2020江苏高考数学一轮复习学案:第40课__直线的方程 含解析.docx
新高考数学一轮复习课件 直线的方程
第一节 直线的方程
1
2
3
走进教材·夯实基础 细研考点·突破题型 课时分层作业
(2)当-1≤k<0 时,34π≤θ<π, 当 0≤k≤1 时,0≤θ≤π4. 因此 θ 的取值范围是0,π4∪34π,π.]
第一节 直线的方程
1
2
3
走进教材·夯实基础 细研考点·突破题型 课时分层作业
考点二 直线方程的求法 1.经过两条直线 l1:x+y=2,l2:2x-y=1 的交点,且直线的 一个方向向量 v=(-3,2)的直线方程为________.
1
2
3
走进教材·夯实基础 细研考点·突破题型 课时分层作业
4 . 过 点 P(2,3) 且 在 两 轴 上 截 距 相 等 的 直 线 方 程 为 __________________.
3x-2y=0 或 x+y-5=0 [当纵、横截距为 0 时,直线方程为 3x-2y=0;
当截距不为 0 时,设直线方程为ax+ay=1,则2a+3a=1,解得 a= 5,直线方程为 x+y-5=0.]
当 k=0 时,直线为 y=1,符合题意, 故 k 的取值范围是[0,+∞).
第一节 直线的方程
1
2
3
走进教材·夯实基础 细研考点·突破题型 课时分层作业
(3)由题意可知 k≠0,再由 l 的方程,得 A-1+k2k,0,B(0,1+ 2k).
(1)A (2)(-∞,- 3]∪[1,+∞) [(1)由题意,在 Rt△BCD 中, ∠BCD=π2,BC= 3AB= 3CD,
∴tan∠CBD= 33,∴∠CBD=π6,∴直线 BC 的倾斜角为π3,故 kBC=tanπ3= 3.故选 A.
第一节 直线的方程
高考数学一轮复习教案第40课直线的方程
一、考纲要求:1、了解确定直线位置的几何要素(两个点、一点和方向);2、掌握直线方程的五种形式(点斜式、斜截式、两点式、截距式及一般式)的特点与适用范围,能根据问题的具体条件选择恰当的形式求直线的方程;3、熟悉直线方程各形式的特征,理解各形式之间的关系,会由已知直线方程求相关的特征量。
二、知识梳理回顾要求1.阅读教材第80页~86页,完成以下任务:(1)掌握直线方程的点斜式、斜截式、两点式、截距式,能根据条件熟练地求出直线的方程;(2)能将直线方程的点斜式、斜截式、两点式等几种形式化为一般式,知道这几种形式的直线方程的局限性;2.教材第83页思考你会回答吗?你能分清121121121211x x x x y y y y x x y y x x y y --=----=--和所表示的图形吗? 3.平面内的任意一条直线是否都可以用形如)0,(0不全为B A C By Ax =++的方程来表示?并在课本空白处完成:教材87页练习第4题。
要点解析1、确定一条直线需要两个独立的条件,一是方向(斜率或倾斜角),二是位置(一个定点);2、点斜式方程是直线方程其它形式的源头,因此尤为重要,斜截式是点斜式的特例,两者均不能表示与x 轴垂直的直线。
截距式为两点式的特例,两者均不能表示与x ,y 轴平行的直线,截距式还不能表示过原点的直线。
直线的方程都是二元一次方程,任何一个关于x ,y 的二元一次方程都表示一条直线。
3、求直线的方程主要有两种方法:①直接法,根据已知条件,选择适当的形式,直接写出直线的方程;②待定系数法,先设出直线方程,根据已知条件求出待定的系数,再代入,求出直线方程。
4、分类讨论、数形结合是常用的数学思想,分类讨论主要是针对斜率存在与不存在。
三、诊断练习:1、教学处理:课前由学生自主完成4道小题,并要求将解题过程扼要地写在学习笔记栏。
课前抽查批阅部分同学的解答,了解学生的思路及主要错误。
2、诊断练习点评:1、已知点()()4,6,2,4A B --,则直线AB 的一般式方程为 。
高三一轮复习学案1 直线与直线的方程
考点1
直线的斜率与倾斜角
已知直线l过P(-1,2),且与以A(-2,-3),B(3, 0)为端点的线段相交,求直线l的斜率的取值范围.
【分析】借助于图形,由 斜率公式确定k的范围.
【评析】 解法一,当直线的倾斜角由锐角变到直角再由 直角变到钝角时,需根据正切函数y=tanα的单调性求k的 范围,数形结合是解析几何中的重要方法.解题时,借助 图形及图形性质直观判断,明确解题思路,达到快捷解题 的目的,解法二则巧妙利用了不等式所表示的平面区域的 性质使问题得以解决.
求适合下列条件的直线方程:
(1)经过点P(3,2),且在两坐标轴上的截距相等; 1 (2)过点A(-1,-3),斜率是直线y=3x的斜率的-4 ;
【解析】 (1)解法一:设直线l在x,y轴上的截距均为a.
①若a=0,即l过点(0,0)和(3,2), 2 ∴l的方程为y= 3x,即2x-3y=0.
预测2013年高考仍将以求直线的方程、点到直线 的距离、两点间的距离、两条直线的平行与垂直为主 要考点,题型以选择题、填空题为主,重点考查运算 能力与对概念的理解能力.
1.直线的倾斜角和斜率 (1)倾斜角α:在平面直角坐标系中,对于一条与x轴相 交的直线,如果把x轴按逆时针方向绕着交点旋转到和直 线重合时所成的角,叫作 直线的倾斜角 .规定:直线与x轴 平行或重合时α=0°.故倾斜角的范围是 . 0°≤α<180°
故所求直线的方程为x+7y-15=0或7x-y-5=0.
【评析】求与已知两直线的交点有关问题,可有以下 两种解法:
(1)先求出两直线交点,将问题转化为过定点的 直线,然后再依其他条件求解. (2)运用过两直线交点的直线系方程:若两直线 l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0有交点,则过l1与l2 交点的直线系方程为 A1x+B1y+C1+λ(A2x+B2y+C2)=0(λ为待定常数,不包 括直线l2),设出方程后再利用其他条件求解.
2020年高考数学一轮复习教案(全国通用版)-直线与方程
一、自我诊断知己知彼1.如果A·C<0且B·C<0,那么直线Ax+By+C=0不通过()A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】由已知得直线Ax+By+C=0在x轴上的截距-CA>0,在y轴上的截距-CB>0,故直线经过第一、二、四象限,不经过第三象限.2. 若过点M(-2,m),N(m,4)的直线的斜率等于1,则m的值为()A.1 B.4 C.1或3 D.1或4 【答案】A【解析】由题意得m-4-2-m=1,解得m=1.3.线2x+(m+1)y+4=0与直线mx+3y-2=0平行,则m等于() A.2 B.-3 C.2或-3 D.-2或-3 【答案】C【解析】直线2x+(m+1)y+4=0与直线mx+3y-2=0平行,则有2m=m+13≠4-2,故m=2或-3.故选C.4.若直线(3a+2)x+(1-4a)y+8=0与(5a-2)x+(a+4)y-7=0垂直,则a=________. 【答案】0或1【解析】由两直线垂直的充要条件,得(3a+2)(5a-2)+(1-4a)(a+4)=0,解得a=0或a=1. 5.已知点(a,2)(a>0)到直线l:x-y+3=0的距离为1,则a等于()A. 2 B.2- 2 C.2-1 D.2+1【答案】C【解析】由题意得|a-2+3|1+1=1.解得a=-1+2或a=-1- 2.∵a>0,∴a=-1+ 2.二、温故知新夯实基础1.直线的倾斜角(1)定义:当直线l与x轴相交时,取x轴作为基准,x轴正向与直线l向上方向之间所成的角叫做直线l的倾斜角.当直线l与x轴平行或重合时,规定它的倾斜角为0°.(2)范围:直线l倾斜角的范围是[0°,180°).2.斜率公式(1)若直线l的倾斜角α≠90°,则斜率k=tan_α.(2)P1(x1,y1),P2(x2,y2)在直线l上且x1≠x2,则l的斜率k=y2-y1 x2-x1.3.直线方程的五种形式4(1)两条直线平行与垂直①两条直线平行:(ⅰ)对于两条不重合的直线l 1,l 2,若其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2. (ⅱ)当直线l 1,l 2不重合且斜率都不存在时,l 1∥l 2. ②两条直线垂直:(ⅰ)如果两条直线l 1,l 2的斜率存在,设为k 1,k 2,则有l 1⊥l 2⇔k 1·k 2=-1. (ⅱ)当其中一条直线的斜率不存在,而另一条的斜率为0时,l 1⊥l 2. (2)两条直线的交点直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1与l 2的交点坐标就是方程组⎩⎨⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解. 5.几种距离(1)两点P 1(x 1,y 1),P 2(x 2,y 2)之间的距离|P 1P 2|=(x 2-x 1)2+(y 2-y 1)2. (2)点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2. (3)两条平行线Ax +By +C 1=0与Ax +By +C 2=0(其中C 1≠C 2)间的距离d =|C 1-C 2|A 2+B 2.三、典例剖析 思维拓展 考点一 倾斜角与斜率例1 直线0133=++y x 的倾斜角是( ) (A )6π(B )3π(C )23π (D )56π【答案】D【解析】化直线0133=++y x 为斜截式可得3133--=x y ,所以直线的斜率为33,设直线的倾斜角为,0180αα︒≤<︒,则6533tan παα=∴-=. 【易错点】正切值易混【方法点拨】我们平时在解题时能遇到的与斜率有关的公式如下: )(tan 01212x f x x y y k '=--==α.本题利用直线方程求出直线的斜率,再利用倾斜角与斜率的关系求出倾斜角. 考点二 直线方程例1 求过点P (2,3),并且在两轴上的截距互为相反数的直线方程 ( ) A .10x y -+= B .10x y -+=或320x y -= C .50x y +-= D .50x y +-=或320x y -= 【答案】B 【解析】设1=-+a y a x 或kx y =,将()32,P 代入求出1-=a ,或23=k . 【易错点】容易忽视截距为零的情况,此时直线过原点.【方法点拨】牵涉到横纵截距问题可以考虑设直线的截距式方程,但是要注意当直线过原点时,横纵截距同时为0,也满足要求. 考点三 直线位置关系例1过点(-1,3)且垂直于直线x -2y +3=0的直线方程为( ) A .2x +y -1=0 B .2x +y -5=0 C .x +2y -5=0 D .x -2y +7=0 【答案】A【易错点】易遗忘两直线垂直斜率成绩-1条件【解析】设与直线x -2y +3=0垂直的直线为2x +y +c =0,把点(-1,3)代入,可得c =-1,所以所求直线方程为2x +y -1=0,故选A【方法点拨】解决此题的关键是掌握简单的直线系方程,即: 与直线ax +by +c =0平行的直线为ax +by +n =0;与直线ax +by +c =0垂直的直线为bx -ay +m =0, 考点四 距离及综合问题 例1点P (m -n ,-m )到直线1x ym n+=的距离等于() 22.n m A +22.n m B -22.m n C -22.n m D ±【答案】A【解析】点P (m -n ,-m )到直线1x y m n +=的距离22d 选A 。
高考数学一轮复习第八章平面解析几何课时规范练40直线的方程
课时规范练40直线的方程基础巩固组1.“C=5”是“点(2,1)到直线3x+4y+C=0的距离为3”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件2.点(3,9)关于直线x+3y-10=0对称的点的坐标为()A.(-1,-3)B.(17,-9)C.(-1,3)D.(-17,9)3.已知直线3x+2y-3=0与直线6x+my+1=0平行,则它们之间的距离为()A.4B.2√1313C.5√1326D.7√13264.(多选)已知直线l:√3x-y+1=0,则下列结论正确的是()A.直线l的倾斜角为π6B.若直线m:x-√3y+1=0,则l⊥mC.点(√3,0)到直线l的距离为2D.过点(2√3,2),且与直线l平行的直线方程为√3x-y-4=05.若直线2ax+y-2=0与直线x-(a+1)y+2=0垂直,则这两条直线的交点坐标为()A.(-25,-65) B.(25,65)C.(25,-65) D.(-25,65)6.已知直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,若l1⊥l2,则a=,此时点P的坐标为.7.已知正方形的两边所在直线的方程分别为x-y-1=0,x-y+1=0,则正方形的面积为.综合提升组8.(2020吉林朝阳长春外国语学校期末)已知点P是曲线y=x2-ln x上任意一点,则点P到直线x-y-2=0的最短距离为()A.√3B.3√32C.2√23D.√29.(多选)(2020江苏苏州第十中学高二期中)已知直线l1:ax-y+1=0,l2:x+ay+1=0,a∈R,以下结论正确的是()A.不论a为何值,l1与l2都互相垂直B.当a变化时,直线l1,l2分别经过定点A(0,1),B(-1,0)C.不论a为何值,直线l1与l2都关于直线x+y=0对称D.若直线l1与l2交于点M,则|MO|的最大值为√210.(2020上海大同中学期中)若关于x ,y 的二元一次方程组{mx +9y =m +6,x +my =m 无解,则实数m 的值为 .11.已知直线l 在两坐标轴上的截距相等,且点P (1,3)到直线l 的距离为√2,则直线l 的条数为 .12.(2020江苏广陵扬州中学月考)已知直线x+my-2m-1=0恒过定点A. (1)若直线l 经过点A ,且与直线2x+y-5=0垂直,求直线l 的方程; (2)若直线l 经过点A ,且坐标原点到直线l 的距离为1,求直线l 的方程.创新应用组13.(2020河南郑州期末)数学家欧拉在1765年提出定理:三角形的外心、重心、垂心(外心是三角形三条边的垂直平分线的交点,重心是三角形三条中线的交点,垂心是三角形三条高线的交点)依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.这条直线被后人称为三角形的欧拉线.已知△ABC 的顶点B (-1,0),C (0,2),AB=AC ,则△ABC 的欧拉线方程为( ) A.2x-4y-3=0 B.2x+4y+3=0 C.4x-2y-3=0D.2x+4y-3=014.已知平面上一点M (5,0),若直线上存在点P ,使|PM|=4,则称该直线为“切割型直线”.下列直线是“切割型直线”的有 .①直线y=x+1;②直线y=2;③直线y=43x ;④直线y=2x+1.