空间向量高考题.doc.docx
空间向量复习精选例题(含答案解析)
∴二面角 B1-BE-F 的大小为 arccos(
2 )。 3
(4)∵ GD1 =(-1,0,2),而 GD1 n1 =-2+0+2=0,
z D1 A1 F E B1 C1
∴直线 GD1∥平面 BEFD。 (5) DD1 =(0,0,2), | n1 | 4 4 1 3 , ∴ n1 的单位向量为(
空间向量
2 2 2 0, 0 0 0, 0 设 AB a ,则 A 2 a, ,B 0,2 a, ,C 2 a, . 设 OP h ,则 P(0, 0,h) . 2 1 a , 0 , h . ∵ D 为 PC 的中点,∴ OD 4 2 2 1 PA 0, h 2 a, ,∴ OD 2 PA .
∵ PA n1 2 2 0, PA n1,又PA 平面BDE, PA // 平面BDE. (2)由(Ⅰ)知 n1 (1, 1,1) 是平面 BDE 的一个法向量, 又 n 2 DA (2,0,0) 是平面 DEC 的一个法向量. 设二面角 B—DE—C 的平面角为 ,由图可知 n1 , n 2
(2) DA =(2,0,0) ,设 DA 与面 EFG 所成的角为θ, 则 sin
∴直线 C1D 与平面 A1C1B 的所成角为 arcsin
| DA n | 4 21 4 21 = ,∴ arcsin 21 21 | DA || n |
(2)平面 A1C1B 的法向量 n =(2,1,2),平面 AA1C1C 的法向量 n ' =(2,1,0), 设二者夹角为θ ,∴ cos
∴ cos PA ,n PA ·n PA n 210 . 30
高中数学立体几何与空间向量真题(解析版)
高中数学专题16立体几何与空间向量真题1.如图,正方体的一个截面经过顶点A,C及棱EF上一点K,且将正方体分成体积比为3:1的两部分,则的值为.【答案】【解析】设.截面与FG交于J.,解得(舍去)故.2.设点P到平面的距离为3,点Q在平面上,使得直线PQ与所成角不小于30°且不大于60°,则这样的点Q所构成的区域的面积为.【答案】【解析】设点P在平面上的射影为O.由条件知,.即OQ∈[1,3],故所求的区域面积为.3.在正三棱锥中,,过AB的平面将其体积平分.则棱与平面所成角的余弦值为_____________。
【答案】【解析】设的中点分別为,则易证平面A BM即为平面由平行四边形的性质知,所以,又直线P C在平面上的射影为直线MK,由得因此,棱P C与平面所成角的余弦值为.故答案为:4.设P为一圆锥的顶点,A、B、C为其底面圆周上的三点,满足∠ABC=90°,M为AP的中点.若AB =1,AC=2,AP=,则二面角M-BC-A的大小为________.【答案】【解析】由,知AC为底面圆的直径.如图所示,设底面中心为O.于是,平面ABC.故.设H为M在底面上的射影.则H为AO的中点.在底面中作于点K.由三垂线定理知.从而,为二面角M-BC-A的平面角.由,结合得:.故二面角M-BC-A的大小为.5.四棱锥P-ABCD中,已知侧面是边长为1的正三角形,M、N分别为边AB、BC的中点.则异面直线MN与PC之间的距离为___________.【答案】【解析】如图,设底面对角线AC与BD交于点O,过点C作直线MN的垂线,与MN交于点H.由于PO为底面的垂线,故PO⊥CH.又AC⊥CH,于是,CH与平面POC垂直.从而,CH⊥PC.因此,CH为直线MN与PC的公垂线段.注意到,.故异面直线MN与PC之间的距离为.6.已知正三棱锥底面边长为1,高为.则其内切球半径为______.【答案】【解析】如图,设球心在平面与平面内的射影分别为,边的中点为,内切球半径为.则分别三点共线,,且.故.解得.7.设同底的两个正三棱锥内接于同一个球.若正三棱锥的侧面与底面所成的角为,则正三棱锥的侧面与底面所成角的正切值是______.【答案】4【解析】如图6,联结.则,垂足为正的中心,且过球心.联结并延长与交于点.则为边的中点,且.易知,分别为正三棱锥、正三棱锥的侧面与底面所成二面角的平面角. 则.由.故.8.在四面体中,已知.则四面体的外接球的半径为______.【答案】【解析】易知,为正三角形,且CA=CB.如图,设P、M分别为AB、CD的中点,联结PD、PC.则平面平面PDC.设的外心为N,四面体ABCD的外接球的球心为O.则.可求得由题意知.在中,由余弦定理得又因为D、M、O、N四点在以DO为直径的圆上所以故外接球的体积.9.已知正三棱柱的9条棱长都相等,是边的中点,二面角.则________.【答案】【解析】解法1 如图,以所在直线为轴、线段的中点为原点、所在直线为轴建立空间直角坐标系.设正三棱柱的棱长为2.则.故.设分别与平面、平面垂直的向量为.则由此可设.所以,,即.因此,.解法2如图..设交于点.则平面.又,则平面.过点在平面上作,垂足为,联结.则为二面角的平面角.设.易求得.在中,.又,则.故.1.四面体P-ABC,,则该四面体外接球的半径为________. 【答案】【解析】将四面体还原到一个长方体中,设该长方体的长、宽、高分别为a,b,c,则,所以四面体外接球的半径为.2.四面体ABCD中,有一条棱长为3,其余五条棱长皆为2,则其外接球的半径为____.【答案】【解析】解:设BC=3,AB=AC=AD=BD=CD=2,E,F分别是BC,AD的中点,D在面ABC上的射影H应是△ABC的外心,由于DH上的任一点到A,B,C等距,则外接球心O在DH上,因,所以AE=DE,于是ED为AD的中垂线是,顒球心O是DH,EF的交点,且是等腰△EAD的垂心,记球半径为r,由△DOF~△EAF,得.而,所以.3.如图,在四棱锥P-ABCD中,P A⊥平面ABCD,底面ABCD为正方形,P A=AB.E、F分别为PD、BC的中点,则二面角E-FD-A的正切值为________.【答案】【解析】如图,作EH⊥AD于H,连HF.由P A⊥面ABCD,知P A⊥AD,EH∥P A,EH⊥ABCD.作HG⊥DF于G,连EG,则EG⊥FD,∠EGH为二面角E-FD-A的平面角.∵ABCD为正方形,E、F分别为PD、BC的中点,∴H为AD中点,FH⊥AD.设P A=AB=2,则,FH=2,HD=4,.∴.∴二面角E-FD-A的正切值为.4.已知正四面体内切球的半径是1,则该正四面体的体积为________.【答案】【解析】设正四面体的棱长为.则该正四面体的体积为,全面积为,所以,解得.从而正四面体的体积为.故答案为:5.正方体AC1棱长是1,点E、F是线段DD1,BC1上的动点,则三棱锥E一AA1F体积为___.【答案】【解析】因为F是BC1上的动点,所以在正方体中有,利用等体积转化有.故答案为.6.顶点为P的圆锥的轴截面是等腰直角三角形,A是底面圆周上的点,B是底面圆内的点,O为底面圆圆心,AB⊥OB,垂足为B,OH⊥HB,垂足为H,且P A=4,C为P A的中点,则当三棱锥O-HPC的体积最大时,OB的长为________.【答案】【解析】法一:AB⊥OB,PB⊥AB,AB⊥面POB,面P AB⊥面POB.OH⊥PB,OH⊥面P AB,OH⊥HC,OH⊥PC,又,PC⊥OC,PC⊥面OCH.PC是三棱锥P-OCH的高.PC=OC=2.而△OCH的面积在时取得最大值(斜边=2的直角三角形).当时,由,知∠OPB=30°,.法二:由C为P A中点,故,而.记则,.∴令,得,.故答案为:7.如图,在正三棱柱中,AB=2,,D、F分别是棱AB、的中点,E为棱AC 上的动点,则△DEF周长的最小值为__________.【答案】【解析】由正三棱锥可得底面ABC,所以AB,AC.在Rt△ADF中,.如图①,把底面ABC与侧面在同一个平面内展开,展开图中只有当D、E、F三点在同一条直线上时,DE+EF取得最小值.如图②,在△ADF中,,由余弦定理可得.所以△DEF周长的最小值为.8.在边长为1的长方体内部有一小球,该小球与正方体的对角线段相切,则小球半径的最大值=___________.【答案】【解析】当半径最大时,小球与正方体的三个面相切.不妨设小球与过点的三个面相切.以为原点,分别为x、y、z轴正方向,建立空间直角坐标系.设A(0,1,1),(1,0,0),小球圆心P(r,r,r),则P到的距离.再由,得.故答案为:9.正方体中,E为AB的中点,F为的中点.异面直线EF与所成角的余弦值是_____. 【答案】【解析】设正方体棱长为1,以DA为x轴,DC为y轴,为z轴建立空间直角坐标系,则.故有.所以.故答案为:10.在半径为R的球内作内接圆柱,则内接圆柱全面积的最大值是_____.【答案】【解析】设内接圆柱底面半径为,则高位,那么全面积为.其中,等号成立的条件是.故最大值为.故答案为:11.已知空间四点满足,且是三棱锥的外接球上的一个动点,则点到平面的最大距离是______.【答案】【解析】将三棱锥补全为正方体,则两者的外接球相同.球心就是正方体的中心,记为,半径为正方体对角线的一半,即为.在正方体里,可求得点到平面的距离为,则点到平面的最大距离是.12.在正四核锥中,已知二面角的正弦值为,则异面直线所成的角为______.【答案】【解析】如图,设的交点为上的射影为,则.又因为,因此,所以,则.因此即为二面角的平面角,从而.设,则.在中,.由此得,因此,解得.从而四棱锥各侧面均为正三角形,则异面直线所成的角为.13.半径分别为6、6、6、7的四个球两两外切.它们都内切于一个大球,则大球的半径是________【答案】14【解析】设四个球的球心分别为A、B、C、D,则AB=BC=CA=12,DA=DB=DC=13,即A、B、C、D两两连结可构成正三棱锥.设待求的球心为X,半径为r.,则由对称性可知DX平面ABC.也就是说,X在平面ABC上的射影是正三角形ABC的中心O.易知.设OX=x,则由于球A内切于球X,所以AX=r-6即①又DX=OD-OX=11-x,且由球D内切于球X可知DX=r-7于是②从①②两式可解得即大球的半径为14.故答案为:1414.一个棱长为6的正四面体纸盒内放一个小正四面体,若小正四面体可以在纸盒内任意转动,则小正四面体棱长的最大值为______.【答案】2【解析】因为小正四面体可以在纸盒内任意转动,所以小正四面体的棱长最大时,为大正四面体内切球的内接正四面体.记大正四面体的外接球半径为,小正四面体的外接球(大正四面体的内切球)半径为,易知,故小正四面体棱长的最大值为.15.已知棱长的正方体内部有一圆柱,此圆柱恰好以直线为轴,则该圆柱体积的最大值为_____.【答案】【解析】由题意知只需考虑圆柱的底面与正方体的表面相切的情况.由图形的对称性可知,圆柱的上底面必与过A点的三个面相切,且切点分别在、AC、上.设线段上的切点为E,圆柱上底面中心为,半径.由,则圆柱的高为,由导数法或均值不等式得.。
高三数学空间向量试题答案及解析
高三数学空间向量试题答案及解析1.如图,长方体中,分别为中点,(1)求证:.(2)求二面角的正切值.【答案】(1)见解析(2)【解析】(1)由长方体及E、F分别为AB、C1D1的中点知,AE平行且等于C1F,所以AEC1F是平行四边形,所以C1E∥AF,由线面平行的判定定理知,C1E∥面ACF;(2)易证FG⊥面ABCD,过F作FH⊥AC于H,连结HG,因为FG⊥面ABCD,则FG⊥AC,所以∠FHG为二面角F—AC—G的平面角,然后通过解三角形,求出FG、GH的长,即可求出∠FHG的正切值,即为二面角F-AC-G的正切值.试题解析:(1)证明:在长方体中,分别为中点,且四边形是平行四边形3分,5分(2).长方体中,分别为中点,7分过做于,又就是二面角的平面角 9分,在中, 11分直角三角形中 13分二面角的正切值为 14分考点:线面平行的判定定理;二面角的计算;逻辑推理能力2.如图,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,点D是BC的中点.(1)求异面直线A1B与C1D所成角的余弦值;(2)求平面ADC1与平面ABA1夹角的正弦值.【答案】(1)(2)【解析】解:(1)以A为坐标原点,建立如图所示的空间直角坐标系A-xyz,则A(0,0,0),B(2,0,0),C(0,2,0),D(1,1,0),A1(0,0,4),C1(0,2,4),∴=(2,0,-4),=(1,-1,-4).∵cos〈,〉===,∴异面直线A1B与C1D所成角的余弦值为.(2)设平面ADC1的法向量为n1=(x,y,z),∵=(1,1,0),=(0,2,4),∴n1·=0,n 1·=0,即x+y=0且2y+4z=0,取z=1,得x=2,y=-2,∴n1=(2,-2,1)是平面ADC1的一个法向量.取平面AA1B的一个法向量为n2=(0,1,0),设平面ADC1与平面ABA1夹角的大小为θ.由cosθ===,得sinθ=.因此,平面ADC1与平面ABA1夹角的正弦值为.3.已知正方体ABCD-A1B1C1D1中,点E为上底面A1C1的中心,若=+x+y,则x、y的值分别为()A.x=1,y=1B.x=1,y=C.x=,y=D.x=,y=1【答案】C【解析】如图,=+=+=+ (+).4.如图所示,已知空间四边形ABCD的每条边和对角线长都等于1,点E、F、G分别是AB、AD、CD的中点,计算:(1)·;(2)·;(3)EG的长;(4)异面直线AG与CE所成角的余弦值.【答案】(1)(2)-(3)(4)【解析】解:设=a,=b,=c.则|a|=|b|=|c|=1,〈a,b〉=〈b,c〉=〈c,a〉=60°.=BD=c-a,=-a,=b-c,(1)·=(c-a)·(-a)=a2-a·c=;(2)·= (c-a)·(b-c)= (b·c-a·b-c2+a·c)=-;(3)=++=a+b-a+c-b=-a+b+ c.||2=a2+b2+c2-a·b+b·c-c·a=.即||=,所以EG的长为.(4)设、的夹角为θ.=b+c,=+=-b+a,cosθ==-,由于异面直线所成角的范围是(0°,90°],所以异面直线AG与CE所成角的余弦值为.5.在如图所示的空间直角坐标系中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为()A.①和②B.③和①C.④和③D.④和②【答案】D【解析】设,在坐标系中标出已知的四个点,根据三视图的画图规则判断三棱锥的正视图为④与俯视图为②,故选D.【考点】空间由已知条件,在空间坐标系中作出几何体的形状,再正视图与俯视图,容易题.6.如图,直四棱柱底面直角梯形,∥,,是棱上一点,,,,,.(1)求异面直线与所成的角;(2)求证:平面.【答案】(1);(2)证明见解析.【解析】(1)本题中由于有两两垂直,因此在求异面直线所成角时,可以通过建立空间直角坐标系,利用向量的夹角求出所求角;(2)同(1)我们可以用向量法证明线线垂直,以证明线面垂直,,,,易得当然我们也可直线用几何法证明线面垂直,首先,这由已知可直接得到,而证明可在直角梯形通过计算利用勾股定理证明,,,因此,得证.(1)以原点,、、分别为轴、轴、轴建立空间直角坐标系.则,,,. 3分于是,,,异面直线与所成的角的大小等于. 6分(2)过作交于,在中,,,则,,,, 10分,.又,平面. 12分【考点】(1)异面直线所成的角;(2)线面垂直.7.(2013•天津)如图,四棱柱ABCD﹣A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.(1)证明B1C1⊥CE;(2)求二面角B1﹣CE﹣C1的正弦值.(3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.【答案】(1)见解析(2)(3)【解析】(1)证明:以点A为原点建立空间直角坐标系,如图,依题意得A(0,0,0),B(0,0,2),C(1,0,1),B1(0,2,2),C1(1,2,1),E(0,1,0).则,而=0.所以B1C1⊥CE;(2)解:,设平面B1CE的法向量为,则,即,取z=1,得x=﹣3,y=﹣2.所以.由(1)知B1C1⊥CE,又CC1⊥B1C1,所以B1C1⊥平面CEC1,故为平面CEC1的一个法向量,于是=.从而==.所以二面角B1﹣CE﹣C1的正弦值为.(3)解:,设0≤λ≤1,有.取为平面ADD1A1的一个法向量,设θ为直线AM与平面ADD1A1所成的角,则==.于是.解得.所以.所以线段AM的长为.8.如图,四棱锥P-ABCD中,PA⊥平面ABCD,E为BD的中点,G为PD的中点,△DAB≌△DCB,EA=EB=AB=1,PA=,连接CE并延长交AD于F.(1)求证:AD⊥平面CFG;(2)求平面BCP与平面DCP的夹角的余弦值.【答案】(1)见解析(2)【解析】(1)因为△DAB ≌△DCB,EA=EB=AB=1,所以△ECB是等边,,(2)建立空间坐标系如图,取向观点的坐标为, 向量设平面PBC的法向量平面PDC的法向量则【考点】本题主要考查空间垂直关系的证明、平行关系的运用,考查空间角的求解方法,考查空间想象能力、推理论证能力、计算能力.9.如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(1)证明:PA⊥BD;(2)若PD=AD,求二面角A-PB-C的余弦值。
