判别式为零时圆和椭圆为何不相切
有关圆,椭圆,双曲线,抛物线的详细知识点
<一>圆的方程(x-a)^2+(y-b)^2=r^2,圆心O(a,b),半径r。
(1)圆的一般式方程:x^2+y^2+Dx+Ey+F=0此方程可用于解决两圆的位置关系:配方化为标准方程:(x+D/2)^2.+(y+E/2)^2=(D^2+E^2-4F)/4其圆心坐标:(-D/2,-E/2)半径为r=√[(D^2+E^2-4F)]/2此方程满足为圆的方程的条件是:D^2+E^2-4F>0若不满足,则不可表示为圆的方程(2)点与圆的位置关系点P(X1,Y1) 与圆(x-a)^2+(y-b) ^2=r^2的位置关系:⑴当(x1-a)^2+(y1-b) ^2>r^2时,则点P在圆外。
⑵当(x1-a)^2+(y1-b) ^2=r^2时,则点P在圆上。
⑶当(x1-a)^2+(y1-b) ^2<r^2时,则点P在圆内。
圆与直线的位置关系判断平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0。
利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下:如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。
如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。
如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离。
2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x 轴),将x^2+y^2+Dx+Ey+F=0化为 (x-a)^2+(y-b) ^2=r^2。
令y=b,求出此时的两个x值x1、x2,并且规定x1<x2,那么:当x=-C/A<x1或x=-C/A>x2时,直线与圆相离;当x1<x=-C/A<x2时,直线与圆相交;半径r,直径d在直角坐标系中,圆的解析式为:(x-a)^2+(y-b)^2=r^2;x^2+y^2+Dx+Ey+F=0=> (x+D/2)^2+(y+E/2)^2=(D^2+E^2-4F)/4=> 圆心坐标为(-D/2,-E/2)其实只要保证X方Y方前系数都是1就可以直接判断出圆心坐标为(-D/2,-E/2)这可以作为一个结论运用的且r=根号(圆心坐标的平方和-F)<二>椭圆的标准方程椭圆的标准方程分两种情况:当焦点在x轴时,椭圆的标准方程是:x^2/a^2+y^2/b^2=1,(a>b>0);当焦点在y轴时,椭圆的标准方程是:y^2/a^2+x^2/b^2=1,(a>b>0);其中a>0,b>0。
【教案】2.5.2圆与圆的位置关系 教学设计-高中数学人教版(2019)选择性必修一
2.5.2圆与圆的位置关系一、内容和内容解析1.内容圆与圆的位置关系.2.内容解析图形之间的位置关系,既可以直观定性描述,也可以严格定量刻画.定量刻画的方法既可以完全运用代数方法,通过运算求解,得到图形的性质;也可以综合使用几何方法、代数方法,得到图形的性质.本课时教学中,应引导学生根据初中学习图形与几何的经验,类比直线和圆的位置关系,研究圆与圆的位置关系.结合以上分析,确定本节课的教学重点:运用圆的方程,判断圆与圆的位置关系.二、目标和目标解析1.目标(1)会用圆的方程判定两圆的位置关系;(2)能利用坐标法解决简单的平面几何问题.2.目标解析达成上述目标的标志是:(1)会将两个圆的方程联立方程组,并通过降次和消元得到一个一元二次方程,通过判断方程判别式大于0,等于0,小于0分别得出两圆相交,相切,相离.能通过圆的方程得到圆心坐标和半径长,比较圆心距和两半径和差大小来判断两圆相交、外切、内切、外离、内含的关系.(2)知道两圆相交时,两个圆的方程消去二次项后得到的二元一次方程的几何意义,能表示出经过两圆的交点的所有圆的方程.三、教学问题诊断分析在上一节课,我们研究了如何利用直线和圆的方程,判断它们的位置关系.学生容易类比地得到判断圆与圆位置关系的方法.因此教学重点应让学生注意两个圆的方程消元后得到的一元二次方程的判别式小于0或等于0,只能判断出两圆相离或相切,无法具体判断两圆是外离(外切)还是内含(内切).这就很自然地引出用圆心距和半径和差来具体判断.同时,应理解教材例5选取对两圆相交的判断,用意在于让学生知道解二元二次方程组的一般流程,还有当两圆相交时,公共弦所在直线方程的求法,求两圆的交点坐标也是方法二所不能做到的.本节课的例6是探求满足某种几何条件的动点的轨迹问题,是对前面介绍的坐标法解决平面几何问题的“三步曲”的再应用,教师要引导学生建立坐标系,把几何条件代数化,最后再将代数方程翻译为几何轨迹.这个问题的解决是为下一章圆锥曲线方程的推导做准备.本节课的教学难点是应用代数方法解决几何问题.四、教学过程设计(一)复习引入1.已知点A (x 1,y 1),B (x 2,y 2),如何求线段AB 的长?设计意图:在计算两圆圆心距时要用到两点间的距离公式.2.已知圆的方程为()2222040x y Dx Ey F D E F ++++=+->,如何确定圆心和半径?设计意图:回顾圆的一般方程和标准方程的互化,以及利用圆的方程求出圆心坐标和半径长,对本节课的学习是有帮助的.3.已知直线和圆的方程,如何判断直线和圆的位置关系?师生活动:设计意图:为后面学生类比直线和圆的位置关系的判定得出判断圆与圆的位置关系的方法作准备.(二)探究新知问题1:按照两个圆的公共点个数来划分,两个圆之间有哪些位置关系?师生活动:两圆有两个公共点,它们相交;两圆只有一个公共点,它们相切,包括外切和内切;两圆没有公共点,它们相离,包括外离和内含.设计意图:让学生初步体会用公共点个数只能判断两圆相交、相切或相离,对于只有一个公共点(没有公共点)的情况无法具体判定外切还是内切(外离还是内含).照应方法一利用方程组解的个数判断位置关系时的局限性.问题2:类比运用直线和圆的方程,研究直线与圆的位置关系的方法,如何利用圆的方程,判断它们之间的位置关系?师生活动:方法1通过两个圆的方程组成的方程组的解的个数来判断;方法2通过比较两个圆的连心线的长与两半径的和或两半径的差的绝对值的大小来判断.例5 已知圆C 1:222880x y x y +++-=,圆C 2:224420x y x y +---=,试判断圆C 1与圆C 2的位置关系.解法1:将圆C 1与圆C 2的方程联立,得到方程组222228804420x y x y x y x y ⎧+++-=⎪⎨+---=⎪⎩ ①-②,得 210x y +-= ③ 由③,得12x y -=. 把上式代入①,并整理,得2230x x --=.④方程④的根的判别式()()224130∆=--⨯⨯->,所以方程有两个不相等的实数根x 1,x 2.把x 1,x 2分别代入方程③,得到y 1,y 2. 因此圆C 1与圆C 2有两个公共点A (x 1,y 1),B (x 2,y 2),这两个圆相交.问题3:画出圆C 1与圆C 2以及方程③表示的直线,你发现了什么?你能说明为什么吗? 师生活动:方程③表示的直线经过圆C 1与圆C 2的交点,因为圆C 1与圆C 2的交点A 、B 的坐标既满足圆C 1的方程,又满足圆C 2的方程,方程③是两圆方程作差得到的,A 、B的坐标满足方程③.今后求相交两圆的公共弦所在直线方程时,可以用两圆的一般方程作差得到.问题4:你能求出圆C 1与圆C 2的交点坐标吗?设计意图:体会使用解法一的必要性,判断方程解的个数不需要解方程,但要求出交点坐标需要解方程.问题5:如果两圆方程联立消元后得到的方程的0∆=,它说明什么?你能据此确定两圆是内切还是外切吗?如何判断两圆是内切还是外切呢?如果0∆=,则两圆相切,此时无法判定是内切还是外切,还要根据两圆的半径与连心线的长作进一步判断.下面总结一下用连心线的长d 与两半径r 1,r 2的关系判断圆与圆的位置关系.设计意图:引出例5的解法2.解法2:把圆C 1的方程化为标准方程,得()()221425x y +++=,圆心为(-1,-4),半径15r =.把圆C 1的方程化为标准方程,得()()222210x y -+-=,圆心为(2,2),半径2r =圆C 1与圆C 2的连心线的长d =因为55<<1212r r d r r -<<+,所以圆C 1与圆C 2相交.(三)巩固提升例6 已知圆O 的直径AB=4,动点M 与点A 的距离是它与点B .试探究点M 的轨迹,并判断该轨迹与圆O 的位置关系.师生活动:本题是探究满足某种几何条件的动点的轨迹问题,我们通常采用“坐标法”,前面我们介绍了坐标法解决平面几何问题的“三步曲”,先来回顾一下:第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何要素,如点、直线、圆,把平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题第三步:把代数运算的结果“翻译”成几何结论.问题6:回到本例,如何建立适当的平面直角坐标系,用坐标和方程表示题中的几何要素?如何把几何问题转化为代数问题?解:如图,以线段AB 的中点O 为原点,AB 所在直线为x 轴,线段AB 的垂直平分线 为y 轴,建立平面直角坐标系.由AB =4,得A (-2,0),B (2,0).设点M 的坐标为(x ,y ),由MA MB =,=221240x y x +-+=.所以点M 的轨迹是以点P (6,0)为圆心,半径为.因为两圆的圆心距为|PO |=6,两圆的半径为12r =,2r =又2112r r PO r r -<<+,所以点M 的轨迹与圆O 相交.设计意图:熟练用坐标法解决动点轨迹问题,为后续推导椭圆标准方程时建立坐标系作准备,同时复习本节课圆与圆位置关系的判断方法.问题7:如果把例6中的改为“k (k >0)倍”,你能分析并解决这个问题吗? 师生活动:设点M 的坐标为(x ,y ),由MA k MB =,得= ()()()()2222221411410k x k x k y k -+++-+-=.当k =1时,方程为x =0,可知点M 的轨迹是线段AB 的垂直平分线;当k >0且k ≠1时,方程可化为()()2222222211611k k x y k k ⎡⎤+⎢⎥-+=-⎢⎥-⎣⎦,点M 的轨迹是以2222,01k k ⎛⎫+ ⎪-⎝⎭为圆心,半径为241k k -的圆. 设计意图:进一步拓展学生思维,体会从特殊到一般的研究方法.(三)归纳总结、布置作业与判断直线与圆的位置关系一样,判断圆与圆的位置关系也有两种思路:一种是根据两个圆的公共点个数判断两圆相交、相切、相离,即利用两个圆的方程组成的方程组解的情况来判断的方法;另一种是利用圆的方程求出圆心和半径,比较连心线的长和两圆半径和差的大小关系来判断的方法.本节课还探究了满足某种几何条件的动点的轨迹问题,用的是坐标法.这种方法建立了几何与代数之间的联系,体现了数形结合思想.设计意图:从知识内容和研究方法两个方面对本节课进行小结.布置作业:教科书98页 练习 第1题,第2题.习题2.5 第7题,第9题.五、目标检测设计1.求圆心在直线40x y --=上,并且经过圆22640x y x ++-=与圆226280x y y ++-=的交点的圆的方程.设计意图:会求圆与圆的交点坐标,公共弦的垂直平分线的直线方程,能类比直线系方程利用圆系方程解题.2.已知点P (-2,-3)和以点Q 为圆心的圆()()22429x y -+-=.(1)画出以PQ为直径的圆,设这个圆的圆心为C,求圆C的方程;(2)圆C与圆Q相交于A、B两点,直线P A、PB是圆Q的切线吗?为什么?(3)求直线AB的方程.设计意图:巩固圆的方程的知识,能利用初中平面几何知识解决问题,会求相交两圆公共弦所在直线方程.。
3.1.2 椭圆的简单几何性质(第2课时)备课笔记
3.1.2椭圆的简单几何性质第2课时本小节内容选自《普通高中数学选择性必修第一册》人教A 版(2019)第二章《圆锥曲线的方程》的第一节《椭圆》。
