小学六年级数学比知识点
小学六年级数学知识点:比的认识知识点
小学六年级数学知识点:比的认识知识点小学六年级数学知识点:比的认识知识点(一)比的基本概念1、两个数相除又叫做两个数的比。
比的前项除以后项所得的商,叫做比值。
2、比值通常用分数、小数和整数表示。
3、比的后项不能为0。
4、同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商;5、根据分数与除法的关系,比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。
6.比的基本性质:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。
(二)求比值求比值:用比的前项除以比的后项(三)化简比化简比:用比的前项除以比的后项求出分数的比值后,在把分数比值改成比。
(四)比的应用1、比的第一种应用:已知两个或几个数量的和,这两个或几个数量的比,求这两个或这几个数量是多少?例如:六年级有60人,男女生的人数比是5:7,男女生各有多少人?题目解析:60人就是男女生人数的和。
解题思路:第一步求每份:60÷(5+7)=5人第二步求男女生:男生:5×5=25人女生:5×7=35人。
2、比的第二种应用:已知一个数量是多少,两个或几个数的比,求另外几个数量是多少?例如:六年级有男生25人,男女生的比是5:7,求女生有多少人全班共有多少人?题目解析:“男生25人”就是其中的一个数量。
解题思路:第一步求每份:25÷5=5人第二步求女生:女生:5×7=35人。
全班:25+35=60人3、比的第三种应用:已知两个数量的差,两个或几个数的比,求这两个或这几个数量是多少?例如:六年级的男生比女生多20人(或女生比男生少20人),男女生的比是7:5,男女生各有多少人全班共有多少人?练习题1、两个数相除,叫做两个数的。
比的前项除以比的后项(0除外)所得的商叫做。
2、今天去我们班的学生出勤率是92%,到校的学生与没有到校的学生人数比是23:2,没有到校的学生与全班学生比:。
3、正方形的边长是5cm,这个正方形的边长与面积的最简比是:,这个正方形边长与周长的最简比是:。
(完整版)人教版六年级数学上册比知识点
第四章 比一、比的基本概念1、比的意义:两个数相除又叫做两个数的比两个同类量的比表示这两个量之间的倍数关系,两个有联系的不同类量的比表示一个新的量2、比的符号和读、写法 1015是分数形式的比,是比的另一种书写形式 3、比的各部分名称(1)比的前项:在两个数的比中,比号前面的数(2)比的后项:在两个数的比中,比号后面的数(3)比值:比的前项除以后项所得的商4、求比值的计算方法:比的前项除以比的后项比值可用分数、小数或整数表示5、比和比值的联系与区别都可以用分数形式表示:53既可表示3:5,又可表示3:5的比值;比表示两个数的一种关系,比值是一个数;比只能写成a:b 或ba 的形式,比值可以是分数、小数、整数 6、比与分数、除法的关系(1)联系 a:b=a ÷b=ba (b ≠0) 除法 被除数 ÷ 除数 商分数 分子 — 分母 分数值比 前项 : 后项 比值(2)区别①意义不同:比表示两个量的一种关系;除法是一种运算;分数则是一个数②表示方法不同:除法算式不能用分数表示;比可以用分数表示;但分数不一定表示两个量的比 ③结果表达不同:除法要求出商;比只有求比值才求出商;分数本身就是一个数值7、求比中未知项的方法比的前项=比的后项×比值比的后项=比的前项÷比值8、转化法解决问题:把不变量看作单位“1”小明读一本书,已读页数和未读页数只比是5:4.如果再读27页,已读与未读只比为2:1,求这本书多少页2:(1+2)=32 5:(5+4)=95 27÷(32-95)=243(页) 二、比的基本性质1、、比的基本性质比的前项和后项同时乘或除以相同的数(0除外),比值不变。