参考答案课时规范练40 直线的方程1.B 由点(2,1)到直线3x+4y+C=0的距离为3,得|3×2+4×1+C |√3+4=3,解得C=5或C=-25,故“C=5”是“点(2,1)到直线3x+4y+C=0的距离为3”的充分不必要条件.故选B . 2.A 设点(3,9)关于直线x+3y-10=0对称的点的坐标为(a ,b ),则{a+32+3×b+92-10=0,b -9a -3×(-13)=-1,解得{a =-1,b =-3.故所求点的坐标为(-1,-3).故选A .3.D 因为直线3x+2y-3=0与直线6x+my+1=0平行,所以3m-12=0,解得m=4.直线方程6x+4y+1=0可转化为3x+2y+12=0,则两平行线之间的距离d=|12-(-3)|√3+2=7√1326.4.CD 对于A,直线l :√3x-y+1=0的斜率k=√3,故直线l 的倾斜角为π3,故A 错误;对于B,因为直线m :x-√3y+1=0的斜率k'=√33,kk'=1≠-1,故直线l 与直线m 不垂直,故B 错误; 对于C,点(√3,0)到直线l 的距离d=√3×√3-√(√3)+(-1)=2,故C 正确;对于D,过点(2√3,2),且与直线l 平行的直线方程为y-2=√3(x-2√3),即√3x-y-4=0,故D 正确.故选CD .5.B 依题意,2a·1+1×[-(a+1)]=0,解得a=1.由{2x +y -2=0,x -2y +2=0,解得{x =25,y =65.故这两条直线的交点坐标为(25,65).故选B .6.1 (3,3) ∵直线l 1:ax+y-6=0与l 2:x+(a-2)y+a-1=0相交于点P ,且l 1⊥l 2,∴a·1+1·(a-2)=0,解得a=1.由{x +y -6=0,x -y =0,解得{x =3,y =3.∴P (3,3).7.2 由题意可知正方形的边长等于两条平行直线之间的距离,所以正方形的边长为√2=√2,所以正方形的面积为2.8.D 当过点P 的切线与直线x-y-2=0平行时,点P 到直线x-y-2=0的距离最短.因为y=x 2-ln x ,x>0,所以y'=2x-1x .令2x-1x =1,解得x=1. 所以P (1,1),所以点P 到直线x-y-2=0的最短距离d=|1-1-2|√2=√2.故选D .9.ABD 对于A,因为a·1+(-1)·a=0恒成立,所以不论a 为何值,直线l 1与l 2互相垂直恒成立,故A 正确;对于B,易知直线l 1恒过点A (0,1),直线l 2恒过点B (-1,0),故B 正确;对于C,在直线l 1上任取点(x ,ax+1),其关于直线x+y=0对称的点的坐标为(-ax-1,-x ),代入直线l 2的方程x+ay+1=0,可知左边不恒等于0,故C 不正确;对于D,由{ax -y +1=0,x +ay +1=0,解得{x =-a -1a 2+1,y =-a+1a 2+1.所以M -a -1a 2+1,-a+1a 2+1, 所以|MO|=√(-a -1a 2+1) 2+(-a+1a 2+1) 2=√2a 2+1≤√2,所以|MO|的最大值为√2,故D 正确.故选ABD . 10.-3 因为关于x ,y 的二元一次方程组{mx +9y =m +6,x +my =m 无解,所以直线mx+9y=m+6与直线x+my=m 平行,所以m 2-9=0,解得m=±3.经检验,当m=3时,两直线重合,不符合题意,舍去;当m=-3时,两直线平行,符合题意.故m=-3. 11.4 若直线l 在两坐标轴上的截距为0,则设直线l 的方程为y=kx (k ≠0).由题意知|k -3|√k +1=√2,解得k=1或k=-7,故直线l 的方程为x-y=0或7x+y=0.若直线l 在两坐标轴上的截距不为0,则设直线l 的方程为x+y-a=0(a ≠0).由题意知|1+3-a |√1+1=√2,解得a=2或a=6.故直线l 的方程为x+y-2=0或x+y-6=0.综上,直线l 的方程为x-y=0或7x+y=0或x+y-2=0或x+y-6=0.故直线l 的条数为4. 12.解由x+my-2m-1=0,得x-1+m (y-2)=0,当x=1时,y=2,所以恒过定点A (1,2).(1)因为直线2x+y-5=0的斜率为-2,直线l 与直线2x+y-5=0垂直,所以直线l 的斜率为12.又直线l 经过点A ,所以直线l 的方程为y-2=12(x-1),即x-2y+3=0.(2)当直线l 的斜率不存在时,直线l 的方程为x=1,符合题意. 当直线l 的斜率存在时,设直线l 的方程为y-2=k (x-1),即kx-y+2-k=0. 由坐标原点到直线l 的距离为1,得√k +1=1,解得k=34.所以直线l 的方程为34x-y+2-34=0,即3x-4y+5=0. 综上所述,直线l 的方程为x=1或3x-4y+5=0.13.D ∵B (-1,0),C (0,2),∴线段BC 的中点的坐标为(-12,1),线段BC 所在直线的斜率k BC =2,∴线段BC 的垂直平分线的方程为y-1=-12(x +12),即2x+4y-3=0.∵AB=AC ,∴△ABC 的外心、重心、垂心都在线段BC 的垂直平分线上,∴△ABC 的欧拉线方程为2x+4y-3=0.故选D . 14.②③ ①点M 到直线y=x+1的距离d=|5+1|√2=3√2>4,故该直线上不存在点P ,使|PM|=4,该直线不是“切割型直线”;②点M 到直线y=2的距离d=2<4,故该直线上存在点P ,使|PM|=4,该直线是“切割型直线”; ③点M 到直线y=43x 的距离d=4,故该直线上存在点P ,使|PM|=4,该直线是“切割型直线”; ④点M 到直线y=2x+1的距离d=√5=11√55>4,故该直线上不存在点P ,使|PM|=4,该直线不是“切割型直线”.。
2019-2020年高考数学一轮复习直线方程教学案
2019-2020年高考数学一轮复习直线方程教学案二、学习目标:1.会求直线的倾斜角和斜率;2.熟练掌握直线方程的求法.三、重点:求直线方程;难点:斜率范围的确定.四、知识导学:1.直线的斜率与倾斜角(1)倾斜角:. 规定:与轴平行或重合的直线的倾斜角为.直线的倾斜角取值范围是.(2)斜率:给定两点()()11122212,,,,,P x y P x y x x≠,经过这两点的直线的斜率公式为2.直线方程的五种形式:①直线方程的点斜式:;②直线方程的斜截式:;③直线方程的两点式:;④直线方程的截距;⑤直线方程的一般式:.五、课前自学:1.直线经过两点,则直线的斜率,倾斜角为.直线的方程为2. 如果且,那么直线不通过第象限3.若直线斜率是,且过点,则其方程为___________________________.4. 经过点,且在两坐标轴上截距相等的直线方程是.5.已知直线倾斜角变化范围为,则其斜率变化范围是______________.6.为任意实数时,直线必过定点.7.已知两点,过点的直线与线段有公共点,则直线的斜率及倾斜角的取值范围六、合作、探究、展示:例1:若直线l满足如下条件,分别求其方程:⑴斜率为且与两坐标轴围成的三角形面积为6⑵经过两点A(1,0),B(m,1)⑶过点(-2,-1)且在两坐标轴上截距相等,求直线方程例2. 在中,BC 边上的高所在的直线方程为的平分线所在的直线方程为若点B 的坐标为,求点A 和点C 的坐标.例3. 过点P (2,1)作直线l 分别交正半轴于A 、B 两点。
(1)当△AOB 的面积最小时,求直线l 的方程;(2)当|OA|+|OB|取最小值时,求直线l 的方程;(3)当|PA| |PB|取最小值时,求直线l 的方程。
七、当堂检测1.两点过点的直线l 与线段有无公共点,则直线l 的斜率的取值范围是 ,倾斜角的范围是 .2. 一条直线经过点,并且与两坐标轴围成的三角形的面积为1,则此直线方程为 .3.过点引一直线,使其倾斜角为直线的倾斜角的两倍,则该直线方程是__________4.若三点)0)(,0(),0,(),2,2( ab b C a B A 共线,则的值等于________________.5.若直线在轴上的截距为3,则实数的值是____________.6.已知中,,则的边上中线所在直线的方程为_________________7.直线l 被两条直线12:430:3550l x y l x y ++=--=和截得的线段的中点为,求直线l 的方程.8.直线l 的方程为(1)20()a x y a a R +++-=∈, (1)若直线l 在两坐标轴的截距相等,求l 的方程;(2)若l 不经过第二象限,求a 的取值范围.9.已知直线).(021:R k k y kx l ∈=++-(1)证明:直线过定点;(2)若直线不经过第四象限,求的取值范围;(3)若直线交轴负半轴于,交轴正半轴于,的面积为,求的最小值并求此时直线的方程.八.总结反思2019-2020年高考数学一轮复习矩阵与变换教学案(I)一、考试要求:内容要求 A B C 矩阵与变换 矩阵的概念 √ 二阶矩阵与平面向量 √ 常见的平面变换√ 矩阵的复合与矩阵的乘法√ 二阶逆矩阵√ 二阶矩阵的特征值与特征向量 √ 二阶矩阵的简单应用√3.几种常见的平面变换:①恒等变换:恒等变换矩阵(也叫单位矩阵); ②(垂直)伸压变换:垂直伸压变换矩阵:,; ③反射变换:反射变换矩阵:如,,; ④旋转变换:旋转变换矩阵:(叫旋转角); ⑤投影变换:投影变换矩阵:如,; ⑥切变变换:切变变换矩阵:;4.①逆矩阵的定义:对于二阶矩阵,若有,则称()是可逆的,()称为()的逆矩阵。
2019-2020年高三数学第一轮复习直线和圆的方程详细教案
2019-2020年高三数学第一轮复习直线和圆的方程详细教案知识结构第一节直线的倾斜角和斜率学习目标1.了解直线的方程、方程的直线的定义;2.掌握直线的倾斜角、直线的斜率的定义及其取值范围;3.掌握过两点的直线的斜率公式,会运用公式求出有关直线的斜率和倾斜角.重点难点本节重点:正确地理解斜率的概念,熟练地掌握已知直线上两点求直线斜率的公式,这是学好直线这部分内容的关键.本节难点:正确理解直线倾斜角定义中的几个条件,如直线与x轴相交与不相交,按逆时针方向旋转、最小正角等.求倾斜角时,要特别注意其取值范围是高考中,由于本节内容是解析几何成果中最基础的部分,一般是隐含在综合题中进行考查.典型例题【分析】【解】【点评】【分析】【解】【点评】【解法一】代数方法:套两点斜率公式.【解法二】【点评】“解析几何的特点之一是数形结合,数无形时少直观,形无数时难入微.”在学习数学时,应该记住华罗庚的这段话.教材上还涉及证明三点共线的练习题,怎样证明三点共线呢?请看下面例4.【分析】证明三点共线,可以用代数方法、几何方法,可以用直接证法、间接证法,你能想出至少一个方法吗?下面是同学们讨论出的几种证法供参考.【证法一】【证法二】【证法三】第二节直线的方程学习目标掌握直线方程的点斜式、两点式、参数式、一般式,并能根据条件熟练地求出直线的方程式.重点难点本节重点:直线方程的点斜式和一般式,点斜式是推导直线方程其他形式的基础,一般式是直线方程统一的表述形式.本节难点:灵活运用直线方程的各种形式解题.在高考中几乎每年都要考查这部分内容,题型以选择题、填空题居多.典型例题【分析】关键是确定直线方程中的待定系数.【解】【点评】学习直线的方程常犯的错误是忽略方程各种形式的应用条件,因此造成丢解.本例中各个小题均为两解,你做对了吗?第(4)小题的解法一要用到下节学到的公式,解法二用到课外知识,供有兴趣的同学欣赏.【解法一】【解法二】【解法三】【点评】灵活运用直线方程的各种形式,常常要和平面几何的有关知识相结合.本题还有别的解法,不再一一列举.【解法一】【解法二】【解法三】【证明】【点评】【分析】【解法一】【解法二】【解法三】【点评】第三节两条直线的位置关系学习目标1.掌握两条直线平行与垂直的条件,以及两条直线的夹角和点到直线的距离公式.2.能够根据直线的方程判断两条直线的位置关系.重点难点本节重点:两条直线平行与垂直的条件,点到直线的距离公式.本节难点:了解解析几何的基本思想,并用解析几何方法研究角.在高考中,两条直线的位置关系几乎年年必考,常常单独出现在选择题和填空题中,或作为综合题的一部分出现在解答题中.典型例题学习了本节以后,应该对两条直线平行与垂直的充要条件,怎样求直线的斜率、距离与角有哪些公式等问题进行归纳小结,以便提纲挈领地掌握有关知识,并灵活运用这些知识解决问题.1.两条直线平行、垂直的充要条件是什么?答:2.怎样求直线的斜率?答:3.距离和角有哪些公式?能灵活运用吗?答:用下面的例题检验是否理解和掌握了以上这些内容.1.两条直线的位置关系【解】【解】2.两条直线所成的角【解】【解法一】【解法二】3.有关交点的问题(A)1 (B)2 (C)3 (D)4 【解法一】【解】【解法二】4.点到直线的距离【错误的解】【正确的解】【解法一】【解法二】【解法三】【解法四】第四节简单的线性规划学习目标1.了解用二元一次不等式表示平面区域.2.了解线性规划的意义,并会简单的应用.重点难点典型例题学习了简单的线性规划以后,常见的题型是用二元一次不等式表示平面区域,以及用线性规划的知识来解决一些简单的问题.下面的例题可检验是否掌握了这些内容.1.二元一次不等式表示的区域【分析】【解】【点评】例2 试讨论点线距离公式中,去掉绝对值符号的规律?【分析】【解】【点评】2.线性规划初步例3钢管长11.1米,需要截下1.5米和2.5米两种不同长度的小钢管,问如何截取可使残料最少?【分析】关键是利用约束条件,列出线性目标函数.【解】【评析】例4 用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘,软件至少买3片,磁盘至少买2盒,则不同的选购方式共有().(A)5种(B)6种(C)7种(D)8种【解法一】【解法二】【解法三】列表数点.故选(C).【点评】本题为xx年全国高考试题第14题,难度系数0.47.如果有利用二元一次不等式表示平面区域的知识,此题将不再困难.【分析】甲的解法错误,错在(1)、(2)(3)、(4),反之不行,用必要不充分条件代替原条件,使解的范围扩大,[6,10]是[5,11]的子集.乙的解法正确.本题数形结合,利用本节的知识还可以有以下的解法.【解】【点评】第六节曲线和方程学习目标1.掌握曲线的方程、方程的曲线等概念.2.了解解析几何的基本思想和解析法,学习运动变化、对立统一等辩证唯物主义思想.重点难点本节重点:了解曲线的点集与方程的解集之间的一一对应关系,从而掌握曲线的方程和方程的曲线这两个重要概念,并掌握由曲线的已知条件求方程的方法和步骤,熟悉解析法.本节难点:理解曲线和方程的概念,以及求曲线的方程的方法.在高考中,曲线和方程常是重点考查的内容,出现在解答题中.典型例题学习了本节后主要要掌握求曲线的方程的步骤,以及用解析法解题的步骤,以下归纳供参考.求曲线的方程的步骤是:一建--选取适当的点和直线,建立坐标系;二设--设曲线上点,以及利用已知条件设出其他有关点的坐标等;三列式--根据动点符合的条件,列出含、的方程0;四化简--化方程0为最简形式;五证明--证曲线上点的坐标都是方程的解,以这个方程的解为坐标的点都在曲线上(这一步不要求写出).