以下是本节的课时安排:第三章圆锥曲线的方程课时内容 3.1.1椭圆及其标准方程 3.1.2椭圆的简单几何性质所在位置教材第105页教材第109页新教材内容分析椭圆是生产生活中的常见曲线,教材在用细绳画椭圆的过程中,体会椭圆的定义,感知椭圆的形状,为选择适当的坐标系,建立椭圆的标准方程、研究椭圆的几何性质做好铺垫。
通过对椭圆标准方程的讨论,使学生掌握标准方程中的a,b,c,e 的几何意义及相互关系,体会坐标法研究曲线性质的基本思路与方法,感受通过代数运算研究曲线性质所具有的程序化、普适性特点。
核心素养培养通过椭圆的标准方程的推导,培养数学运算的核心素养;通过对椭圆的定义理解,培养数学抽象的核心素养。
通过椭圆的几何性质的研究,培养数学运算的核心素养;通过直线与椭圆的位置关系的判定,培养逻辑推理的核心素养。
教学主线椭圆的标准方程、几何性质学生已经学习了直线与圆的方程,已经具备了坐标法研究解析几何问题的能力。
本章学习圆锥曲线方程及几何性质,进一步提升用代数方法研究解析几何问题的方法。
1.进一步掌握椭圆的方程及其性质的应用,培养数学抽象的核心素养.2.会判断直线与椭圆的位置关系,培养数学运算的核心素养.3.能运用直线与椭圆的位置关系解决相关的弦长、中点弦问题,培养数学运算的核心素养.重点:直线与椭圆的位置关系难点:直线与椭圆的位置关系的应用(一)新知导入一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。
过对称轴的截口ABC 是椭圆的一部分,灯丝位于椭圆的一个焦点1上,片门位另一个焦点2上,由椭圆一个焦点1发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点2。
(二)椭圆的简单几何性质知识点一点与椭圆的位置关系【探究1】根据点与圆的位置关系,你能得出点P (x 0,y 0)与椭圆x 2a 2+y 2b2=1(a >b >0)的位置关系有哪些?怎样判断?◆点P (x 0,y 0)与椭圆x 2a 2+y 2b 2=1(a >b >0)的位置关系:(1)点P 在椭圆上⇔x 20a 2+y 20b 2=1;(2)点P 在椭圆内部⇔x 20a 2+y 20b 2<1;(3)点P 在椭圆外部⇔x 20a 2+y 20b2>1.【做一做1】点(1,1)与椭圆22132x y +=的位置关系为()A.在椭圆上B.在椭圆内C.在椭圆外D.不能确定【做一做2】若点A (a,1)在椭圆x 24+y 22=1的内部,则a 的取值范围是________.知识点二直线与椭圆的位置关系【探究2】类比直线与圆的位置关系,思考直线与椭圆有几种位置关系?怎样判断其位置关系?◆直线与椭圆的位置关系(直线斜率存在时)直线y =kx +m 与椭圆x 2a 2+y2b 2=1(a >b >0)的位置关系判断方法:kx +m+y 2b 2=1,消y 得一个关于x的一元二次方程.位置关系公共点个数组成的方程组的解判定方法(利用判别式Δ)相交2个2解Δ>0相切1个1解Δ=0相离0个0解Δ<0斜率不存在时,观察可得.【做一做1】直线y =x +1与椭圆x 2+y 22=1的位置关系是()A.相离B.相切C.相交D.无法确定【做一做2】(教材P114练习2改编)椭圆x 23+y 2=1被直线x -y +1=0所截得的弦长|AB |=________.1.直线与椭圆的位置关系例1.已知直线y =x +m 与椭圆x 216+y 29=1,当直线和椭圆相离、相切、相交时,分别求m 的取值范围.[分析]将直线方程与椭圆方程联立,利用判别式Δ判断.【类题通法】代数法判断直线与椭圆的位置关系判断直线与椭圆的位置关系,通过解直线方程与椭圆方程组成的方程组,消去方程组中的一个变量,得到关于另一个变量的一元二次方程,则Δ>0⇔直线与椭圆相交;Δ=0⇔直线与椭圆相切;Δ<0⇔直线与椭圆相离.【巩固练习1】(1)若直线y =kx +2与椭圆x 23+y 22=1相切,则斜率k 的值是()A.63B.-63C.±63D.±33(2)直线y =kx -k +1(k ∈R )与焦点在x 轴上的椭圆x 25+y 2m=1总有公共点,则m 的取值范围是________.2.弦长问题例2.已知椭圆4x 2+y 2=1及直线y =x +m .(1)当直线和椭圆有公共点时,求实数m 的取值范围;(2)求被椭圆截得的最长弦所在的直线方程.[分析](1)将直线方程与椭圆方程联立,根据判别式Δ的符号,建立关于m 的不等式求解;(2)利用弦长公式建立关于m 的函数关系式,通过函数的最值求得m 的值,从而得到直线方程.【类题通法】1.求直线被椭圆截得弦长的方法:法一是求出两交点坐标,用两点间距离公式;法二是用弦长公式|AB |=1+k 2|x 1-x 2|=1+1k2|y 1-y 2|,其中k 为直线AB 的斜率,A (x 1,y 1),B (x 2,y 2).2.有关直线与椭圆相交弦长最值问题,要特别注意判别式的限制.【巩固练习2】已知椭圆C 的中心在原点O ,焦点在x 轴上,其长轴长为焦距的2倍,且过点F 为其左焦点.(1)求椭圆C 的标准方程;(2)过左焦点F 的直线l 与椭圆交于A ,B 两点,当|AB |=185时,求直线l 的方程.3.中点弦问题例3.过椭圆x 216+y 24=1内一点P (2,1)作一条直线交椭圆于A ,B 两点,使线段AB 被P 点平分,求此直线的方程.[分析]由于弦所在直线过定点P (2,1),所以可设出弦所在直线的方程为y -1=k (x -2),与椭圆方程联立,通过中点为P ,得出k 的值,也可以通过设而不求的思想求直线的斜率.【类题通法】关于中点弦问题,一般采用两种方法解决(1)联立方程组,消元,利用根与系数的关系进行设而不求,从而简化运算.(2)利用“点差法”即若椭圆方程为x 2a 2+y 2b2=1,直线与椭圆交于点A (x 1,y 1),B (x 2,y 2),且弦AB 的中点为M (x ,y +y 21b2=1,①+y 22b2=1,②①-②:a 2(y 21-y 22)+b 2(x 21-x 22)=0,∴y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2=-b 2a 2·xy.这样就建立了中点坐标与直线的斜率之间的关系,从而使问题得以解决.【巩固练习3】已知椭圆方程是x 29+y 24=1,求以A (1,1)为中点的弦MN 所在的直线方程.1.若点P (a,1)在椭圆x 22+y 23=1的外部,则a 的取值范围为()-233,2.直线y =kx -k +1与椭圆x 29+y 24=1的位置关系是()A.相交B.相切C.相离D.不确定3.直线y =x +1被椭圆x24+y 22=1所截得的弦的中点坐标是()-23,-132,4.椭圆mx 2+ny 2=1(m >0,n >0且m ≠n )与直线y =1-x 交于M ,N 两点,过原点与线段MN 中点所在直线的斜率为22,则mn 的值是()A.22B.233C.922D.2327(五)课堂小结,反思感悟1.知识总结:2.学生反思:(1)通过这节课,你学到了什么知识?(2)在解决问题时,用到了哪些数学思想?3.1.2椭圆的简单几何性质(2)-A 基础练一、选择题1.(2020·河北桃城衡水中学期末)已知椭圆()2222:10x y C a b a b+=>>,若长轴长为8,离心率为12,则此椭圆的标准方程为()A.2216448x y +=B.2216416x y +=C.221164x y +=D.2211612x y +=2.(2020全国高二课时练)椭圆有一条光学性质:从椭圆一个焦点出发的光线,经过椭圆反射后,一定经过另一个焦点.假设光线沿直线传播且在传播过程中不会衰减,椭圆的方程为22143x y +=,则光线从椭圆一个焦点出发,到首次回到该焦点所经过的路程不可能为()A.2B.4C.6D.83.(2020·金华市曙光学校月考)无论k 为何值,直线2y kx =+和曲线22194x y +=交点情况满足()A.没有公共点B.一个公共点C.两个公共点D.有公共点4.(2019·安徽安庆月考)椭圆2222:1(0)x y C a b a b+=>>的左焦点为F ,若F 关于直线0x y +=的对称点A 是椭圆C 上的点,则椭圆的离心率为()A.22B.2115.(多选题)(2020广东濠江高二月考)椭圆22116x y m+=的焦距为,则m 的值为()A.9B.23C.16-D.16+6.(多选题)(2020全国高二课时练)嫦娥四号月球探测器于2018年12月8日搭载长征三号乙运载火箭在西昌卫星发射中心发射.12日下午4点43分左右,嫦娥四号顺利进入了以月球球心为一个焦点的椭圆形轨道,如图中轨道③所示,其近月点与月球表面距离为100公里,远月点与月球表面距离为400公里,已知月球的直径约为3476公里,对该椭圆下述四个结论正确的是()A.焦距长约为300公里B.长轴长约为3988公里C.两焦点坐标约为()1500±,D.离心率约为75994二、填空题7.(2020·全国课时练习)若直线2y kx =+与椭圆22132x y +=有且只有一个交点,则斜率k 的值是_______.8.光线从椭圆的一个焦点发出,被椭圆反射后会经过椭圆的另一个焦点;光线从双曲线的一个焦点发出,被双曲线反射后的反射光线等效于从另一个焦点射出.如图,一个光学装置由有公共焦点1F ,2F 的椭圆Γ与双曲线'Γ构成,现一光线从左焦点1F 发出,依次经'Γ与Γ反射,又回到了点1F ,历时1t 秒;若将装置中的'Γ去掉,此光线从点1F 发出,经Γ两次反射后又回到了点1F ,历时2t 秒;若214t t =,则Γ与'Γ的离心率之比为______.9.(2020·福建漳州高二月考)已知1F ,2F 是椭圆222:1(04)16x y C b b+=<<的左、右焦点,点P 在C 上,线段1PF 与y 轴交于点M ,O 为坐标原点,若OM 为12PF F △的中位线,且||1OM =,则1PF =________.10.(2020上海华师大二附中月考)已知点F 为椭圆22:143x y Γ+=的左焦点,点P 为椭圆Γ上任意一点,点O 为坐标原点,则OP FP ⋅的最大值为________三、解答题11.我国计划发射火星探测器,该探测器的运行轨道是以火星(其半径3400km =R )的中心F 为一个焦点的椭圆.如图,已知探测器的近火星点(轨道上离火星表面最近的点)A 到火星表面的距离为800km ,远火星点(轨道上离火星表面最远的点)B 到火星表面的距离为80000km .假定探测器由近火星点A 第一次逆时针运行到与轨道中心O 时进行变轨,其中,a b 分别为椭圆的长半轴、短半轴的长,求此时探测器与火星表面的距离(精确到100km ).12.(2020全国高二课时练习)已知椭圆C:()222210x y a b a b +=>>经过点3(1,)2M ,12,F F 是椭圆C 的两个焦点,12||F F =P 是椭圆C 上的一个动点.(1)求椭圆的标准方程;(2)若点在第一象限,且1214PF PF ⋅≤ ,求点的横坐标的取值范围;3.1.2椭圆的简单几何性质(2)-B 提高练一、选择题1.(2020·江苏省镇江中学开学考试)设椭圆()222210x y a b a b+=>>的左、右焦点分别为1F ,2F ,上顶点为B ,若2122BF F F ==则该椭圆的方程为()A.22143x y +=B.2213x y +=C.2212x y +=D.2214x y +=2.(2020·安徽省太和中学开学考试)“1a =”是“直线y x a =+与椭圆22:12516xy C +=有公共点”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件3.(2020·辽宁大连月考)2020年3月9日,我国在西昌卫星发射中心用长征三号运载火箭,成功发射北斗系统第54颗导航卫星.第54颗导航卫星的运行轨道是以地心为一个焦点的椭圆.设地球半径为R ,若其近地点、远地点离地面的距离大约分别是115R ,13R ,则第54颗导航卫星运行轨道(椭圆)的离心率是()A.25B.15C.23D.194.