高三立体几何大题专题(用空间向量解决立体几何类问题).docx
【知识梳理】一、空间向量的概念及相关运算1、空间向量基本定理r r rur rr r 如果三个向量 a, b, c 不共面,那么对空间任一向量 p xaybzcr r r a, b, c 称为基向量。
2、空间直角坐标系的建立分别以互相垂直的三个基向量i , j , k 的方向为正方向建立三条数轴:x 轴, y 轴和 z 轴。
则r r r ra xi y j zk ( x,y,z )称为空间直角坐标。
注:假如没有三条互相垂直的向量,需要添加辅助线构造,在题目中找出互相垂直的两个面,通过做垂线等方法来建立即可。
3、空间向量运算的坐标表示rrrr (1)若 ax 1 , y 1, z 1 , b x 2 , y 2 , z 2 ,则: abx 1 x 2 , y 1 y 2 , z 1 z 2rr ra x 1 , y 1, z 1 ab x 1 x 2y 1 y 2 z 1 z 2r rr r1 x 2y 1y 2 z 1 z 2 0a b a bx 0r r r r x 1x 2 , y 1y 2 , z 1z 2a //b a b r r r 222aa ax 1 y 1 z 1 .r r r rr r r r rraba b = a b cos a,b . cos a ,br ra br rrrx 1 x 2y 1 y 2z 1z 2a bcos a,br r222222 a bx 1y 1z 1 x 2 y 2 z 2uuurr r(2)设 A x 1 , y 1, z 1 , Bx 2 , y 2 , z 2 则 ABOB OA x 2x 1 , y 2 y 1 , z 2z 1(3) x 1 , y 1, z 1 ,x 2 , y 2 , z 2 ,则 duuurx 2222x 1y 2 y 1z 2 z 1二、应用:平面的法向量的求法:1、建立恰当的直角坐标系2、设平面法向量 n=( x , y , z )3、在平面内找出两个不共线的向量,记为a=(a1, a2, a3) b=( b1,b2, b3) 4、根据法向量的定义建立方程组 ① n*a =0②n*b =05、解方程组,取其中一组解即可。
空间向量练习及答案解析
空间向量练习一、选择题(共15小题,每小题4.0分,共60分)1.已知平面α的一个法向量是(2,-1,1),α∥β,则下列向量可作为平面β的一个法向量的是() A. (4,2,-2) B. (2,0,4) C. (2,-1,-5) D. (4,-2,2)2.如图,过边长为1的正方形ABCD的顶点A作线段EA⊥平面AC,若EA=1,则平面ADE与平面BCE所成的二面角的大小是()A. 120° B. 45° C. 150° D. 60°3.已知=(1,2,3),=(2,1,2),=(1,1,2),点Q在直线OP上运动,则当·取得最小值时,点Q的坐标为()A. B. C. D.4.将正方形ABCD沿对角线BD折成直二面角A-BD-C,有如下四个结论:①AC⊥BD;②△ACD是等边三角形;③AB与平面BCD所成的角为60°;④AB与CD所成的角为60°.其中错误的结论是()A.① B.② C.③ D.④5.如图所示,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AB=BC=AA1,∠ABC=90°,点E,F分别是棱AB,BB1的中点,则直线EF和BC1的夹角是()A. 45° B. 60° C. 90° D. 120°6.已知在空间四面体O-ABC中,点M在线段OA上,且OM=2MA,点N为BC中点,设=a,=b,=c,则等于()A.a+b- c B.-a+b+ c C.a-b+ c D.a+b-c7.已知在棱长为2的正方体ABCD-A1B1C1D1中,E是DC的中点,建立如图所示的空间直角坐标系,则AB1与D1E所成角的余弦值为()A. B. C.- D.-8.如图所示,在正方体ABCD-A1B1C1D1中,M,N,P分别是棱CC1,BC,A1B1上的点,若∠B1MN=90°,则∠PMN的大小()A.等于90° B.小于90° C.大于90° D.不确定9.如图,S是正三角形ABC所在平面外一点,M,N分别是AB和SC的中点,SA=SB=SC,且∠ASB=∠BSC=∠CSA=90°,则异面直线SM与BN所成角的余弦值为()A.- B. C.- D.10.已知平面α内两向量a=(1,1,1),b=(0,2,-1)且c=ma+nb+(4,-4,1).若c为平面α的法向量,则m ,n 的值分别为( ) A . -1,2 B . 1,-2 C . 1,2 D . -1,-211.如图,在三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,底面ABC 是等腰直角三角形,∠ACB =90°,侧棱AA 1=2,D ,E 分别是CC 1与A 1B 的中点,点E 在平面ABD 上的射影是△ABD 的重心G ,则A 1B 与平面ABD 所成角的正弦值为( )A .√23B .√73C .√32D .√3712.如图,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,2AC =AA 1=BC =2,若二面角B 1-DC -C 1的大小为60°,则AD 的长为( ) A .√2 B .√3 C . 2 D .√2213.三棱锥A -BCD 中,平面ABD 与平面BCD 的法向量分别为n 1,n 2,若〈n 1,n 2〉=π3,则二面角A -BD -C 的大小为( ) A .π3 B .2π3 C .π3或2π3D .π3或-π314.已知AB ⃗⃗⃗⃗⃗ =(1,5,-2),BC ⃗⃗⃗⃗⃗ = (3,1,z ),若AB ⃗⃗⃗⃗⃗ ⊥BC ⃗⃗⃗⃗⃗ ,BP ⃗⃗⃗⃗⃗ =(x -1,y ,-3),且BP ⊥平面ABC ,则BP ⃗⃗⃗⃗⃗ 等于( ) A .(407,157,−3) B .(337,157,−3) C .(−407,−157,−3) D .(337,−157,−3)15.如图,在平行六面体ABCD -A 1B 1C 1D 1中,点M ,P ,Q 分别为棱AB ,CD ,BC 的中点,平行六面体的各棱长均相等.给出下列结论:①A 1M ∥D 1P ;②A 1M ∥B 1Q ;③A 1M ∥平面DCC 1D 1;④A 1M ∥平面D 1PQB 1.这四个结论中正确的个数为( ) A . 1 B . 2 C . 3 D . 4二、填空题(共6小题,每小题4.0分,共24分)16.如图所示,已知正四面体A-BCD 中,AE =AB ,CF =CD ,则直线DE 和BF 所成角的余弦值为________.17.已知a =(3,-2,-3),b =(-1,x -1,1),且a 与b 的夹角为钝角,则x 的取值范围是________.18.如图,平面PAD ⊥平面ABCD ,ABCD 为正方形,∠PAD =90°,且PA =AD =2,E ,F 分别是线段PA ,CD 的中点,则异面直线EF 与BD 所成角的余弦值为________. 19.如图,在三棱柱ABC -A 1B 1C 1中,所有棱长均为1,且AA 1⊥底面ABC ,则点B 1到平面ABC 1的距离为________.20.如下图所示,PD 垂直于正方形ABCD 所在平面,AB =2,E 为PB 的中点,cos 〈DP⃗⃗⃗⃗⃗ ,AE ⃗⃗⃗⃗⃗ 〉=√33,若以DA ,DC ,DP 所在直线分别为x ,y ,z 轴建立空间直角坐标系,则点E 的坐标为________.21.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB⃗⃗⃗⃗⃗ =(2,-1,-4),AD ⃗⃗⃗⃗⃗ =(4,2,0),AP ⃗⃗⃗⃗⃗ =(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP ⃗⃗⃗⃗⃗ 是平面ABCD 的法向量;④AP ⃗⃗⃗⃗⃗ ∥BD ⃗⃗⃗⃗⃗⃗ .其中正确的是____________.三、解答题(共6小题,每小题11.0分,共66分) 22.如图所示,已知四棱锥P -ABCD 的底面为直角梯形,AB ∥DC ,∠DAB =90°,PA ⊥底面ABCD ,且PA =AD =DC =12AB =1,M 是PB 的中点.(1)证明:面PAD ⊥面PCD ;(2)求AC 与PB 所成角的余弦值; (3)求面AMC 与面BMC 所成二面角的余弦值.23.如下图所示,在三棱锥P -ABC 中,PA ⊥底面ABC ,PA =AB ,∠ABC =60°,∠BCA =90°,点D ,E 分别在棱PB ,PC 上,且DE ∥BC . (1)求证:BC ⊥平面PAC ;(2)当D 为PB 的中点时,求AD 与平面PAC 所成的角的正弦值; (3)是否存在点E ,使得二面角A -DE -P 为直二面角?并说明理由.24.如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点E ,F 是棱BC ,CD 的中点,求:(1)直线DF 与B 1F 所成角的余弦值;(2)二面角C 1-EF -A 的余弦值.25.如图,在四棱锥S-ABCD中,底面ABCD是直角梯形,AB垂直于AD和BC,侧棱SB⊥平面ABCD,且SB=AB=AD=1,BC=2.(1)求SA与CD所成的角;(2)求平面SCD与平面SAB所成的锐二面角的余弦值.26.如下图,四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.(1)证明B1C1⊥CE;(2)求二面角B1-CE-C1的正弦值.27.如下图,在正四棱柱ABCD-A1B1C1D1中,AB=2,AA1=4,E为BC的中点,F为CC1的中点.(1)求EF与平面ABCD所成的角的余弦值;(2)求二面角F-DE-C的余弦值.空间向量练习答案解析1.【答案】D【解析】∵α∥β,∴β的法向量与α的法向量平行,又∵(4,-2,2)=2(2,-1,1),故选D.2.【答案】B【解析】以A为坐标原点,分别以AB,AD,AE所在直线为x轴,y轴,z轴,建立如图所示的空间直角坐标系Axyz,则E(0,0,1),B(1,0,0),C(1,1,0),=(1,0,-1),=(1,1,-1).设平面BCE的法向量为n=(x,y,z),则即可取n=(1,0,1).又平面EAD的法向量为=(1,0,0),所以cos〈n,〉==,故平面ADE与平面BCE所成的二面角为45°.3.【答案】C【解析】设Q(x,y,z),因Q在上,故有∥,设=λ(λ∈R),可得x=λ,y=λ,z=2λ,则Q(λ,λ,2λ),=(1-λ,2-λ,3-2λ),=(2-λ,1-λ,2-2λ),所以·=6λ2-16λ+10=62-,故当λ=时,·取最小值,此时Q.4.【答案】C【解析】如图所示,取BD的中点O,以点O为坐标原点,OD,OA,OC所在直线分别为x轴,y轴,z轴,建立空间直角坐标系Oxyz,设正方形ABCD边长为,则D(1,0,0),B(-1,0,0),C(0,0,1),A(0,1,0),所以=(0,-1,1),=(2,0,0),·=0,故AC⊥BD.①正确.又||=,||=,||=,所以△ACD为等边三角形.②正确.对于③,为面BCD的一个法向量,cos〈,〉====-.所以AB与OA所在直线所成的角为45°,所以AB与平面BCD所成角为45°.故③错误.又cos〈,〉===-.因为异面直线所成的角为锐角或直角,所以AB与CD所成角为60°.故④正确.5.【答案】B【解析】不妨设AB=BC=AA1=1,则=-=(-),=+,∴||=|-|=,||=,·=(-)·(+)=,∴cos〈,〉===,∴〈,〉=60°,即异面直线EF与BC1的夹角是60°.6.【答案】B【解析】=-=(+)-=b+c-a.7.【答案】A【解析】∵A(2,2,0),B1(2,0,2),E(0,1,0),D1(0,2,2),∴=(0,-2,2),=(0,1,2),∴||=2,||=,·=0-2+4=2,∴cos〈,〉===,又异面直线所成角的范围是,∴AB1与ED1所成角的余弦值为.8.【答案】A【解析】A1B1⊥平面BCC1B1,故A1B1⊥MN,·=(+)·=·+·=0,∴MP⊥MN,即∠PMN=90°.9.【答案】B【解析】不妨设SA=SB=SC=1,以S为坐标原点,,,所在直线分别为x轴,y轴,z 轴,建立空间直角坐标系Sxyz,则相关各点坐标为A(1,0,0),B(0,1,0),C(0,0,1),S(0,0,0),M,N.因为=,=,所以||=,||=,·=-,cos〈,〉==-,因为异面直线所成的角为锐角或直角,所以异面直线SM 与BN 所成角的余弦值为.10.【答案】A【解析】 c =ma +nb +(4,-4,1)=(m ,m ,m )+(0,2n ,-n )+(4,-4,1)=(m +4,m +2n -4,m -n +1),由c 为平面α的法向量,得即解得11.【答案】A【解析】∵侧棱与底面垂直,∠ACB =90°,所以分别以CA ,CB ,CC 1所在直线为x 轴、y 轴、z 轴,建立如图空间直角坐标系, 设CA =CB =a ,则A (a,0,0),B (0,a,0),A 1(a,0,2),D (0,0,1), ∴E (a 2,a2,1),G (a 3,a 3,13),GE ⃗⃗⃗⃗⃗ =(a 6,a 6,23),BD ⃗⃗⃗⃗⃗⃗ =(0,-a,1), ∵点E 在平面ABD 上的射影是△ABD 的重心G ,∴GE ⃗⃗⃗⃗⃗ ⊥平面ABD ,∴GE ⃗⃗⃗⃗⃗ ·BD ⃗⃗⃗⃗⃗⃗ =0,解得a =2,∴GE ⃗⃗⃗⃗⃗ =(13,13,23),BA 1⃗⃗⃗⃗⃗⃗⃗ =(2,-2,2),∵GE ⃗⃗⃗⃗⃗ ⊥平面ABD ,∴GE ⃗⃗⃗⃗⃗ 为平面ABD 的一个法向量, 又cos 〈GE ⃗⃗⃗⃗⃗ ,BA 1⃗⃗⃗⃗⃗⃗⃗ 〉=GE ⃗⃗⃗⃗⃗ ·BA 1⃗⃗⃗⃗⃗⃗⃗⃗ |GE ⃗⃗⃗⃗⃗ ||BA 1⃗⃗⃗⃗⃗⃗⃗⃗ |=43√63×2=√23,∴A 1B 与平面ABD 所成角的正弦值为√23,故选A.12.