解析法的主要步骤是:一建--建立适当的坐标系.建系原则是使已知条件好用,使表达式简明,运算简便.因此,尽量利用已知点和已知直线;二设--选取一组基本量,用字母表示出题目涉及的点的坐标和曲线的方程;三算--通过运算,得到所要的结果.用以下例题检验是否理解和掌握了这些内容.1.怎样求轨迹方程【解法一】【解法二】【点评】【错误解法】【正确解法】【点评】【解法一】【解法二】【点评】2.解析法与综合法【证法一】【证法二】【证法三】【证法四】【点评】不同证法,以解析法较简便,复数将在高三年级学习,这里的证法实质和解析法一样,不过是换个说法.【分析】【解】【点评】解析法与综合法的特点,从中你体会到了吗?解析法的优点是程序固定(一建二设三算),操作简便,但一般运算量较大;综合法的优点是思路灵活,但如何添加辅助线不易掌握.【解法一】【解法二】【解法三】【解法四】【点评】“是否可以用代数中的计算过程代替几何中的证明?”“让代数和几何中一切最好的东西互相取长补短”等是笛卡儿创立解析几何的初衷.解析几何既然是用代数方法来研究几何对象的特征和性质,当然对运算能力要求较高.运算能力是一种计算化了的推理能力,是逻辑思维能力与计算知识、方法、技能和技巧的结合.在解析几何中,如果不注意运算方法上的特点和技能,就可能陷入有思路但算不出或很难算出正确结果的窘境,如本题的思路一、二.解析几何中常用的运算方法和技能是:①注意利用平面几何知识,如思路四;②不忘利用定义,尤其是圆锥曲线的定义解题;③充分利用一元二次方程根与系数的关系,并不忘对判别式的要求,如思路三;④合理利用曲线系;⑤数形结合,依形判数,就数论形;⑥灵活运用字母的可轮换性,减少同类量的重复运算.以上方法和技能,要在实际解题中逐步掌握.第七节圆的方程学习目标1.掌握圆的标准方程和一般方程,理解圆的参数方程.2.初步了解直线和圆中反映出的运动变化、对立统一等辩证思想和观点.重点难点本节重点:圆的标准方程、一般方程、参数方程及其相互转化.本节难点:直线和圆的综合运用.在高考中,圆的方程在选择题、填空题、解答题等各类题型中出现.本节要掌握三种类型的问题,之一是求圆的方程,之二是直线和圆的综合题,之三是应用直线和圆的知识解决一些问题.1.圆的方程有哪些形式?典型例题用下面的例题检验是否理解和掌握了圆的方程的三种形式:【解法一】【解法二】【解法三】【点评】怎样求圆的方程?这三条思路具有典型意义.【解法一】【解法二】【点评】【解法一】【解法二】【点评】【分析】关键确定圆心坐标和半径.【解】【点评】本题为1997年全国高考理科第25题,难度系数0.20.难在什么地方呢?第一文字叙述较长,有同学读不懂题;第二涉及众多知识,有同学不会运用;第三丢解,忽略了不同的位置关系.会不会用知识和怎样用知识,是一个人有没有能力和能力高低的重要标志,努力吧!2.直线和圆综合题【分析】【解】【点评】【解法一】【解法二】【点评】【分析】【解】【点评】【解法一】【解法二】【点评】分类是自然科学的基本方法,数学中的分类讨论的思想方法,就是依据数学对象的共同点和差异点,将其区分为不同种类,分类讨论并归纳结论,这一思想方法,在近代数学和现代数学中占有重要地位,是应该学习和掌握的重要思想方法.3.怎样利用直线和圆的知识解题?【分析】数形结合,将代数式或方程赋予几何意义.【解】。
2020高考数学理科大一轮复习导学案《直线的倾斜角与斜率、直线方程》
平面解析几何第一节直线的倾斜角与斜率、直线方程知识点一 直线的倾斜角与斜率1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,我们取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为0°.(2)倾斜角的范围为[0°,180°). 2.直线的斜率(1)定义:一条直线的倾斜角α的正切值叫做这条直线的斜率,斜率常用小写字母k 表示,即k =tan α,倾斜角是90°的直线斜率不存在.(2)过两点的直线的斜率公式经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式为k =y 2-y 1x 2-x 1.1.思考辨析(在括号内打“√”或“×”) (1)直线的倾斜角越大,其斜率就越大.( × ) (2)直线的斜率为tan α,则其倾斜角为α.( × ) (3)斜率相等的两直线的倾斜角不一定相等.( × ) 2.直线x +(a 2+1)y +1=0的倾斜角的取值范围是( B ) A.⎣⎢⎡⎦⎥⎤0,π4B.⎣⎢⎡⎭⎪⎫3π4,π C.⎣⎢⎡⎦⎥⎤0,π4∪⎝ ⎛⎭⎪⎫π2,π D.⎣⎢⎡⎭⎪⎫π4,π2∪⎣⎢⎡⎭⎪⎫3π4,π 解析:由直线方程可得该直线的斜率为-1a 2+1,又-1≤-1a 2+1<0,所以倾斜角的取值范围是⎣⎢⎡⎭⎪⎫3π4,π.知识点二 直线方程1.直线方程的五种形式2.线段的中点坐标公式若点P 1,P 2的坐标分别为(x 1,y 1),(x 2,y 2),线段P 1P 2的中点M 的坐标为(x ,y ),则⎩⎨⎧x =x 1+x 22,y =y 1+y22,此公式为线段P 1P 2的中点坐标公式.3.已知直线l 经过点P (-2,5),且斜率为-34.则直线l 的方程为( A ) A .3x +4y -14=0 B .3x -4y +14=0 C .4x +3y -14=0 D .4x -3y +14=解析:由点斜式得y -5=-34(x +2),即3x +4y -14=0.4.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( D )A .1B .-1C .-2或-1D .-2或1解析:当a =0时,直线方程为y -2=0,不满足题意,所以a ≠0,所以在x 轴上的截距为2+a a ,在y 轴上的截距为2+a ,则由2+a =2+aa ,得a =-2或a =1.5.(必修2P100A 组第5题改编)一条直线过点A (2,-3),并且它的斜率等于直线x +3y =0的斜率的2倍,则这条直线的方程为2x +3y +33-4=0.解析:x +3y =0的斜率为-33,所求直线的斜率为-233,代入点斜式方程得y -(-3)=-233(x -2),整理得:2x +3y +33-4=0.1.直线的倾斜角α和斜率k 之间的对应关系:α 0° 0°<α<90° 90° 90°<α<180°kk >0不存在k <02.求直线方程时要注意判断直线斜率是否存在;每条直线都有倾斜角,但不一定每条直线都存在斜率.3.截距为一个实数,既可以为正数,也可以为负数,还可以为0,这是解题时容易忽略的一点.考向一 直线的倾斜角与斜率【例1】 (1)直线2x cos α-y -3=0⎝⎛⎭⎪⎫α∈⎣⎢⎡⎦⎥⎤π6,π3的倾斜角的取值范围是( )A.⎣⎢⎡⎦⎥⎤π6,π3B.⎣⎢⎡⎦⎥⎤π4,π3 C.⎣⎢⎡⎦⎥⎤π4,π2 D.⎣⎢⎡⎦⎥⎤π4,2π3 (2)直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l斜率的取值范围为__________________________________________________________.【解析】 (1)直线2x cos α-y -3=0的斜率k =2cos α,因为α∈⎣⎢⎡⎦⎥⎤π6,π3,所以12≤cos α≤32,因此k =2·cos α∈[1,3].设直线的倾斜角为θ,则有tan θ∈[1,3].又θ∈[0,π),所以θ∈⎣⎢⎡⎦⎥⎤π4,π3,即倾斜角的取值范围是⎣⎢⎡⎦⎥⎤π4,π3.(2)如图,∵k AP =1-02-1=1,k BP =3-00-1=-3,∴直线l 的斜率k ∈(-∞,-3]∪[1,+∞). 【答案】 (1)B (2)(-∞,-3]∪[1,+∞)(1)①任一直线都有倾斜角,但斜率不一定都存在;直线倾斜角的范围是[0,π),斜率的取值范围是R .②正切函数在[0,π)不单调,借助图象或单位圆数形结合,确定倾斜角α的取值范围.(2)第(2)问求解要注意两点:①斜率公式的正确计算;②数形结合写出斜率的范围,切莫错误想当然认为-3≤k ≤1.(1)平面上有相异两点A (cos θ,sin 2θ),B (0,1),则直线AB 的倾斜角α的取值范围是⎝ ⎛⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π.(2)已知线段MN 两端点的坐标分别为M (-1,2)和N (2,3),若直线kx -y+k -2=0与线段MN 有交点,则实数k 的取值范围是⎣⎢⎡⎭⎪⎫53,+∞.解析:(1)由题意知cos θ≠0,则斜率k =tan α=sin 2θ-1cos θ-0=-cos θ∈[-1,0)∪(0,1],那么直线AB 的倾斜角的取值范围是⎝ ⎛⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π. (2)直线kx -y +k -2=0过定点P (-1,-2).MP 平行于y 轴,k NP =3+22+1=53,所以k ≥53.考向二 直线方程的求法【例2】 求适合下列条件的直线的方程: (1)在y 轴上的截距为-5,倾斜角的正弦值是35; (2)经过点P (3,2),且在两坐标轴上的截距相等;(3)经过点A (-1,-3),倾斜角等于直线y =3x 的倾斜角的2倍. 【解】 (1)设直线的倾斜角为α,则sin α=35.∴cos α=±45,直线的斜率k =tan α=±34.又直线在y 轴上的截距是-5,由斜截式得直线方程为y =±34x -5.(2)设直线l 在x ,y 轴上的截距均为a ,若a =0,即l 过点(0,0)和(3,2).∴l 的方程为y =23x ,即2x -3y =0.若a ≠0,则设l 的方程为x a +ya =1. ∵l 过点P (3,2),∴3a +2a =1.∴a =5,∴l 的方程为x +y -5=0.综上可知,直线l 的方程为2x -3y =0或x +y -5=0.(3)由已知:设直线y =3x 的倾斜角为α,则所求直线的倾斜角为2α. ∵tan α=3,∴tan2α=2tan α1-tan 2α=-34. 又直线经过点A (-1,-3),因此所求直线方程为y +3=-34(x +1),即3x +4y +15=0.在求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的适用条件,用斜截式及点斜式时,直线的斜率必须存在,两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线,故在解题时,若采用截距式,应注意分类讨论,判断截距是否为零,若采用点斜式,应先考虑斜率不存在的情况.(1)过点(5,2),且在y 轴上的截距是在x 轴上的截距的2倍的直线方程是( B )A .2x +y -12=0B .2x +y -12=0或2x -5y =0C .x -2y -1=0D .x -2y -1=0或2x -5y =0(2)已知直线l 过直线x -y +2=0和2x +y +1=0的交点,且与直线x -3y +2=0垂直,则直线l 的方程为3x +y +2=0.解析:(1)当直线过原点时,由直线过点(5,2),可得直线的斜率为25,故直线的方程为y =25x ,即2x -5y =0.当直线不过原点时,设直线在x 轴上的截距为k (k ≠0),则在y 轴上的截距是2k ,直线的方程为x k +y2k =1,把点(5,2)代入可得5k +22k =1,解得k =6.故直线的方程为x 6+y12=1,即2x +y -12=0.故选B.(2)由条件可设直线l 的方程为3x +y +m =0.解方程组⎩⎪⎨⎪⎧x -y +2=0,2x +y +1=0,得直线x -y +2=0和2x +y +1=0的交点坐标为(-1,1).由题意,得3×(-1)+1+m =0,即m =2.故直线l 的方程为3x +y +2=0. 考向三 直线方程的应用方向1 最值问题【例3】 若直线ax +by =ab (a >0,b >0)过点(1,1),则该直线在x 轴,y 轴上的截距之和的最小值为( )A .1B .2C .4D .8【解析】 因为直线ax +by =ab (a >0,b >0)过点(1,1),所以a +b =ab ,即1a +1b =1,所以a +b =(a +b )⎝ ⎛⎭⎪⎫1a +1b =2+b a +ab ≥2+2b a ·ab =4,当且仅当a =b =2时上式等号成立.所以直线在x 轴,y 轴上的截距之和的最小值为4. 【答案】 C方向2 几何性质问题【例4】 已知A ,B 两点分别在两条互相垂直的直线2x -y -1=0和x +ay +2=0上,且线段AB 的中点为P ⎝ ⎛⎭⎪⎫0,10a ,则线段AB 的长为________. 【解析】 由两直线垂直,得2-a =0,所以a =2,所以P (0,5). 由2x -y -1=0和x +2y +2=0,得两直线的交点为Q (0,-1). 由直角三角形的性质,得线段AB 的长为2|PQ |=12. 【答案】 12(1)求解与直线方程有关的最值问题,先根据题意建立目标函数,再利用基本不等式(或函数)求解最值;(2)求解直线方程与函数相结合的问题,一般是利用直线方程中x ,y 的关系,将问题转化为关于x (或y )的函数,借助函数的性质解决问题.1.(方向1)已知直线l :x a +y b =1(a >0,b >0)在两坐标轴上的截距之和为4,则该直线与两坐标轴围成的三角形的面积的最大值是( D )A .2 2B .4C .6D .2解析:直线l :x a +y b =1(a >0,b >0)在两坐标轴上的截距之和为4,所以a +b =4,即4≥2ab ⇒ab ≤4⇒12ab ≤2,则该直线与两坐标轴围成的三角形的面积的最大值是2,故选D.2.(方向2)(2018·江苏卷)在平面直角坐标系xOy 中,A 为直线l :y =2x 上在第一象限内的点,B (5,0),以AB 为直径的圆C 与直线l 交于另一点D .若AB →·CD →=0,则点A 的横坐标为3.解析:因为AB →·CD →=0,所以AB ⊥CD ,又点C 为AB 的中点,所以∠BAD =45°.设直线l 的倾斜角为θ,直线AB 的斜率为k ,则tan θ=2,k =tan(θ+π4)=-3.又B (5,0),所以直线AB 的方程为y =-3(x -5),又A 为直线l :y =2x 上在第一象限内的点,联立直线AB 与直线l 的方程,得⎩⎪⎨⎪⎧ y =-3(x -5),y =2x ,解得⎩⎪⎨⎪⎧x =3,y =6,所以点A 的横坐标为3.典例设直线l的方程为(a+1)x+y+2-a=0(a∈R).(1)若l在两坐标轴上的截距相等,求直线l的方程;(2)若l在两坐标轴上的截距互为相反数,求a.【错解展示】【现场纠错】解:(1)当直线过原点时,该直线在x轴和y轴上的截距为0,∴a=2,方程即为3x+y=0.当直线不经过原点时,截距存在且均不为0,直线方程可写为x a -2a +1+y a -2=1, ∴a -2a +1=a -2,即a +1=1. ∴a =0,方程即为x +y +2=0.综上,直线l 的方程为3x +y =0或x +y +2=0.(2)由a -2a +1=-(a -2),得a -2=0或a +1=-1, ∴a =2或a =-2.【纠错心得】 在求与截距有关的直线方程时,注意对直线的截距是否为零进行分类讨论,防止忽视截距为零的情形,导致产生漏解.。