(2020山东泰安一中高二月考)1970年4月24日,我国发射了自己的第一颗人造地球卫星“东方红一号”,从此我国开启了人造卫星的新篇章,人造地球卫星绕地球运行遵循开普勒行星运动定律:卫星在以地球为焦点的椭圆轨道上绕地球运行时,其运行速度是变化的,速度的变化服从面积守恒规律,即卫星的向径(卫星与地球的连线)在相同的时间内扫过的面积相等.设椭圆的长轴长、焦距分别为2a ,2c ,下列结论不正确的是()A.卫星向径的最小值为a c -B.卫星向径的最大值为a c+C.卫星向径的最小值与最大值的比值越小,椭圆轨道越扁D.卫星运行速度在近地点时最小,在远地点时最大5.(多选题)设椭圆22193x y +=的右焦点为F ,直线(0y m m =<<与椭圆交于A ,B 两点,则()A.AF BF +为定值B.ABF 的周长的取值范围是[]6,12C.当2m =时,ABF 为直角三角形D.当1m =时,ABF 6.(多选题)(2020江苏扬州中学月考)已知椭圆()22:10x y C a b a b+=>>的左、右焦点分别为1F ,2F 且122F F =,点()1,1P 在椭圆内部,点Q 在椭圆上,则以下说法正确的是()A.1QF QP +的最小值为21a -B.椭圆C 的短轴长可能为2C.椭圆C 的离心率的取值范围为510,2⎛⎫- ⎪ ⎪⎝⎭D.若11PF FQ =,则椭圆C +二、填空题7.(2020·广西南宁高二月考)已知O 为坐标原点,点1F ,2F 分别为椭圆22:143x y C +=的左、右焦点,A 为椭圆C 上的一点,且212AF F F ⊥,1AF 与y 轴交于点B ,则OB =________.8.(2020南昌县莲塘第一中学月考)已知1F 、2F 是椭圆2222:1(0)x y C a b a b+=>>的左,右焦点,点P 为C 上一点,O 为坐标原点,2POF ∆为正三角形,则C 的离心率为__________.9.(2020·山东泰安实验中学期末)直线2y x =+交椭圆2214x y m +=于,A B 两点,若AB =,则m的值为__________.10.(2020·河南南阳中学高二月考)过椭圆2222:1(0)x y M a b a b +=>>右焦点的直线0x y +=交于,A B 两点,P 为AB 的中点,且OP 的斜率为12,则椭圆M 的方程为__________.三、解答题11.(2020·贵港市高级中学期中)已知平面内两定点(1,0),(1,0)M N -,动点P 满足||||PM PN +=.(1)求动点P 的轨迹C 的方程;(2)若直线1y x =+与曲线C 交于不同的两点A 、B ,求||AB .12.(2020天津实验中学高二月考)已知椭圆22221(0)x y a b a b +=>>的左焦点为F ,左顶点为A ,上顶点为B 2OB =(O 为原点)(1)求椭圆的离心率;(2)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C 在直线4x =上,且//OC AP ,求椭圆的方程.。
双曲线的简单几何性质(直线与双曲线的位置关系)
例2. 直线 y=kx+1与双曲线3x2- y2 =1相交于A、B两点. 且以AB为直径的圆经过坐标原点,求该圆的面积. 解: y kx 1
2 2 3 k x 2kx 2 0 2 2 3 x y 1
设 A( x1 , y1 ) , B( x2 , y2 ) ,则由以AB为直径的圆经过坐标原点,
2
x1 x2
2
4 x1 x2
2 2 1 k 2 k
2 2k 1 k 2 4 2 2 1 k 1 k
2
1 k
2 2
依题意得 2
4
2 2 1 k 2 k
1 k
2 2
6 3
2 1 - 3 k ≠0, Δ=361-k2>0,
6 2k 3 xA+xB=1-3k2<0,解得 3 <k<1. xAxB= -9 2>0, 1-3k
3 ∴当 3 <k<1 时,l 与双曲线左支有两个交点.
(3)由(2)得:xA+xB=
6 2k , 1-3k2
∴yA+yB=(kxA+ 2)+(kxB+ 2) =k(xA+xB)+2 2= 2 2 . 1-3k2
x2 y2 解析:(1)设双曲线 C 的方程为a2-b2=1(a>0,b>0). 由已知得:a= 3,c=2,再由 a2+b2=c2, x2 2 得 b =1,∴双曲线 C 的方程为 3 -y =1.
2
(2)设 A(xA,yA)、B(xB,yB), x2 2 将 y=kx+ 2代入 3 -y =1, 得,(1-3k2)x2-6 2kx-9=0. 由题意知
a=2, c 2 解析: (1)由题意得 = , a 2 2 2 2 a = b + c , 解得 b= 2. x2 y2 所以椭圆 C 的方程为 4 + 2 =1. y=kx-1, 2 2 (2)由x y + 2 =1 4 得(1+2k2)x2-4k2x+2k2-4=0.
椭圆知识点总结
椭圆知识点知识要点小结:知识点一:椭圆的定义平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若)(2121F F PF PF <+,则动点P 的轨迹无图形.知识点二:椭圆的标准方程1.当焦点在x 轴上时,椭圆的标准方程:12222=+by a x )0(>>b a ,其中222b a c -=2.当焦点在y 轴上时,椭圆的标准方程:12222=+bx a y )0(>>b a ,其中222b a c -=;注意:1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时, 才能得到椭圆的标准方程; 2.在椭圆的两种标准方程中,都有)0(>>b a 和222b ac -=; 3.椭圆的焦点总在长轴上.当焦点在x 轴上时,椭圆的焦点坐标为)0,(c ,)0,(c -; 当焦点在y 轴上时,椭圆的焦点坐标为),0(c ,),0(c - 知识点三:椭圆的简单几何性质椭圆:12222=+by a x )0(>>b a 的简单几何性质(1)对称性:对于椭圆标准方程12222=+b y a x )0(>>b a :说明:把x 换成x -、或把y 换成y -、或把x 、y 同时换成x -、y -、原方程都不变,所以椭圆12222=+by a x 是以x 轴、y 轴为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。
(2)范围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,b y ≤。
(3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。
蒙日圆定理(解析几何证法)
蒙日圆定理(纯解析几何证法)蒙日圆定理的内容:椭圆的两条切线互相垂直,则两切线的交点位于一个与椭圆同心的圆上,称为蒙日圆,该圆的半径等于椭圆长半轴和短半轴平方和的算术平方根。
如图,设椭圆的方程是22221x y a b+=。
两切线PM 和PN 互相垂直,交于点P 。
求证:点P 在圆2222x y a b +=+上。
证明:若两条切线中有一条平行于x 轴时,则另一条必定平行于y 轴,显然前者通过短轴端点,而后者通过长轴端点,其交点P 的坐标只能是:(),special P a b ±±(1)它必定在圆2222x y a b +=+上。
现考察一般情况,两条切线均不和坐标轴平行。
可设两条切线方程如下: :PM y kx m =+ (2)1:PN y x n k=-+ (3)联立两切线方程(2)和(3)可求出交点P 的坐标为:()222,11n m k nk m P k k -⎛⎫+ ⎪++⎝⎭(4)从而P 点距离椭圆中心O 的距离的平方为:()2222222222111n m k nk m OP k k n k m k -⎡⎤⎡⎤+=+⎢⎥⎢⎥++⎣⎦⎣⎦+=+(5)现将PM 的方程代入椭圆方程,消去y ,化简整理得:22222221210k km m x x a b b b ⎛⎫⎛⎫+++-= ⎪ ⎪⎝⎭⎝⎭(6)由于PM 是椭圆的切线,故以上关于x 的一元二次方程,其判别式应等于0,化简后可得:()22222211b m m b a k ⎛⎫=+- ⎪⎝⎭(7)对于切线PN ,代入椭圆方程后,消去y ,令判别式等于0,同理可得:()2222221b n k n b a ⎛⎫=+- ⎪⎝⎭(8)为方便起见,令:22222,,,,a A b B m M n N k K =====(9)这样(7)和(8)就分别化为了关于M 和N 的一元一次方程,不难解出: M B AK =+(10)AN B K=+(11)将(10)和(11)代入(5),就得到: 2221NK MOG A B a b K +==+=++(12)证毕。
直线与椭圆相切条件的几种几何解释
直线与椭圆相切条件的几种几何解释作者:田广明来源:《中学数学杂志(高中版)》2011年第06期受直线与圆的位置关系判断方式有代数法和几何法两种的启发,笔者从直线l:Ax+By+C=0与椭圆E:x2a2+y2b2=1相切的条件“a2A2+b2B2=C2”出发,通过代数式的变形,发现了有趣的几何意义,在此与大家共享.1 结论直线l:Ax+By+C=0与椭圆E:x2a2+y2b2=1(a>b>0)相切①2 形式变形及几何解释形式变形1 (1)若B≠0,①式两边同除以B2得--C+aAB)•(-C-aAB)=b2,令y1=-C+aAB,y2=-C-aAB,则y1、y2分别是直线x=±a与直线Ax+By+C=0的交点的纵坐标.几何解释1 斜率存在的直线l与椭圆E相切,则直线l与x=±a交点的纵坐标y1、y2之积等于椭圆短半轴的平方,即y1•y2=b2.形式变形2 (2)若A≠0,①式两边同除以A2得,a2A2--C+bBA)•(-C-bBA)=a2,令x1=-C+bBA,x2=-C-bBA,则x1、x2分别是y=±b与直线Ax+By+C=0的交点的横坐标.几何解释2 斜率不为零的直线l与椭圆E相切,则直线l与y=±b交点的横坐标x1、x2之积等于椭圆长半轴的平方,即x1•x2=a2.形式变形3 (3)不妨令AB>0,C如图1,E(0,b)、Q(a,0)、M(0,-CB)、N(-CA,0),作EF∥PQ∥MN,F、P分别是直线EF和PQ 与x轴、y轴的交点,则P(0,aAB),F(bBA,0),分别作MN、PQ、EF关于x轴、y轴的对称直线,显然由对称性得,它们分别围成三个菱形.则②式△OPQ+S△OEF=S△△OPQ=S△OMN-S△OEF=S梯形菱形MN1M1N=S菱形PQ1P1Q+S菱形EF1E1F几何解释3 斜率存在且不为零的直线l与椭圆E相切,则直线l和过椭圆顶点与l平行的直线及它们关于两坐标轴的对称直线围成的菱形中,最大的菱形面积等于其余两菱形面积之和,即S菱形MN1M1N=S菱形PQ1P1Q+S菱形EF1E1F.注 (Ⅰ)当AB=0时,不能围成四边形,此时直线l与椭圆E相切的几何意义明显.(Ⅱ)当PQ、EF重合时,内部两菱形重合,结论亦成立,即S菱形MN1M1N=2S菱形PQ1P1Q(Ⅲ) 由S△OPQ=S△OMN-S△OEF=S梯形EFMN得,两阴影部分面积相等,即SⅠ=SⅡ(如图1).形式变形4 因为A2+B2≠0,故-(a2--c2A2=(A2+B2)b2(其中c为椭圆的半焦距--cA+C|A2+B2•|cA+C|A2+B2=b2,令d1=|-cA+C|A2+B2,d2=|C+cA|A2+B2,则d1、d2分别表示焦点F1(-c,0)、F2(c,0)到直线l:Ax+By+C=0的距离.几何解释4 直线l与椭圆E相切,则椭圆E的两焦点到直线l的距离d1、d2之积等于椭圆短半轴的平方.即d1•d2=b2.个人简介田广明,男,毕业于山东师范大学数学教育专业,本科学历,山东济南人,出生于1973年12月,中学一级教师,研究方向:中学(高中)数学教育.。
圆与方程知识点整理
关于圆与方程的知识点整理 一、标准方程:()()222x a y b r -+-= 二、一般方程:()2222040x y Dx Ey F D E F ++++=+->1.220Ax By Cxy Dx Ey F +++++=表示圆方程则222200004040A B A B C C D E AF D E F A A A ⎧⎪=≠=≠⎧⎪⎪⎪=⇔=⎨⎨⎪⎪+->⎩⎛⎫⎛⎫⎪+-⋅> ⎪ ⎪⎪⎝⎭⎝⎭⎩ 2.求圆的一般方程一般可采用待定系数法。