【答案】A【解析】如下图,以C 为坐标原点,CA ,CB ,CC 1所在的直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则C (0,0,0),A (1,0,0),B 1(0,2,2),C 1(0,0,2)设AD =a ,则D 点坐标为(1,0,a ),CD ⃗⃗⃗⃗⃗ =(1,0,a ),CB 1⃗⃗⃗⃗⃗⃗⃗ =(0,2,2),设平面B 1CD 的一个法向量为m =(x ,y ,z ),则{m ·CB 1⃗⃗⃗⃗⃗⃗⃗ =0,m ·CD⃗⃗⃗⃗⃗ =0⇒{2y +2z =0,x +az =0,令z =-1, 得m =(a,1,-1),又平面C 1DC 的一个法向量为n =(0,1,0), 则由cos 60°=m·n|m ||n |,得1√a 2+1=12,即a =√2,故AD =√2. 13.【答案】C【解析】如图所示,当二面角A -BD -C 为锐角时,它就等于〈n 1,n 2〉=π3;当二面角A -BD -C 为钝角时,它应等于π-〈n 1,n 2〉=π-π3=2π3. 14.【答案】D【解析】因为AB ⃗⃗⃗⃗⃗ ⊥BC ⃗⃗⃗⃗⃗ ,所以AB ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =0,即1×3+5×1+(-2)z =0,所以z =4, 因为BP ⊥平面ABC ,所以BP⃗⃗⃗⃗⃗ ⊥AB ⃗⃗⃗⃗⃗ ,且BP ⃗⃗⃗⃗⃗ ⊥BC ⃗⃗⃗⃗⃗ ,即1×(x -1)+5y +(-2)×(-3)=0,且3(x -1)+y +(-3)×4=0.解得x =407,y =-157,于是BP ⃗⃗⃗⃗⃗ =(337,−157,−3).15.【答案】C【解析】因为A 1M ⃗⃗⃗⃗⃗⃗⃗⃗ =A 1A ⃗⃗⃗⃗⃗⃗⃗ +AM ⃗⃗⃗⃗⃗⃗ =A 1A ⃗⃗⃗⃗⃗⃗⃗ +12AB ⃗⃗⃗⃗⃗ ,D 1P ⃗⃗⃗⃗⃗⃗⃗ =D 1D ⃗⃗⃗⃗⃗⃗⃗⃗ +DP ⃗⃗⃗⃗⃗ =A 1A ⃗⃗⃗⃗⃗⃗⃗ +12AB ⃗⃗⃗⃗⃗ , 所以A 1M ⃗⃗⃗⃗⃗⃗⃗⃗ ∥D 1P ⃗⃗⃗⃗⃗⃗⃗ ,从而A 1M ∥D 1P ,可得①③④正确. 又B 1Q 与D 1P 不平行,故②不正确.故选C. 16.【答案】 【解析】=+=+,=+=+,所以cos 〈,〉====.17.【答案】 B【解析】 若两向量的夹角为钝角,则a ·b <0,且a 与b 不共线,故3×(-1)+(-2)×(x -1)+(-3)×1<0,且x ≠,解得x >-2,且x ≠,故选B. 18.【答案】【解析】 以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示空间直角坐标系Axyz ,则E (0,0,1),F (1,2,0),B (2,0,0),D (0,2,0). =(1,2,-1),=(-2,2,0),故cos 〈,〉==.19.【答案】√217【解析】建立如图所示的空间直角坐标系,则A (√32,12,0),B (0,1,0),B 1(0,1,1),C 1(0,0,1),则C 1A ⃗⃗⃗⃗⃗⃗⃗ =(√32,12,−1),C 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(0,1,0),C 1B ⃗⃗⃗⃗⃗⃗⃗ =(0,1,-1),设平面ABC 1的一个法向量为n =(x ,y,1),则有{C 1A ⃗⃗⃗⃗⃗⃗⃗ ·n =√32x +12y −1=0,C 1B ⃗⃗⃗⃗⃗⃗⃗ ·n =y −1=0.解得n =(√33,1,1),则所求距离为|C 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·n |n ||=1√13+1+1=√217.20.【答案】(1,1,1)【解析】设PD =a (a >0),则A (2,0,0),B (2,2,0),P (0,0,a ),E (1,1,a2).∴DP ⃗⃗⃗⃗⃗ =(0,0,a ),AE⃗⃗⃗⃗⃗ =(−1,1,a2),∵cos 〈DP ⃗⃗⃗⃗⃗ ,AE ⃗⃗⃗⃗⃗ 〉=√33,∴a 22=a √2+a 24·√33,∴a =2.∴E 的坐标为(1,1,1).21.【答案】①②③【解析】由于AP ⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ =-1×2+(-1)×2+(-4)×(-1)=0, AP ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗ =4×(-1)+2×2+0×(-1)=0,所以①②③正确. 22.【答案】因为PA ⊥AD ,PA ⊥AB ,AD ⊥AB ,以A 为坐标原点,AD 长为单位长度,如图建立空间直角坐标系,则各点坐标为A (0,0,0),B (0,2,0),C (1,1,0),D (1,0,0),P (0,0,1),M (0,1,12), (1)∵AP ⃗⃗⃗⃗⃗ =(0,0,1),DC ⃗⃗⃗⃗⃗ =(0,1,0),故AP ⃗⃗⃗⃗⃗ ·DC ⃗⃗⃗⃗⃗ =0,∴AP ⃗⃗⃗⃗⃗ ⊥DC ⃗⃗⃗⃗⃗ ,∴AP ⊥DC , 又由题设知:AD ⊥DC ,且AP 与AD 是平面PAD 内的两条相交直线, 由此得DC ⊥面PAD ,又DC 在面PCD 上,故面PAD ⊥面PCD ; (2)∵AC⃗⃗⃗⃗⃗ =(1,1,0),PB ⃗⃗⃗⃗⃗ =(0,2,-1), ∴|AC ⃗⃗⃗⃗⃗ |=√2,|PB ⃗⃗⃗⃗⃗ |=√5,AC ⃗⃗⃗⃗⃗ ·PB⃗⃗⃗⃗⃗ =2,∴cos 〈AC ⃗⃗⃗⃗⃗ ,PB ⃗⃗⃗⃗⃗ 〉=√105, 由此得AC 与PB 所成角的余弦值为√105;(3)在MC 上取一点N (x ,y ,z ),则存在λ∈R ,使NC ⃗⃗⃗⃗⃗ =λMC ⃗⃗⃗⃗⃗⃗ ,NC ⃗⃗⃗⃗⃗ =(1-x,1-y ,-z ),MC ⃗⃗⃗⃗⃗⃗ =(1,0,−12),∴x =1-λ,y =1,z =12λ.要使AN ⊥MC ,只需AN ⃗⃗⃗⃗⃗⃗ ·MC ⃗⃗⃗⃗⃗⃗ =0,即x -12z =0,解得λ=45, 可知当λ=45时,N 点坐标为(15,1,25),能使AN ⃗⃗⃗⃗⃗⃗ ·MC⃗⃗⃗⃗⃗⃗ =0, 此时,AN ⃗⃗⃗⃗⃗⃗ =(15,1,25),BN ⃗⃗⃗⃗⃗⃗ =(15,−1,25), 由AN ⃗⃗⃗⃗⃗⃗ ·MC ⃗⃗⃗⃗⃗⃗ =0,BN ⃗⃗⃗⃗⃗⃗ ·MC ⃗⃗⃗⃗⃗⃗ =0,得AN ⊥MC ,BN ⊥MC , ∴∠ANB 为所求二面角的平面角,∵|AN⃗⃗⃗⃗⃗⃗ |=√305,|BN ⃗⃗⃗⃗⃗⃗ |=√305,AN ⃗⃗⃗⃗⃗⃗ ·BN ⃗⃗⃗⃗⃗⃗ =-45,∴cos 〈AN ⃗⃗⃗⃗⃗⃗ ,BN ⃗⃗⃗⃗⃗⃗ 〉=-23, 故所求的二面角的余弦值为-23.23.【答案】以A 为原点,AB ⃗⃗⃗⃗⃗ ,AP ⃗⃗⃗⃗⃗ 分别为y 轴、z 轴的正方向,过A 点且垂直于平面PAB 的直线为x 轴,建立空间直角坐标系Axyz ,设PA =a ,由已知可得:A (0,0,0),B (0,a ,0),C (√34a,34a,0),P (0,0,a ).(1)AP⃗⃗⃗⃗⃗ =(0,0,a ),BC ⃗⃗⃗⃗⃗ =(√34a,−a 4,0),∴BC ⃗⃗⃗⃗⃗ ·AP ⃗⃗⃗⃗⃗ =0,∴BC ⃗⃗⃗⃗⃗ ⊥AP ⃗⃗⃗⃗⃗ ,∴BC ⊥AP , 又∵∠BCA =90°,∴BC ⊥AC ,∴BC ⊥平面PAC .(2)∵D 为PB 的中点,DE ∥BC ,∴E 为PC 的中点,∴D (0,a 2,a2),E (√38a,38a,a 2),∴由(1)知,BC ⊥平面PAC ,∴DE ⊥平面PAC ,垂足为点E , ∴∠DAE 是AD 与平面PAC 所成的角,∵AD ⃗⃗⃗⃗⃗ =(0,a 2,a 2),AE ⃗⃗⃗⃗⃗ =(√38a,38a,a 2),∴cos ∠DAE =AD ⃗⃗⃗⃗⃗⃗ ·AE ⃗⃗⃗⃗⃗|AD ⃗⃗⃗⃗⃗⃗ ||AE ⃗⃗⃗⃗⃗ |=√144, ∴AD 与平面PAC 所成的角的正弦值为√24.(3)∵DE ∥BC ,又由(1)知BC ⊥平面PAC ,∴DE ⊥平面PAC , 又∵AE ⊂平面PAC ,PE ⊂平面PAC ,∴DE ⊥AE ,DE ⊥PE ,∴∠AEP 为二面角A -DE -P 的平面角. ∵PA ⊥底面ABC ,∴PA ⊥AC ,∴∠PAC =90°,∴在棱PC 上存在一点E ,使得AE ⊥PC ,这时∠AEP =90°, 故存在点E ,使得二面角A -DE -P 是直二面角.24.【答案】如图,以A 为坐标原点,建立空间直角坐标系Axyz ,则D (0,2,0),E (2,1,0),F (1,2,0),B 1(2,0,2),C 1(2,2,2),(1)因为DE ⃗⃗⃗⃗⃗ =(2,-1,0),B 1F ⃗⃗⃗⃗⃗⃗⃗ =(-1,2,-2),所以cos 〈DE ⃗⃗⃗⃗⃗ ,B 1F ⃗⃗⃗⃗⃗⃗⃗ 〉=DE ⃗⃗⃗⃗⃗⃗ ·B 1F ⃗⃗⃗⃗⃗⃗⃗⃗ |DE ⃗⃗⃗⃗⃗⃗ ||B 1F ⃗⃗⃗⃗⃗⃗⃗⃗ |=−43√5=-4√515, 所以直线DE 与B 1F 所成角的余弦值为4√515; (2)因为C 1E ⃗⃗⃗⃗⃗⃗⃗ =(0,-1,-2),EF ⃗⃗⃗⃗⃗ =(-1,1,0), 设平面C 1EF 的一个法向量为n =(x ,y,1), 则由{n ·C 1E ⃗⃗⃗⃗⃗⃗⃗ =0,n ·EF ⃗⃗⃗⃗⃗ =0,可得{−y −2=0,−x +y =0, 解得x =y =-2,所以n =(-2,-2,1),又AA 1⃗⃗⃗⃗⃗⃗⃗ =(0,0,2)是平面AEF 的一个法向量,所以cos 〈AA 1⃗⃗⃗⃗⃗⃗⃗ ,n 〉=n·AA1⃗⃗⃗⃗⃗⃗⃗⃗ |n ||AA 1⃗⃗⃗⃗⃗⃗⃗⃗ |=22×3=13, 观察图形,可知二面角C 1-EF -A 为钝角,所以二面角C 1-EF -A 的余弦值为-13. 25.【答案】(1)建立如图所示的空间直角坐标系,则B (0,0,0),S (0,0,1),A (1,0,0),C (0,2,0),D (1,1,0),SA ⃗⃗⃗⃗⃗ =(1,0,-1), CD⃗⃗⃗⃗⃗ =(1,-1,0), 因为cos 〈SA ⃗⃗⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ 〉=SA ⃗⃗⃗⃗⃗ ·CD ⃗⃗⃗⃗⃗|SA⃗⃗⃗⃗⃗ ||CD ⃗⃗⃗⃗⃗ |=12,所以SA 与CD 所成的角为60°; (2)设平面SCD 的法向量为n 1=(x ,y ,z ), 又SC⃗⃗⃗⃗ =(0,2,-1),{n 1·SC⃗⃗⃗⃗ =0,n 1·CD⃗⃗⃗⃗⃗ =0,所以{2y −z =0,x −y =0, 令x =1,则n 1=(1,1,2),因为BC ⊥平面SAB ,第 11 页 共 11 页 所以平面SAB 的一个法向量为n 2=(0,1,0),cos 〈n 1,n 2〉=√66, 所以平面SCD 与平面SAB 所成的锐二面角的余弦值为√66. 26.【答案】如下图,以点A 为原点建立空间直角坐标系,依题意得A (0,0,0),B (0,0,2),C (1,0,1),B 1(0,2,2),C 1(1,2,1),E (0,1,0).(1)易得B 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(1,0,-1),CE ⃗⃗⃗⃗⃗ =(-1,1,-1),于是B 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·CE⃗⃗⃗⃗⃗ =0,所以B 1C 1⊥CE ;(2)B 1C ⃗⃗⃗⃗⃗⃗⃗ =(1,-2,-1),设平面B 1CE 的法向量m =(x ,y ,z ),则{m ·B 1C ⃗⃗⃗⃗⃗⃗⃗ =0,m ·CE ⃗⃗⃗⃗⃗ =0,即{x −2y −z =0,−x +y −z =0, 消去x ,得y +2z =0,不妨令z =1,可得一个法向量为m =(-3,-2,1),由(1),B 1C 1⊥CE ,又CC 1⊥B 1C 1,可得B 1C 1⊥平面CEC 1,故B 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(1,0,-1)为平面CEC 1的一个法向量,于是cos 〈m ,B 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ 〉=m·B 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |m ||B 1C 1|=−4√14×√2=-2√77,从而sin 〈m ,B 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ 〉=√217,所以二面角B 1-CE -C 1的正弦值为√217. 27.【答案】建立如下图所示的空间直角坐标系D-xyz ,则D (0,0,0),A (2,0,0),C (0,2,0),B (2,2,0),E (1,2,0),F (0,2,2),(1)EF⃗⃗⃗⃗⃗ =(-1,0,2),易得平面ABCD 的一个法向量为n =(0,0,1), 设EF ⃗⃗⃗⃗⃗ 与n 的夹角为θ,则cos θ=EF ⃗⃗⃗⃗⃗ ·n |EF ⃗⃗⃗⃗⃗ ||n|=25√5,∴EF 与平面ABCD 所成的角的余弦值为2√55; (2)EF ⃗⃗⃗⃗⃗ =(-1,0,2),DF ⃗⃗⃗⃗⃗ =(0,2,2),设平面DEF 的一个法向量为m ,则m ·DF ⃗⃗⃗⃗⃗ =0,m ·EF⃗⃗⃗⃗⃗ =0, 可得m =(2,-1,1),∴cos 〈m ,n 〉=m·n|m ||n |=√66,∴二面角F -DE -C 的余弦值为√66.。
高三数学空间向量试题答案及解析