(江苏专版)2020版高考数学一轮复习 直线、平面平行的判定及其性质教案(理)(含解析)苏教版
第三节直线、平面平行的判定及其性质1.直线与平面平行的判定定理和性质定理2.平面与平面平行的判定定理和性质定理[小题体验]1.已知平面α∥平面β,直线a⊂α,有下列命题:①a与β内的所有直线平行;②a与β内无数条直线平行;③a与β内的任意一条直线都不垂直.其中真命题的序号是________.答案:②2.在梯形ABCD中,AB∥CD,AB⊂平面α,CD⊄平面α,则直线CD与平面α内的直线的位置关系是________.解析:因为AB∥CD,AB⊂平面α,CD⊄平面α,所以CD∥平面α,所以CD与平面α内的直线可能平行,也可能异面.答案:平行或异面3.如图所示,P为矩形ABCD所在平面外一点,矩形对角线交点为O,M为PB的中点,给出下列五个结论:①PD∥平面AMC;②OM∥平面PCD;③OM∥平面PDA;④OM∥平面PBA;⑤OM∥平面PBC.其中正确的个数有________.解析:因为矩形ABCD的对角线AC与BD交于点O,所以O为BD的中点.在△PBD中,M 是PB的中点,所以OM是△PBD的中位线,OM∥PD,则PD∥平面AMC,OM∥平面PCD,且OM ∥平面PDA.因为M∈PB,所以OM与平面PBA、平面PBC相交,故正确的个数为3.答案:31.直线与平面平行的判定中易忽视“线在面内”这一关键条件.2.面面平行的判定中易忽视“面内两条相交线”这一条件.3.如果一个平面内有无数条直线与另一个平面平行,易误认为这两个平面平行,实质上也可以相交.[小题纠偏]1.在长方体的各面中,和其中一条棱平行的平面有______个.解析:借助长方体的直观图易知,在长方体的六个面中,和其中一条棱平行的平面有2个.答案:22.设α,β是两个不同的平面,m是直线且m⊂α,“m∥β”是“α∥β”的________条件(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”).解析:当m∥β时,过m的平面α与β可能平行也可能相交,因而m∥β⇒/ α∥β;当α∥β时,α内任一直线与β平行,因为m⊂α,所以m∥β.综上知,“m∥β”是“α∥β”的必要不充分条件.答案:必要不充分考点一直线与平面平行的判定与性质题点多变型考点——多角探明[锁定考向]平行关系是空间几何中的一种重要关系,包括线线平行、线面平行、面面平行,其中线面平行是高考热点,多出现在解答题中.常见的命题角度有:(1)证明直线与平面平行;(2)线面平行性质定理的应用.[题点全练]角度一:证明直线与平面平行1.如图,在正方体ABCDA 1B1C1D1中,点M,N,P分别为棱AB,BC,C1D1的中点.求证:AP∥平面C1MN.证明:在正方体ABCDA1B1C1D1中,因为点M,P分别为棱AB,C1D1的中点,所以AM=PC1.又AM∥CD,PC1∥CD,故AM∥PC1,所以四边形AMC1P为平行四边形,所以AP∥C1M.又AP⊄平面C1MN,C1M⊂平面C1MN,所以AP∥平面C1MN.角度二:线面平行性质定理的应用2.如图,四棱锥PABCD的底面是正方形,四条侧棱均相等.点G,E,F,H分别是棱PB,AB,CD,PC上共面的四点,BC∥平面GEFH .求证:GH∥EF.证明:因为BC∥平面GEFH,BC⊂平面PBC,且平面PBC∩平面GEFH=GH,所以GH∥BC,同理可证EF∥BC,因此GH∥EF.[通法在握]证明直线与平面平行的3种方法定义法一般用反证法判定定理法关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言叙述证明过程性质判定法即两平面平行时,其中一个平面内的任何直线都平行于另一个平面[演练冲关]如图,在三棱柱ABCA1B1C1中,CC1=4,M是棱CC1上的一点.若点N是AB的中点,且CN∥平面AB1M,求CM的长.解:法一:如图,取AB1的中点P,连结NP,PM.又因为点N是AB的中点,所以NP∥BB1.因为CM∥BB1,所以NP 与CM 共面.因为CN ∥平面AB 1M ,平面CNPM ∩平面AB 1M =PM ,所以CN ∥PM . 所以四边形CNPM 为平行四边形, 所以CM =NP =12CC 1=2.法二:如图,取BB 1的中点Q ,连结N Q ,C Q. 因为点N 是AB 的中点, 所以N Q ∥AB 1.因为N Q ⊄平面AB 1M ,AB 1⊂平面AB 1M , 所以N Q ∥平面AB 1M .因为CN ∥平面AB 1M ,N Q ∩CN =N ,N Q ⊂平面N Q C ,CN ⊂平面N Q C , 所以平面N Q C ∥平面AB 1M .又因为平面BCC 1B 1∩平面N Q C =C Q ,平面BCC 1B 1∩平面AB 1M =MB 1, 所以C Q ∥MB 1.因为BB 1∥CC 1,所以四边形C Q B 1M 是平行四边形, 所以CM =B 1Q =12CC 1=2.考点二 平面与平面平行的判定与性质重点保分型考点——师生共研[典例引领]如图,在三棱柱ABC A 1B 1C 1中,E ,F ,G ,H 分别是AB ,AC ,A 1B 1,A 1C 1的中点,求证:(1)B ,C ,H ,G 四点共面; (2)平面EFA 1∥平面BCHG .证明:(1)因为GH 是△A 1B 1C 1的中位线, 所以GH ∥B 1C 1. 又因为B 1C 1∥BC , 所以GH ∥BC ,所以B ,C ,H ,G 四点共面. (2)因为E ,F 分别为AB ,AC 的中点, 所以EF ∥BC ,因为EF ⊄平面BCHG ,BC ⊂平面BCHG , 所以EF ∥平面BCHG .因为A 1G 綊EB ,所以四边形A 1EBG 是平行四边形,因为A 1E ⊄平面BCHG ,GB ⊂平面BCHG , 所以A 1E ∥平面BCHG . 因为A 1E ∩EF =E , 所以平面EFA 1∥平面BCHG .[由题悟法]判定平面与平面平行的4种方法(1)面面平行的定义,即证两个平面没有公共点; (2)面面平行的判定定理;(3)利用垂直于同一条直线的两个平面平行;(4)利用平面平行的传递性,两个平面同时平行于第三个平面,那么这两个平面平行.[即时应用]1.如图,平面α内有△ABC ,AB =5,BC =8,AC =7,梯形BCDE 的底DE =2,过EB 的中点B 1的平面β∥α,若β分别交EA ,DC 于点A 1,C 1,求△A 1B 1C 1的面积.解:因为α∥β, 所以A 1B 1∥AB ,B 1C 1∥BC , 又因为∠A 1B 1C 1与∠ABC 同向. 所以∠A 1B 1C 1=∠ABC .又因为cos ∠ABC =52+82-722×5×8=12,所以∠ABC =∠A 1B 1C 1=60°. 又因为B 1为EB 的中点, 所以B 1A 1是△EAB 的中位线,所以B 1A 1=12AB =52,同理知B 1C 1为梯形BCDE 的中位线, 所以B 1C 1=12(BC +DE )=5.则S 111A B C V =12A 1B 1×B 1C 1×sin 60°=12×52×5×32=2538. 故△A 1B 1C 1的面积为2538.2.如图,四边形ABCD 与四边形ADEF 为平行四边形,M ,N ,G 分别是AB ,AD ,EF 的中点,求证:(1)BE ∥平面DMF ; (2)平面BDE ∥平面MNG .证明:(1)如图,连结AE ,设DF 与GN 的交点为O , 则AE 必过DF 与GN 的交点O , 连结MO ,则MO 为△ABE 的中位线,所以BE ∥MO ,又BE ⊄平面DMF ,MO ⊂平面DMF , 所以BE ∥平面DMF .(2)因为N,G分别为平行四边形ADEF的边AD,EF的中点,所以DE∥GN,又DE⊄平面MNG,GN⊂平面MNG,所以DE∥平面MNG.又M为AB中点,所以MN为△ABD的中位线,所以BD∥MN,又BD⊄平面MNG,MN⊂平面MNG,所以BD∥平面MNG,又DE⊂平面BDE,BD⊂平面BDE,DE∩BD=D,所以平面BDE∥平面MNG.考点三立体几何中的探索性问题重点保分型考点——师生共研[典例引领]如图所示,在三棱柱ABCA1B1C1中,D是棱CC1的中点,问在棱AB上是否存在一点E,使DE∥平面AB1C1?若存在,请确定点E的位置;若不存在,请说明理由.解:法一:假设在棱AB上存在点E,使得DE∥平面AB1C1,如图,取BB1的中点F,连结DF,EF,ED,则DF∥B1C1,又DF⊄平面AB1C1,B1C1⊂平面AB1C1,所以DF∥平面AB1C1,又DE∥平面AB1C1,DE∩DF=D,所以平面DEF∥平面AB1C1,因为EF⊂平面DEF,所以EF∥平面AB1C1,又因为EF⊂平面ABB1,平面ABB1∩平面AB1C1=AB1,所以EF∥AB1,因为点F是BB1的中点,所以点E是AB的中点.即当点E是AB的中点时,DE∥平面AB1C1.法二:存在点E,且E为AB的中点时,DE∥平面AB1C1.证明如下:如图,取BB1的中点F,连结DF,则DF∥B1C1.因为DF⊄平面AB1C1,B1C1⊂平面AB1C1,所以DF∥平面AB1C1.因为AB的中点为E,连结EF,ED,则EF∥AB1.因为EF⊄平面AB1C1,AB1⊂平面AB1C1,所以EF∥平面AB1C1.因为DF∩EF=F,所以平面DEF∥平面AB1C1.而DE⊂平面DEF,所以DE∥平面AB1C1.[由题悟法]探索性问题的一般解题方法先假设其存在,然后把这个假设作为已知条件,和题目的其他已知条件一起进行推理论证和计算.在推理论证和计算无误的前提下,如果得到了一个合理的结论,则说明存在;如果得到了一个不合理的结论,则说明不存在.[即时应用]1.在正四棱柱ABCDA1B1C1D1中,O为底面ABCD的中心,点P为DD1的中点,设Q是CC1上的点,则点Q满足条件________时,有平面D1B Q∥平面PAO.解析:点Q 为CC 1的中点时,平面D 1B Q ∥平面PAO . 因为点P 为DD 1的中点,所以Q B ∥PA .又Q B ⊄平面PAO ,PA ⊂平面PAO ,所以Q B ∥平面PAO . 连结DB ,因为点P ,O 分别是DD 1,DB 的中点, 所以D 1B ∥PO .又D 1B ⊄平面PAO ,OP ⊂平面PAO ,所以D 1B ∥平面PAO . 又D 1B ∩Q B =B ,D 1B ⊂平面D 1B Q , Q B ⊂平面D 1B Q , 所以平面D 1B Q ∥平面PAO .故点Q 满足条件Q 为CC 1的中点时,有平面D 1B Q ∥平面PAO . 答案:Q 为CC 1的中点2.如图,四边形ABCD 中,AB ⊥AD ,AD ∥BC ,AD =6,BC =4,E ,F 分别在BC ,AD 上,EF ∥AB .现将四边形ABCD 沿EF 折起,使平面ABEF ⊥平面EFDC .若BE =1,在折叠后的线段AD 上是否存在一点P ,且AP ―→=λPD ―→,使得CP ∥平面ABEF ?若存在,求出λ的值,若不存在,说明理由.解:AD 上存在一点P ,使得CP ∥平面ABEF ,此时λ=32.理由如下:当λ=32时,AP ―→=32PD ―→,可知AP AD =35,如图,过点P 作MP∥FD 交AF 于点M ,连结EM ,PC ,则有MP FD =AP AD =35, 又BE =1,可得FD =5,故MP =3, 又EC =3,MP ∥FD ∥EC ,故有MP 綊EC ,故四边形MPCE 为平行四边形, 所以CP ∥ME ,又ME ⊂平面ABEF ,CP ⊄平面ABEF , 故有CP ∥平面ABEF .一抓基础,多练小题做到眼疾手快1.(2019·汇龙中学测试)已知直线a 与直线b 平行,直线a 与平面α平行,则直线b 与α的位置关系为________.解析:依题意,直线a 必与平面α内的某直线平行,又a ∥b ,因此直线b 与平面α的位置关系是平行或直线b 在平面α内. 答案:平行或直线b 在平面α内2.(2018·南京模拟)在空间四边形ABCD 中,E ,F 分别是AB 和BC 上的点,若AE ∶EB =CF ∶FB =1∶2,则对角线AC 和平面DEF 的位置关系是________.解析:如图,由AE EB =CF FB得AC ∥EF . 又因为EF ⊂平面DEF ,AC ⊄平面DEF , 所以AC ∥平面DEF . 答案:AC ∥平面DEF3.(2018·天星湖中学测试)在正方体ABCD A 1B 1C 1D 1中,下列四对截面中彼此平行的是________(填序号).①平面A 1BC 1和平面ACD 1; ②平面BDC 1和平面B 1D 1A ; ③平面B 1D 1D 和平面BDA 1; ④平面ADC 1和平面A 1D 1C .解析:如图,结合正方体的性质及面面平行的判定可知平面A 1BC 1∥平面ACD 1,平面BDC 1∥平面B 1D 1A .答案:①②4.如图,α∥β,△PAB 所在的平面与α,β分别交于CD ,AB ,若PC =2,CA =3,CD =1,则AB =________.解析:因为α∥β,所以CD ∥AB , 则PC PA =CD AB ,所以AB =PA ×CD PC =5×12=52. 答案:525.如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MN Q 平行的是________.(填序号)解析:因为点M,N,Q分别为所在棱的中点,所以在①中AB与平面MN Q相交,在②③中均有AB∥M Q,在④中,有AB∥N Q,所以在②③④中均有AB与平面MN Q平行.答案:②③④二保高考,全练题型做到高考达标1.(2018·滨海期末)已知m,n是不重合的直线,α,β,γ是不重合的平面,已知α∩β=m,n⊂γ,若增加一个条件就能得出m∥n,则下列条件中能成为增加条件的序号是________.①m∥γ,n∥β;②α∥γ,n⊂β;③n∥β,m⊂γ.解析:对于①,若β∥γ,由m⊂β,满足m∥γ,由n⊂γ,满足n∥β,但m,n可为异面直线,则不成立;对于②,由α∥γ,且α∩β=m,β∩γ=n,由面面平行的性质定理可得m∥n,则成立;对于③,n∥β,m⊂γ,则γ∩β=m,由线面平行的性质定理可得n∥m,则成立.答案:②或③2.(2019·连云港调研)一条直线与两个平行平面中的一个成30°角,且被两平面所截得的线段长为2,那么这两个平行平面间的距离是________.解析:由题意知,两个平行平面间的距离d=2sin 30°=1.答案:13.(2018·前黄高级中学检测)已知正方体ABCDA1B1C1D1,下列结论中,正确的是________(填序号).