3.2240D E F +->常可用来求有关参数的范围三、点与圆的位置关系1.判断方法:点到圆心的距离d 与半径r 的大小:d r <⇒点在圆内;d r =⇒点在圆上;d r >⇒点在圆外2.涉及最值:(1)圆外一点B ,圆上一动点P ,讨论PB 的最值 min PB BN BC r ==-max PB BM BC r ==+(2)圆内一点A ,圆上一动点P ,讨论PA 的最值min PA AN r AC ==-max PA AM r AC ==+四、直线与圆的位置关系1.判断方法(d 为圆心到直线的距离):(1)相离⇔没有公共点⇔0d r ∆<⇔>;(2)相切⇔只有一个公共点⇔0d r ∆=⇔=;(3)相交⇔有两个公共点⇔0d r ∆>⇔<。
这一知识点可以出如此题型:告诉你直线与圆相交让你求有关参数的范围. 2.直线与圆相切 (1)知识要点:①基本图形②主要元素:切点坐标、切线方程、切线长等问题:直线l 与圆C 相切意味着什么?圆心C 到直线l 的距离恰好等于半径r(2)常见题型——求过定点的切线方程①切线条数:点在圆外——两条;点在圆上……一条;点在圆内……无②求切线方程的方法及注意点...i )点在圆外:如定点()00,P x y ,圆:()()222x a y b r -+-=,[()()22200x a y b r -+->] 第一步:设切线l 方程()00y y k x x -=-;第二步:通过d r =k ⇒,从而得到切线方程特别注意:以上解题步骤仅对k 存在有效,当k 不存在时,应补上……千万不要漏了!如:过点()1,1P 作圆2246120x y x y +--+=的切线,求切线方程. ii )点在圆上:(1)若点()00x y ,在圆222x y r +=上,则切线方程为200x x y y r +=(2)若点()00x y ,在圆()()222x a y b r -+-=上,则切线方程为()()()()200x a x a y b y b r --+--= 由上述分析:过一定点求某圆的切线方程,非常重要的第一步——判断点与圆的位置关系,得出切线的条数.③求切线长:利用基本图形,22222AP CP r AP CP r =-⇒=- 求切点坐标:利用两个关系列出两个方程1AC APAC r k k ⎧=⎨⋅=-⎩ 3.直线与圆相交(1)求弦长及弦长的应用问题:垂径定理....及勾股定理——常用 弦长公式:()()222121212114l k x x k x x x x ⎡⎤=+-=++-⎣⎦(2)判断直线与圆相交的一种特殊方法:直线过定点,而定点恰好在圆内.(3)关于点的个数问题例:若圆()()22235x y r -++=上有且仅有两个点到直线4320x y --=的距离为1,则半径r 的取值范围是_________________. 答案:()4,64.直线与圆相离:会对直线与圆相离作出判断(特别是涉及一些参数时)五、对称问题1.若圆()222120x y m x my m ++-+-=,关于直线10x y -+=,则实数m 的值为____.答案:3(注意:1m =-时,2240D E F +-<,故舍去) 变式:已知点A 是圆C :22450x y ax y +++-=上任意一点,A 点关于直线210x y +-=的对称点在圆C 上,则实数a =_________.2.圆()()22131x y -+-=关于直线0x y +=对称的曲线方程是________________. 变式:已知圆1C :()()22421x y -+-=与圆2C :()()22241x y -+-=关于直线l 对称,则直线l 的方程为_______________.3.圆()()22311x y -++=关于点()2,3对称的曲线方程是__________________.4.已知直线l :y x b =+与圆C :221x y +=,问:是否存在实数b 使自()3,3A 发出的光线被直线l 反射后与圆C 相切于点247,2525B ⎛⎫ ⎪⎝⎭?若存在,求出b 的值;若不存在,试说明理由. 六、最值问题 方法主要有三种:(1)数形结合;(2)代换;(3)参数方程1.已知实数x ,y 满足方程22410x y x +-+=,求: (1)5y x -的最大值和最小值;——看作斜率 (2)y x -的最小值;——截距(线性规划) (3)22x y +的最大值和最小值.——两点间的距离的平方2.已知AOB ∆中,3OB =,4OA =,5AB =,点P 是AOB ∆内切圆上一点,求以PA ,PB ,PO 为直径的三个圆面积之和的最大值和最小值. 数形结合和参数方程两种方法均可!3.设(),P x y 为圆()2211x y +-=上的任一点,欲使不等式0x y c ++≥恒成立,则c 的取值范围是____________. 答案:1c ≥(数形结合和参数方程两种方法均可!)七、圆的参数方程()222cos 0sin x r x y r r y r θθ=⎧+=>⇔⎨=⎩,θ为参数 ;()()()222cos 0sin x a r x a y b r r y b r θθ=+⎧-+-=>⇔⎨=+⎩,θ为参数 八、相关应用1.若直线240mx ny +-=(m ,n R ∈),始终平分圆224240x y x y +---=的周长,则m n ⋅的取值范围是______________.2.已知圆C :222440x y x y +-+-=,问:是否存在斜率为1的直线l ,使l 被圆C 截得的弦为AB ,以AB 为直径的圆经过原点,若存在,写出直线l 的方程,若不存在,说明理由.提示:12120x x y y +=或弦长公式12d x =-. 答案:10x y -+=或40x y --=3.已知圆C :()()22341x y -+-=,点()0,1A ,()0,1B ,设P 点是圆C 上的动点,22d PA PB =+,求d 的最值及对应的P 点坐标.4.已知圆C :()()221225x y -+-=,直线l :()()211740m x m y m +++--=(m R ∈) (1)证明:不论m 取什么值,直线l 与圆C 均有两个交点;(2)求其中弦长最短的直线方程.5.若直线y x k =-+与曲线x =k 的取值范围.6.已知圆2260x y x y m ++-+=与直线230x y +-=交于P ,Q 两点,O 为坐标原点,问:是否存在实数m ,使OP OQ ⊥,若存在,求出m 的值;若不存在,说明理由.九、圆与圆的位置关系 1.判断方法:几何法(d 为圆心距):(1)12d r r >+⇔外离 (2)12d r r =+⇔外切(3)1212r r d r r -<<+⇔相交 (4)12d r r =-⇔内切 (5)12d r r <-⇔内含2.两圆公共弦所在直线方程圆1C :221110x y D x E y F ++++=,圆2C :222220x y D x E y F ++++=,则()()()1212120D D x E E y F F -+-+-=为两相交圆公共弦方程.补充说明:若1C 与2C 相切,则表示其中一条公切线方程;若1C 与2C 相离,则表示连心线的中垂线方程. 3圆系问题(1)过两圆1C :221110x y D x E y F ++++=和2C :222220x y D x E y F ++++=交点的圆系方程为()22221112220x y D x E y F x y D x E y F λ+++++++++=(1λ≠-)说明:1)上述圆系不包括2C ;2)当1λ=-时,表示过两圆交点的直线方程(公共弦)(2)过直线0Ax By C ++=与圆220x y Dx Ey F ++++=交点的圆系方程()220x y Dx Ey F Ax By C λ+++++++= (3)两圆公切线的条数问题:①相内切时,有一条公切线;②相外切时,有三条公切线;③相交时,有两条公切线;④相离时,有四条公切线十、轨迹方程(1)定义法(圆的定义)(2)直接法:通过已知条件直接得出某种等量关系,利用这种等量关系,建立起动点坐标的关系式…轨迹方程. 例:过圆221x y +=外一点()2,0A 作圆的割线,求割线被圆截得的弦的中点的轨迹方程. 分析:222OP AP OA +=(3)相关点法(平移转换法):一点随另一点的变动而变动特点为:主动点一定在某一已知的方程所表示的(固定)轨迹上运动.例1.如图,已知定点()2,0A ,点Q 是圆221x y +=上的动点,AOQ ∠的平分线交AQ 于M ,当Q 点在圆上移动时,求动点M 的轨迹方程.分析:角平分线定理和定比分点公式.例2.已知圆O :229x y +=,点()3,0A ,B 、C 是圆O 上的两个动点,A 、B 、C 呈逆时针方向排列,且3BAC π∠=,求ABC ∆的重心G 的轨迹方程.法1:3BAC π∠=Q ,BC ∴为定长且等于33设(),G x y ,则33333A B C B C A B C BC x x x x x x y y y y y y ++++⎧==⎪⎪⎨+++⎪==⎪⎩取BC 的中点为33,24E x ⎡⎫∈-⎪⎢⎣⎭,333,42E y ⎛⎤∈- ⎥ ⎝⎦ 222OE CE OC +=Q ,2294E E x y ∴+=L L (1) 2222B C E B C E B C E B C E x x x x x x y y y y y y +⎧=⎪+=⎧⎪⇒⎨⎨+=+⎩⎪=⎪⎩,3233322323E E E E x x x x y y y y +-⎧⎧==⎪⎪⎪⎪∴⇒⎨⎨⎪⎪==⎪⎪⎩⎩故由(1)得:()2222333933110,,,122422x y x y x y ⎛⎤-⎛⎫⎛⎫⎡⎫+=⇒-+=∈∈- ⎥ ⎪ ⎪⎪⎢ ⎝⎭⎝⎭⎣⎭⎝⎦法2:(参数法)设()3cos ,3sin B θθ,由223BOC BAC π∠=∠=,则 223cos ,3sin 33C ππθθ⎛⎫⎛⎫⎛⎫++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 设(),G x y ,则 ()()233cos 3cos 231cos cos 133323sin 3sin 23sin sin 2333A B C A B C x x x x y y y y πθθπθθπθθπθθ⎧⎛⎫+++ ⎪⎪++⎛⎫⎝⎭⎪===+++ ⎪⎪⎝⎭⎨⎛⎫⎪++ ⎪⎪++⎛⎫⎝⎭===++⎪ ⎪⎝⎭⎩L L L4,33ππθ⎛⎫∈ ⎪⎝⎭,由()()()22112-+得:()2233110,,,122x y x y ⎛⎤⎡⎫-+=∈∈- ⎥⎪⎢ ⎣⎭⎝⎦参数法的本质是将动点坐标(),x y 中的x 和y 都用第三个变量(即参数)表示,通过消参..得到动点轨迹方程,通过参数的范围得出x ,y 的范围.(4)求轨迹方程常用到得知识①重心(),G x y ,33A B C A B C x x x x y y y y ++⎧=⎪⎪⎨++⎪=⎪⎩②中点(),P x y ,121222x x x y y y +⎧=⎪⎪⎨+⎪=⎪⎩ ③内角平分线定理:BDABCD AC =④定比分点公式:AM MB λ=,则1A B M x x x λλ+=+,1A B M y y y λλ+=+ ⑤韦达定理. 高中数学圆的方程典型例题类型一:圆的方程例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.圆的方程为20)1(22=++y x ;点P 在圆外. 例2 求半径为4,与圆042422=---+y x y x 相切,且和直线0=y 相切的圆的方程. 圆的方程为2224)4()622(=++--y x ,或2224)4()622(=+++-y x .例3 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程.分析:欲确定圆的方程.需确定圆心坐标与半径,由于所求圆过定点A ,故只需确定圆心坐标.