高三数学空间向量试题答案及解析1.如图,在四棱锥中,底面,,,,,点为棱的中点.(Ⅰ)证明:;(Ⅱ)若为棱上一点,满足,求二面角的余弦值.【答案】(Ⅰ)详见解析;(Ⅱ)余弦值为.【解析】思路一:坐标法.依题意,以点为原点建立空间直角坐标系(如图),写出各点的坐标,利用空间向量即可解决问题.思路二:几何法.(Ⅰ)如图,取中点,连接,.易得四边形为矩形,从而使问题得证.(Ⅱ)由于,那么BF在平面ABCD内的射影与AC垂直,故考虑作出BF在平面ABCD 内的射影.在中,过点作交于点.由题设可得,从而得,.在平面内,作交于点,于是.显然为二面角的平面角. 在三角形PAG中,由余弦定理可得二面角的余弦值.试题解析:解法一:坐标法.依题意,以点为原点建立空间直角坐标系(如图),可得,,,.由为棱的中点,得.(Ⅰ)向量,,故. 所以,.(Ⅱ)向量,,,.由点在棱上,设,.故.由,得,因此,,解得.即.设为平面的法向量,则即不妨令,可得为平面的一个法向量取平面的法向量,则.易知,二面角是锐角,所以其余弦值为.解法二:几何法.(Ⅰ)如图,取中点,连接,.由于分别为的中点,故,且,又由已知,可得且,故四边形为平行四边形,所以.因为底面,故,而,从而平面,因为平面,于是,又,所以.(Ⅱ)如图,在中,过点作交于点.因为底面,故底面,从而.又,得平面,因此.在底面内,可得,.在平面内,作交于点,于是.由于,故,所以四点共面.由,,得平面,故.所以为二面角的平面角.在中,,,,由余弦定理可得,在三角形PAG中,由余弦定理得.所以,二面角的余弦值为.【考点】1、空间直线的垂直关系;2、二面角.2.在如图所示的多面体中,四边形和都为矩形.(Ⅰ)若,证明:直线平面;(Ⅱ)是否存在过的平面,使得直线平行,若存在请作出平面并证明,若不存在请说明理由.【答案】(Ⅰ)见解析;(Ⅱ)存在,证明见解析【解析】(Ⅰ)由四边形和都为矩形知,⊥AB,⊥AC,由线面垂直判定定理知⊥面ABC,由线面垂直定义知⊥BC,又因为AC⊥BC,由线面垂直判定定理知,BC⊥面;(Ⅱ)取AB的中点为M,连结交于D,连结DE,显然E是的中点,根据三角形中位线定理得,DE∥,又由于DE在面过的平面内,根据线面平行的判定定理知和该平面平行.试题解析:(Ⅰ)证明:因为四边形和都是矩形,所以 2分因为为平面内的两条相交直线,所以 4分因为直线平面,所以又由已知,为平面内的两条相交直线,所以平面 7分(Ⅱ)存在 8分连接,设,取线段AB的中点M,连接.则平面为为所求的平面. 11分由作图可知分别为的中点,所以 13分又因为因此 14分考点: 空间线面垂直垂直的判定与性质;线面平行的判定;推理论证能力3.平面α经过三点A(-1,0,1),B(1,1,2),C(2,-1,0),则下列向量中与平面α的法向量不垂直的是()A.(,-1,-1)B.(6,-2,-2)C.(4,2,2)D.(-1,1,4)【答案】D【解析】设平面α的法向量为n,则n⊥,n⊥,n⊥,所有与 (或、)平行的向量或可用与线性表示的向量都与n垂直,故选D.4.如图所示,已知空间四边形OABC中,|OB|=|OC|,且∠AOB=∠AOC,则、夹角θ的余弦值为()A.0B.C.D.【答案】A【解析】设=a,=b,=c.由已知条件∠AOB=∠AOC,且|b|=|c|,·=a·(c-b)=a·c-a·b=|a||c|cos∠AOC-|a||b|cos∠AOB=0,∴cosθ=0.故选A.5.若向量a=(1,1,x),b=(1,2,1),c=(1,1,1),满足条件(c-a)·(2b)=-2,则x=________.【答案】2【解析】c-a=(0,0,1-x),2b=(2,4,2),由(c-a)·(2b)=-2,得(0,0,1-x)·(2,4,2)=-2,即2(1-x)=-2,解得x=2.6.如图所示,已知空间四边形ABCD的每条边和对角线长都等于1,点E、F、G分别是AB、AD、CD的中点,计算:(1)·;(2)·;(3)EG的长;(4)异面直线AG与CE所成角的余弦值.【答案】(1)(2)-(3)(4)【解析】解:设=a,=b,=c.则|a|=|b|=|c|=1,〈a,b〉=〈b,c〉=〈c,a〉=60°.=BD=c-a,=-a,=b-c,(1)·=(c-a)·(-a)=a2-a·c=;(2)·= (c-a)·(b-c)= (b·c-a·b-c2+a·c)=-;(3)=++=a+b-a+c-b=-a+b+ c.||2=a2+b2+c2-a·b+b·c-c·a=.即||=,所以EG的长为.(4)设、的夹角为θ.=b+c,=+=-b+a,cosθ==-,由于异面直线所成角的范围是(0°,90°],所以异面直线AG与CE所成角的余弦值为.7.已知点A(1,t,-1)关于x轴的对称点为B,关于xOy平面的对称点为C,则BC中点D的坐标为________.【答案】(1,0,1)【解析】因为A(1,t,-1)关于x轴的对称点为B(1,-t,1),关于xOy平面的对称点为C(1,t,1),所以BC中点D的坐标为(,,),即D(1,0,1).8.直三棱柱ABC-A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成的角的余弦值为()A.B.C.D.【答案】C【解析】以C为原点,直线CA为x轴,直线CB为y轴,直线为轴,则设CA=CB=1,则,,A(1,0,0),,故,,所以,故选C.【考点】本小题主要考查利用空间向量求线线角,考查空间向量的基本运算,考查空间想象能力等数学基本能力,考查分析问题与解决问题的能力.9.如图,已知四棱锥P-ABCD的底面ABCD是菱形,且PC⊥平面ABCD,PC=AC=2,E是PA 的中点。
(完整word版)高三数学空间向量专题复习附答案
一、利用向量处理平行与垂直问题例1、 在直三棱柱111C B A ABC -中,090=∠ACB , 030=∠BAC ,M A A BC ,6,11==是1CC 得中点。
求证:AM B A ⊥1练习:棱长为a 的正方体ABCD —A 1B 1C 1D 1中,在棱DD 1上是否存在点P 使B 1D ⊥面P AC ?例2 如图,已知矩形ABCD 和矩形ADEF 所在平面互相垂直,点N M ,分别在对角线AE BD ,上,且AE AN BD BM 31,31==,求证://MN 平面CDE练习1、在正方体1111D C B A ABCD -中,E,F 分别是BB 1,,CD 中点,求证:D 1F ⊥平面ADE2、如图,在底面是菱形的四棱锥P —ABCD 中, ︒=∠60ABC ,,2,a PD PB a AC PA ====点E 在PD 上,且PE :ED = 2: 1.在棱PC 上是否存在一点F, 使BF ∥平面AEC?证明你的结论.二、利用空间向量求空间的角的问题例1 在正方体1111D C B A ABCD -中,E 1,F 1分别在A 1B 1,,C 1D 1上,且E 1B 1=41A 1B 1,D 1F 1=41D 1C 1,求BE 1与DF 1所成的角的大小。
例2 在正方体1111D C B A ABCD -中, F 分别是BC 的中点,点E 在D 1C 1上,且=11E D 41D 1C 1,试求直线E 1F 与平面D 1AC例3 在正方体1111D C B A ABCD -中,求二面角1C BD A --的大小。
zx1CFD CBA例4 已知E,F分别是正方体1111DCBAABCD-的棱BC和CD的中点,求:(1)A1D与EF所成角的大小;(2)A1F与平面B1EB所成角的大小;(3)二面角BBDC--11的大小。
三、利用空间向量求空间的距离的问题例1 直三棱柱AB C-A1B1C1的侧棱AA1,底面ΔAB C求点B1到平面A1B C的距离。
高三空间向量练习题
高三空间向量练习题1. 已知向量a = 2i + 3j - k,向量b = i - j + 4k,求向量a与向量b的数量积。
解析:向量a与向量b的数量积可以通过向量的内积公式计算得出。
内积的计算方式为将两个向量对应分量相乘后相加。
a ·b = (2i + 3j - k) · (i - j + 4k)= 2i · i + 3j · (-j) - k · j + 2i · (-j) + 3j · (4k) - k · (4k)= 2 + 3 + 0 - 2 - 12 + 4= -5所以,向量a与向量b的数量积为-5。
2. 已知向量c = 3i + 2j + 4k,向量d = 5i + 6j + 2k,求向量c与向量d的向量积。
解析:向量c与向量d的向量积可以通过向量的叉乘公式计算得出。
叉乘的计算方式为以行列式形式表示,按照i、j、k的顺序展开。
c ×d = |i j k ||3 2 4 ||5 6 2 |= (2 × 2 - 4 × 6)i - (3 × 2 - 4 × 5)j + (3 × 6 - 2 × 5)k= -20i + 7j + 8k所以,向量c与向量d的向量积为-20i + 7j + 8k。
3. 已知向量e = 3i + 4j - 6k,向量f = 2i - 5j + k,求向量e与向量f 的夹角的余弦值。
解析:向量e与向量f的夹角的余弦值可以通过向量的内积和模长的乘积计算得出。
计算公式为:cosθ = (e · f) / (|e| × |f|)。
|e| = √(3^2 + 4^2 + (-6)^2) = √(9 + 16 + 36) = √61|f| = √(2^2 + (-5)^2 + 1^2) = √(4 + 25 + 1) = √30e ·f = (3i + 4j - 6k) · (2i - 5j + k)= 3i · 2i + 4j · (-5j) - 6k · j + 3i · (-5j) + 4j · k - 6k · k= 6 - 20 - 0 - 15 + 4 - 6= -31cosθ = (-31) / (√61 × √30) ≈ -0.283所以,向量e与向量f的夹角的余弦值约为-0.283。
高三数学空间向量试题答案及解析
高三数学空间向量试题答案及解析1.如图,在直三棱柱中,平面侧面,且(1)求证:;(2)若直线与平面所成的角为,求锐二面角的大小.【答案】(1)详见解析;(2)【解析】(1)取的中点,连接,要证 ,只要证平面由直三棱柱的性质可知 ,只需证,因此只要证明平面事实上,由已知平面侧面,平面,且所以平面成立,于是结论可证.(2)思路一:连接,可证即为直线与所成的角,则过点A作于点,连,可证即为二面角的一个平面角.在直角中,即二面角的大小为思路二:以点为原点,以所在直线分别为轴建立空间直角坐标系设平面的一个法向量,平面的一个法向量为,利用向量的数量积求出这两个法向量的坐标,进而利用法向量的夹角求出锐二面角的大小.试题解析:.解(1)证明:如图,取的中点,连接,因,则由平面侧面,且平面侧面,得,又平面,所以.因为三棱柱是直三棱柱,则,所以.又,从而侧面,又侧面,故.解法一:连接,由(1)可知,则是在内的射影∴即为直线与所成的角,则在等腰直角中,,且点是中点,∴,且,∴过点A作于点,连,由(1)知,则,且∴即为二面角的一个平面角且直角中:,又,∴,且二面角为锐二面角∴,即二面角的大小为解法二(向量法):由(1)知且,所以以点为原点,以所在直线分别为轴建立空间直角坐标系,如图所示,且设,则,,,,,,,设平面的一个法向量,由,得:令,得,则设直线与所成的角为,则得,解得,即又设平面的一个法向量为,同理可得,设锐二面角的大小为,则,且,得∴锐二面角的大小为.【考点】1、空间直线、平面的位置关系;2、空间向量在立体几何问题中的应用.2.如图,平面ABCD⊥平面ADEF,其中ABCD为矩形,ADEF为梯形,AF∥DE,AF⊥FE,AF=AD=2DE=2,M为AD的中点.(1)证明:MF⊥BD;(2)若二面角A-BF-D的平面角的余弦值为,求AB的长.【答案】(1)见解析(2)【解析】(1)证明由已知得△ADF为正三角形,所以MF⊥AD,因为平面ABCD⊥平面ADEF,平面ABCD∩平面ADEF=AD,MF⊂平面ADEF,所以MF⊥BD.(2)设AB=x,以F为原点,AF,FE所在直线分别为x轴,y轴建立如图所示的空间直角坐标系,则F(0,0,0),A(-2,0,0),D(-1,,0),B(-2,0,x),所以=(1,-,0),=(2,0,-x).因为EF⊥平面ABF,所以平面ABF的法向量可取n1=(0,1,0).设n2=(x1,y1,z1)为平面BFD的法向量,则可取n2=.因为cos〈n1,n2〉==,得x=,所以AB=.3.平面α经过三点A(-1,0,1),B(1,1,2),C(2,-1,0),则下列向量中与平面α的法向量不垂直的是()A.(,-1,-1)B.(6,-2,-2)C.(4,2,2)D.(-1,1,4)【答案】D【解析】设平面α的法向量为n,则n⊥,n⊥,n⊥,所有与 (或、)平行的向量或可用与线性表示的向量都与n垂直,故选D.4.在正方体ABCD-A1B1C1D1中,M、N分别为棱AA1和BB1的中点,则sin〈,〉的值为()A.B.C.D.【答案】B【解析】设正方体的棱长为2,以D为坐标原点,DA为x轴,DC为y轴,DD1为z轴建立空间直角坐标系(如图),可知=(2,-2,1),=(2,2,-1),cos〈,〉=-,sin〈,〉=.5.如图,平面ABCD⊥平面ABEF,四边形ABCD是正方形,四边形ABEF是矩形,且AF=AD=a,G是EF的中点,则GB与平面AGC所成角的正弦值为()A.B.C.D.【答案】C【解析】如图,以A为原点建立空间直角坐标系,则A(0,0,0),B(0,2a,0),C(0,2a,2a),G(a,a,0),F(a,0,0),=(a,a,0),=(0,2a,2a),=(a,-a,0),=(0,0,2a),设平面AGC的法向量为n1=(x1,y1,1),由⇒⇒⇒n1=(1,-1,1).sinθ===.6.在正三棱柱ABC-A1B1C1中,已知AB=1,D在棱BB1上,且BD=1,则AD与平面AA1C1C所成的角的正弦值为()A.B.-C.D.-【答案】A【解析】取AC中点E,连接BE,则BE⊥AC,如图,建立空间直角坐标系B-xyz,则A(,,0),D(0,0,1),则=(-,-,1).∵平面ABC⊥平面AA1C1C,BE⊥AC,∴BE⊥平面AA1C1 C.∴=(,0,0)为平面AA1C1C的一个法向量,∴cos〈,〉=-,设AD与平面AA1C1C所成的角为α,∴sinα=|cos〈,〉|=,故选A.7.已知正方体ABCD-A1B1C1D1中,点E为上底面A1C1的中心,若=+x+y,则x、y的值分别为()A.x=1,y=1B.x=1,y=C.x=,y=D.x=,y=1【答案】C【解析】如图,=+=+=+ (+).8.若向量a=(1,1,x),b=(1,2,1),c=(1,1,1),满足条件(c-a)·(2b)=-2,则x=________.【答案】2【解析】c-a=(0,0,1-x),2b=(2,4,2),由(c-a)·(2b)=-2,得(0,0,1-x)·(2,4,2)=-2,即2(1-x)=-2,解得x=2.9.已知2a+b=(0,-5,10),c=(1,-2,-2),a·c=4,|b|=12,则以b,c为方向向量的两直线的夹角为________.【答案】60°【解析】由题意得(2a+b)·c=0+10-20=-10. 即2a·c+b·c=-10,又∵a·c=4,∴b·c=-18,∴cos〈b,c〉===-,∴〈b,c〉=120°,∴两直线的夹角为60°.10.如图,在棱长为a的正方体ABCD-A1B1C1D1中,G为△BC1D的重心,(1)求证:A1、G、C三点共线;(2)求证:A1C⊥平面BC1D;(3)求点C到平面BC1D的距离.【答案】(1)见解析(2)见解析(3) a.【解析】解:(1)证明:=++=++,可以证明:=(++)=,∴∥,即A1、G、C三点共线.(2)证明:设=a,=b,=c,则|a|=|b|=|c|=a,且a·b=b·c=c·a=0,∵=a+b+c,=c-a,∴·=(a+b+c)·(c-a)=c2-a2=0,∴⊥,即CA1⊥BC1,同理可证:CA1⊥BD,因此A1C⊥平面BC1D.(3)∵=a+b+c,∴2=a2+b2+c2=3a2,即||=a,因此||= a.即C到平面BC1D的距离为 a.11.如图,在四棱锥中,,,,,点为棱的中点.(1)证明:;(2)求直线与平面所成角的正弦值;(3)若为棱上一点,满足,求二面角的余弦值.【答案】(1)详见试题分析;(2)直线与平面所成角的正弦值为;(3).【解析】(1)可以建立空间直角坐标系,利用向量数量积来证明。
高中试卷-专题03 空间向量的应用(含答案)