同样适用于连比2、化简比的意义(1)最简整数比:比的前项和后项是互质数的比(2)化简比的意义:把两个数的比化成最简单的整数比3、整数比的化简方法:把比的前项和后项同时除以它们的最大公因数4、分数比的化简方法(1)比的前项和后项同时乘它们的分母的最小公倍数,变整数比,再化简(2)利用求比值的方法,但结果必须写成比的形式5、小数比的化简方法:先把前项和后项的小数点同时向右移动相同的位数,变成整数比,再化简6、黄金比较短部分与较长部分长度之比等于较长部分与整体长度之比,约为0.618:1三、解决问题1、用转化单位“1”的方法和找中间量的方法解题甲数是乙数的103,乙数是丙数的94,求这三个数的连比 方法一:把乙数看作单位“1”,丙数是乙数的49,所以甲:乙:丙=103:1:49 方法二:找中间量的方法甲:乙=3:10=6:20 乙:丙=4:9=20:45 所以甲:乙:丙=6:20:452、按比例分配问题应用把一个数量按照一定的比来进行分配。
小学六年级数学比知识点
数学比是小学六年级数学中的一个重要知识点,主要包括比的概念、比的计算、比的大小关系等内容。
以下是对小学六年级数学比知识点的详细介绍。
一、比的概念比是数学中用以表示两个数(称为比的两个项)之间的倍数关系的方法。
比通常用冒号“:”表示,比的两个项分别为比的前项和比的后项。
例如,用3:5表示3和5之间的比,其中3为前项,5为后项。
比还可以用分数表示,例如3:5可以写成3/5在实际生活中,比常用于表示比例关系,例如人数比、面积比、体积比等。
比的作用在于体现事物之间的差异和关联。
二、比的计算1.比的等值如果两个比相等,即它们的前项比后项相等,那么它们的值也相等。
例如,2:3=4:6,说明2/3与4/6等值。
2.约分与扩分当两个比有公约数时,可以将两个比的前项与后项同时除以它们的最大公约数,得到一个新的比,这个比与原来的比等值。
例如,12:16可以约分为3:4、相反地,也可以将两个比的前项与后项同时乘以一个数,得到一个新的比,这个比与原来的比等值。
这种操作称为扩分。
例如,3:4可以扩分为6:83.比的四则运算与数的四则运算类似,两个比之间可以进行加、减、乘、除等运算。
具体规则如下:-加法:如果两个比的后项相等,可以直接将它们的前项相加。
例如,3:5+2:5=5:5-减法:如果两个比的后项相等,可以直接将它们的前项相减。
例如,3:5-2:5=1:5-乘法:两个比的前项和后项分别相乘得到新比的前项和后项。
例如,2:3×3:4=6:12-除法:两个比的前项与后项分别相除得到新比的前项和后项。
例如,2:3÷4:5=10:12三、比的大小关系在比的计算中,经常需要比较两个比的大小。
比的大小关系可以通过比的前项和后项的关系进行判断,具体规则如下:-当两个比的前项和后项相等时,它们的值相等,两个比的大小相等。
-当两个比的前项相等,但后项不等时,比的后项大的比较大,前项小的比较小。
-当两个比的前项不等时,比的前项大的比较大,前项小的比较小。
人教版小学六年级上册数学精品讲义第4讲 比(思维导图+知识梳理+例题精讲+易错专练)(含答案)
第4讲比(思维导图+知识梳理+例题精讲+易错专练)一、思维导图二、知识点梳理知识点一:比的意义和各个部分的名称1、比:两个数相除也叫两个数的比;2、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。
3、比的读法、写法:a比b记作a:b,读作a比b。
4、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。
例:12∶20= =12÷20= =0.6 12∶20读作:12比20知识点二:比的基本性质和化简比1、比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变,这叫做比的基本性质。
2、化简比化简之后结果还是一个比,不是一个数。
(1)用比的前项和后项同时除以它们的最大公因数。
(2)两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。
也可以求出比值再写成比的形式。
(3)两个小数的比,可以先把小数比化成整数比,再按整数比的化简方法化简。
知识点三:比的应用按比例分配问题的解决方法:1、已知单位“1”的量用乘法。
2、未知单位“1”的量用除法。
3、分数应用题基本数量关系(把分数看成比)(1)甲是乙的几分之几?甲=乙×几分之几乙=甲÷几分之几几分之几=甲÷乙(2)甲比乙多(少)几分之几?4、画线段图:(1)找出单位“1”的量,先画出单位“1”,标出已知和未知。
(2)分析数量关系。
(3)找等量关系。
(4)列方程。
两个量的关系画两条线段图,部分和整体的关系画一条线段图。