①AD1∥BC1;②平面AB1D1∥平面BDC1;③AD1∥DC1;④AD1∥平面BDC1.解析:如图,因为AB∥C1D1,AB=C1D1,所以四边形AD1C1B为平行四边形,故AD 1∥BC 1,从而①正确;易证AB 1∥DC 1,BD ∥B 1D 1,又AB 1∩B 1D 1=B 1,BD ∩DC 1=D ,故平面AB 1D 1∥平面BDC 1,从而②正确;由图易知AD 1与DC 1异面,故③错误;因为AD 1∥BC 1,AD 1⊄平面BDC 1,BC 1⊂平面BDC 1,所以AD 1∥平面BDC 1,故④正确.答案:①②④4.如图,透明塑料制成的长方体容器ABCD A 1B 1C 1D 1内灌进一些水,固定容器底面一边BC 于地面上,再将容器倾斜,随着倾斜度的不同,有下面四个命题:①没有水的部分始终呈棱柱形; ②水面EFGH 所在四边形的面积为定值; ③棱A 1D 1始终与水面所在平面平行; ④当容器倾斜如图所示时,BE ·BF 是定值. 其中正确命题的个数是________.解析:由题图,显然①是正确的,②是错误的; 对于③,因为A 1D 1∥BC ,BC ∥FG , 所以A 1D 1∥FG 且A 1D 1⊄平面EFGH , 所以A 1D 1∥平面EFGH (水面). 所以③是正确的;对于④,因为水是定量的(定体积V ), 所以S △BEF ·BC =V ,即12BE ·BF ·BC =V .所以BE ·BF =2VBC(定值),即④是正确的.答案:35.在三棱锥P ABC 中,PB =6,AC =3,G 为△PAC 的重心,过点G 作三棱锥的一个截面,使截面平行于PB 和AC ,则截面的周长为________.解析:如图,过点G 作EF ∥AC ,分别交PA ,PC 于点E ,F ,过点E 作EN ∥PB 交AB 于点N ,过点F 作FM ∥PB 交BC 于点M ,连接MN ,则四边形EFMN是平行四边形(平面EFMN 为所求截面),且EF =MN =23AC =2,FM =EN =13PB=2,所以截面的周长为2×4=8.答案:86.设α,β,γ是三个平面,a ,b 是两条不同直线,有下列三个条件: ①a ∥γ,b ⊂β;②a ∥γ,b ∥β;③b ∥β,a ⊂γ.如果命题“α∩β=a ,b ⊂γ,且________,则a ∥b ”为真命题,则可以在横线处填入的条件是________(把所有正确的序号填上).解析:由面面平行的性质定理可知,①正确;当b ∥β,a ⊂γ时,a 和b 在同一平面内,且没有公共点,所以平行,③正确.故应填入的条件为①或③.答案:①或③7.(2018·盐城期末)已知棱长为2的正方体ABCD A 1B 1C 1D 1,E 为棱AD 的中点,现有一只蚂蚁从点B 1出发,在正方体ABCD A 1B 1C 1D 1表面上行走一周后再回到点B 1,这只蚂蚁在行走过程中与平面A 1EB 的距离保持不变,则这只蚂蚁行走的轨迹所围成的图形的面积为________.解析:要满足题意,则需在正方体ABCD A 1B 1C 1D 1上过B 1作与平面A 1EB 平行的平面.取A 1D 1和BC 的中点分别为F ,G ,连结B 1F ,FD ,DG ,GB 1,则A 1F 綊ED ,所以四边形A 1FDE 是平行四边形,所以A 1E ∥FD .因为FD ⊄平面A 1EB ,A 1E ⊂平面A 1EB ,所以FD ∥平面A 1EB .同理:DG ∥平面A 1EB .又FD ∩DG =D ,所以平面DFB 1G ∥平面A 1EB ,则四边形DFB 1G 所围成图形的面积即为所求.易知四边形DFB 1G 为菱形,由正方体的棱长为2,得菱形DFB 1G 的边长为5,cos ∠A 1EB =15,∴sin ∠A 1EB =265,∵∠A 1EB =∠FDG ,∴S 菱形DFB 1G =5×5×sin∠FDG =2 6. 答案:2 68.(2019·海安中学检测)如图,在棱长为1的正方体ABCD A 1B 1C 1D 1中,点E ,F 分别是棱BC ,CC 1的中点,P 是侧面BCC 1B 1内一点,若A 1P ∥平面AEF ,则线段A 1P 长度的取值范围是________.解析:取B 1C 1的中点M ,BB 1的中点N ,连结A 1M ,A 1N ,MN ,可以证明平面A 1MN ∥平面AEF ,所以点P 位于线段MN 上, 因为A 1M =A 1N =1+⎝ ⎛⎭⎪⎫122=52,MN = ⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫122=22, 所以当点P 位于M ,N 处时,A 1P 的长度最长,取MN 的中点O ,连结A 1O ,当P 位于MN 的中点O 时,A 1P 的长度最短, 此时A 1O =⎝ ⎛⎭⎪⎫522-⎝ ⎛⎭⎪⎫242=324, 所以A 1O ≤A 1P ≤A 1M ,即324≤A 1P ≤52,所以线段A 1P 长度的取值范围是⎣⎢⎡⎦⎥⎤324,52. 答案:⎣⎢⎡⎦⎥⎤324,52 9.如图,在四棱锥P ABCD 中,AD ∥BC ,AB =BC =12AD ,E ,F ,H 分别为线段AD ,PC ,CD 的中点,AC 与BE 交于O 点,G 是线段OF 上一点.求证:(1)AP ∥平面BEF ; (2)GH ∥平面PAD . 证明:(1)连结EC , 因为AD ∥BC ,BC =12AD ,所以BC 綊AE ,所以四边形ABCE 是平行四边形, 所以O 为AC 的中点.又因为F 是PC 的中点,所以FO ∥AP , 因为FO ⊂平面BEF ,AP ⊄平面BEF , 所以AP ∥平面BEF .(2)连结FH ,OH ,因为F ,H 分别是PC ,CD 的中点, 所以FH ∥PD ,因为PD ⊂平面PAD ,FH ⊄平面PAD , 所以FH ∥平面PAD .又因为O 是AC 的中点,H 是CD 的中点, 所以OH ∥AD ,因为AD ⊂平面PAD ,OH ⊄平面PAD , 所以OH ∥平面PAD .又FH ∩OH =H ,所以平面OHF ∥平面PAD . 因为GH ⊂平面OHF ,所以GH ∥平面PAD .10.如图所示,在正方体ABCD A 1B 1C 1D 1中,E ,F ,G ,H 分别是BC ,CC 1,C 1D 1,A 1A 的中点.求证:(1)BF ∥HD 1; (2)EG ∥平面BB 1D 1D ; (3)平面BDF ∥平面B 1D 1H .证明:(1)如图所示,取BB 1的中点M ,连结MH ,MC 1, 易证四边形HMC 1D 1是平行四边形, 所以HD 1∥MC 1.又因为MC 1∥BF ,所以BF ∥HD 1.(2)取BD 的中点O ,连结EO ,D 1O ,则OE 綊12DC ,又D 1G 綊12DC ,所以OE 綊D 1G ,所以四边形OEGD 1是平行四边形, 所以GE ∥D 1O .又GE ⊄平面BB 1D 1D ,D 1O ⊂平面BB 1D 1D , 所以EG ∥平面BB 1D 1D . (3)由(1)知BF ∥HD 1,又BD ∥B 1D 1,B 1D 1,HD 1⊂平面B 1D 1H ,BF ,BD ⊂平面BDF ,且B 1D 1∩HD 1=D 1,DB ∩BF =B , 所以平面BDF ∥平面B 1D 1H .三上台阶,自主选做志在冲刺名校1.(2018·扬州期中)若半径为5的球被两个相互平行的平面截得的圆的半径分别为3和4,则这两个平面之间的距离为________.解析:∵半径为5的球被两个相互平行的平面截得的圆的半径分别为3和4,∴圆心到两个平面的距离分别为: 52-32=4,52-42=3,∴当两个平面位于球心同侧时,两平面间的距离为4-3=1,当两个平面位于球心异侧时,两平面间的距离为4+3=7.答案:1或72.如图所示,设正方体ABCD A 1B 1C 1D 1的棱长为a ,点P 是棱AD 上一点,且AP =a3,过B 1,D 1,P 的平面交平面ABCD 于P Q ,Q在直线CD 上,则P Q =________.解析:因为平面A 1B 1C 1D 1∥平面ABCD ,而平面B 1D 1P ∩平面ABCD =P Q ,平面B 1D 1P ∩平面A 1B 1C 1D 1=B 1D 1,所以B 1D 1∥P Q. 又因为B 1D 1∥BD , 所以BD ∥P Q , 设P Q ∩AB =M , 因为AB ∥CD , 所以△APM ∽△DP Q.所以P Q PM =PDAP=2,即P Q =2PM . 又知△APM ∽△ADB ,所以PM BD =AP AD =13,所以PM =13BD ,又BD =2a ,所以P Q =223a .答案:223a3.(2019·南通调研)如图,已知三棱柱ABC A 1B 1C 1,E ,F 分别为CC 1,BB 1上的点,且EC =B 1F ,过点B 做截面BMN ,使得截面交线段AC于点M ,交线段CC 1于点N .(1)若EC =3BF ,试确定M ,N 的位置,使平面BMN ∥平面AEF ,并说明理由;(2)若K ,R 分别为AA 1,C 1B 1的中点,求证:KR ∥平面AEF .解:(1)当AM AC =EN EC =13时,平面BMN ∥平面AEF .理由如下:∵EN =13EC ,BF =13EC ,∴EN 綊BF ,∴四边形BFEN 是平行四边形, ∴BN ∥EF .∵AM AC =ENEC,∴MN ∥AE ,∵MN ⊂平面BMN ,BN ⊂平面BMN ,且MN ∩BN =N ,AE ⊂平面AEF ,EF ⊂平面AEF ,且AE ∩EF =E ,∴当AM AC =EN EC =13时,平面BMN ∥平面AEF .(2)证明:连结BC 1,交FE 于点Q ,连结Q R . ∵△B Q F ≌△C 1Q E ,∴B Q =C 1Q , ∴Q R ∥BB 1,且Q R =12BB 1,∴Q R 綊AK .∴四边形AKR Q 为平行四边形. 连结A Q ,则A Q ∥KR ,∵A Q ⊂平面AEF ,KR ⊄平面AEF , ∴KR ∥平面AEF .。
2020版高考数学一轮复习教程学案第40课__直线的方程 Word版含解析
第课直线的方程. 了解确定直线位置的几何要求(两个点或一点和方向)..掌握直线方程的五种形式(点斜式、斜截式、两点式、截距式及一般式)的特点与适用范围,能根据问题的具体条件选择恰当的形式求直线的方程.. 熟悉直线方程各形式的特征,理解各形式之间的关系,会由已知直线方程求相关的特征量.. 阅读:必修第~页,温习直线方程的五种形式.. 解悟:①直线方程的各种形式需要怎样的条件?各有怎样的适用范围?②直线方程各种形式之间有怎样的区别与联系?③教材第页的探究内容所蕴含的意义是什么?. 践习:在教材空白处,完成必修第页练习第题;第页练习第、题;第页练习第、题.基础诊断. 已知点(-,),(-,),则直线的一般式方程为+-=.解析:易知直线斜率存在.设直线:=+,将点(-,),(-,)代入,得解得所以直线:=-+,即+-=.. 过点(,)且倾斜角的正弦值为的直线方程是=+或=-+.解析:由题意知α=,因为α∈[,π),所以α=或-,即直线的斜率为或-.当斜率为时,直线方程为=+;当斜率为-时,直线方程为=-+.. 过点(,-)且在两坐标轴上截距相等的直线方程是=-或++=.解析:当直线过原点(,)时,因为直线过点(,-),所以直线方程为=-;当直线不过原点时,设直线方程为+=,将点(,-)代入,得=-,所以直线方程为++=..给出下列命题:①经过定点(,)的直线都可以用方程-=(-)表示;②经过定点(,)的直线都可以用方程=+;③不经过原点的直线都可以用方程+=表示;④经过任意两个不同的点(,),(,)的直线都可以用方程(-)(-)=(-)(-)表示,其中正确命题的个数为.解析:①过点(,)且垂直于轴的直线不能用方程-=(-)表示,故①错;②经过点(,)且垂直于轴的直线不能用方程=+表示,故②错;③垂直于两坐标轴的直线不能用方程+=表示,故③错;④经过任意两个不同的点(,),(,)的直线都可以用方程(-)(-)=(-)(-)表示,故④正确.范例导航考向❶求直线方程例已知直线过点(,).() 若直线的斜率为,求直线的方程;() 若直线经过点(,-),求直线的方程.解析:()因为直线过点(,),斜率为,由点斜式方程得-=(-),故所求直线的方程为--=.() 因为直线过点(,),点(,-),由两点式方程得=,故所求直线的方程为--=.若直线过点(-,),且在两坐标轴上的截距之和为,则该直线的方程为-+=或+-=.解析:由题设知截距不为,设直线方程为+=.又直线过点(-,),从而+=,解得=-或=,故所求直线方程为-+=或+-=.考向❷含有参数的直线方程例已知直线:-++= (∈).() 求证:直线过定点;() 若直线不经过第四象限,求实数的取值范围.解析:() 直线的方程化简为(+)+(-)=,令解得所以无论取何值,直线总经过定点(-,).()当≠时,直线在轴上的截距为-,在轴上的截距为+,要使直线不经过第四象限,则必须有。
2020届江苏高考数学(文)总复习讲义:直线与方程
••>必过数材美1. 直线的倾斜角(1) 定义:在平面直角坐标系中,对于一条与x轴相交的直线,把x轴所在的直线绕着交点按逆时针方向旋转到和直线重合时所转过的最小正角称为这条直线的倾斜角. 当直线l 与X轴平行或重合时,规定它的倾斜角为o°(2) 范围:直线I倾斜角的取值范围是[0, n )2. 斜率公式(1)直线I的倾斜角为a a* 2,则斜率k = tan_ a.(2)P1(X1, y i) , P2(X2, y2)在直线I 上,且X1* X2,则I 的斜率k =X2名称方程适用范围点斜式y—y°= k(x—x°)不含直线x= X0斜截式y= kx+ b不含垂直于X轴的直线两点式y—y1 x —X1y2 —y1 X2 —X1不含直线x= X1(X1* X2)和直线y=y1(y1 * y2)截距式基+A1a b不含垂直于坐标轴和过原点的直线一般式Ax + By+ C= 0, A2+ B2* 0平面内所有直线都适用[小题体验]1.若过点M( —2, m), N(m,4)的直线的斜率等于1,贝U m的值为____________答案:12.已知a* 0,直线ax+ my—5m= 0过点(—2,1),则此直线的斜率为 _____________答案:23.已知三角形的三个顶点A(—5,0), B(3,—3), C(0,2),贝U BC边上中线所在的直线方程为_________ .解析:由已知,得BC的中点坐标为;,一1,且直线BC边上的中线过点A,贝U BC直线与方程£x -2 ,即x+ 13y边上中线的斜率k=-占,故BC边上的中线所在直线方程为y+1=- 13+ 5= 0.答案:x+ 13y+ 5= 04.已知直线I: ax+ y- 2- a= 0在x轴和y轴上的截距相等,则实数a= _________________ .解析:令x = 0,则I在y轴的截距为2+ a;令y= 0,得直线I在x轴上的截距为1 +a 2依题意2 + a= 1 + 2,解得a= 1或a=- 2.a答案:1或—2»•>必过易错关1. 点斜式、斜截式方程适用于不垂直于x轴的直线;两点式方程不能表示垂直于x, y轴的直线;截距式方程不能表示垂直于坐标轴和过原点的直线.2. 截距不是距离,距离是非负值,而截距可正可负,可为零,在与截距有关的问题中,要注意讨论截距是否为零.3. 求直线方程时,若不能断定直线是否具有斜率时,应注意分类讨论,即应对斜率是否存在加以讨论.[小题纠偏]1. 若直线I经过点A(1,2),且倾斜角是直线y= x + 3的倾斜角的2倍,则直线I的方程为 ____________ .解析:因为直线y= X+ 3的倾斜角为a= 45°所以所求直线I的倾斜角为2 a= 90°所以直线I的方程为x= 1.答案:x= 12. _______________________________________________________________ 过点M(3, —4),且在两坐标轴上的截距相等的直线的方程为_________________________________ .解析:①若直线过原点,则k=—4,所以y=—:x,即4x+ 3y= 0.②若直线不过原点.设a+:=“,即x+y=a.则 a = 3+ (—4) =—1,所以直线的方程为x + y+ 1 = 0.答案:4x+ 3y= 0 或x+ y+ 1 = 0[题组练透]1. _______________________________________________________________________ (2019 •东中学检测)倾斜角为135。