专题03 空间向量的应用一、单选题1.(2020·贵州省铜仁第一中学高二开学考试)已知两个异面直线的方向向量分别为a r ,b r ,且|a r |=|b r|=1,a r •12b r =-,则两直线的夹角为( )A .30°B .60°C .120°D .150°【答案】B【解析】设两直线的夹角为θ,则由题意可得1×1×cos a r <,12b =-r >,∴cos a r <,12b =-r >,∴a r <,23b p =r >,∴θ3p =,故选:B .2.(2019·穆棱市第一中学高二期末)若平面,a b 的法向量分别为1,1,3,(1,2,6)2a b æö=-=--ç÷èør r ,则( )A .//a bB .a 与b 相交但不垂直C .a b^D .//a b 或a 与b 重合【答案】D【解析】因为12a b =-r r ,所以平面,a b 的法向量共线,故//a b 或a 与b 重合.故选:D.3.(2020·北京高二期末)已知直线l 的方向向量为m u r ,平面a 的法向量为n r ,则“0m n ×=u r r”是“l ∥a ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】Q 0m n ×=u r r \m n^u r r Q 0m n ×=u r r ,即m n ^u r r ,不一定有l ∥a ,也可能l aÌ\“0m n ×=u r r ”是“l ∥a ”的不充分条件Q l ∥a ,可以推出m n ^u r r ,\“0m n ×=u r r ”是“l ∥a ”是必要条件,综上所述, “0m n ×=u r r ”是“l ∥a ”必要不充分条件.故选:B.4.(2019·山东省济南一中高二期中)在平面ABCD 中,(0,1,1)A ,(1,2,1)B ,(1,0,1)C --,若(1,,)a y z =-v ,且a v 为平面ABCD 的法向量,则2y 等于( )A .2B .0C .1D .无意义【答案】C【解析】由题得,(1,1,0)AB =uuu r ,(1,1,2)AC =--uuu r ,又a r 为平面ABCD 的法向量,则有00a AB a AC ì×=í×=îuuu v v uuu v v ,即10120y y z -+=ìí-+=î,则1y =,那么21y =.故选:C5.(2019·四川省双流中学高三月考)已知点P 是正方体1111ABCD A B C D -的棱CD 的中点,给出以下结论:①11A P C D ^;②1A P BD ^;③11A P BC ^;④1AP ^平面1BC D 其中正确命题的序号是( )A .①B .②C .③D .④【答案】C【解析】设正方体边长为2,建立如图空间直角坐标系.则()12,1,2A P =--uuur .对①, ()10,2,2C D =--uuuu r ,因为110242A P C D ×=-+=uuur uuuu r ,故①错误.对②, ()2,2,0BD =--uuu r ,因为1422A P BD ×=-=uuur uuu r ,故②错误.对③, ()12,0,2BC =-uuuu r ,因为1440A P BD ×=-=uuur uuu r ,故③正确.对④,由②有1A P BD ^不成立,故1AP ^平面1BC D 不成立.故④错误.故选:C6.(2019·穆棱市第一中学高二期末)如图,在正方体ABCD 1111A B C D 中,以D 为原点建立空间直角坐标系,E 为B 1B 的中点,F 为11A D 的中点,则下列向量中,能作为平面AEF 的法向量的是( )A .(1,-2,4)B .(-4,1,-2)C .(2,-2,1)D .(1,2,-2)【答案】B【解析】设正方体棱长为2,则A (2,0,0),E (2,2,1),F (1,0,2),∴AE uuu r =(0,2,1),AF uuu r =(﹣1,0,2)设向量n r=(x ,y ,z )是平面AEF 的一个法向量则2020n AE y z n AF x z ì×=+=ïí×=-+=ïîuuu r r uuu r r ,取y=1,得x=﹣4,z=﹣2∴n r =(﹣4,1,﹣2)是平面AEF 的一个法向量因此可得:只有B 选项的向量是平面AEF 的法向量故选:B .7.(2019·包头市第四中学高二期中)在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别为棱1AA 、1BB 的中点,M 为棱11A B 上的一点,且1(02)A M l l =<<,设点N 为ME 的中点,则点N 到平面1D EF 的距离为( )ABCD【答案】D【解析】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,则M (2,λ,2),D 1(0,0,2),E (2,0,1),F (2,2,1),1ED uuuu v =(﹣2,0,1),EF uuu r =(0,2,0),EM uuuu r =(0,λ,1),设平面D 1EF 的法向量n r=(x ,y ,z ),则1·20·20n ED x z n EF y ì=-+=í==îuuuu v v uuuv v ,取x =1,得n r =(1,0,2),∴点M 到平面D 1EF=N 为EM 中点,所以N ,选D .8.(2020·湖南省高二期末)已知直三棱柱111ABC A B C -中,底面边长和侧棱长都相等,则异面直线1AB 与1BC 所成的角的余弦值为( )A .12B .18C .14D .34【答案】C【解析】立空间坐标系如图,设边长为2,得到A (2,0,0),1B (12),B (10),1C (0,0,2)向量()()112,1,2AB BC =-=uuuv uuuu v 设异面直线夹角为q ,则1111cos =||||AB BC AB BC q ×=×uuuv uuuu v uuuv uuuu v 14故答案为C9.(2018·山西省山西大附中高二期中)过正方形ABCD 的顶点A ,作PA ^平面ABCD ,若PA BA =,则平面ABP 和平面CDP 所成的锐二面角的大小是A .30°B .45°C .60°D .90°【答案】B【解析】法一:建立如图(1)所示的空间直角坐标系,不难求出平面APB 与平面PCD 的法向量分别为n 1=(0,1,0),n 2=(0,1,1),故平面ABP 与平面CDP 所成二面角的余弦值为1212n n n n=,故所求的二面角的大小是45°.法二:将其补成正方体.如图(2),不难发现平面ABP 和平面CDP 所成的二面角就是平面ABQP 和平面CDPQ 所成的二面角,其大小为45°.10.(2020·山东省章丘四中高二月考)在正方形1111ABCD A B C D -中,棱AB ,11A D 的中点分别为E ,F ,则直线EF 与平面11AA D D 所成角的余弦值为( )A B C D 【答案】D【解析】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,设正方体1111ABCD A B C D -的棱长为2,则()2,1,0E , ()1,0,2F , ()1,1,2EF =--uuu r ,平面11AA D D 的法向量()0,1,0n =r ,设直线EF 与平面11AA D D 所成角为q ,0,2p éùqÎêúëû,则||sin ||||EF n EF n q ===uuu r r g uuu r r g .所以cos q ==\直线EF 与平面11AA D D 故选:D .二、多选题11.(2020·山东省高二期末)已知ν为直线l 的方向向量,1n ,2n 分别为平面α,β的法向量(α,β不重合),那么下列选项中,正确的是( )A .12////n n a bÛB .12n n a b^Û^C .1////n l n aÛD .1//n l n a ^Û【答案】AB【解析】A 选项,平面α,β不重合,所以平面α,β的法向量平行等价于平面α,β平行,正确;B 选项,平面α,β不重合,所以平面α,β的法向量垂直等价于平面α,β垂直,正确;C 选项,直线的方向向量平行于平面的法向量等价于直线垂直于平面,错误;D 选项,直线的方向向量垂直于平面的法向量等价于直线平行于平面或直线在平面内,错误.故选:AB12.(2019·山东省高三)正方体1111ABCD A B C D -的棱长为1,,,E F G 分别为11,,BC CC BB 的中点.则( )A .直线1D D 与直线AF 垂直B .直线1A G 与平面AEF 平行C .平面AEF 截正方体所得的截面面积为98D .点C 和点G 到平面AEF 的距离相等【答案】BC【解析】对选项A :(方法一)以D 点为坐标原点,DA 、DC 、1DD 所在的直线分别为x 、y 、z 轴,建立空间直角坐标系,则(0,0,0)D 、(1,0,0)A 、1(1,0,1)A 、1,1,02E æöç÷èø、10,1,2F æöç÷èø、11,1,2G æöç÷èø.从而1(0,0,1)DD =uuuu r ,11,1,2AF æö=-ç÷èø,从而1102DD AF ×=¹uuuu r uuu r ,所以1DD 与直线AF 不垂直,选项A 错误;(方法二)取1DD 的中点N ,连接AN ,则AN 为直线AF 在平面11ADD A 内的射影,AN 与1DD 不垂直,从而AF 与1DD 也不垂直,选项A 错误;取BC 的中点为M ,连接1A M 、GM ,则1A M AE ∥,GM EF ∥,易证1A MG AEF 平面∥平面,从而1A G AEF ∥平面,选项B 正确;对于选项C ,连接1AD ,1D F ,易知四边形1AEFD 为平面,且1D H AH ==,1A D =132AD H S D ==,而113948AD H AEFD S S ==四边形△,从而选项C 正确;对于选项D :(方法一)由于111111112222224GEF EBG BEFG S S S D D æö=-=+´-´´=ç÷èø梯形,而11112228ECF S D =´´=,而13A GEF EFG V S AB -D =×,13A ECF ECF V S AB -D =×,所以2A GEF A ECF V V --=,即2G AEFC AEF V V --=,点G 到平面AEF 的距离为点C 到平面AEF 的距离的二倍.从而D 错误.(方法二)假设点C 与点G 到平面AEF 的距离相等,即平面AEF 将CG 平分,则平面AEF 必过CG 的中点,连接CG交EF于点O ,易知O 不是CG 的中点,故假设不成立,从而选项D 错误.13.(2020·福建省高二期末)正方体1111ABCD A B C D -中,E 、F 、G 、H 分别为1CC 、BC 、CD 、BB 、1BB 的中点,则下列结论正确的是( )A .1B G BC^B .平面AEF I 平面111AA D D AD =C .1//A H 面AEFD .二面角E AF C --的大小为4p 【答案】BC【解析】由题可知,1B G 在底面上的射影为BG ,而BC 不垂直BG ,则1B G 不垂直于BC ,则选项A 不正确;连接1AD 和1BC ,E 、F 、G 、H 分别为1CC 、BC 、CD 、BB 、1BB 的中点,可知11////EF BC AD ,所以AEF D Ì平面1AD EF ,则平面AEF I 平面111AA D D AD =,所以选项B 正确;由题知,可设正方体的棱长为2,以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,则各点坐标如下:()()()()()()12,0,0,0,2,0,0,2,1,2,0,2,2,2,1,1,2,0A C E A H F ()()()()110,2,1,1,2,0,1,0,1,0,0,2A H AF EF AA =-=-=-=uuuu r uuu r uuu r uuur ,设平面AEF 的法向量为(),,n x y z =r ,则00n AF n EF ì×=í×=îuuu v v uuu v v ,即200x y x z -+=ìí-=î,令1y =,得2,2x z ==,得平面AEF 的法向量为()2,1,2n =r ,所以10A H n ×=uuuu r r ,所以1//A H 平面AEF ,则C选项正确;由图可知,1AA ^平面AFC ,所以1AA uuur是平面AFC 的法向量,则1112cos ,3AA n AA n AA n×<>===×uuur r uuur r uuur r .得知二面角E AF C --的大小不是4p ,所以D 不正确.故选:BC.三、填空题14.(2019·山东省济南一中高二期中)若平面a的一个法向量为(n =v,直线l的一个方向向量为a =v ,则l 与a 所成角的正弦值为________.【答案】15【解析】由题,设l 与a 所成角为q,可得||1sin 5||||n a n a q ×===v v v v .故答案为:1515.(2019·陕西省西北大学附中高二期中)如图,在正三棱柱111ABC A B C -中,12,AB AC AA === ,E F 分别是,BA11A C 的中点.设D 是线段11B C 上的(包括两个端点)动点,当直线BD 与EF,则线段BD 的长为_______.【答案】【解析】以E 为原点,EA,EC 为x,y轴建立空间直角坐标系,如下图.1(0,0,0),,2),(0,1,0),(0,,2)(11)2E F B D t t --££1,2),(0,1,2)2EF BD t ==+uuu v uuuv cos q =解得t=1,所以BD =,填.点睛:利用空间向量求解空间角与距离的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.16.(2019·浙江省宁波市鄞州中学高二期中)正方体1111ABCD A B C D -中,,E F 分别是1,AA AB 的中点,则EF 与直线1AC 所成角的大小为______ ;EF 与对角面11BDD B 所成角的正弦值是 __________.【答案】2p 12【解析】如图所示建立空间直角坐标系,设正方体的边长为2,则()2,0,1E ,()2,1,0F ,()2,0,0A ,()10,2,2C ,故()0,1,1EF =-uuu r ,()12,2,2AC =-uuuu r .故10EF AC ×=uuu r uuuu r ,故EF 与直线1AC 所成角的大小为2p .易知对角面11BDD B 的一个法向量为()1,1,0n =-r ,设EF 与对角面11BDD B 所成角为q ,故1sin cos ,2EF n EF n EF n q ×===×uuu r r uuu r r uuu r r .故答案为:2p ;12.17.(2019·江西省会昌中学高二月考)已知正方体1111ABCD A B C D -的棱长为a ,点E ,F ,G 分别为棱A B ,1AA ,11C D 的中点,下列结论中,正确结论的序号是___________.①过E ,F ,G 三点作正方体的截面,所得截面为正六边形;②11//B D 平面EFG ;③1BD ^平面1ACB ;④异面直线EF 与1BD ;⑤四面体11ACB D 的体积等于312a .【答案】①③④【解析】延长EF 分别与1l B A ,1B B 的延长线交于N ,Q ,连接GN 交11A D 于H ,设HG 与11B C 的延长线交于P ,连接P Q 交1CC 于I ,交BC 于M ,连FH ,HG ,GI ,IM ,ME ,EF ,如图:则截面六边形EFHGIM 为正六边形,故①正确:因为11B D 与HG 相交,故11B D 与平面EFG 相交,所以②不正确:1,BD AC BD AC ^\^Q (三垂线定理),1111,BC B C BD B C ^\^Q (三垂线定理),且AC 与1B C 相交,所以1BD ^平面1ACB ,故③正确;以D 为原点,1,,DA DC DD 分别为,,x y z 轴建立空间直角坐标系,则1(0,0,0),(,,0),(,0,),(,,0),(0,0,)22a a D E a F a B a a D a ,则(0,,)22a a EF =-uuu r ,1(,,)BD a a a =--uuuu r ,所以111cos ,||||EF BD EF BD EF BD ×<>=uuu r uuuu r uuu r uuuu r uuu r uuuur ===所以1sin ,EF BD <>==uuu r uuuu r=所以111sin ,tan ,cos ,EF BD EF BD EF BD <><>=<>uuu r uuuu r uuu r uuuu r uuu r uuuur ==,所以异面直线EF 与1BD,故④正确;因为四面体11ACB D 的体积等于正方体的体积减去四个正三棱锥的体积,即为3331114323a a a -´´=,故⑤不正确.故答案为:①③④四、解答题18.