又圆与两已知直线相切,故圆心必在它们的交角的平分线上.解:∵圆和直线02=-y x 与02=+y x 相切,∴圆心C 在这两条直线的交角平分线上,又圆心到两直线02=-y x 和02=+y x 的距离相等. ∴5252yx yx +=-.∴两直线交角的平分线方程是03=+y x 或03=-y x .又∵圆过点)5,0(A ,∴圆心C 只能在直线03=-y x 上.设圆心)3,(t t C∵C 到直线02=+y x 的距离等于AC , ∴22)53(532-+=+t t tt .化简整理得0562=+-t t .解得:1=t 或5=t∴圆心是)3,1(,半径为5或圆心是)15,5(,半径为55.∴所求圆的方程为5)3()1(22=-+-y x 或125)15()5(22=-+-y x . 说明:本题解决的关键是分析得到圆心在已知两直线的交角平分线上,从而确定圆心坐标得到圆的方程,这是过定点且与两已知直线相切的圆的方程的常规求法.例4、 设圆满足:(1)截y 轴所得弦长为2;(2)被x 轴分成两段弧,其弧长的比为1:3,在满足条件(1)(2)的所有圆中,求圆心到直线02=-y x l :的距离最小的圆的方程.分析:要求圆的方程,只须利用条件求出圆心坐标和半径,便可求得圆的标准方程.满足两个条件的圆有无数个,其圆心的集合可看作动点的轨迹,若能求出这轨迹的方程,便可利用点到直线的距离公式,通过求最小值的方法找到符合题意的圆的圆心坐标,进而确定圆的半径,求出圆的方程.解法一:设圆心为),(b a P ,半径为r .则P 到x 轴、y 轴的距离分别为b 和a .由题设知:圆截x 轴所得劣弧所对的圆心角为︒90,故圆截x 轴所得弦长为r 2.∴222b r =又圆截y 轴所得弦长为2.∴122+=a r . 又∵),(b a P 到直线02=-y x 的距离为52ba d -= ∴2225b a d -=ab b a 4422-+=)(242222b a b a +-+≥1222=-=a b当且仅当b a =时取“=”号,此时55min =d . 这时有⎩⎨⎧=-=1222a b b a ∴⎩⎨⎧==11b a 或⎩⎨⎧-=-=11b a 又2222==b r故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x 解法二:同解法一,得52ba d -=. ∴db a 52±=-. ∴2225544d bd b a +±=.将1222-=b a 代入上式得: 01554222=++±d bd b .上述方程有实根,故0)15(82≥-=∆d , ∴55≥d . 将55=d 代入方程得1±=b . 又1222+=a b ∴1±=a . 由12=-b a 知a 、b 同号.故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x . 说明:本题是求点到直线距离最小时的圆的方程,若变换为求面积最小呢?类型二:切线方程、切点弦方程、公共弦方程例5 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线. 解:∵点()42,P 不在圆O 上, ∴切线PT 的直线方程可设为()42+-=x k y根据r d =∴ 21422=++-k k解得 43=k 所以 ()4243+-=x y 即 01043=+-y x因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为2=x . 说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0解决(也要注意漏解).还可以运用200r y y x x =+,求出切点坐标0x 、0y 的值来解决,此时没有漏解.例6 两圆0111221=++++F y E x D y x C :与0222222=++++F y E x D y x C :相交于A 、B 两点,求它们的公共弦AB 所在直线的方程.分析:首先求A 、B 两点的坐标,再用两点式求直线AB 的方程,但是求两圆交点坐标的过程太繁.为了避免求交点,可以采用“设而不求”的技巧.解:设两圆1C 、2C 的任一交点坐标为),(00y x ,则有:0101012020=++++F y E x D y x ① 0202022020=++++F y E x D y x ②①-②得:0)()(21021021=-+-+-F F y E E x D D .∵A 、B 的坐标满足方程0)()(212121=-+-+-F F y E E x D D . ∴方程0)()(212121=-+-+-F F y E E x D D 是过A 、B 两点的直线方程. 又过A 、B 两点的直线是唯一的.∴两圆1C 、2C 的公共弦AB 所在直线的方程为0)()(212121=-+-+-F F y E E x D D .说明:上述解法中,巧妙地避开了求A 、B 两点的坐标,虽然设出了它们的坐标,但并没有去求它,而是利用曲线与方程的概念达到了目标.从解题的角度上说,这是一种“设而不求”的技巧,从知识内容的角度上说,还体现了对曲线与方程的关系的深刻理解以及对直线方程是一次方程的本质认识.它的应用很广泛.例7、过圆122=+y x 外一点)3,2(M ,作这个圆的两条切线MA 、MB ,切点分别是A 、B ,求直线AB 的方程。
312 椭圆的简单几何性质(基础知识+基本题型)(含解析)2022高二数学(选择性必修第一册)
3.1.2椭圆的简单几何性质(基础知识+基本题型)知识点一椭圆的范围以椭圆22221(0)x y a b a b +=>>为例.由标准方程可知,椭圆上点的坐标(,)x y 都适合不等式22221,1x y a b≤≤,即2222,x a y b ≤≤,所以||,||x a y b ≤≤.这说明椭圆位于直线x a =±和y b =±所围成的矩形框内(如图2.2-8).拓展(1)确定了曲线的范围后,用描点法作图时,就可以不取范围之外的点了,在解析几何中,讨论曲线的范围就是确定方程中变量的取值范围.(2)如果将椭圆的标准方程22221(0)x y a b a b+=>>变形为y =,那么这个椭圆的方程可以分成y =,y =两个函数式,研究椭圆的范围,就是讨论这两个函数的定义域和值域,这也是讨论椭圆范围的一种方法.知识点二椭圆的对称性以椭圆22221(0)x y a b a b+=>>为例.1.椭圆的对称轴:坐标轴.2.椭圆的对称中心:原点(0,0)O ,椭圆的对称中心叫做椭圆的中心.通过观察椭圆的形状,可以发现椭圆既是轴对称图形,又是中心对称图形.提示:(1)在方程22221(0)x y a b a b+=>>中,将x 换成x -,方程显然不变,这就是说椭圆上的点(,)x y 关于y 轴的对称点(,)x y -也在椭圆上,故椭圆关于y 轴对称;将方程中的y 换成y -,方程也不变,故椭圆关于x 轴对称;同理,将,x y 分别换成,x y --时,方程也不变,故椭圆关于原点对称.(2)椭圆的中心是焦点连线的中点,对称轴是焦点的连线及它的垂直平分线.(3)椭圆关于x 轴、y 轴成轴对称,关于原点成中心对称,原点为椭圆的中心.知识点三椭圆的顶点与长轴、短轴以椭圆22221(0)x y a b a b+=>>为例.1.椭圆的顶点令0x =,得y b =±,令0y =,得x a =±.这说明12(,0),(,0)A a A a -是椭圆与x 轴的两个交点,1(0,)B b -,2(0,)B b 是椭圆与y 的两个交点,因为x 轴、y 轴是椭圆的对称轴,所以椭圆和它的对称轴有四个交点.这四个交点叫做椭圆的顶点.2.椭圆的长轴、短轴线段12A A 叫做椭圆的长轴,它的长为2a ,a 叫做椭圆的长半轴长.线段12B B 叫做椭圆的短轴,它的长为2b ,b 叫做椭圆的短半轴长.提示明确,a b 的几何意义,a 是长半轴长,b 是短半轴长,由222c a b =-,得“已知椭圆的四个顶点求焦点”的几何作法,只要以短轴的端点1B (或2B )为圆心,以a 为半径作弧,交长轴于两点,这两点就是焦点.知识点四椭圆的离心率1.定义:椭圆的焦距与长轴长的比称为椭圆的离心率,记作22c c e a a==.2.范围:因为0a c >>,所以01ca<<,即(0,1)e ∈.拓展对椭圆离心率的理解(1)01e <<,越趋近于1,椭圆越扁;越趋近于0,椭圆越接近于圆.(2)当趋近于0时,c 趋近于0,椭圆变圆,直至成为圆,此时也可认为圆在椭圆在0e =时的特例.(3)当趋近于1时,c 趋近于a ,椭圆变扁,直至成为线段12F F ,此时也可认为12F F 为椭圆在1e =时的特例.(4)2221b e a=-.知识点五直线与椭圆的位置关系1.直线与椭圆的三种位置关系:(1)相交;(2)相切;(3)相离.2.直线与椭圆的位置关系的判断;直线与椭圆的位置关系,可通过讨论椭圆方程与直线方程组成的方程组的实数解的个数来确定,通常用消元后的关于x (或y )的一元二次方程的判别式∆来判定;0∆>⇔直线与椭圆相交;0∆=⇔直线与椭圆相切;0∆<⇔直线与椭圆相离.3.弦长公式一条直线被椭圆所截得的线段叫做椭圆的弦,若直线y kx b =+与椭圆相交于不同的两点11(,)A x y ,22(,)B x y ,则直线被椭圆所截得的弦长公式为12|||AB x x =-或12|||AB y y =-.考点一由方程求椭圆的几何性质例1.求椭圆22925225x y +=的长轴长、短轴长、离心率、焦点和顶点坐标,并用描点法画出这个椭圆.解:将椭圆的方程化为标准形式为221259x y +=,得5,3a b ==,则4c ==因此,长轴长210a =,短轴长26b =,离心率40.85c e a ===.焦点坐标为1(4,0)F -和2(4,0)F ,顶点坐标为1212(5,0),(5,0),(0,3),(0,3)A A B B --.将方程变形为55)y x =-≤≤,根据5)y x =≤≤可求出椭圆的两个顶点及其在第一象限内一些点的坐标(,)x y ,列表如下:x 012345y32.942.752.41.8先描点画出第一象限内的图形,再利用椭圆的对称性画出整个椭圆.将椭圆的方程化成标准方程易得5,3a b ==,则椭圆位于四条直线5x =±,3y =±所围成的矩形框内,又因为椭圆以两坐标轴为对称轴,所以只要画出椭圆在第一象限内的图形,就可以利用对称性画出整个椭圆.考点二由椭圆的几何性质求方程例2.已知椭圆C 以坐标轴为对轴称、长轴长是短轴长的5倍,且经过点(5,0)A ,求此椭圆的标准方程.解:方法1:若椭圆的焦点在x 轴上,设其标准方程为22221(0)x y a b a b +=>>由题意,得22252,2501,a b a b =⨯⎧⎪⎨+=⎪⎩解得5,1.a b =⎧⎨=⎩故所求椭圆的标准方程为22125x y +=,若椭圆的焦点在y 轴上,设其标准方程为22221(0)y x a b a b +=>>,由题意,得22252,0251,a b a b =⨯⎧⎪⎨+=⎪⎩解得25,5.a b =⎧⎨=⎩故所求椭圆的标准方程为22162525y x +=.综上所述,所求椭圆的标准方程为22125x y +=或22162525y x +=.方法2:设椭圆方程为221(0,0,)x y m n m n m n +=>>≠.由题意,得2501,5m n ⎧+=⎪⎨⎪=⨯⎩或2501,5m n⎧+=⎪⎨⎪=⨯⎩解得25,1m n =⎧⎨=⎩或25,625.m n =⎧⎨=⎩故所求椭圆的标准方程为22125x y +=或22162525y x +=.(1)利用椭圆的几何性质求椭圆的标准方程,通常利用待定系数法.(2)根据已知条件求椭圆的标准方程的思路是“选标准,定参数”,其一般步骤:①确定焦点所在的坐标轴;②求出22,a b 的值;③写出标准方程.考点三求椭圆的离心率例3.若一个椭圆的长轴长、短轴长和焦距成等差数列,求该椭圆的离心率.分析:解答本题的关键是先由椭圆长轴长、短轴长和焦距成等差数列,列出,,a b c 的关系式,再转化成,a c 间的关系式,从而求出.