【2022 高考数学一轮复习(学科版)】考点40 直线方程(讲解)(解析版)
考点40 直线方程【思维导图】【常见考法】考法一 斜率与倾斜角110y --=的倾斜角为 。
【答案】60α=︒10y --=变形为1y =- 所以k =设倾斜角为α 则tan k α==因为0180α<< 所以60α=︒2.已知双曲线221x y a+=的一条渐近线倾斜角为56π,则a = 。
【答案】-3【解析】由双曲线方程可知:0a <,渐近线方程为:y x=,一条渐近线的倾斜角为56π,5tan 6π==,解得:3a =-. 3.直线l 的倾斜角,43ππα⎛⎫∈ ⎪⎝⎭,则其斜率的取值范围为 。
【答案】【解析】直线的倾斜角为2παα⎛⎫≠⎪⎝⎭,则斜率为tan α,tan y x =在0,2π⎛⎫⎪⎝⎭上为增函数.由于直线l 的倾斜角,43ππα⎛⎫∈ ⎪⎝⎭,所以其斜率的取值范围为tan ,tan 43ππ⎛⎫ ⎪⎝⎭,即.4.过点()()2,1,,3A B m 的直线的倾斜角α的范围是π3π,44⎛⎫⎪⎝⎭,则实数m 的取值范围是。
【答案】04m <<【解析】当2m =时,直线的倾斜角为π2,满足题意; 当2m ≠时,直线AB 的斜率为31πtan 124m ->=-,或31ta 3n 12π4m -<=--, 所以402m m ->-或02mm <-,解得24m <<或02m <<. 综上,实数m 的取值范围是04m <<.5.函数sin cos y a x b x =-的一个对称中心为,04π⎛⎫⎪⎝⎭,则直线0ax by c 的倾斜角大小为 。
【答案】34π【解析】令()sin cos y f x a x b x ==-因为函数sin cos y a x b x =-的一个对称中心为,04π⎛⎫⎪⎝⎭, 所以有(0)()02f f π+=,所以0b a -+=,即a b =,所以直线0ax by c 的斜率1ak b=-=-, 设其倾斜角为(0)ααπ≤<,所以有tan 1k α==-,所以34πα=6.已知点()2,3A -,()32B --,,直线l 的方程为10kx y k --+=,且与线段AB 相交,则直线l 的斜率k的取值范围为 。
2020版高考数学一轮复习课后限时集训40直线的倾斜角与斜率直线方程含解析理20190627393
课后限时集训(四十)(建议用时:60分钟) A 组 基础达标一、选择题1.(2018·江西抚州检测)点(3,4)在直线l :ax -y +1=0上,则直线l 的倾斜角为( )A .30° B.45°C .60°D .120°C [∵点(3,4)在直线l :ax -y +1=0上,∴3a -4+1=0, ∴a =3,即直线l 的斜率为3,直线l 的倾斜角为60°.] 2.过点(2,1)且倾斜角比直线y =-x -1的倾斜角小π4的直线方程是( ) A .x =2 B .y =1 C .x =1D .y =2A [直线y =-x -1的斜率为-1,故其倾斜角为3π4,故所求直线的倾斜角为π2,直线方程为x =2.]3.(2019·广东惠州质检)直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率k 的取值范围是( )A .-1<k <15B .-1<k <12C .k >15或k <-1D .k <-1或k >12D [设直线的斜率为k ,则直线方程为y -2=k (x -1),直线在x 轴上的截距为1-2k.令-3<1-2k <3,解不等式得k <-1或k >12.]4.(2019·广东深圳调研)在同一平面直角坐标系中,直线l 1:ax +y +b =0和直线l 2:bx +y +a =0有可能是( )A B C DB [当a >0,b >0时,-a <0,-b <0,选项B 符合.]5.(2019·江西九江月考)经过点A (1,2)且在两个坐标轴上的截距的绝对值相等的直线方程为( )A .y =2x 或x -y +1=0B .y =2x 或x +y -3=0C .x +y -3=0或x -y +1=0D .y =2x 或x +y -3=0或x -y +1=0D [经过点A (1,2)且在两个坐标轴上的截距的绝对值相等的直线有以下几种情况: ①当截距为0时,直线过原点,得y =2x ; ②当斜率为-1时,直线方程为x +y -3=0; ③当斜率为1时,直线方程为x -y +1=0.综上所述,直线方程为y =2x 或x +y -3=0或x -y +1=0.故选D.] 二、填空题6.过点A (1,3),斜率是直线y =-4x 的斜率的13的直线方程为________.4x +3y -13=0 [所求直线斜率为-43,又过点A (1,3)故所求直线方程为y -3=-43(x -1),即4x +3y -13=0.]7.已知三角形的三个顶点A (-5,0),B (3,-3),C (0,2),则BC 边上中线所在的直线方程为________.x +13y +5=0 [BC 的中点坐标为⎝ ⎛⎭⎪⎫32,-12,∴BC 边上中线所在直线方程为y -0-12-0=x +532+5,即x +13y +5=0.]8.设直线l :(a -2)x +(a +1)y +6=0,则直线l 恒过定点________. (2,-2) [直线l 的方程变形为a (x +y )-2x +y +6=0, 由⎩⎪⎨⎪⎧x +y =0,-2x +y +6=0,解得⎩⎪⎨⎪⎧x =2,y =-2,所以直线l 恒过定点(2,-2).] 三、解答题9.设直线l 的方程为x +my -2m +6=0,根据下列条件分别确定m 的值: (1)直线l 的斜率为1;(2)直线l 在x 轴上的截距为-3.[解] (1)因为直线l 的斜率存在,所以m ≠0, 于是直线l 的方程可化为y =-1m x +2m -6m.由题意得-1m=1,解得m =-1.(2)法一:令y =0,得x =2m -6. 由题意得2m -6=-3,解得m =32.法二:直线l 的方程可化为x =-my +2m -6.由题意得2m -6=-3,解得m =32.10.已知直线l 与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l 的方程:(1)过定点A (-3,4); (2)斜率为16.[解] (1)设直线l 的方程为y =k (x +3)+4,它在x 轴,y 轴上的截距分别是-4k-3,3k+4,由已知,得⎪⎪⎪⎪⎪⎪k +⎝ ⎛⎭⎪⎫-4k -3=6, 解得k 1=-23或k 2=-83.故直线l 的方程为2x +3y -6=0或8x +3y +12=0. (2)设直线l 在y 轴上的截距为b , 则直线l 的方程是y =16x +b ,它在x 轴上的截距是-6b ,由已知,得|(-6b )·b |=6,∴b =±1. ∴直线l 的方程为x -6y +6=0或x -6y -6=0.B 组 能力提升1.直线2x cos α-y -3=0⎝ ⎛⎭⎪⎫α∈⎣⎢⎡⎦⎥⎤π6,π3的倾斜角的取值范围是( ) A.⎣⎢⎡⎦⎥⎤π6,π3B.⎣⎢⎡⎦⎥⎤π4,π3C.⎣⎢⎡⎦⎥⎤π4,π2D.⎣⎢⎡⎦⎥⎤π4,2π3B [由题意知,直线的斜率k =2cos α,又π6≤α≤π3,所以12≤cos α≤32,即1≤k ≤3,设直线的倾斜角为θ,则1≤t a n θ≤3,故θ∈⎣⎢⎡⎦⎥⎤π4,π3.]2.(2019·福建福州模拟)若直线ax +by =ab (a >0,b >0)过点(1,1),则该直线在x 轴、y 轴上的截距之和的最小值为( )A .1B .2C .4D .8C [∵直线ax +by =ab (a >0,b >0)过点(1,1), ∴a +b =ab ,即1a +1b=1,∴a +b =(a +b )⎝⎛⎭⎪⎫1a +1b=2+b a +a b ≥2+2b a ·ab=4, 当且仅当a =b =2时上式等号成立.∴直线在x 轴、y 轴上的截距之和的最小值为4.]3.在平面直角坐标系xOy 中,设A 是半圆O :x 2+y 2=2(x ≥0)上一点,直线OA 的倾斜角为45°,过点A 作x 轴的垂线,垂足为H ,过H 作OA 的平行线交半圆于点B ,则直线AB 的方程是________.3x +y -3-1=0 [直线OA 的方程为y =x ,代入半圆方程得A (1,1), ∴H (1,0),直线HB 的方程为y =x -1, 代入半圆方程得B ⎝⎛⎭⎪⎫1+32,-1+32.所以直线AB 的方程为y -1-1+32-1=x -11+32-1,即3x +y -3-1=0.]4.如图所示,射线OA ,OB 分别与x 轴正半轴成45°和30°角,过点P (1,0)做直线AB 分别交OA ,OB 于A ,B 两点,当AB 的中点C 恰好落在直线y =12x 上时,求直线AB 的方程.[解] 由题意可得k OA =t a n 45°=1,k OB =t a n (180°-30°)=-33, 所以直线l OA :y =x ,l OB :y =-33x . 设A (m ,m ),B (-3n ,n ), 所以AB 的中点C ⎝⎛⎭⎪⎫m -3n 2,m +n 2,由点C 在直线y =12x 上,且A ,P ,B 三点共线得⎩⎪⎨⎪⎧m +n 2=12·m -3n 2,m -0m -1=n -0-3n -1,解得m =3,所以A (3,3).又P (1,0),所以k AB =k AP =33-1=3+32, 所以l AB :y =3+32(x -1),即直线AB 的方程为(3+3)x -2y -3-3=0.。
2020版高考数学一轮复习课时训练(四十)直线与方程文(含解析)苏教版(2021-2022学年)
课时跟踪检测(四十)直线与方程一抓基础,多练小题做到眼疾手快1.(2019·南通模拟)将直线y=2x绕原点逆时针旋转错误!,则所得直线的斜率为________.解析:设直线y=2x的倾斜角是α,则tan α=2,将直线y=2x绕原点逆时针旋转\f(π,4),则倾斜角变为α+错误!,∴所得直线的斜率k=tan错误!=错误!=-3.答案:-32.(2018·南通中学月考)过点P(-2,4)且斜率k=3的直线l的方程为________.解析:由题意得,直线l的方程为y-4=3[x-(-2)],即3x-y+10=0.答案:3x-y+10=03.若直线y=-2x+3k+14与直线x-4y=-3k-2的交点位于第四象限,则实数k的取值范围是________.解析:解方程组错误!得错误!因为直线y=-2x+3k+14与直线x-4y=-3k-2的交点位于第四象限,所以k+6>0且k+2<0,所以-6<k<-2。
答案:(-6,-2)4.(2018·南京名校联考)曲线y=x3-x+5上各点处的切线的倾斜角的取值范围为________.解析:设曲线上任意一点处的切线的倾斜角为θ(θ∈[0,π)),因为y′=3x2-1≥-1,所以tanθ≥-1,结合正切函数的图象可知,θ的取值范围为错误!∪错误!未定义书签。
答案:错误!∪错误!未定义书签。
5.(2019·无锡模拟)已知直线(a-2)y=(3a-1)x-1,若这条直线不经过第二象限,则实数a 的取值范围是________.解析:若a-2=0,即a=2时,直线方程可化为x=错误!未定义书签。
,此时直线不经过第二象限,满足条件;若a-2≠0,直线方程可化为y=\f(3a-1,a-2)x-1a-2,此时若直线不经过第二象限,则\f(3a-1,a-2)≥0,\f(1,a-2)≥0,解得a>2。
综上,满足条件的实数a的取值范围是[2,+∞).答案:[2,+∞)6.(2018·南京调研)已知函数f(x)=a sinx-b cosx,若f错误!未定义书签。
2020版高考数学大一轮复习-9.1直线的方程教案(文)(含解析)新人教A版