(2019·广西壮族自治区田东中学高二期中)已知三棱柱111ABC A B C -的侧棱垂直于底面,90BAC Ð=°,12AB AA ==,1AC =,M ,N 分别是11A B ,BC 的中点.(1)求证:1AB AC ^;(2)求证://MN 平面11ACC A .【答案】(1)证明见解析 (2) 证明见解析【解析】Q 三棱柱为直三棱柱 1AA \^平面ABC 1AA AC \^,1AA AB ^又90BAC Ð=o ,则1,,AB AC AA 两两互相垂直,可建立如下图所示的空间直角坐标系则()0,0,0A ,()0,2,0B ,()1,0,0C -,()11,0,2C -,()0,1,2M ,1,1,02N æö-ç÷èø(1)()0,2,0AB =uuu r Q ,()11,0,2AC =-uuuu r ()10120020AB AC \×=´-+´+´=uuu r uuuu r 1AB AC \^(2)由题意知:AB uuu r是平面11ACC A 的一个法向量()0,2,0AB =uuu r Q ,1,0,22MN æö=--ç÷èøuuuu r ()10200202AB MN æö\×=´-+´+´-=ç÷èøuuu r uuuu r AB MN \^uuu r uuuu r MN ËQ 平面11ACC A //MN \平面11ACC A 19.(2020·陕西省高二期末)如图,在棱长为2的正方体1111ABCD A B C D -中E ,F 分别为AB ,1A C的中点.(1)求EF ;(2)求证://EF 平面11AA D D【答案】(1;(2)证明见解析【解析】(1)由题知,(2,1,0)E ,(1,1,1)F ,∴(1,0,1)EF =-uuu r ,∴||EF ==uuu r (2)由题知,(2,0,0)A ,1(0,0,2)D ,∴1(2,0,2)AD =-uuuu r ,∴12AD EF =uuuu r uuu r ,故//AD EF ,又1AD Ì平面11AA D D ,EF Ë平面11AA D D∴EF ∥平面11AA D D .20.(2020·北京高二期末)如图,在直三棱柱111ABC A B C -中,3AC =,4BC =,5AB =,14AA =,点D 是AB 的中点.(1)求异面直线AC 与1BC 所成的角;(2)求证:1//AC 平面1CDB .【答案】(1)2p (2)证明见解析【解析】(1)因为3AC =,4BC =,5AB =,所以222AC BC AB +=,所以ABC D 是直角三角形,所以2ACB p=,所以AC BC^因为三棱柱111ABC A B C -为直三棱柱,所以1C C ^平面ABC ,所以1C C AC ^,1C C BC^以C 为原点,分别以CA 、CB 、1CC 为x 轴、y 轴、z 轴,建立空间直角坐标系,则(0C ,0,0),(3A ,0,0),(0B ,4,0),1(0C ,0,4)所以直线AC 的方向向量为(3,0,0)CA =uuu r ,直线1BC 的方向向量为1(0,4,4)BC =-uuuu r ,设异面直线AC 与1BC 所成的角为q ,因为10CA BC =uuu r uuuu r g ,所以cos 0q =,所以异面直线AC 与1BC 所成的角为2p.(2)由(1)可知3,2,02D æöç÷èø,1(0B ,4,4),则3,2,02CD æö=ç÷èøuuu r ,1(0,4,4)CB =uuur 设平面1CDB 的法向量为(,,)n x y z =r ,则1·0·0CD n CB n ì=ïí=ïîuuu v v uuuv v ,所以3202440x y y z ì+=ïíï+=î令4x =,则3y =-,3z =,所以(4,3,3)n =-r直线1AC 的方向向量为1(3,0,4)AC =-uuuu r ,因为10AC n =uuuu r r g ,1AC Ë平面1CDB , 所以1//AC 平面1CDB .21.(2020·银川三沙源上游学校高二期末)如图,在直三棱柱111ABC A B C -中,AB AC ^,2AB AC ==,1AA =,D 为棱BC 的中点.(1)求直线1DB 与平面11AA C C 所成角的正弦值;(2)求平面11AA C C 与平面1ADB 所成二面角的余弦值.【答案】(12).【解析】则(0,0,0)A ,1(0,0,A ,(2,0,0)C ,(0,2,0)B ,(1,1,0)D ,1(0,2,B ,所以(2,0,0)AC =uuu r ,1(0,0,AA =uuur ,(1,1,0)AD =uuu r ,1(1,1,DB =-uuuu r ,如下图:(1)设平面11AA C C 的一个法向量为(,,)m x y z =u r ,则100AC m AA m ì×=ïí×=ïîuuu v v uuuv v,即00ìïí=ïî,取(0,1,0)m =u r ,所以1cos ,DB m <=uuuu r u r ,所以直线1DB 与平面11AA C C(2)设平面1ADB 的一个法向量为111(,,)n x y z =r ,则100AD n DB n ì×=ïí×=ïîuuu v v uuuu v v,即1111100x y x y +=ìïí-++=ïî,取(1,n =-r ,所以cos ,m n <=u r r ,所以求平面11AA C C 与平面1ADB所成二面角的余弦值.22.(2019·江苏省苏州实验中学高一月考)直四棱柱1111ABCD A B C D -中,2AB BC ==,90ABC Ð=°,E 、F 分别为棱AB 、11B C 上的点,2AE EB =,112C F FB =.求证:(1)//EF 平面11AA C C ;(2)线段AC 上是否存在一点G ,使面EFG ^面11AA C C .若存在,求出AG 的长;若不存在,请说明理由.【答案】(1)证明见解析(2)存在,AG =【解析】(1)如图所示:以1A 为原点,11A D ,11A B ,1A A 分别为,,x y z 轴建立空间直角坐标系:则1(0,0,0)A ,1(0,2,0)B ,1(2,2,0)C ,设(0,0,)A a ,则4(0,,)3E a ,2(,2,0)3F ,所以22(,,)33EF a =-uuu r ,1(0,0,)A A a =uuur ,11(2,2,0)AC =uuuu r ,因为11113EF A A A C =-+uuu r uuur uuuu r ,所以EF uuu r ,1A A uuur ,11AC uuuu r 共面,又EF 不在平面11AA C C 内,所以//EF 平面11AA C C(2)线段AC 上存在一点G ,使面EFG ^面11AA C C ,且AG =证明如下:在三角形AGE 中,由余弦定理得EG ====,所以222AG EG AE +=,即EG AG ^,又1A A ^平面ABCD ,EG Ì平面ABCD ,所以1A A EG ^,而1AG A A A Ç=,所以EG ^平面11AA C C ,因为EG Ì平面EFG ,所以EFG ^面11AA C C .23.(2020·北京高二期末)如图,在底面是正方形的四棱锥P ABCD -中,PA ^平面ABCD ,2AP AB ==,,,E F G 是,,BC PC CD 的中点.(1)求证:BG ^平面PAE ;(2)在线段BG 上是否存在点H ,使得//FH 平面PAE ?若存在,求出BH BG 的值;若不存在,说明理由.【答案】(1)证明见解析;(2)存在,35.【解析】(1)证明:因为四棱锥P ABCD -底面是正方形,且PA ^平面ABCD ,以点A 为坐标原点,,,AB AD AP所在直线分别为,,x y z 轴建立如图所示空间直角坐标系.则(0,0,0),(2,0,0),(0,0,2),A B P ,(2,2,0),(0,2,0)C D ,因为,,E F G 是,,BC PC CD 的中点,所以(2,1,0),(1,1,1),(1,2,0)E F G ,所以(1,2,0)BG =-uuu v ,(0,0,2),(2,1,0),AP AE ==uuu v uuu v 所以0BG AP ×=uuu v uuu v ,且0BG AE ×=uuu v uuu v . 所以BG AP ^,BG AE ^,且AE AP A =I .所以BG ⊥平面PAE .(2)假设在线段BG 上存在点H ,使得FH //平面PAE . 设BH BG l =uuuv uuu v (01)l ££,则(1,21,1)FH FB BH AB AF BG l l l =+=-+=---uuuv uuu v uuuv uuu v uuu v uuu v .因为FH //平面PAE ,BG ⊥平面PAE ,所以(1)(12(21)0(1)530FH GB l l l ×=-×-+-+´-=-=uuuv uuu v . 所以35l =. 所以,在线段BG 上存在点H ,使得FH //平面PAE .其中35BH BG =.。
2023-2024学年高考数学空间向量与立体几何专项练习题(附答案)
A .B .223.若直线的方向向量为,平面l bA .()(1,0,0,2,0,0b n ==-()(0,2,1,1,0,1b n ==--A .B .5136.如图,在平行六面体ABCDA.1122a b c -++C.1122a b c --+7.如图,在四面体OABC中,1-16.已知四棱锥P ABCDPC棱上运动,当平面1.C【分析】根据已知结合向量的坐标运算可得出,且.然后根据向量的数量积a b a +=- 14a = 运算求解,即可得出答案.【详解】由已知可得,且.()1,2,3a b a+=---=-14a =又,()7a b c +⋅= 所以,即有,7a c -⋅= cos ,14cos ,7a c a c a c -⋅=-=所以,.1cos ,2a c =-又,所以.0,180a c ≤≤ ,120a c =︒ 故选:C.2.C【分析】利用中点坐标公式求出中点的坐标,根据空间两点间的距离公式即可得出中线BC 长.【详解】由图可知:,,,(0,0,1)A (2,0,0)B (0,2,0)C 由中点坐标公式可得的中点坐标为,BC (1,1,0)根据空间两点间距离公式得边上的中线的长为.BC 22211(1)3++-=故选:C 3.D【分析】若直线与平面平行,则直线的方向向量与平面的法向量垂直,利用向量数量积检验.【详解】直线的方向向量为,平面的法向量为,l bαn 若可能,则,即.//l αb n ⊥r r 0b n ⋅=r r A 选项,;()1220b n =⨯-⋅=-≠B 选项,;11305160b n =⨯⨯⋅+⨯+=≠C 选项,;()()01201110b n =⨯-+⨯+⨯-⋅=-≠D 选项,;()1013310b n =⨯+-⨯=⋅+⨯因为,,3AB =4BC =2PA =所以()()(0,0,2,3,0,0,0,0,1P B Q 设平面的法向量为BQD (m x =()(),,3,0,1m BQ x y z ⎧设,2AB AD AS ===则()()()0,0,0,0,0,2,2,2,0,A S C P 设,()0,,2M t t -(1,1,2OM t =--所以1120OM AP t t ⊥=-+-+-=点到平面与平面的距离和为为定值,D 选项正确.M ABCD SAB 22t t -+=,,()2,0,0B ()()2,0,2,0,2,0SB BC =-=设平面的法向量为,SBC (),,n x y z =则,故可设,22020n SB x z n BC y ⎧⋅=-=⎪⎨⋅==⎪⎩()1,0,1n = 要使平面,又平面,//OM SBC OM ⊄SBC 则,()()1,1,21,0,11210OM n t t t t ⋅=---⋅=-+-=-=解得,所以存在点,使平面,B 选项正确.1t =M //OM SBC 若直线与直线所成角为,又,OM AB 30︒()2,0,0AB =则,()()222213cos3022661122OM ABOM ABt t t t ⋅-︒====⋅-++-+-⨯ 整理得,无解,所以C 选项错误.23970,8143730t t -+=∆=-⨯⨯=-<故选:ABD.10.BCD【分析】根据向量的多边形法则可知A 正确;根据向量的三角不等式等号成立条件可知,B 错误;根据共线向量的定义可知,C 错误;根据空间向量基本定理的推论可知,D 错误.【详解】对A ,四点恰好围成一封闭图形,根据向量的多边形法则可知,正确;对B ,根据向量的三角不等式等号成立条件可知,同向时,应有,即必要,a b a b a b+=+ 性不成立,错误;对C ,根据共线向量的定义可知,所在直线可能重合,错误;,a b对D ,根据空间向量基本定理的推论可知,需满足x +y +z =1,才有P 、A 、B 、C 四点共面,错误.故选:BCD .11.AB【分析】以,,作为空间的一组基底,利用空间向量判断A ,C ,利用空间向量法ABAD AA 可得面,再用向量法表示,即可判断B ,利用割补法判断D ;1AC ⊥PMN AH【详解】依题意以,,作为空间的一组基底,ABAD AA 则,,11AC AB AD AA =++ ()1122MN BD AD AB ==-因为棱长均为2,,11π3A AD A AB ∠=∠=所以,,224AB AD == 11π22cos 23AA AD AA AB ⋅=⋅=⨯⨯= 所以()()1112D A A C MN AD A A B AA B++⋅⋅=- ,()2211102AB AD AB AD AB AD AA AD AA AB ⋅-+-⋅+==⋅+⋅故,即,故A 正确;1AC MN ⊥1AC MN ⊥同理可证,,面,面,PN AC ⊥MN PN N ⋂=MN ⊂PMN PN ⊂PMN 所以面,即面,即为正三棱锥的高,1AC ⊥PMN AH ⊥PMN AH A PMN -所以()()1133AH AN NH AN NP NM AN AP AN AM AN=+=++=+-+- ,()13AP AM AN =++又,,分别是,,的中点,,P M N 1AA AB AD π3PAM PAN MAN ∠=∠=∠=所以,则三棱锥是正四面体,1PA AM AN PM MN PN ======P AMN -所以()11111133222AH AP AM AN AA AB AD ⎛⎫=++=⨯++ ⎪⎝⎭ ,()111166AA AB AD AC =++=所以,故B 正确;116AH AC =因为()211AC AB AD AA =++ ()()()222111222AB ADAA AB AD AB AA AD AA =+++⋅+⋅+⋅ ,2426==()21111111=AC AA AB AD AA AA AB AA AD AA AA ⋅=++⋅⋅+⋅+ ,11222222=822=⨯⨯+⨯⨯+⨯设直线和直线所成的角为,1AC 1BB θ则,故C 错误;1111111186cos cos ,cos ,3262AC AA AC BB AC AA AC AA θ⋅=====⨯ ,11111111111111A B D C ABCD A B C D A B D A C B D A B ABC D ADCV V V V V V ------=----其中,1111111111116ABCD A B C D A B D A C B D C B ABC D ADC V V V V V -----====所以,故D 错误.1111113A B D C ABCD A B C D V V --=故选:AB.