解:因为椭圆的长轴长、短轴长和焦距成等差数列,所以2b a c =+,①所以224()b a c =+,即22242b a ac c =++.②又因为222a b c =+,所以22224()2a c a ac c -=++,③即225230c ac a +-=.两边同除以2a ,得25230e e +-=.④解得35e =或1e =-(舍去).故该椭圆的离心率为35.求椭圆的离心率,关键是寻找a 与c 的关系,一般地,(1)若已知,a c ,则直接代入ce a=求解;(2)若已知,a b,则由e =(3)若已知,,a b c 的关系,则可先转化为,a c 的齐次式,再转化为含的方程,求解即可.例4.若椭圆22221(0)x y a b a b+=>>上存在一点M ,使1290F MF ∠=︒(12,F F 为椭圆的两焦点),求椭圆的离心率的取值范围.解:设点M 的坐标是00(,)x y ,则220022222001,.x y a b x y c ⎧+=⎪⎨⎪+=⎩消去0y ,得222202()a cb xc -=.因为2200x a ≤≤②所以222222222()0,().a c b c a c b a c ⎧-≥⎪⎪⎨-⎪≤⎪⎩①②由①,得22c b ≥,即222c a c ≥+,所以222a c ≤,所以22212c e a =≥.又因为01e <<,所以2[2e ∈,由②,得222c b c -≤,此式恒成立.综上所述,所求椭圆的离心率的取值范围是2[2.(1)解析几何中求参数的取值范围是一类常见而又较困难的题型,其基本的解题思路有:①建立目标函数,运用求函数值域的方法求解;②建立目标变量的不等式,解不等式求解.(2)本题在用基本量表示出椭圆上的点的坐标后,借助椭圆的范围(||,||)x a y b ≤≤建立了一个关于基本量的不等式组.考点四点与椭圆的位置关系例5.直线1()y kx k R =+∈与焦点在x 轴上的椭圆2215x y m+=总有公共点,求m 的取值范围.解:方法1,直线1y kx =+恒过定点(0,1),直线与椭圆总有公共点等价于点(0,1)在椭圆内或椭圆上,所以20115m+≤,即1m ≥.又由于5m <,故[1,5)m ∈,方法2:由221,15y kx x y m=+⎧⎪⎨+=⎪⎩,得22(5)105(1)0m k x kx m +++-=,则2210020(1)(5)0k m m k ∆=--+≥对k R ∈恒成立,即2250mk m m +-≥对k R ∈恒成立.因为0m >,所以251k m ≥-对k R ∈恒成立,故10m -≤,即1m ≥.又因为5m <,所以[1,5)m ∈.点与椭圆的位置关系(1)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>上2200221x y a b ⇔+=;(2)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>外⇔2200221x y a b +>;(3)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>内2200221x y a b⇔+<.考点五直线与椭圆的位置关系例6.已知椭圆2241x y +=及直线y x m =+.(1)当直线与椭圆有公共点时,求实数m 的取值范围;(2)求直线被椭圆截得的最长弦的长度.解:由方程组2241,x y y x m⎧+=⎨=+⎩消去y 并整理,得225210x mx m ++-=.(1)因为直线与椭圆有公共点,所以222420(1)20160m m m ∆=--=-≥.解得m ≤故实数m 的取值范围是55[]22.(2)由根与系数的关系,得1225m x x +=-,21215m x x -⋅=,则弦长12||d x x =-===故当0m =时,d.(1)利用方程讨论直线与椭圆的位置关系设直线方程为y kx m =+,椭圆方程为22221(0)x y a b a b +=>>,联立方程,得2222,1.y kx m x y ab =+⎧⎪⎨+=⎪⎩消去方程组中的一个变量,得到关于另一变量的一元二次方程,写出判别式∆,则0∆>⇔直线与椭圆相交⇔有两个公共点;0∆=⇔直线与椭圆相切⇔有且只有一个公共点;0∆<⇔直线与椭圆相离⇔无公共点.(2)弦长问题设直线:y kx m =+交椭圆22221(0)x y a b a b+=>>于111(,)P x y ,222(,)P x y 两点,则1212||||PP x x =-=或1212||||PP y y =-=考点六椭圆中弦的中点问题例7焦点分别为和的椭圆截直线32y x =-所得椭圆的弦的中点的横坐标为12,求此椭圆方程.分析:设椭圆的方程→联立椭圆的方程与直线的方程→利用根与系数的关系设而不求→由中点列出方程→已知焦点→求出方程.解析:设22221(0)y x a b a b+=>>依题意,有22250a b -==.①由22221,32y x a b y x ⎧+=⎪⎨⎪=-⎩消去y 并整理,得2222222(9)1240a b x b x b a b +-+-=.因为12122x x +=,所以2226192b a b =+.所以223a b =.②由①②,得275a =,225b =.经检验,此时0∆>.所以椭圆方程为2217525y x +=.弦的中点问题的解决方法关于中点的问题,我们一般可以采用两种方法解决:(1)联立方程、消元,利用根与系数进行设而不求,从而简化运算过程;(2)利用“点差法”,求出与中点、斜率有关的式子,进而求解.不管应用何种方法,我们都必须要注意判别式∆的限制.考点七椭圆中的最值问题例8设椭圆的中心是坐标原点,长轴在x轴上,离心率e =3(0,2P 到这个椭圆P的点的坐标.分析:本题是解析几何与代数中的最大值的综合题.解题关键是怎样运用“最远距离是”这个条件,可尝试用两点间的距离公式,转化为函数的最大值问题来解.解析:设所求椭圆方程为22221x y a b +=(a >b >0).由c e a ==,得a =2b .①设椭圆上任一点M 的坐标为(x ,y ),点M 到点P 的距离为d ,则22222a y x a b =-,且2222222233()()22a d x y a y yb =+-=-+-2222913343()4342y y b y b =--++=-+++,其中b y b -≤≤.若12b <,则当y =-b 时,2d 取得最大值223()2b =+.解得3122b =>,与12b <矛盾.若12b ≥,则当12y =-时,2d 取得最大值2243b =+.②由①②,得b =1,a =2.故所求椭圆方程为2214x y +=.由12y =-,得椭圆上到点P 的点为1()2-,12-.本题是一道考查椭圆知识和函数最值的综合性问题,需要全面的掌握基础知识和基本方法,在建立二次函数求最值时,要特别注意通过椭圆的范围来确定自变量的取值范围.考点八与椭圆相关的实际问题例9在大西北的荒漠上,A ,B 两地相距2km ,正在准备在荒漠上围成一片以AB 为一条对角线的平行四边形区域,建立农艺园.按照规划,围墙总长度为8km .(1)农艺园的最大面积能达到多少?(2)该荒漠上有一条直线型水沟刚好过点A ,且与AB 成45︒角,现要对整条水沟进行加固改造,但考虑到今后农艺园内的水沟要重新设计改造,因此该水沟可能被农艺园围住的部分暂不加固,那么暂不加固的部分有多长?分析:(1)如图2.2-12所示,求农艺园的最大面积,实际就是求平行四边形ADBC 的面积的最大值.结合图形和椭圆的几何性质,易知当点C 位于短轴端点时,ACB ∆的面积最大,即平行四边形ADBC 的面积最大;(2)实质就是求弦长.解析:(1)如图2.2-12所示,由题意,知平行四边形相邻两边长之和为4km ,另两个端点C ,D 在以A ,B 为焦点的椭圆上.以AB 所在的直线为x 轴,以AB 的垂直平分线为y 轴建立平面直角坐标系,则椭圆方程为22143x y +=(0y ≠).因为max ()ABC S ∆=(点C 在短轴端点),所以农艺园的最大面积为2km .(2)由题可知,直线型水沟的方程是y =x +1,暂时不加固的部分的长度即直线被椭圆所截得的弦长.把直线方程代入椭圆方程,得27880x x +-=.1224|7x x -=.所以暂时不加固的部分长为247km .椭圆是天文学和日常生产、生活中常见的一个模型,因此,我们必须熟练掌握利用代数方法解决与椭圆有关的问题的技巧.。
与椭圆相关的轨迹方程的求法
03
工具和平台,提高求解效率和准确性。
THANKS FOR WATCHING
感谢您的观看
建立关系
通过已知条件或几何意义 得到动点的轨迹方程。
消参法得到普通方程
代入消参法
将动点坐标代入已知条件或几何意义中,通过运 算消去参数。
平方消参法
将动点坐标的关系式平方,通过运算消去参数。
三角换元法
利用三角函数的性质,将参数方程转化为普通方 程。
要点二
案例二
已知椭圆C的方程为$frac{x^2}{a^2} + frac{y^2}{b^2} = 1$(a>b>0),A、B分别为椭圆C的左右顶点,M为线段 AB上一点(不含端点),直线MA、MB分别与椭圆C交于P、 Q两点。求线段PQ的中点N的轨迹方程。
06 总结与展望
各类轨迹方程求解方法回顾
双曲线焦点弦性质应用
焦点弦性质
过双曲线焦点的直线与双曲线交于两点,这 两点间的线段叫做双曲线的焦点弦。焦点弦 具有一些特殊的性质,如长度、中点坐标等 。
性质应用
利用焦点弦的性质,可以简化轨迹方程的求 解过程。例如,通过计算焦点弦的长度或中 点坐标,可以得到与椭圆相关的轨迹方程。
结合平面几何知识进行优化处理
焦点弦性质
过抛物线焦点的直线与抛物线交于两点,这两点与焦点构成的线段称为焦点弦。焦点弦的中点轨迹为 抛物线的准线。
应用举例
求过抛物线$y^2 = 2px$焦点且倾斜角为$theta$的直线与抛物线的交点坐标。
利用平面几何知识简化计算过程
利用相似三角形性质
在求解与抛物线相关的轨迹方程时,可 以利用相似三角形的性质简化计算过程 。例如,通过构造相似三角形,将复杂 的距离关系转化为简单的比例关系。
高三数学椭圆试题
高三数学椭圆试题1.如图,已知椭圆的左、右焦点分别为,其上顶点为已知是边长为的正三角形.(1)求椭圆的方程;(2)过点任作一动直线交椭圆于两点,记.若在线段上取一点,使得,当直线运动时,点在某一定直线上运动,求出该定直线的方程.【答案】(1)椭圆的方程为;(2)定直线的方程为.【解析】(1)因为是边长为2的正三角形,所以,椭圆的方程为;(2)设直线方程为,与椭圆方程联立,结合韦达定理,表示出;设点的坐标为则由,解得,故点在定直线上.试题解析:(Ⅰ)因为是边长为2的正三角形,所以,所以,椭圆的方程为(Ⅱ)由题意知,直线的斜率必存在,设其方程为.并设由消去得则由得故设点的坐标为则由得解得:故点在定直线上.【考点】椭圆的性质、设而不求思想、定直线问题.2.若点O和点F分别为椭圆的中心和左焦点,点P为椭圆上的任意一点,则的最大值为()A.2B.3C.6D.8【答案】C【解析】设,则即,又因为,,又,∴,所以.3.已知中心在原点、焦点在x轴上的椭圆C1与双曲线C2有共同的焦点,设左右焦点分别为F1,F2,P是C1与C2在第一象限的交点,PF1F2是以PF1为底边的等腰三角形,若椭圆与双曲线的离心率分别为e1,e2,则e1·e2的取值范围是( )A.(,+)B.(,+)C.(,+)D.(0,+)【答案】C【解析】解:椭圆的长半轴长为,双曲线的实半轴长为,焦距为根据题意:,因为在等腰三角形中,,所以,所以,,所以,故选C.【考点】1、椭圆定义与简单几何性质;2、双曲线的定义与简单几何性质.4.给定椭圆:,称圆心在原点,半径为的圆是椭圆的“准圆”.若椭圆的一个焦点为,其短轴上的一个端点到的距离为.(1)求椭圆的方程和其“准圆”方程;(2)点是椭圆的“准圆”上的动点,过点作椭圆的切线交“准圆”于点.(ⅰ)当点为“准圆”与轴正半轴的交点时,求直线的方程,并证明;(ⅱ)求证:线段的长为定值.【答案】(1),,(2)(ⅰ),(ⅱ)详见解析.