§9.1直线的方程1.平面直角坐标系中的基本公式(1)两点的距离公式:已知平面直角坐标系中的两点A (x 1,y 1),B (x 2,y 2),则d (A ,B )=|AB |=(x 2-x 1)2+(y 2-y 1)2. (2)中点公式:已知平面直角坐标系中的两点A (x 1,y 1),B (x 2,y 2),点M (x ,y )是线段AB 的中点,则x =x 1+x 22,y =y 1+y 22.2.直线的倾斜角(1)定义:x 轴正向与直线向上的方向所成的角叫做这条直线的倾斜角,我们规定,与x 轴平行或重合的直线的倾斜角为零度角. (2)倾斜角的范围:[0°,180°). 3.直线的斜率(1)定义:通常,我们把直线y =kx +b 中的系数k 叫做这条直线的斜率,垂直于x 轴的直线,人们常说它的斜率不存在;(2)计算公式:若由A (x 1,y 1),B (x 2,y 2)确定的直线不垂直于x 轴,则k =y 2-y 1x 2-x 1(x 1≠x 2).若直线的倾斜角为θ⎝ ⎛⎭⎪⎫θ≠π2,则k =tan θ.4.直线方程的五种形式概念方法微思考1.直线都有倾斜角,是不是都有斜率?倾斜角越大,斜率k 就越大吗? 提示 倾斜角α∈[0,π),当α=π2时,斜率k 不存在;因为k =tan α⎝⎛⎭⎪⎫α≠π2.当α∈⎝⎛⎭⎪⎫0,π2时,α越大,斜率k 就越大,同样α∈⎝⎛⎭⎪⎫π2,π时也是如此,但当α∈(0,π)且α≠π2时就不是了.2.“截距”与“距离”有何区别?当截距相等时应注意什么?提示 “截距”是直线与坐标轴交点的坐标值,它可正,可负,也可以是零,而“距离”是一个非负数.应注意过原点的特殊情况是否满足题意.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)根据直线的倾斜角的大小不能确定直线的位置.( √ ) (2)若直线的斜率为tan α,则其倾斜角为α.( × ) (3)斜率相等的两直线的倾斜角不一定相等.( × )(4)经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示.( √ ) 题组二 教材改编2.若过点M (-2,m ),N (m,4)的直线的斜率等于1,则m 的值为( ) A.1B.4C.1或3D.1或4 答案 A解析 由题意得m -4-2-m=1,解得m =1.3.过点P (2,3)且在两坐标轴上截距相等的直线方程为. 答案 3x -2y =0或x +y -5=0解析 当截距为0时,直线方程为3x -2y =0; 当截距不为0时,设直线方程为x a +y a=1,则2a +3a=1,解得a =5.所以直线方程为x +y -5=0.题组三 易错自纠4.直线x +(a 2+1)y +1=0的倾斜角的取值范围是( )A.⎣⎢⎡⎦⎥⎤0,π4B.⎣⎢⎡⎭⎪⎫3π4,πC.⎣⎢⎡⎦⎥⎤0,π4∪⎝ ⎛⎭⎪⎫π2,π D.⎣⎢⎡⎭⎪⎫π4,π2∪⎣⎢⎡⎭⎪⎫3π4,π 答案 B解析 由直线方程可得该直线的斜率为-1a 2+1, 又-1≤-1a 2+1<0,所以倾斜角的取值范围是⎣⎢⎡⎭⎪⎫3π4,π. 5.如果A ·C <0且B ·C <0,那么直线Ax +By +C =0不通过( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限答案 C解析 由已知得直线Ax +By +C =0在x 轴上的截距-CA >0,在y 轴上的截距-C B>0,故直线经过第一、二、四象限,不经过第三象限.6.过直线l :y =x 上的点P (2,2)作直线m ,若直线l ,m 与x 轴围成的三角形的面积为2,则直线m 的方程为.答案 x -2y +2=0或x =2解析 ①若直线m 的斜率不存在,则直线m 的方程为x =2,直线m ,直线l 和x 轴围成的三角形的面积为2,符合题意;②若直线m 的斜率k =0,则直线m 与x 轴没有交点,不符合题意;③若直线m 的斜率k ≠0,设其方程为y -2=k (x -2),令y =0,得x =2-2k ,依题意有12×⎪⎪⎪⎪⎪⎪2-2k ×2=2,即⎪⎪⎪⎪⎪⎪1-1k =1,解得k =12,所以直线m 的方程为y -2=12(x -2),即x -2y +2=0.综上可知,直线m 的方程为x -2y +2=0或x =2.题型一 直线的倾斜角与斜率例1(1)直线2x cos α-y -3=0⎝ ⎛⎭⎪⎫α∈⎣⎢⎡⎦⎥⎤π6,π3的倾斜角的取值范围是 ( ) A.⎣⎢⎡⎦⎥⎤π6,π3B.⎣⎢⎡⎦⎥⎤π4,π3C.⎣⎢⎡⎦⎥⎤π4,π2D.⎣⎢⎡⎦⎥⎤π4,2π3答案 B解析 直线2x cos α-y -3=0的斜率k =2cos α, 因为α∈⎣⎢⎡⎦⎥⎤π6,π3,所以12≤cos α≤32,因此k =2cos α∈[1, 3 ].设直线的倾斜角为θ,则有tan θ∈[1, 3 ].又θ∈[0,π),所以θ∈⎣⎢⎡⎦⎥⎤π4,π3, 即倾斜角的取值范围是⎣⎢⎡⎦⎥⎤π4,π3. (2)(2018·抚顺调研)直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为. 答案 (-∞,-3]∪[1,+∞) 解析 如图,∵k AP =1-02-1=1,k BP =3-00-1=-3, ∴k ∈(-∞,- 3 ]∪[1,+∞). 引申探究1.若将本例(2)中P (1,0)改为P (-1,0),其他条件不变,求直线l 斜率的取值范围. 解 ∵P (-1,0),A (2,1),B (0,3), ∴k AP =1-02-(-1)=13,k BP =3-00-(-1)= 3.如图可知,直线l 斜率的取值范围为⎣⎢⎡⎦⎥⎤13,3. 2.若将本例(2)中的B 点坐标改为(2,-1),其他条件不变,求直线l 倾斜角的取值范围. 解 如图,直线PA 的倾斜角为45°,直线PB 的倾斜角为135°,由图象知l 的倾斜角的范围为[0°,45°]∪[135°,180°). 思维升华 (1)倾斜角α与斜率k 的关系①当α∈⎣⎢⎡⎭⎪⎫0,π2时,k ∈[0,+∞).②当α=π2时,斜率k 不存在.③当α∈⎝ ⎛⎭⎪⎫π2,π时,k ∈(-∞,0). (2)斜率的两种求法①定义法:若已知直线的倾斜角α或α的某种三角函数值,一般根据k =tan α求斜率. ②公式法:若已知直线上两点A (x 1,y 1),B (x 2,y 2),一般根据斜率公式k =y 2-y 1x 2-x 1(x 1≠x 2)求斜率. (3)倾斜角α范围与直线斜率范围互求时,要充分利用y =tan α的单调性. 跟踪训练1(1)若平面内三点A (1,-a ),B (2,a 2),C (3,a 3)共线,则a 等于( ) A.1±2或0 B.2-52或0 C.2±52D.2+52或0 答案 A解析 ∵平面内三点A (1,-a ),B (2,a 2),C (3,a 3)共线,∴k AB =k AC , 即a 2+a 2-1=a 3+a3-1,即a (a 2-2a -1)=0,解得a =0或a =1± 2.故选A.(2)直线l 经过A (3,1),B (2,-m 2)(m ∈R )两点,则直线l 的倾斜角α的取值范围是.答案 ⎣⎢⎡⎭⎪⎫π4,π2 解析 直线l 的斜率k =1+m 23-2=1+m 2≥1,所以k =tan α≥1.又y =tan α在⎝⎛⎭⎪⎫0,π2上是增函数,因此π4≤α<π2.题型二 求直线的方程例2求适合下列条件的直线方程:(1)经过点P (3,2),且在两坐标轴上的截距相等; (2)过点A (-1,-3),斜率是直线y =3x 的斜率的-14;(3)过点A (1,-1)与已知直线l 1:2x +y -6=0相交于B 点且|AB |=5.解 (1)方法一 设直线l 在x ,y 轴上的截距均为a ,若a =0,即l 过点(0,0)和(3,2), ∴l 的方程为y =23x ,即2x -3y =0.若a ≠0,则设l 的方程为x a +y a=1, ∵l 过点(3,2),∴3a +2a=1,∴a =5,∴l 的方程为x +y -5=0,综上可知,直线l 的方程为2x -3y =0或x +y -5=0. 方法二 由题意,所求直线的斜率k 存在且k ≠0, 设直线方程为y -2=k (x -3),令y =0,得x =3-2k,令x =0,得y =2-3k ,由已知3-2k =2-3k ,解得k =-1或k =23,∴直线l 的方程为y -2=-(x -3)或y -2=23(x -3),即x +y -5=0或2x -3y =0. (2)设所求直线的斜率为k ,依题意k =-14×3=-34.又直线经过点A (-1,-3),因此所求直线方程为y +3=-34(x +1),即3x +4y +15=0.(3)过点A (1,-1)与y 轴平行的直线为x =1.解方程组⎩⎪⎨⎪⎧x =1,2x +y -6=0,求得B 点坐标为(1,4),此时|AB |=5,即x =1为所求. 设过A (1,-1)且与y 轴不平行的直线为y +1=k (x -1),解方程组⎩⎪⎨⎪⎧2x +y -6=0,y +1=k (x -1),得两直线交点为⎩⎪⎨⎪⎧x =k +7k +2,y =4k -2k +2.(k ≠-2,否则与已知直线平行). 则B 点坐标为⎝ ⎛⎭⎪⎫k +7k +2,4k -2k +2.由已知⎝⎛⎭⎪⎫k +7k +2-12+⎝ ⎛⎭⎪⎫4k -2k +2+12=52,解得k =-34,∴y +1=-34(x -1),即3x +4y +1=0.综上可知,所求直线的方程为x =1或3x +4y +1=0.思维升华在求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的适用条件.若采用截距式,应注意分类讨论,判断截距是否为零;若采用点斜式,应先考虑斜率不存在的情况.跟踪训练2求适合下列条件的直线方程:(1)过点P (2,3),并且在两坐标轴上的截距互为相反数; (2)过点A (-1,-3),倾斜角等于直线y =3x 的倾斜角的2倍; (3)直线过点(-3,4),且在两坐标轴上的截距之和为12. 解 (1)当直线过原点时,方程为y =32x ,即3x -2y =0.当直线l 不过原点时,设直线方程为x a -y a=1. 将P (2,3)代入方程,得a =-1, 所以直线l 的方程为x -y +1=0.综上,所求直线l 的方程为3x -2y =0或x -y +1=0. (2)设直线y =3x 的倾斜角为α, 则所求直线的倾斜角为2α.因为tan α=3,所以tan2α=2tan α1-tan 2α=-34. 又直线经过点A (-1,-3),因此所求直线方程为y +3=-34(x +1),即3x +4y +15=0.(3)由题设知纵横截距不为0,设直线方程为x a +y12-a=1,又直线过点(-3,4),从而-3a +412-a =1,解得a =-4或a =9.故所求直线方程为4x -y +16=0或x +3y -9=0.题型三 直线方程的综合应用命题点1 与基本不等式相结合求最值问题例3(2018·包头模拟)已知直线l 过点M (2,1),且与x 轴、y 轴的正半轴分别相交于A ,B 两点,O 为坐标原点,求当|MA →|·|MB →|取得最小值时直线l 的方程. 解 设A (a,0),B (0,b ),则a >0,b >0,直线l 的方程为x a +y b=1,所以2a +1b=1.|MA →|·|MB →|=-MA →·MB →=-(a -2,-1)·(-2,b -1) =2(a -2)+b -1=2a +b -5 =(2a +b )⎝ ⎛⎭⎪⎫2a +1b -5=2b a +2a b≥4,当且仅当a =b =3时取等号,此时直线l 的方程为x +y -3=0. 命题点2 由直线方程解决参数问题例4已知直线l 1:ax -2y =2a -4,l 2:2x +a 2y =2a 2+4,当0<a <2时,直线l 1,l 2与两坐标轴围成一个四边形,当四边形的面积最小时,求实数a 的值.解 由题意知直线l 1,l 2恒过定点P (2,2),直线l 1在y 轴上的截距为2-a ,直线l 2在x 轴上的截距为a 2+2,所以四边形的面积S =12×2×(2-a )+12×2×(a 2+2)=a 2-a +4=⎝ ⎛⎭⎪⎫a -122+154,当a =12时,四边形的面积最小. 思维升华与直线方程有关问题的常见类型及解题策略(1)求解与直线方程有关的最值问题.先设出直线方程,建立目标函数,再利用基本不等式求解最值.(2)求直线方程.弄清确定直线的两个条件,由直线方程的几种特殊形式直接写出方程. (3)求参数值或范围.注意点在直线上,则点的坐标适合直线的方程,再结合函数的单调性或基本不等式求解.跟踪训练3过点P (4,1)作直线l 分别交x 轴,y 轴正半轴于A ,B 两点,O 为坐标原点. (1)当△AOB 面积最小时,求直线l 的方程; (2)当|OA |+|OB |取最小值时,求直线l 的方程. 解 设直线l :x a +y b=1(a >0,b >0), 因为直线l 经过点P (4,1), 所以4a +1b=1.(1)4a +1b=1≥24a ·1b=4ab,所以ab ≥16,当且仅当a =8,b =2时等号成立,所以当a =8,b =2时,△AOB 的面积最小,此时直线l 的方程为x 8+y2=1,即x +4y -8=0.(2)因为4a +1b=1,a >0,b >0,所以|OA |+|OB |=a +b =(a +b )·⎝ ⎛⎭⎪⎫4a +1b =5+a b +4b a ≥5+2a b ·4ba =9,当且仅当a =6,b=3时等号成立,所以当|OA |+|OB |取最小值时,直线l 的方程为x 6+y3=1,即x +2y -6=0.一、选择题1.直线3x -y +a =0(a 为常数)的倾斜角为( ) A.30°B.60°C.150°D.120°答案 B解析 设直线的倾斜角为α,斜率为k , 化直线方程为y =3x +a ,∴k =tan α= 3. ∵0°≤α<180°,∴α=60°.2.(2018·大连模拟)过点(2,1)且倾斜角比直线y =-x -1的倾斜角小π4的直线方程是( ) A.x =2 B.y =1 C.x =1 D.y =2答案 A解析 ∵直线y =-x -1的斜率为-1, 则倾斜角为3π4,依题意,所求直线的倾斜角为3π4-π4=π2,∴斜率不存在,∴过点(2,1)的直线方程为x =2.3.已知过定点P (2,0)的直线l 与曲线y =2-x 2相交于A ,B 两点,O 为坐标原点,当△AOB 的面积取到最大值时,直线l 的倾斜角为( ) A.150° B.135° C.120° D.不存在答案 A解析 由y =2-x 2,得x 2+y 2=2(y ≥0),它表示以原点O 为圆心,以2为半径的圆的一部分,其图象如图所示.显然直线l 的斜率存在,设过点P (2,0)的直线l 为y =k (x -2), 则圆心到此直线的距离d =|-2k |1+k2, 弦长|AB |=22-⎝ ⎛⎭⎪⎫|-2k |1+k 22=22-2k21+k2, 所以S △AOB =12×|-2k |1+k 2×22-2k21+k2 ≤(2k )2+2-2k22(1+k 2)=1, 当且仅当(2k )2=2-2k 2,即k 2=13时等号成立,由图可得k =-33⎝ ⎛⎭⎪⎫k =33舍去, 故直线l 的倾斜角为150°.4.如图中的直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则 ( )A.k 1<k 2<k 3B.k 3<k 1<k 2C.k 3<k 2<k 1D.k 1<k 3<k 2 答案 D解析 直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2与α3均为锐角且α2>α3,所以0<k 3<k 2, 因此k 1<k 3<k 2,故选D.5.直线MN 的斜率为2,其中点N (1,-1),点M 在直线y =x +1上,则( ) A.M (5,7) B.M (4,5) C.M (2,1) D.M (2,3) 答案 B解析 设M 的坐标为(a ,b ),若点M 在直线y =x +1上, 则有b =a +1.①若直线MN 的斜率为2,则有b +1a -1=2.② 联立①②可得a =4,b =5, 即M 的坐标为(4,5).故选B.6.已知两点M (2,-3),N (-3,-2),直线l 过点P (1,1)且与线段MN 相交,则直线l 的斜率k 的取值范围是( ) A.k ≥34或k ≤-4B.-4≤k ≤34C.34≤k ≤4 D.-34≤k ≤4答案 A解析 如图所示,∵k PN =1-(-2)1-(-3)=34,k PM =1-(-3)1-2=-4, ∴要使直线l 与线段MN 相交, 当l 的倾斜角小于90°时,k ≥k PN ;当l 的倾斜角大于90°时,k ≤k PM ,∴k ≥34或k ≤-4.7.