“6点”的次数,要求每个数学小组至少完成60次(最好是整十数),最后由代表汇总。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。




1.知识与技能
(1)理解古典概型及其概率计算公式,
(2)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。
2.过程与方法
根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比各个试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用数形结合、分类讨论的思想解决概率的计算问题。
分析:为了解基本事件,我们可以按照字典排序的顺序,把所有可能的结果都列出来。利用树状图可以将它们之间的关系列出来。
我们一般用列举法列出所有基本事件的结果,画树状图是列举法的基本方法,一般分布完成的结果(两步以上)可以用树状图进行列举。
(树状图)
解:所求的基本事件共有6个:
, , ,
, ,
观察对比,发现两个模拟试验和例1的共同特点:
学生展示模拟试验的操作方法和试验结果,并与同学交流活动感受,教师最后汇总方法、结果和感受,并提出问题。
通过课前的模拟实验的展示,让学生感受与他人合作的重要性,培养学生运用数学语言的能力。随着新问题的提出,激发了学生的求知欲望,通过观察对比,培养了学生发现问题的能力。









在试验一中随机事件只有两个,即“正面朝上”和“反面朝上”,并且他们都是互斥的,由于硬币质地是均匀的,因此出现两种随机事件的可能性相等,即它们的概率都是 ;
试验一中所有可能出现的基本事件有“正面朝上”和“反面朝上”2个,并且每个基本事件出现的可能性相等,都是 ;
试验二中所有可能出现的基本事件有“1点”、“2点”、“3点”、“4点”、“5点”和“6点”6个,并且每个基本事件出现的可能性相等,都是 ;
例1中所有可能出现的基本事件有“A”、“B”、“C”、“D”、“E”和“F”6个,并且每个基本事件出现的可能性相等,都是 ;
3.情感态度与价值观
概率教学的核心问题是让学生了解随机现象与概率的意义,加强与实际生活的联系,以科学的态度评价身边的一些随机现象。适当地增加学生合作学习交流的机会,尽量地让学生自己举出生活和学习中与古典概型有关的实例。使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是地科学态度和锲而不舍的求学精神。
经概括总结后得到:
(1)试验中所有可能出现的基本事件只有有限个;(有限性)
(2)每个基本事件出现的可能性相等。(等可能性)
我们将具有这两个特点的概率模型称为古典概率概型,简称古典概型。
思考交流:
(1)向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为这是古典概型吗?为什么?
先让学生尝试着列出所有的基本事件,教师再讲解用树状图列举问题的优点。
教学重点
理解古典概型的概念及利用古典概型求解随机事件的概率。
根据本节课的地位和作用以及新课程标准的具体要求,制订教学重点。
教学难点
如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。
根据本节课的内容,即尚未学习排列组合,以及学生的心理特点和认知水平,制定了教学难点。
让学生先观察对比,找出两个模拟试验和例1的共同特点,再概括总结得到的结论,教师最后补纳。
将数形结合和分类讨论的思想渗透到具体问题中来。由于没有学习排列组合,因此用列举法列举基本事件的个数,不仅能让学生直观的感受到对象的总数,而且还能使学生在列举的时候作到不重不漏。解决了求古典概型中基本事件总数这一难点。
根据新课程标准,并结合学生心理发展的需求,以及人格、情感、价值观的具体要求制订而成。这对激发学生学好数学概念,养成数学习惯,感受数学思想,提高数学能力起到了积极的作用。
古典概型
琼海市嘉积中学赵亮
项目
内容
师生活动
理论依据或意图







提出问题引入新课
在课前,教师布置任务,以数学小组为单位,完成下面两个模拟试验:
试验一:抛掷一枚质地均匀的硬币,分别记录“正面朝上”和“反面朝上”的次数,要求每个数学小组至少完成20次(最好是整十数),最后由科代表汇总;
试验二:抛掷一枚质地均匀的骰子,分别记录“1点”、“2点”、“3点”、“4点”、“5点”和“6点”的次数,要求每个数学小组至少完成60次(最好是整十数),最后由科代表汇总。
在课上,学生展示模拟试验的操作方法和试验结果,并与同学交流活动感受。
教师最后汇总方法、结果和感受,并提出问题?
1.用模拟试验的方法来求某一随机事件的概率好不好?为什么?
不好,要求出某一随机事件的概率,需要进行大量的试验,并且求出来的结果是频率,而不是概率。
2.根据以前的学习,上述两个模拟试验的每个结果之间都有什么特点?
(2)任何事件(除不可能事件)都可以表示成基本事件的和。
特点(2)的理解:在试验一中,必然事件由基本事件“正面朝上”和“反面朝上”组成;在试验二中,随机事件“出现偶数点”可以由基本事件“2点”、“4点”和“6点”共同组成。
学生观察对比得出两个模拟试验的相同点和不同点,教师给出基本事件的概念,并对相关特点加以说明,加深新概念的理解。
课题
古典概型
项目
内容
理论依据或意图




教材地位及作用
本节课是高中数学3(必修)第三章概率的第二节古典概型的第一课时,是在随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的。古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位。
学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题。
在试验二中随机事件有六个,即“1点”、“2点”、“3点”、“4点”、“5点”和“6点”,并且他们都是互斥的,由于骰子质地是均匀的,因此出现六种随机事件的可能性相等,即它们的概率都是 。
我们把上述试验中的随机事件称为基本事件,它是试验的每一个可能结果。
基本事件有如下的两个特点:
(1)任何两个基本事件是互斥的;
让学生从问题的相同点和不同点中找出研究对象的对立统一面,这能培养学生分析问题的能力,同时也教会学生运用对立统一的辩证唯物主义观点来分析问题的一种方法。
教师的注解可以使学生更好的把握问题的关键。
项目
内容
师生活动
理论依据或意图















例1从字母 中任意取出两个不同字母的试验中,有哪些基本事件?
相关文档
最新文档