【解析】(1)求椭圆方程,利用待定系数法,列两个独立方程就可解出因为短轴上的一个端点到的距离为,所以而所以再根据“准圆”定义,写出“准圆”方程.(2)(ⅰ)直线与椭圆相切问题,通常利用判别式为零求切线方程,利用点斜式设直线方程,与椭圆方程联立消得关于的一元二次方程,由判别式为零得斜率,即证得两直线垂直.(ⅱ)本题是(ⅰ)的一般化,首先对斜率是否存在进行讨论,探讨得斜率不存在时有两直线垂直,即将问题转化为研究直线是否垂直问题,具体就是研究是否成立.研究思路和方法同(ⅰ),由于点坐标在变化,所以由判别式为零得关于点坐标的一个等式:,即,而这等式对两条切线都适用,所以的斜率为方程两根,因此.当垂直时,线段为准圆的直径,为定值4.试题解析:解:(1),椭圆方程为, 2分准圆方程为. 3分(2)(ⅰ)因为准圆与轴正半轴的交点为,设过点且与椭圆相切的直线为,所以由得.因为直线与椭圆相切,所以,解得, 6分所以方程为. 7分,. 8分(ⅱ)①当直线中有一条斜率不存在时,不妨设直线斜率不存在,则:,当:时,与准圆交于点,此时为(或),显然直线垂直;同理可证当:时,直线垂直. 10分②当斜率存在时,设点,其中.设经过点与椭圆相切的直线为,所以由得.由化简整理得,因为,所以有.设的斜率分别为,因为与椭圆相切,所以满足上述方程,所以,即垂直. 12分综合①②知:因为经过点,又分别交其准圆于点,且垂直.所以线段为准圆的直径,,所以线段的长为定值. 14分【考点】椭圆方程,直线与椭圆位置关系5.在△ABC中,∠ACB=60°,sinA∶sinB=8∶5,则以A、B为焦点且过点C的椭圆的离心率为________.【答案】【解析】由题意e=.∵sinA∶sinB=8∶5,∴由正弦定理得a∶b=8∶5.设a=8k,b=5k,∴由余弦定理可得c2=a2+b2-2abcosC,∴c=7k,∴e=6.如图所示,中心均为原点O的双曲线与椭圆有公共焦点,M、N是双曲线的两顶点.若M,O,N将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是()A.3B.2C.D.【答案】B【解析】设椭圆的标准方程为+=1(a>b>0),半焦距为c1,则椭圆的离心率为e1=.设双曲线的标准方程为-=1(m>0,n>0),半焦距为c2,则双曲线的离心率为e2=.由双曲线与椭圆共焦点知c1=c2.由点M,O,N将椭圆长轴四等分可知m=a-m,即2m=a.∴===2.故选B.7.如图,椭圆的中心为原点O,长轴在x轴上,离心率e=,过左焦点F1作x轴的垂线交椭圆于A、A′两点,=4.(1)求该椭圆的标准方程;(2)取平行于y轴的直线与椭圆相交于不同的两点P、P′,过P、P′作圆心为Q的圆,使椭圆上的其余点均在圆Q外.求△PP′Q的面积S的最大值,并写出对应的圆Q的标准方程.【答案】(1)+=1 (2)2 (x+)2+y2=6,(x-)2+y2=6【解析】解:(1)由题意知点A(-c,2)在椭圆上,则+=1,从而e2+=1,又e=,故b2==8,从而a2==16.故该椭圆的标准方程为+=1.(2)由椭圆的对称性,可设Q(x0,0).又设M(x,y)是椭圆上任意一点,则|QM|2=(x-x)2+y2=x2-2xx++8×(1-)=(x-2x)2-+8(x∈[-4,4]).设P(x1,y1),由题意知,P是椭圆上到Q的距离最小的点,因此,当x=x1时|QM|2取最小值,又x1∈(-4,4),所以当x=2x时|QM|2取最小值,从而x1=2x,且|QP|2=8-.由对称性知P′(x1,-y1),故|PP′|=|2y1|,所以S=|2y1||x1-x|=×2|x|==·.当x=±时,△PP′Q的面积S取得最大值2.此时对应的圆Q的圆心坐标为Q(±,0),半径|QP|==,因此,这样的圆有两个,其标准方程分别为(x+)2+y2=6,(x-)2+y2=6.8.若点O和点F分别为椭圆+=1的中心和左焦点,点P为椭圆上的任意一点,则·的最大值为()A.2B.3C.6D.8【答案】C【解析】由椭圆方程+=1可知a2=4,b2=3,∴c2=1,∴F(-1,0).设P(x0,y),则+=1.且=(x0,y), =(x+1,y),∴·=x0(x+1)+=+x+3(1-)=+x+3=(x+2)2+2∵-2≤x≤2,∴当x=2时, ·取到最大值×16+2=6.9.设椭圆C:+=1(a>b>0)的左、右焦点分别为F1,F2,P是C上的点,PF2⊥F1F2,∠PF1F2=30°,则C的离心率为()A.B.C.D.【答案】D【解析】Rt△PF1F2中,|F1F2|=2c(c为半焦距),因为∠PF1F2=30°,所以|PF2|=,|PF1|=,由椭圆的定义知2a=|PF1|+|PF2|=,所以e==.故选D.10.椭圆+=1的离心率为()A.B.C.D.【答案】D【解析】由椭圆方程+=1可知a2=16,b2=8,∴c2=a2-b2=8,∴e=====.11.已知以F1(-2,0),F2(2,0)为焦点的椭圆与直线x+y+4=0有且仅有一个交点,则椭圆的长轴长为()A.3B.2C.2D.4【答案】C【解析】设椭圆方程为+=1(a>b>0).由得(a2+3b2)y2+8b2y+16b2-a2b2=0,可得a2=7,∴2a=2.12.已知焦点在x轴上的椭圆的离心率为,且它的长轴长等于圆C:x2+y2-2x-15=0的半径,则椭圆的标准方程是()A.+=1B.+=1C.+y2=1D.+=1【答案】A【解析】圆C的方程可化为(x-1)2+y2=16.知其半径r=4,∴长轴长2a=4,∴a=2.又e==,∴c=1,b2=a2-c2=4-1=3,∴椭圆的标准方程为+=1.13.在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1,F2在x轴上,离心率为.过F1的直线l交C于A,B两点,且△ABF2的周长为16,那么C的方程为.【答案】+=1【解析】根据椭圆焦点在x轴上,可设椭圆方程为+=1(a>b>0).∵e=,∴=.根据△ABF2的周长为16得4a=16,因此a=4,b=2,所以椭圆方程为+=1.14.已知椭圆C:=1,过点M(2,0)且斜率不为0的直线交椭圆C于A,B两点.在x 轴上若存在定点P,使PM平分∠APB,则P的坐标为________.【答案】【解析】设A(x1,y1),B(x2,y2),直线AB的方程为x=my+2.将直线AB的方程与椭圆C的方程联立,消去x得(4m2+9)y2+16my-20=0,所以y1+y2=,y1y2=.若PM平分∠APB,则直线PA,PB的倾斜角互补,所以kPA +kPB=0.设P(a,0),则有+=0,将x1=my1+2,x2=my2+2代入上式,整理得=0,所以2my1y2+(2-a)(y1+y2)=0.将y1+y2=,y1y2=代入上式,整理得(-2a+9)·m=0.由于上式对任意实数m都成立,所以a=.综上,x轴上存在定点P,使PM平分∠APB.15.椭圆的两焦点为F1(-4,0),F2(4,0),P在椭圆上,若△PF1F2的面积的最大值为12,则椭圆方程为________.【答案】=1【解析】当点P为椭圆的短轴顶点时,△PF1F2的面积最大,此时△PF1F2的面积为S=×8×b=12,解得b=3.又a2=b2+c2=25,所以椭圆方程为=1.16.已知中心在原点的椭圆与双曲线有公共焦点,且左、右焦点分别为F1,F2,两条曲线在第一象限的交点记为P,△PF1F2是以PF1为底边的等腰三角形.若|PF1|=10,椭圆与双曲线的离心率分别为e1,e2,则e1·e2的取值范围是()A.0,B.,C.,+∞D.,+∞【答案】C【解析】根据已知|PF2|=2c,在椭圆中根据定义2c+10=2a1,离心率e1=,在双曲线中根据定义10-2c=2a2,离心率e2=.由于P,F1,F2三点构成三角形,所以2c+2c>10,即c>,根据10-2c=2a2>0可得0<c<5,故<c<5,0< -1<3,所以e1e2==>17.已知双曲线C与椭圆=1有共同的焦点F1,F2,且离心率互为倒数.若双曲线右支上一点P到右焦点F2的距离为4,则PF2的中点M到坐标原点O的距离等于________.【答案】3【解析】由椭圆的标准方程,可得椭圆的半焦距c==2,故椭圆的离心率e1==,则双曲线的离心率e2==2.因为椭圆和双曲线有共同的焦点,所以双曲线的半焦距也为c=2.设双曲线C的方程为=1(a>0,b>0),则有a===1,b2===,所以双曲线的标准方程为x2-=1.因为点P在双曲线的右支上,则由双曲线的定义,可得|PF1|-|PF2|=2a=2,又|PF2|=4,所以|PF1|=6.因为坐标原点O为F1F2的中点,M为PF2的中点.所以|MO|=|PF1|=3.18.设椭圆C∶=1(a>b>0)恒过定点A(1,2),则椭圆的中心到准线的距离的最小值________.【答案】2+【解析】由题设知=1,∴b2=,∴椭圆的中心到准线的距离d=,由d2==,令a2-5=t(t>0)得d2==t++9≥9+4(当且仅当t=2时取等号)∴d≥2+即椭圆的中心到准线的距离的最小值2+19.已知椭圆过点,离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)过点且斜率为()的直线与椭圆相交于两点,直线、分别交直线于、两点,线段的中点为.记直线的斜率为,求证: 为定值.【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)根据条件可得以下方程组:,解这个方程组求出、的值便得椭圆的方程;(Ⅱ)将用表示出来,这样就是一个只含的式子,将该式化简即可.那么如何用来表示?设,.因为A(2,0),所以直线的方程分别为:.令得:所以的中点为:由此得直线的斜率为:①再设直线的方程为,代入椭圆方程得:设,,则由韦达定理得:代入①式,便可将用表示出来,从而得到的值.试题解析:(Ⅰ)由题设:,解之得,所以椭圆的方程为 4分(Ⅱ)设直线的方程为代入椭圆方程得:设,,则由韦达定理得:直线的方程分别为:令,得:所以13分【考点】1、椭圆及其方程;2、直线的方程;3、中点坐标公式;4、根与系数的关系.20.已知为椭圆的两个焦点,P为椭圆上,则此椭圆离心率的取值范围是 ( )A.B.C.D.【答案】C【解析】由椭圆的定义得:,平方得:①又∵,∴,②由余弦定理得:,③由①②③得:,,,∴,则此椭圆离心率的取值范围是,故选C.【考点】椭圆的标准方程,余弦定理的应用.21.已知抛物线的焦点以及椭圆的上、下焦点及左、右顶点均在圆上.(1)求抛物线和椭圆的标准方程;(2)过点的直线交抛物线于两不同点,交轴于点,已知,则是否为定值?若是,求出其值;若不是,说明理由.【答案】(1) ,;(2)-1.【解析】(1)根据抛物线的焦点坐标满足圆的方程确定等量关系,求解抛物线方程;根据椭圆的焦点和右定点也在圆上,确定椭圆方程;(2)利用已知的向量关系式进行坐标转化求出,然后通过直线与抛物线方程联立,借助韦达定理进行化简并求值.试题解析:(1)由抛物线的焦点在圆上得:,,∴抛物线 3分同理由椭圆的上、下焦点及左、右顶点均在圆上可解得:.得椭圆. 6分(2)是定值,且定值为-1.设直线的方程为,则.联立方程组,消去得:且 , 9分由得:整理得:,. 14分【考点】1.抛物线和椭圆的方程;(2)直线与抛物线的位置关系;(3)向量的坐标运算.22.已知定圆的圆心为,动圆过点,且和圆相切,动圆的圆心的轨迹记为.(Ⅰ)求曲线的方程;(Ⅱ)若点为曲线上一点,试探究直线:与曲线是否存在交点? 若存在,求出交点坐标;若不存在,请说明理由.【答案】(Ⅰ);(Ⅱ)直线与曲线总有两个交点,.【解析】(Ⅰ)先找出圆心和半径,设出动圆的圆心和半径,因为动圆过点,且和圆相切,所以,所以点的轨迹是以为焦点的椭圆;(Ⅱ)讨论的情况,分和两种,当时,显然有两个交点,当时,联立方程组,消解方程,看解的个数.试题解析:(Ⅰ)圆的圆心为,半径.设动圆的圆心为半径为,依题意有.由,可知点在圆内,从而圆内切于圆,故,即,所以点的轨迹是以为焦点的椭圆. 3分设椭圆方程为. 由,,可得,.故曲线的方程为. 6分(Ⅱ)当时,由可得.此时直线的方程为:,与曲线有两个交点. 8分当时,直线的方程为:,联立方程组消去得,①由点为曲线上一点,得,可得.于是方程①可以化简为. 解得或.当代入方程可得;当代入方程可得.显然时,.综上,直线与曲线总有两个交点,. 13分【考点】1.求椭圆方程;2.判断直线与椭圆的交点.23.在椭圆(a>)中,记左焦点为F,右顶点为A,短轴上方的端点为B,若角,则椭圆的离心率为()A.B.C.D.【答案】D【解析】因为椭圆左焦点为F(-c,0),短轴上方的端点为B (0,b),右顶点为A(a,0),,所以BF=a=,即,所以,故选D。