关键点睛:本题解决的关键点是利用空间向量的基底法表示出所需向量,利用空间向量的数量积运算即可得解.12.AC【分析】对于A ,根据即可算出的值;对于B ,根据计算;对于C ,根据||2a = m a b ⊥ m 计算即可;对于D ,根据求出,从而可计算出.a b λ= 1a b ⋅=- m a b + 【详解】对于A ,因为,所以,解得,故A 正确;||2a = 2221(1)2m +-+=2m =±对于B ,因为,所以,所以,故B 错误;a b ⊥ 2120m m -+-+=1m =对于C ,假设,则,a b λ= (1,1,)(2,1,2)m m λ-=--所以,该方程组无解,故C 正确;()12112m m λλλ=-⎧⎪-=-⎨⎪=⎩对于D ,因为,所以,解得,1a b ⋅=- 2121m m -+-+=-0m =所以,,所以,故D 错误.(1,1,0)a =- (2,1,2)b =-- (1,2,2)+=-- a b 故选:AC.13.15【分析】根据线面垂直,可得直线的方向向量和平面的法向量共线,由此列式计算,即得答案.【详解】∵,∴,∴,解得,l α⊥u n ∥ 3123a b ==6,9a b ==∴,15a b +=故1514.2【分析】根据垂直得到,得到方程,求出.()0a a b λ⋅-= 2λ=【详解】,()()()2,1,31,2,12,12,3a b λλλλλ-=---=--- 因为,所以,()a a b λ⊥- ()0a a b λ⋅-= 即,()()2,12,3241293702,1,134λλλλλλλ----=-++-+-=+⋅-=解得.2λ=故215.17【分析】利用向量的加法,转化为,直接求模长即可.CD CA AB BD =++ 【详解】因为.CD CA AB BD =++ 所以()22CD CA AB BD =++ 222222CA CA AB AB AB BD BD CA BD=+⋅++⋅++⋅ 222132022042342⎛⎫=+⨯++⨯++⨯⨯⨯- ⎪⎝⎭17=所以.17CD = 故答案为.1716.33【分析】首先建立空间直角坐标系,分别求平面和平面的法向量,利用法向量垂MBD PCD 直求点的位置,并利用向量法求异面直线所成角的余弦值,即可求解正弦值.M 【详解】如图,以点为原点,以向量为轴的正方向,建立空间直角坐标A ,,AB AD AP ,,x y z 系,设,2AD AP ==,,,,()2,0,0B ()0,2,0D ()002P ,,()2,2,0C 设,()()()0,2,22,2,22,22,22DM DP PM DP PC λλλλλ=+=+=-+-=-- ,,,()2,2,0BD =-u u u r ()2,0,0DC =u u u r ()0,2,2DP =- 设平面的法向量为,MBD ()111,,m x y z =r ,()()11111222220220DM m x y z DM m x y λλλ⎧⋅=+-+-=⎪⎨⋅=-+=⎪⎩33故。
高三数学空间向量试题答案及解析
高三数学空间向量试题答案及解析1.在如图所示的多面体中,四边形和都为矩形.(Ⅰ)若,证明:直线平面;(Ⅱ)是否存在过的平面,使得直线平行,若存在请作出平面并证明,若不存在请说明理由.【答案】(Ⅰ)见解析;(Ⅱ)存在,证明见解析【解析】(Ⅰ)由四边形和都为矩形知,⊥AB,⊥AC,由线面垂直判定定理知⊥面ABC,由线面垂直定义知⊥BC,又因为AC⊥BC,由线面垂直判定定理知,BC⊥面;(Ⅱ)取AB的中点为M,连结交于D,连结DE,显然E是的中点,根据三角形中位线定理得,DE∥,又由于DE在面过的平面内,根据线面平行的判定定理知和该平面平行.试题解析:(Ⅰ)证明:因为四边形和都是矩形,所以 2分因为为平面内的两条相交直线,所以 4分因为直线平面,所以又由已知,为平面内的两条相交直线,所以平面 7分(Ⅱ)存在 8分连接,设,取线段AB的中点M,连接.则平面为为所求的平面. 11分由作图可知分别为的中点,所以 13分又因为因此 14分考点: 空间线面垂直垂直的判定与性质;线面平行的判定;推理论证能力2.如图,平面ABCD⊥平面ADEF,其中ABCD为矩形,ADEF为梯形,AF∥DE,AF⊥FE,AF=AD=2DE=2,M为AD的中点.(1)证明:MF⊥BD;(2)若二面角A-BF-D的平面角的余弦值为,求AB的长.【答案】(1)见解析(2)【解析】(1)证明由已知得△ADF为正三角形,所以MF⊥AD,因为平面ABCD⊥平面ADEF,平面ABCD∩平面ADEF=AD,MF⊂平面ADEF,所以MF⊥BD.(2)设AB=x,以F为原点,AF,FE所在直线分别为x轴,y轴建立如图所示的空间直角坐标系,则F(0,0,0),A(-2,0,0),D(-1,,0),B(-2,0,x),所以=(1,-,0),=(2,0,-x).因为EF⊥平面ABF,所以平面ABF的法向量可取n1=(0,1,0).设n2=(x1,y1,z1)为平面BFD的法向量,则可取n2=.因为cos〈n1,n2〉==,得x=,所以AB=.3.已知向量=(2,4,5),=(3,x,y),若∥,则() A.x=6,y=15B.x=3,y=C.x=3,y=15D.x=6,y=【答案】D【解析】∵==,∴x=6,y=,选D项.4.如图,正方体ABCD-A1B1C1D1中,E,F分别在A1D,AC上,且A1E=A1D,AF=AC,则()A.EF至多与A1D,AC之一垂直B.EF⊥A1D,EF⊥ACC.EF与BD1相交D.EF与BD1异面【答案】B【解析】以D点为坐标原点,以DA,DC,DD1所在直线分别为x,y,z轴建立空间直角坐标系,设正方体棱长为1,则A1(1,0,1),D(0,0,0),A(1,0,0),C(0,1,0),E(,0,),F(,,0),B(1,1,0),D1(0,0,1),=(-1,0,-1),=(-1,1,0),=(,,-),=(-1,-1,1),=-,·=·=0,从而EF∥BD1,EF⊥A1D,EF⊥AC.故选B.5.已知2a+b=(0,-5,10),c=(1,-2,-2),a·c=4,|b|=12,则以b,c为方向向量的两直线的夹角为________.【答案】60°【解析】由题意得(2a+b)·c=0+10-20=-10.即2a·c+b·c=-10,又∵a·c=4,∴b·c=-18,∴cos〈b,c〉===-,∴〈b,c〉=120°,∴两直线的夹角为60°.6.已知点A(1,t,-1)关于x轴的对称点为B,关于xOy平面的对称点为C,则BC中点D的坐标为________.【答案】(1,0,1)【解析】因为A(1,t,-1)关于x轴的对称点为B(1,-t,1),关于xOy平面的对称点为C(1,t,1),所以BC中点D的坐标为(,,),即D(1,0,1).7.如图,四棱柱中,底面.四边形为梯形,,且.过三点的平面记为,与的交点为.(1)证明:为的中点;(2)求此四棱柱被平面所分成上下两部分的体积之比;(3)若,,梯形的面积为6,求平面与底面所成二面角大小.【答案】(1)为的中点;(2);(3).【解析】(1)利用面面平行来证明线线平行∥,则出现相似三角形,于是根据三角形相似即可得出,即为的中点.(2)连接.设,梯形的高为,四棱柱被平面所分成上下两部分的体积分别为和,,则.先表示出和,就可求出,从而.(3)可以有两种方法进行求解.第一种方法,用常规法,作出二面角.在中,作,垂足为,连接.又且,所以平面,于是.所以为平面与底面所成二面角的平面角.第二种方法,建立空间直角坐标系,以为原点,分别为轴和轴正方向建立空间直角坐标系.设.因为,所以.从而,,所以,.设平面的法向量,再利用向量求出二面角.(1)证:因为∥,∥,,所以平面∥平面.从而平面与这两个平面的交线相互平行,即∥.故与的对应边相互平行,于是.所以,即为的中点.(2)解:如图,连接.设,梯形的高为,四棱柱被平面所分成上下两部分的体积分别为和,,则.,,所以,又所以,故.(3)解法1如第(20)题图1,在中,作,垂足为,连接.又且,所以平面,于是.所以为平面与底面所成二面角的平面角.因为∥,,所以.又因为梯形的面积为6,,所以.于是.故平面与底面所成二面角的大小为.解法2如图,以为原点,分别为轴和轴正方向建立空间直角坐标系.设.因为,所以.从而,,所以,.设平面的法向量,由得,所以.又因为平面的法向量,所以,故平面与底面所成而面积的大小为.【考点】1.二面角的求解;2.几何体的体积求解.8.如图,正方形与梯形所在的平面互相垂直,,∥,,,为的中点.(1)求证:∥平面;(2)求证:平面平面;(3)求平面与平面所成锐二面角的余弦值.【答案】(1)证明过程详见解析;(2)证明过程详见解析;(3).【解析】本题主要考查中位线、平行四边形的证明、线面平行、线面垂直、面面垂直、二面角等基础知识,考查学生的空间想象能力、逻辑推理能力、计算能力.第一问,作出辅助线MN,N为中点,在中,利用中位线得到,且,结合已知条件,可证出四边形ABMN为平行四边形,所以,利用线面平行的判定,得∥平面;第二问,利用面面垂直的性质,判断面,再利用已知的边长,可证出,则利用线面垂直的判定得平面BDE,再利用面面垂直的判定得平面平面;第三问,可以利用传统几何法证明二面角的平面角,也可以利用向量法建立空间直角坐标系,求出平面BEC和平面ADEF的法向量,利用夹角公式计算即可.(1)证明:取中点,连结.在△中,分别为的中点,所以∥,且.由已知∥,,所以∥,且.所以四边形为平行四边形,所以∥.又因为平面,且平面,所以∥平面. 4分(2)证明:在正方形中,.又因为平面平面,且平面平面,所以平面.所以. 6分在直角梯形中,,,可得.在△中,,所以. 7分所以平面. 8分又因为平面,所以平面平面. 9分(3)(方法一)延长和交于.在平面内过作于,连结.由平面平面,∥,,平面平面=,得,于是.又,平面,所以,于是就是平面与平面所成锐二面角的平面角. 12分由,得.又,于是有.在中,.所以平面与平面所成锐二面角的余弦值为. 14分(方法二)由(2)知平面,且.以为原点,所在直线分别为轴,建立空间直角坐标系.易得.平面的一个法向量为.设为平面的一个法向量,因为,所以,令,得.所以为平面的一个法向量.12分设平面与平面所成锐二面角为.则.所以平面与平面所成锐二面角的余弦值为. 14分【考点】中位线、平行四边形的证明、线面平行、线面垂直、面面垂直、二面角.9.如图,直四棱柱底面直角梯形,∥,,是棱上一点,,,,,.(1)求异面直线与所成的角;(2)求证:平面.【答案】(1);(2)证明见解析.【解析】(1)本题中由于有两两垂直,因此在求异面直线所成角时,可以通过建立空间直角坐标系,利用向量的夹角求出所求角;(2)同(1)我们可以用向量法证明线线垂直,以证明线面垂直,,,,易得当然我们也可直线用几何法证明线面垂直,首先,这由已知可直接得到,而证明可在直角梯形通过计算利用勾股定理证明,,,因此,得证.(1)以原点,、、分别为轴、轴、轴建立空间直角坐标系.则,,,. 3分于是,,,异面直线与所成的角的大小等于. 6分(2)过作交于,在中,,,则,,,, 10分,.又,平面. 12分【考点】(1)异面直线所成的角;(2)线面垂直.10.在如图所示的几何体中,平面,∥,是的中点,,.(1)证明:∥平面;(2)求二面角的大小的余弦值.【答案】(1)详见解析;(2)【解析】(1)要证明直线和平面平行,只需证明直线和平面内的一条直线平行,取中点,连接,则,且,由已知得,且,故,则四边形是平行四边形,可证明,进而证明∥平面,或可通过建立空间直角坐标系,用坐标表示相关点的坐标,证明直线的方向向量垂直于平面的法向量即可;(2)先求半平面和的法向量的夹角的余弦值,再观察二面角是锐二面角还是钝二面角,来决定二面角的大小的余弦值的正负,从而求解.(1)因为,∥,所以平面.故以为原点,建立如图所示的空间直角坐标系,则相关各点的坐标分别是,,,,,.所以,因为平面的一个法向量为,所以,又因为平面,所以平面. 6分(2)由(1)知,,,.设是平面的一个法向量,由得,取,得,则设是平面的一个法向量,由得,取,则,则设二面角的大小为,则,故二面角的大小的余弦值为.【考点】1、直线和平面平行的判断;2、二面角的求法.11.如图,在四棱锥中,底面是直角梯形,,,平面平面,若,,,,且.(1)求证:平面;(2)设平面与平面所成二面角的大小为,求的值.【答案】(1)参考解析;(2)【解析】(1)由,所以.又,.在三角形PAO中由余弦定理可得.所以.即.又平面平面且平面平面=AD,平面PAD.所以平面.(2)由题意可得建立空间坐标系,写出相应点的坐标,平面PAD的法向量易得,用待定系数写出平面PBC的法向量,根据两向量的法向量夹角的余弦值,求出二面角的余弦值.(1)因为,,所以, 1分在中,由余弦定理,得, 3分,, 4分, 5分又平面平面,平面平面,平面,平面. 6分(2)如图,过作交于,则,,两两垂直,以为坐标原点,分别以,,所在直线为轴,建立空间直角坐标系, 7分则,,8分,, 9分设平面的一个法向量为,由得即取则,所以为平面的一个法向量. 11分平面,为平面的一个法向量.所以, 12分. 13分【考点】1.线面垂直的证明.2.二面角.3.空间坐标系的表示.4.向量的夹角.12.如图,在直三棱柱中,已知,,.(1)求异面直线与夹角的余弦值;(2)求二面角平面角的余弦值.【答案】(1),(2).【解析】(1)利用空间向量求线线角,关键在于正确表示各点的坐标. 以为正交基底,建立空间直角坐标系.则,,,,所以,,因此,所以异面直线与夹角的余弦值为.(2)利用空间向量求二面角,关键在于求出一个法向量. 设平面的法向量为,则即取平面的一个法向量为;同理可得平面的一个法向量为;由两向量数量积可得二面角平面角的余弦值为.试题解析:如图,以为正交基底,建立空间直角坐标系.则,,,,所以,,,.(1)因为,所以异面直线与夹角的余弦值为. 4分(2)设平面的法向量为,则即取平面的一个法向量为;所以二面角平面角的余弦值为. 10分【考点】利用空间向量求线线角及二面角13.如图,在正四棱锥P-ABCD中,PA=AB=,点M,N分别在线段PA和BD上,BN=BD.(1)若PM=PA,求证:MN⊥AD;(2)若二面角M-BD-A的大小为,求线段MN的长度.【答案】(1)详见解析;(2).【解析】(1)由于这是一个正四棱锥,故易建立空间坐标系,易得各点的坐标,由,得,由,得,即可求得向量的坐标:.不难计算出它们的数量积,问题得证;(2)利用在上,可设,得出点的坐标,表示出,进而求出平面的法向量n=(λ-1,0,λ),由向量的夹角公式可得,解得,从而确定出,由两点间距离公式得.试题解析:证明:连接交于点,以为轴正方向,以为轴正方向,为轴建立空间直角坐标系.因为,则.(1)由,得,由,得,所以.因为.所以. 4分(2)因为在上,可设,得.所以.设平面的法向量,由得其中一组解为,所以可取n=(λ-1,0,λ). 8分因为平面的法向量为,所以,解得,从而,所以. 10分【考点】1.线线垂直的证明;2.二面角的计算14.如图,已知四棱锥的底面的菱形,,点是边的中点,交于点,(1)求证:;(2)若的大小;(3)在(2)的条件下,求异面直线与所成角的余弦值。
高考数学必做题--立体几何与空间向量 (后附参考答案与详解)