(2018·焦作期中)过点A (3,-1)且在两坐标轴上截距相等的直线有( ) A.1条 B.2条 C.3条 D.4条答案 B解析 ①当所求的直线与两坐标轴的截距都不为0时, 设该直线的方程为x +y =a , 把(3,-1)代入所设的方程得a =2,则所求直线的方程为x +y =2,即x +y -2=0; ②当所求的直线与两坐标轴的截距为0时, 设该直线的方程为y =kx ,把(3,-1)代入所设的方程得k =-13,则所求直线的方程为y =-13x ,即x +3y =0.综上,所求直线的方程为x +y -2=0或x +3y =0, 故选B.8.已知函数f (x )=a sin x -b cos x (a ≠0,b ≠0),若f ⎝ ⎛⎭⎪⎫π3-x =f ⎝ ⎛⎭⎪⎫π3+x ,则直线ax -by +c=0的倾斜角为( ) A.π4 B.π3 C.2π3D.3π4 答案 C解析 由f ⎝ ⎛⎭⎪⎫π3-x =f ⎝ ⎛⎭⎪⎫π3+x 知函数f (x )的图象关于x =π3对称,所以f (0)=f ⎝ ⎛⎭⎪⎫2π3,所以a=-3b ,由直线ax -by +c =0知其斜率k =a b =-3,所以直线的倾斜角为2π3,故选C.二、填空题9.一条直线经过点A (2,-3),并且它的倾斜角等于直线y =13x 的倾斜角的2倍,则这条直线的一般式方程是. 答案3x -y -33=0解析 因为直线y =13x 的倾斜角为π6,所以所求直线的倾斜角为π3,即斜率k =tan π3= 3.又该直线过点A (2,-3),故所求直线为y -(-3)=3(x -2), 即3x -y -33=0.10.直线kx +y +2=-k ,当k 变化时,所有的直线都过定点. 答案 (-1,-2)解析 kx +y +2=-k 可化为y +2=-k (x +1),根据直线方程的点斜式可知,此类直线恒过定点(-1,-2).11.已知三角形的三个顶点A (-5,0),B (3,-3),C (0,2),则BC 边上中线所在的直线方程为.答案 x +13y +5=0解析 BC 的中点坐标为⎝ ⎛⎭⎪⎫32,-12,∴BC 边上中线所在的直线方程为y -0-12-0=x +532+5,即x +13y+5=0.12.经过点A (4,2),且在x 轴上的截距等于在y 轴上的截距的3倍的直线l 的方程的一般式为.答案 x +3y -10=0或x -2y =0解析 当截距为0时,设直线方程为y =kx ,则4k =2, ∴k =12,∴直线方程为x -2y =0.当截距不为0时,设直线方程为x 3a +ya =1,由题意得,43a +2a =1,∴a =103.∴x +3y -10=0.综上,直线l 的一般式方程为x +3y -10=0或x -2y =0.13.设点A (-1,0),B (1,0),直线2x +y -b =0与线段AB 相交,则b 的取值范围是. 答案 [-2,2]解析 b 为直线y =-2x +b 在y 轴上的截距,如图,当直线y =-2x +b 过点A (-1,0)和点B (1,0)时,b 分别取得最小值-2和最大值2. ∴b 的取值范围是[-2,2].14.已知动直线l 0:ax +by +c -3=0(a >0,c >0)恒过点P (1,m ),且Q (4,0)到动直线l 0的最大距离为3,则12a +2c 的最小值为.答案 32解析 ∵动直线l 0:ax +by +c -3=0(a >0,c >0)恒过点P (1,m ), ∴a +bm +c -3=0.又Q (4,0)到动直线l 0的最大距离为3, ∴(4-1)2+m 2=3,解得m =0.∴a +c =3. 则12a +2c =13(a +c )⎝ ⎛⎭⎪⎫12a +2c =13⎝ ⎛⎭⎪⎫52+c 2a +2a c ≥13⎝ ⎛⎭⎪⎫52+2 c 2a ·2a c =32, 当且仅当c =2a =2时取等号. 三、解答题15.过点P (3,0)作一条直线,使它夹在两直线l 1:2x -y -2=0与l 2:x +y +3=0之间的线段AB 恰好被点P 平分,求此直线的方程. 解 设点A (x ,y )在l 1上,点B (x B ,y B )在l 2上.由题意知⎩⎪⎨⎪⎧x +x B2=3,y +yB2=0,则点B (6-x ,-y ),解方程组⎩⎪⎨⎪⎧2x -y -2=0,(6-x )+(-y )+3=0,得⎩⎪⎨⎪⎧x =113,y =163,则所求直线的斜率k =163-0113-3=8,故所求的直线方程为y =8(x -3),即8x -y -24=0. 16.已知直线l :kx -y +1+2k =0(k ∈R ). (1)证明:直线l 过定点;(2)若直线l 不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,O 为坐标原点,设△AOB 的面积为S ,求S 的最小值及此时直线l 的方程.(1)证明 直线l 的方程可化为y =k (x +2)+1, 故无论k 取何值,直线l 总过定点(-2,1). (2)解 直线l 的方程可化为y =kx +2k +1, 则直线l 在y 轴上的截距为2k +1,要使直线l 不经过第四象限,则⎩⎪⎨⎪⎧k ≥0,1+2k ≥0,故k 的取值范围是k ≥0.(3)解 依题意,直线l 在x 轴上的截距为-1+2kk,在y 轴上的截距为1+2k ,且k >0,所以A ⎝⎛⎭⎪⎫-1+2k k,0,B (0,1+2k ), 故S =12|OA ||OB |=12×1+2k k ×(1+2k )=12⎝⎛⎭⎪⎫4k +1k +4≥12×(4+4)=4,当且仅当4k =1k ,即k =12时取等号,故S 的最小值为4,此时直线l 的方程为x -2y +4=0.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
___第40课__直线的方程____1. 了解确定直线位置的几何要求(两个点或一点和方向).2. 掌握直线方程的五种形式(点斜式、斜截式、两点式、截距式及一般式)的特点与适用范围,能根据问题的具体条件选择恰当的形式求直线的方程.3. 熟悉直线方程各形式的特征,理解各形式之间的关系,会由已知直线方程求相关的特征量.1. 阅读:必修2第80~86页,温习直线方程的五种形式.2. 解悟:①直线方程的各种形式需要怎样的条件?各有怎样的适用范围?②直线方程各种形式之间有怎样的区别与联系?③教材第82页的探究内容所蕴含的意义是什么?3. 践习:在教材空白处,完成必修2第83页练习第3题;第85页练习第2、4题;第87页练习第4、5题.基础诊断1. 已知点A(-4,6),B(-2,4),则直线AB 的一般式方程为__+y -2=0__.解析:易知直线斜率存在.设直线AB :y =+b ,将点A(-4,6),B(-2,4)代入,得⎩⎨⎧6=-4k +b ,4=-2k +b ,解得⎩⎨⎧k =-1,b =2,所以直线AB :y =-+2,即+y -2=0.2. 过点(1,2)且倾斜角的正弦值为45的直线方程是__y =43+23或y =-43+10__.解析:由题意知sin α=45,因为α∈[0,π),所以tan α=43或-43,即直线的斜率为43或-43.当斜率为43时,直线方程为y =43+23;当斜率为-43时,直线方程为y =-43+103.3. 过点(3,-4)且在两坐标轴上截距相等的直线方程是__y =-43或+y +1=0__.解析:当直线过原点(0,0)时,因为直线过点(3,-4),所以直线方程为y =-43;当直线不过原点时,设直线方程为x a +ya=1,将点(3,-4)代入,得a =-1,所以直线方程为+y +1=0.4. 给出下列命题:①经过定点P 0(0,y 0)的直线都可以用方程y -y 0=(-0)表示;②经过定点A(0,b)的直线都可以用方程y =+b ;③不经过原点的直线都可以用方程x a +yb =1表示;④经过任意两个不同的点P 1(1,y 1),P 2(2,y 2)的直线都可以用方程(y -y 1)(2-1)=(-1)(y 2-y 1)表示,其中正确命题的个数为__1__.解析:①过点P 0(0,y 0)且垂直于轴的直线不能用方程y -y 0=(-0)表示,故①错;②经过点A(0,b)且垂直于轴的直线不能用方程y =+b 表示,故②错;③垂直于两坐标轴的直线不能用方程x a +yb =1表示,故③错;④经过任意两个不同的点P 1(1,y 1),P 2(2,y 2)的直线都可以用方程(y -y 1)(2-1)=(-1)(y 2-y 1)表示,故④正确.范例导航考向❶ 求直线方程例1 已知直线l 过点A(5,2).(1) 若直线l 的斜率为2,求直线l 的方程; (2) 若直线l 经过点B(3,-2),求直线l 的方程.解析:(1) 因为直线l 过点A(5,2),斜率为2,由点斜式方程得y -2=2(-5),故所求直线l 的方程为2-y -8=0.(2) 因为直线l 过点A(5,2),点B(3,-2),由两点式方程得y -2-2-2=x -53-5,故所求直线l 的方程为2-y -8=0.若直线过点(-3,4),且在两坐标轴上的截距之和为12,则该直线的方程为__4-y +16=0或+3y -9=0__.解析:由题设知截距不为0,设直线方程为x a +y 12-a =1.又直线过点(-3,4),从而-3a +412-a =1,解得a =-4或a =9,故所求直线方程为4-y +16=0或+3y -9=0. 考向❷ 含有参数的直线方程例2 已知直线l :-y +1+2=0 (∈R). (1) 求证:直线l 过定点;(2) 若直线l 不经过第四象限,求实数的取值范围. 解析:(1) 直线l 的方程化简为(+2)+(1-y )=0,令⎩⎨⎧x +2=0,1-y =0,解得⎩⎨⎧x =-2,y =1,所以无论取何值,直线l 总经过定点(-2,1).(2) 当≠0时,直线在轴上的截距为-1+2k k,在y 轴上的截距为1+2,要使直线不经过第四象限,则必须有⎩⎪⎨⎪⎧-1+2kk ≤0,1+2k ≥0,k >0,解得>0;当=0时,直线为y =1,符合题意,故≥0.设直线l 的方程为(m 2-2m -3)+(2m 2+m -1)y =2m -6,若直线l 在轴上的截距是-3,则m =__-53__;若直线l 的斜率是-1,则m =__-2__. 解析:因为直线l 在轴上的截距为-3,令y =0,得⎩⎨⎧m 2-2m -3≠0,2m -6m 2-2m -3=-3,解得m =-53.若直线l 的斜率为-1,则⎩⎨⎧-m 2-2m -32m 2+m -1=-1,2m 2+m -1≠0,解得m =-2.考向❸ 直线方程的简单运用例3 已知直线l 过点P(2,1),分别与轴,y 轴的正半轴交于A ,B 两点,若O 为坐标原点,求△OAB 面积的最小值及此时直线l 的方程.解析:方法一:因为直线l 过点P(2,1),若斜率不存在,则直线与y 轴无交点,所以直线的斜率存在. 若=0,则直线与轴无交点,所以≠0.又直线与,y 轴的正半轴交于A ,B 两点,所以<0.设直线方程为y -1=(-2),分别令y =0,=0得A ⎝ ⎛⎭⎪⎫2-1k ,0,B(0,1-2),则S △OAB =12·OA ·OB =12⎝ ⎛⎭⎪⎫2-1k (1-2)=-2-12k+2≥2+2(-2k )·1-2k=4,当且仅当-2=1-2k ,即=-12时,等号成立,即△OAB 面积的最小值为4.此时,直线l 的方程为+2y -4=0.方法二:设 A ,B 两点的坐标分别为A(a ,0),B(0,b),a>0,b>0,由直线的截距式方程得直线l 的方程为x a +yb=1.因为直线l 过点P(2,1),所以2a +1b =1.因为22a ·1b≤1,所以ab ≥8, 当且仅当2a =1b ,即a =4,b =2时取等号,所以S △OAB =12ab ≥4.此时,直线l 的方程为+2y -4=0.如图,互相垂直的两条道路l 1,l 2相交于点O ,点P 与l 1,l 2的距离分别为2千米、3千米,过点P 建一条直线道路AB ,与l 1,l 2分别交于A ,B 两点.(1) 当∠BAO =45°时,试求OA 的长;(2) 若使△AOB 的面积最小,试求OA ,OB 的长.解析:以l 1为轴,l 2为y 轴,建立平面直角坐标系,则O(0,0),P(3,2). (1) 由∠BAO =45°知,OA =OB ,可设A(c ,0), B(0,c)(c >0), 直线l 的方程为x c +yc =1.因为直线l 过点P(3,2),所以3c +2c=1,则c =5,即OA =5千米.(2) 设A(a ,0),B(0,b)(a >0,b >0), 则直线l 的方程为x a +yb =1.因为直线l 过点P(3,2),所以3a +2b =1,b =2a a -3>0,则a >3,从而S △ABO =12ab =12a ·2a a -3=a 2a -3.令a -3=t ,t >0,则a 2=(t +3)2=t 2+6t +9, 故有S △ABO =t 2+6t +9t =t +9t+6≥29t·t +6=12,当且仅当t =3时,等号成立, 此时a =6,b =4,所以OA =6千米,OB =4千米.自测反馈1. 若两点A(1,y 1),B(2,y 2)的坐标分别满足31-5y 1+6=0和32-5y 2+6=0,则经过这两点的直线的方程为__3-5y +6=0__.解析:因为两点A(1,y 1),B(2,y 2)的坐标分别满足31-5y 1+6=0和32-5y 2+6=0,两点确定一条直线,所以经过这两点的直线方程为3-5y +6=0.2. 直线过点(5,10),且原点到直线的距离为5,直线方程为__=5或3-4y +25=0__.解析:当直线的斜率不存在时,直线的方程为=5,满足原点到直线的距离为5;当直线的斜率存在时,设直线方程为y -10=(-5),即-y -5+10=0.由点到直线的距离公式可得|-5k +10|k 2+1=5,解得=34,所以直线的方程为3-4y +25=0.综上,直线方程为-5=0或3-4y +25=0. 3. 若直线(m +2)+(m 2-2m -3)y -2m =0在轴上的截距是3,则实数m 的值是__-6__. 解析:令y =0,所以(m +2)=2m ,将=3代入,得m =-6.4. 已知直线l 过点(3,4),且在第一象限和两坐标轴围成的三角形的面积是24,则直线l 的截距式方程是__x 6+y8=1__.解析:由题意,可设直线l 的截距式方程为x a +yb =1,则有⎩⎪⎨⎪⎧3a +4b =1,12ab =24,解得⎩⎨⎧a =6,b =8,所以直线l 的截距式方程为1. 确定一条直线需要两个独立的条件,一是方向(斜率或倾斜角);二是位置(一个定点).2. 求直线的方程主要有两种方法:①直接法,根据已知条件,选择适当的形式,直接写出直线的方程;②待定系数法,先设出直线方程,根据已知条件求出待定的系数,再代入,求出直线方程.3. 你还有哪些体悟,写下;:。