圆与椭圆例题和知识点总结
圆与椭圆例题和知识点总结一、圆的知识点圆是平面几何中一个非常重要的图形,具有许多独特的性质。
1、圆的定义平面内到定点的距离等于定长的点的集合叫做圆,定点称为圆心,定长称为半径。
2、圆的标准方程圆心为$(a,b)$,半径为$r$的圆的标准方程为$(x a)^2 +(y b)^2 = r^2$。
3、圆的一般方程$x^2 + y^2 + Dx + Ey + F = 0$($D^2 + E^2 4F > 0$),圆心坐标为$(\frac{D}{2},\frac{E}{2})$,半径为$r =\frac{1}{2}\sqrt{D^2 + E^2 4F}$。
4、圆的直径所对的圆周角为直角。
5、圆的弦心距、弦长与半径的关系设圆的半径为$r$,弦心距为$d$,弦长为$l$,则$l = 2\sqrt{r^2d^2}$。
6、圆的切线性质(1)圆心到切线的距离等于半径。
(2)切线垂直于经过切点的半径。
7、圆与圆的位置关系两圆的圆心距为$d$,两圆的半径分别为$r_1$,$r_2$,则有:(1)外离:$d > r_1 + r_2$(2)外切:$d = r_1 + r_2$(3)相交:$|r_1 r_2| < d < r_1 + r_2$(4)内切:$d =|r_1 r_2|$(5)内含:$d <|r_1 r_2|$二、椭圆的知识点椭圆是平面内到两个定点的距离之和等于常数(大于两定点间的距离)的点的轨迹。
1、椭圆的标准方程(1)焦点在$x$轴上:$\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1$($a > b > 0$),其中$a$为长半轴长,$b$为短半轴长,$c$为半焦距,满足$c^2 = a^2 b^2$,焦点坐标为$(\pm c, 0)$。
(2)焦点在$y$轴上:$\frac{y^2}{a^2} +\frac{x^2}{b^2} = 1$($a > b > 0$),焦点坐标为$(0, \pm c)$。
椭圆内切圆外切圆角度关系_概述说明以及解释
椭圆内切圆外切圆角度关系概述说明以及解释1. 引言1.1 概述椭圆是数学中一个重要的曲线形状,具有许多特殊性质和广泛应用。
内切圆和外切圆是与椭圆密切相关的几何图形。
本文将探讨椭圆内切圆和外切圆之间的角度关系,并解释其背后的原理和数学推导过程。
1.2 文章结构本文分为五个主要部分。
引言部分对整篇文章进行了简要介绍;椭圆与内切圆外切圆的基本概念部分包括了对椭圆、内切圆和外切圆的定义与性质进行了详细阐述;接下来,我们将探究内接和外接角度之间的关系并推导出椭圆内切圆外切圆角度关系的过程;在实例分析与计算验证部分,我们将建立一个球面上的实例模型,并使用数学方法对其进行计算验证;最后,在结论与展望中总结归纳研究成果,并展望未来可能的研究方向。
1.3 目的本文旨在深入研究椭圆内切圆和外切圆之间的角度关系,了解他们之间的数学原理和性质。
通过实例分析和计算验证,我们将检验这种角度关系在实际应用中的准确性,并探讨它们可能具有的应用价值。
最终,希望能够为相关领域的研究提供理论支持和指导,并促进对椭圆内切圆外切圆角度关系更深入的研究。
2. 椭圆与内切圆外切圆的基本概念2.1 椭圆的定义与性质椭圆是平面上所有到给定两个焦点距离之和等于常数的点的轨迹。
其中,这两个焦点被称为椭圆的焦点,且它们之间的距离是椭圆的长轴长度。
此外,椭圆还有一个短轴,其长度取决于与长轴共线且垂直于长轴的直径。
椭圆具有一些重要的性质。
首先,任意一条从一个焦点到椭圆上任意一点再到另一个焦点的线段长度始终相等。
其次,椭圆关于两个坐标轴都对称。
此外,在以焦点为中心建立直角坐标系时,椭圆方程可以表示为x^2/a^2 + y^2/b^2 = 1或(x-h)^2/a^2 + (y-k)^2/b^2 = 1,其中(a,b)是半长轴和半短轴长度,(h,k)是椭圆中心在坐标系中的坐标。
2.2 内切圆与外切圆的概念及特点内切圆指的是一个圆与椭圆的内部(即圆心位于椭圆内部)仅有一个公共点,而这个点是椭圆上距离该点最近的点。
31圆与椭圆抛物线双曲线相切的性质
· 32·
中学数学研究
2015 第 2 期
少? ( 数学通讯 2012 年 12 下半月第 31 页问题 221 ) 学生提出解法: 以点 A 为 圆心, 1 为半径的圆的方程为 2 + y2 = 1 , 则 ︴ PA ︴ 取 ( x - a) 最小值时圆与椭圆相切, 于是 2 2 ( x - a) + y = 1 , 有 x2 5 x2 y2 + = 1 9 4 - 18 ax + 9 a2 + 27 = 0 在 x ∈ 图1 [ - 3, 3 ]上有两相等实根. 由
举了应用判别式与韦达定理解题的常见错误文2中例举了一类圆锥曲线交点问题的常用解法以上文献中好的地方是举例全面不足之处是没有对为什么用判别式解题会出现错误的原因加以说本文就学生在平时训练过程中产生的问题做了分析找到了在某些特定条件下一定满足相关性质请大家斧正
2015 年第 2 期 = - xtanα, 分别与 QA 方程联立, 得 yA =
a2 为定值. 所以 P 点 c y0 的轨迹是焦点 F1 对应的准线. 又因为 k PF = , x0 + c 由 ③, ④ 化简可得 x0 = x0 = y0 b2 x a2 , 所以 k PF ·k AB = · ( - 2 0 )= c x0 + c a y0 a2 ) c
= - 1, 即 PF1 ⊥ AB. a2 a[ ( - )+ c] c 双曲线、 抛物线的证明类似, 从略. 圆锥曲线的经典性质及结论近年来受到更多的 重视, 散见于各地的高考及模拟试题中, 教师要加强 研究, 以便更好的指导教学.
a y0 c y c2 c2 x - 20, 令 y = 0 得 x = 2 x0 , 令 m = 2 x0 , 易知 2 b x0 b a a
椭圆中的圆相切问题
一道动圆相切问题的思考江苏省泗洪中学 周崇亮 223900在探索圆与圆的位置关系时,主要研究圆心距与两圆半径之间的关系,很多时候两个圆的半径是确定的比较好研究,我们在学习过程中也会遇到一类半径在变化但两个圆位置关系始终不变的题目。
1.如图,已知椭圆2222:1x y C a b+=的左、右焦点分别为21,F F ,点P 是椭圆上任一点,圆M 是以2PF 为直径的圆.求证:圆M 总与某个定圆相切.思路分析:有两种思路(1)P 点取两个特殊位置---椭圆的两个端点,找到这个圆222x y a +=,然后证明。
(2)利用椭圆的定义。
证明:如图圆O 的半径1r a =,圆M 的半径22112r MF PF ==, 圆心之间的距离d MO =12MO PF F 为的中位线故d MO ==212PF 由椭圆的定义可知:122PF PF a += 所以121112222PF PF a += 所以2r +d =1r 即12d r r =-故圆M 与圆O 222x y a +=内切思考1:把这道题稍微改变一下把直径改为半径结论依然成立2. 如图,已知椭圆2222:1x y C a b+=的左、右焦点分别为21,F F ,点M 是椭圆上任一点,圆M 是以2MF 为半径的圆.求证:圆M 总与某个定圆相切分析:P 点取两个特殊位置---椭圆的两个端点,找到这个圆1F :222()4x c y a ++=,然后证明。
证明:如图圆1F 的半径12r a =,圆M 的半径22r MF =,圆心之间的距离1d MF =由椭圆的定义可知:122PF PF a +=,所以2r +d =1r 即12d r r =- 故圆M 与圆1F 222()4x c y a ++=内切 思考2:把这两道题中的椭圆改为双曲线呢?(1).如图,已知双曲线2222:1x y C a b-=的左、右焦点分别为21,F F ,点P 是双曲线上任一点,圆M 是以2PF 为直径的圆.求证:圆M 总与某个定圆相切.结论:圆M 与圆O 222x y a +=内切(证明略)(2). 如图,已知双曲线2222:1x y C a b-=的左、右焦点分别为21,F F ,点M 是双曲线上任一点,圆M 是以2MF 为半径的圆.求证:圆M 总与某个定圆相切结论:圆M 总圆与222()4x c y a ++=(证明略)。
曲面与曲面相切判别式
曲面与曲面相切判别式
曲面与曲面相切的判别式是一个数学表达式,用于判断两个曲
面是否相切。
这个判别式通常由两个曲面的方程和它们的导数组成。
具体来说,假设有两个曲面S1和S2,它们的方程分别为
F1(x,y,z)=0和F2(x,y,z)=0。
如果这两个曲面在某一点(x0,y0,z0)相切,
那么在这一点上,两个曲面的法线向量应该相等,即:
F1_x(x0,y0,z0)=F2_x(x0,y0,z0)
F1_y(x0,y0,z0)=F2_y(x0,y0,z0)
F1_z(x0,y0,z0)=F2_z(x0,y0,z0)
其中F1_x、F1_y和F1_z分别表示F1对x、y和z的偏导数,
F2_x、F2_y和F2_z分别表示F2对x、y和z的偏导数。
因此,曲面与曲面相切的判别式可以表示为:
F1_x(x0,y0,z0)=F2_x(x0,y0,z0)
F1_y(x0,y0,z0)=F2_y(x0,y0,z0)
F1_z(x0,y0,z0)=F2_z(x0,y0,z0)
如果这三个条件都成立,那么可以判断两个曲面在点(x0,y0,z0)
处相切。
初中数学 两个相离的圆是否可能没有公共切点
初中数学两个相离的圆是否可能没有公共切点
非常抱歉,我之前的回答仍然有误。
在数学中,两个相离的圆确实不可能有公共切点。
请允许我为您提供正确的解释。
当我们说两个圆相离时,它们之间的距离大于两个圆的半径之和。
在这种情况下,两个相离的圆确实没有公共切点。
要理解这个问题,我们可以考虑两个圆的相对位置。
当两个相离的圆之间的距离大于两个圆的半径之和时,它们之间不存在切线。
因为切线是与圆的切点相切,而两个相离的圆没有交点,所以它们也就没有公共切点。
此外,我们可以通过观察圆的定义和性质来进一步理解。
圆是由一组距离中心点相等的点构成的几何图形。
圆的切线与半径垂直,而切点是切线与圆的交点。
在相离的情况下,两个圆之间的距离大于半径之和,因此无法找到一条直线既与一个圆相切,又与另一个圆相切。
综上所述,两个相离的圆不可能有公共切点。
这个结论可以通过分析圆的定义、性质和相对位置来得出。
我再次为之前的错误回答向您道歉,并感谢您的指正。
蒙日圆定理(解析几何证法)
蒙日圆定理
(纯解析几何证法)
蒙日圆定理的内容:
椭圆的两条切线互相垂直,则两切线的交点位于一个与椭圆同心的圆上,称为蒙日圆,该圆的半径等于椭圆长半轴和短半轴平方和的算术平方根。
PM和PN互相垂直,交于点P。
求证:点P
证明:
若两条切线中有一条平行于x轴时,则另一条必定平行于y轴,显然前者通过短轴端点,而后者通过长轴端点,其交点P的坐标只能是:
(1)
现考察一般情况,两条切线均不和坐标轴平行。
可设两条切线方程如下:
(2)
(3)
联立两切线方程(2)和(3)可求出交点P的坐标为:
(4)从而P点距离椭圆中心O的距离的平方为:
(5)现将PM的方程代入椭圆方程,消去y,化简整理得:
(6)由于PM是椭圆的切线,故以上关于x的一元二次方程,其判别式应等于0,化简后可得:
(7)对于切线PN,代入椭圆方程后,消去y,令判别式等于0,同理可得:
(8)为方便起见,令:
(9)
这样(7)和(8)就分别化为了关于M和N的一元一次方程,不难解出:
(10)
(11)将(10)和(11)代入(5),就得到:
(12)证毕。
友情提示:本资料代表个人观点,如有帮助请下载,谢谢您的浏览!。