立体几何与空间向量-高考必做题123平行的截面,则截得的三;截得的平面图形中,面积最大的值是.4的中点,为线段上的动点,过点,,则下列命题正确的是.5与四棱锥的表面的交线,并写出作图的步骤.7是正方体棱上一点(不包括棱的端点),.,则的取值范围是.8的最大值为满足9的中点,沿将矩形折起使得分别为中点.10C.3个D.4个分别为棱,上的点. 已知下列判断:上的正投影是面积为定值的三角形;平行的直线;所成的二面角(锐角)的大小与点的位置有关,与点的位置无关.11,,,与平面所12的位置,使得平面,并证明你的13,坐标平面上的一组正投影图像如.14如图是圆的直径,垂直圆所在的平面,是圆上的点.求证:平面平面.(1)15 16 17 18椭圆的一部分 D.抛物线的一部分19 D.,所成角都相等的直线条数为所成角都相等的直线的条数为,则下面结论正确的是(20分别是棱的中点,是侧面长度的取值范围是().21D.D.③④分别是棱,的中点,过直线,,给出以下四个命题:22为正方形,,则三棱锥2324 2526 272829 30A. B.C. D.立体几何与空间向量-高考必做题123为边长为的等边三角形,面积为截得的平面图形中,正六边形如图所示分别为各边中点,边长为,面积为.故答案为;.立体几何与空间向量立体几何初步空间几何体4如图,在棱长为的正方体的中点,点在线段上.点到直线的距离的最小值为.∵,底面,∴四边形是矩形.∴,又平面,平面∴平面.∴直线上任一点到平面的距离是两条异面直线∵平面平面.5当时,为中点,此时可得截面为等腰梯形;当点向移动时,满足即可得截面为四边形,①正确;对于②,当时,如图所示,延长至,使,连接交于,连接可证,由可得故可得,∴截面对于③,由②知当此时的截面形状仍然为上图所示的五边形对于④,当时,与可证,且,可知截面故答案为:①②④.立体几何与空间向量立体几何初步空间几何体点、直线、平面间的位置关系6与四棱锥的表面的交线,并写出作图的步骤.为平面与四棱锥的表面的交线.分别是线段,上的,的菱形,,,,,,所以,设平面的法向量为,则由可得令因为,所以直线与平面的成角的正弦值为法1:延长,分别交,延长线于,,连接,,则四边形为平面法2:记平面与直线的交点为,设由.所以即为点.所以连接,,则四边形为平面平面向量平面向量的基本概念向量的加法与减法平面向量的数量积数量积立体几何与空间向量立体几何初步点、直线、平面间的位置关系空间中的平行空间向量空间直角坐标系空间向量的应用789的最大值为满足,所以,所以.,接下来研究这个二次函数的性质可函数函数的概念与表示最值单调性对称性二次函数立体几何与空间向量立体几何初步空间几何体点、直线、平面间的位置关系空间中的垂直10,,则中位线且又且,所以且所以四边形是平行四边形,所以,又平面,法二:如图,延长因为且,所以为中点,所以中位线,又平面,面,所以法一:如图,因为,所以又.所以∴,∴,又∵,,∴平面,面,∴又,所以平面,又为中点,所以所以平面,,所以中,,,∴二面角的余弦值为法二:如图,∵,∴∴,∴∴,∴,,又∵,,∴平面,面,∴,又,所以平面,面,∴则,,,而是平面的一个法向量,设平面的法向量为则令,则,面的一个法向量为所以所以,二面角的余弦值为立体几何与空间向量立体几何初步点、直线、平面间的位置关系空间中的平行空间中的垂直空间向量空间直角坐标系空间向量及其运算空间向量的应用11中,,分别为棱D.4个平面,而两个平面面与面上的正投影是面积为定值的三角形,此是一个正确的结点在面上的投影到此棱的距离是定平行的直线,此两平面相交,一个面内平行于两个平面的交线一定平行于另一个平面,此结论正确;所成的二面角(锐角)的大小与点的位置有关,与点的位置无关,此结论不对,与两者都有关系,可代入几个特殊点进行验证,如与重重合时的情况就不一样,故此命题不正点、直线、平面间的位置关系空间中的平行空间中的垂直12的位置,使得平面,并证明你的,∵与平面所成角为,即,∴,由,知,,则,,,∴,,设平面的法向量为,则,即,令,则,∵平面,∴为平面的法向量,∴又∵二面角为锐角,∴二面角的余弦值为.点是线段上一个动点,设,则,∵平面,∴,即,解得:,此时,点坐标为,.平面向量平面向量的基本定理及坐标表示平面向量的坐标运算用坐标表示平面向量共线的条件立体几何与空间向量立体几何初步点、直线、平面间的位置关系空间中的平行空间中的垂直空间向量空间向量及其运算空间向量的应用答案解析该几何体还原如图所示,易得体积为.立体几何与空间向量立体几何初步空间几何体体积和表面积的计算三视图14是圆的直径,垂直圆所在的平面,是圆上的点.求证:平面平面.,,,求:二面角的余弦值.(1)答案见解析.(2)答案见解析.(1)由是圆的直径,得.由平面,平面,得.在中,∵,,∴立体几何初步空间中的垂直空间向量空间向量的应用1516三角函数与解三角形解三角形立体几何与空间向量立体几何初步空间几何体点、直线、平面间的位置关系17动点从到,再到,到再回到,,则经过的最短路径为:一个半圆和一个即.立体几何与空间向量立体几何初步空间几何体18如图,三棱锥的顶点、、等边三角形,点,分别为线段体积的最大值为19椭圆的一部分 D.抛物线的一部分的交线的距离分别为和.,D.,所成角都相等的直线条数为所成角都相等的直线的条数为,则下面结论正确的是(2021D.连结,可以证明平面,所以点位于线段上,把三角形拿到平面上,则有,所以当点位于时,最大,当位于中点时,最小,此时所以,即所以线段长度的取值范围是22D.③④在正方体中,平面,∴平面平面,①正确;②连接,∵平面,四边形的对角线是固定的,要使面积最小,只需的长度最小即可,此时为棱中点,,长度最小,对应四边形②正确;③∵,∴四边形是菱形,当时,长度由大变小,当时,长度由小变大,∴函数不是单调函数,③错误;④连接,,,四棱锥分割成两个小三棱锥,以为底,分别以、为顶点,∵面积是个常数,、到平面的距离是个常数,2324函数图象的交点函数的零点三角函数与解三角形三角函数任意角与弧度制三角函数的定义立体几何与空间向量立体几何初步空间几何体解析几何曲线与方程25)成。
高考必刷大题 空间向量与立体几何
故 2λ=-2,2λ+2μ-μt=0, 3μt= 3,
解得
t=23,从而D→F=0,43,2
3
3.
123456
所以直线AE与DF所成角的余弦值为
|cos〈A→E,D→F〉|=|AA→→EE|·|DD→→FF|=
2 7×2
7=37. 3
123456
4.(2023·成都模拟)如图所示,直角梯形ABDE和三角形ABC所在平面互相 垂直,DB⊥AB,ED∥AB,AB=2DE=2BD=2,AC=BC,异面直线DE 与AC所成角为45°,点F,G分别为CE,BC的中点,点H是线段EG上靠近 点G的三等分点.
则有nn··B—C→CC→=1 =x+-x+3y=30z,=0,
可取 n=( 3,-1,1),又—BA→1 =(1,0, 3),
—→
所以点
A1 到平面
BCC1B1 的距离为| BA|n1|·n|=2
3=2 5
515,
所以所求距离为2 515.
123456
3.(2024·丹东模拟)如图,平行六面体ABCD-A1B1C1D1的所有棱长都相等, 平面CDD1C1⊥平面ABCD,AD⊥DC,二面角D1-AD-C的大小为120°, E为棱C1D1的中点.
(1)求证:A,B,F,H四点共面;
123456
如图,取AB的中点O,连接OC,OE, 因为AC=BC,故∠BAC为锐角, 又ED∥AB, 故∠BAC即为异面直线DE与AC所成角, 则∠BAC=45°, 则∠ACB=90°,即AC⊥CB, 因为直角梯形ABDE和三角形ABC所在平面互相垂直,DB⊥AB, 平面ABDE∩平面ABC=AB,DB⊂平面ABDE,
123456
设平面PBD的法向量为n=(x,y,z), 则nn··PP→→DB==22xy--22zz==00,, 取 x=1,得 n=(1,1,1), ∵A→M=n,∴AM⊥平面 PBD.
空间直角坐标系空间向量,高考历年真题.docx
馨提示:高考题库为Word 版,请按住Ct 门,滑动鼠标滚轴,调节合适的 观看比例,点击右上角的关闭按钮可返回目录。
【考点25】空间直角坐标系、空间向量2009年考题1. (2009安徽高考)在空间直角坐标系中,已知点A (1, 0, 2) , B (l,・3, 1),点M 在y 轴上,且M到A 与到B 的距离相等,则M 的坐标是 ___________ o【解析】设M(0,y,0)由『 + y2+4 = l + (_3-y)2+l 可得 y = -l 故 M(0, — l,0) 答案:(0,-1, 0)2. (2009安徽高考)如图,四棱锥F-ABCD 的底面ABCD 是菱形,其对角线 AC=2, BD=A /2 , AE 、CF 都与平面 ABCD 垂直,AE=1, CF=2・ (I ) 求二面角B-AF-D 的大小;(II ) 求四棱锥E-ABCD 与四棱锥F-ABCD 公共部分的体积.【解析】(D (综合法〉连结AC 、BD 交于菱形的中心0,过0作0G 丄AF,G 为垂足。
连接BG 、DG 。
由BD 丄AC, BD 丄CF 得BD 丄平面ACF,故BD 丄AF 。
于是AF 丄平面BGD,所以BG 丄AF, DG 丄AF, ZBGD 为二面角B-AF-D 的平面角。
FC = AC = 2,得 FAC ――,4(向量法)以A 为坐标原点, 由 0B 丄 0 G,0B = 0D = —9 ZBGD = 2ZBG02BD. AC. 农方向分别为x 轴.y 轴.无轴的正方向建立空间直角坐标71~2系(如图〉设平面ABF 的法向量斤=(兀,y,z),则由~°得< I • AF = 02”,斤=(_Q_1,1)y = T同理,可求得平面ADF 的法向量石=(血,一1,1)。
由q •刃 〜71 0=0知,平面ABF 与平面ADF 垂直,二面角B-AF-D 的大小等于一。
(II)连EB 、EC 、ED,设直线AF 与直线CE 相交于点H,则四棱锥E-ABCD 与四棱锥F-ABCD 的公共部分为四棱锥H-ABCDo 过H 作HP 丄平面ABCD, P 为垂足。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间向量高考题
1. 如下图 , 在长方体 ABCD— A1 B1C1 D1中, 已知 AB=4, AD=3, AA1=
2. E、F 分别是线段AB、BC上的点 , 且 EB=FB=1.
(Ⅰ)求二面角C— DE—C1的正切值 ; (Ⅱ)求直线 EC1与 FD1所成角的余弦值 .
、如图四棱锥 P—ABCD中底面 ABCD为矩
形AB AD
,
侧面 PAD为等
边
2 .,,, =8,=4三角形 , 并且与底面所成二面角为60°.
(Ⅰ)求四棱锥P— ABCD的体积 ;(Ⅱ)证明PA⊥BD.
4、如图,α⊥β,α ∩β=l ,∈α,∈β,点
A
在直线 l 上的射影为
1
,点
A B A
B 在直线l 上的射影为1,已知=,1,
1
=,求:
B AB 2AA=1BB
(Ⅰ)直线 AB分别与平面α,β所成的角的大小;(Ⅱ)二面角A1-AB- B1的大小 .
证∵α⊥β,α∩β=l , AA1⊥l , BB1⊥l ,∴AA1⊥β,BB1⊥α ,
则∠ BAB1,∠ ABA1分别是 AB与α和β所成的角 .
Rt△BB1A 中, BB1=,AB=2,∴ sin∠BAB1=,
∴∠ BAB1=45°.
Rt△AA1B 中, AA1=1,AB=2,
∴sin ∠ABA1=,∴∠ ABA1=30°.
故 AB与平面α,β所成的角分别是45°, 30°.
( Ⅱ) 如图,建立坐标系,则A1( 0, 0, 0), A(0,0, 1), B1(0,1,0), B (,1,0).
在 AB上取一点 F(x,y,z),则存在 t ∈R,使得=t,
即( x,y,z-1)=t() ,∴点 F 的坐标为 (t ,t ,1- t).
要使,须=0,即(,t ,1-t )·(,1,-1)=0,
2t+t-(1 -t)=0 ,解得 t=,∴点 F 的坐标为 () ∴().
1
). ∴
设 E 为 AB 的中点,则点 E 的坐标为( 0,
又
∴,∴∠A1FE为所求二面角的平面角.
又 cos∠A1FE=
∴二面角A1- AB-B1的大小为 arccos.
5、如图,在直三棱柱中,、分别为、的中点。
( I )证明: ED为异面直线与的公垂线;(II)设求二面角的大小
(Ⅰ)如图,建立直角坐标系其中原点为的中点。
设则
又=(-2a,0,2c)
, ∴ED⊥AC1所以是异面直线与的公垂线。
(Ⅱ)不妨设
则
,
,即,又,
面又,
,
,即,又
,
面
,即得和的夹角为,所以二面角为
6、已知四棱锥 P-ABCD的底面为直角梯形, AB∥DC,底面ABCD,
且 PA=AD=DC=AB=1,M是 PB的中点。
(Ⅰ)证明:面 PAD⊥面 PCD;(Ⅱ)求 AC与 PB所成的角;(Ⅲ)求面 AMC
与面 BMC所成二面角的大小。
证:因为 PA⊥AD,PA⊥AB,AD⊥AB,以 A 为坐标原点, AD长为单位长度,
如图建立空间直角坐标系,则各点坐标为
A(0,0,0),B(0,2,0),C(1,1,0),D(1,0,0),P(0,0,1),M(0,1,).
(I) 证明:因=(0,0,1),=(0,1,0),故·=0, 所以 AP⊥DC.
又由题设知 AD⊥DC,且 AP与 AD是平面 PAD内的两条相交直线,由此得 DC⊥
面PAD。
又 DC在面 PCD上,故面 PAD⊥面 PCD.
( II )解:因=(1,1,0),=(0,2,-1),
故||=,||=,·=2,所以
cos<·>==
由此得 AC与 PB所成的角为 arccos
(III )解:在 MC上取一点 N(x,y,z), 则存在λ∈R,使
=λ,
=(1-x,1-y,-z),=(1,0,-), ∴x=1- λ,y=1,z=λ .
要使 AN⊥MC只需·=0, 即 x- z=0, 解得λ=.
可知当λ=时,N点坐标为(,1,), 能使·=0.
此时 ,=( ,1,),=( ,-1,), 有·=0.
由·=0,·=0 得 AN⊥MC,BN⊥MC.所以∠ ANB为所求二面角的平面角 .
∵||=,||=,·=-
∴cos<,>=故所求的二面角为arccos(-).
7、如图,四棱锥 P-ABCD中,底面 ABCD为矩形, PD⊥底面 ABCD,AD=PD,
E、 F 分别为 CD、PB的中点。
(Ⅰ)求证: EF⊥平面 PAB;(Ⅱ)设 AB=BC,求 AC与平面 AEF所成的角的大小。
证:以 D为坐标原点, DA的长为单位,建立如图所示的直角坐标系 .
(Ⅰ)证明:
设 E(a,0,0)其中 a>0,则 C( 2a,0,0), A(0,1,0)B(2a, 1, 0), P ( 0, 0, 1), F(a,,).
=(0,,),=(2a,,=( 2a, 0, 0)。
·=0,∴ EF⊥PB.
·=0,∴ EF⊥AB
又 PB 平面 PAB,AB 平面 PAB,PB∩AB=B.
∴EF⊥平面
PAB.
(Ⅱ)解:由 AB= BC,得 a=.
可得=(,-1,0),=(,
cos<·>==,
异面直线 AC、PB所成的角为 arccos.
=(,-,).
∴·=0,PB⊥AF.
又 PB⊥EF, EF、 AF为平面 AEF内两条相交直线 ,即 AC与平面 AEF所成的角为 arcsin.
8.如图,已知四棱锥 P—ABCD,PB⊥AD,侧面 PAD为边长等于 2 的正三角形,底面 ABCD为菱形,侧面 PAD与底面 ABCD所成的二面角为 1
(Ⅰ)求点 P 到平面 ABCD的距离;(Ⅱ)求面 APB与面 CPB所成二面角的大小 .
(Ⅰ)解:如图,作PO⊥平面 ABCD,垂足为点 O.
连结 OB、OA、OD,OB与 AD交于点 E,连结 PE.
∵AD⊥PD,∴ AD⊥OB,
∵PA=PD,∴ OA=OD,
于是 OB平分 AD,点 E 为 AD的中点,所以PE⊥AD.
由此知∠ PEB为面 PAD与面 ABCD所成二面角的平面角,
∴∠ PEB=1,∠ PEO= 60 . 由已知可求得 PE=,
∴PO=PE·
sin60 =
×
= ,
即点 P 到平面BCD的距离为
.
A
(Ⅱ):如图建立直角坐标系,其中O为坐标原点, x 轴平行于 DA.
P
),B(
0,,0
), PB中点 G的坐标为
(
0,,
),连结 AG
(0,0,.
又知A(,,),C(-,,)由此得到:
=(1,-
,
-
),
1020 .
=(0,, -),=(-2,0,0).于是有·=0,·=0,所以⊥,⊥.,的夹角等于所求二面角的平面角,
于是 cos ==-,
所以所求二面角的大小为π- arccos.。