三、例题精讲考点一:比的意义、比各部分的名称【典型一】一根绳子,用去,用去的和剩下的比是3:2,剩下的是总长度的。
【分析】把一根绳子总长度看作5份,用去,也就是用去5×=3份。
据此可求出用去的和剩下的比,再用除法求出剩下的是总长度的几分之几。
【解答】解:5×=3(份)5﹣3=2(份)用去的和剩下的比是3:2。
六年级数学《比和比例》知识点
六年级数学《比和比例》知识点一、比的意义和性质1、比的意义两个数相除又叫做两个数的比。
2、比的性质比的前项和后项同时乘上或者除以相同的数(0除外),比值不变。
3、比的应用通过比可以应用一些问题。
二、比例的意义和性质1、比例的意义表示两个比相等的式子叫做比例。
2、比例的性质在一个比例中,组成比例的两个数,叫做比例的项。
在一比例里,两外项的积等于两内项的积。
这叫做比例的基本性质。
3、解比例根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另外一个未知项。
这个求未知项的过程,叫做解比例。
三、正比例和反比例1、成正比例的量如果两种量是相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量。
2、成反比例的量如果两种量是相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量。
3、正比例和反比例的判断方法判断两种量是否成正比例或反比例的方法:一是看这两种相关联的量中相对应的两个数的比值是否一定;二是看这两种量中相对应的两个数的积是否一定。
比的意义:两个量的关系可以用比来表示,我们通常称之为“比”。
定义:在两个量的比中,我们把数量放在前面,单位“1”放在后面,我们称之为前项,后项。
比与除法、分数的关系:比的前项相当于被除数或分子,后项相当于除数或分母,比值相当于商或分数值。
比的性质:比的前项和后项同时乘上或者除以相同的数(0除外),比值不变。
比例的意义:表示两个比相等的式子叫做比例。
组成比例的四个数叫做比例的项。
两外两项叫做内项,中间两项叫做外项。
如果中间的两项是两个相同的数,这样的比例叫做对称比例。
比例尺的意义:我们把图上距离和实际距离的比叫做比例尺。
我们把比例尺分为放大比例尺和缩小比例尺两种。
缩小比例尺的计算方法:已知实际距离求图上距离,根据公式计算即可;已知图上距离求实际距离根据公式计算即可。
小学六年级数学知识点比的认识知识点
比的认识是小学六年级数学的一个重要知识点,通过学习比的认识,可以对数量的大小进行比较和形成比例关系,进而解决实际生活中的问题。
下面将详细介绍小学六年级数学中与比的认识相关的知识点。
一、比的概念比是指两个或多个数的大小关系,以冒号“:”表示,例如5:3表示5和3的比,可以读作“5比3”。
二、比的表示比可以用两种方式表示:1.线段比:用线段表示比的数量大小关系,线段的长度表示数量的大小。
2.分数比:用分数表示比的大小关系,被除数表示较大的数量,除数表示较小的数量,比值用分号表示。
三、比的种类比可以分为三种情况:1.同类比较:比较同一种类的量,例如比较两个长度、两个重量的大小关系,这种比较叫做同类比较。
2.异类比较:比较不同种类的量,例如比较一个长度和一个重量的大小关系,这种比较叫做异类比较。
3.混合比较:同一种类和不同种类的量混合在一起进行比较,例如比较两个长度和一个重量的大小关系,这种比较叫做混合比较。
四、比的性质1.比的单位相同:进行比较的两个量必须拥有相同的单位。
2.比的特殊位置:比的两个量中,较大的在前,较小的在后。
3.比的相等:如果两个比中的两个量的比值相等,那么这两个比是相等的。
五、比的应用1.比的扩大和缩小:当比中的较大数乘以(或除以)相同的因数时,比的结果不变。
例如,5:3是一个比,如果将5和3同时乘以2,得到的新比是10:6,它们是等价的。
2.比的分解与合并:一个比可以通过分解和合并得到不同的比。
例如,10:5可以分解为5:5和5:5,可以合并为20:10。
3.比的比较:比的大小关系可以通过直接比较两个比的大小关系,或者将两个比转化为分数比进行比较。
4.比的应用问题:比的认识可以应用于很多实际生活问题中,例如在购物中比较商品价格、在做菜中调配食材的比例等。
总结起来,小学六年级数学中的比的认识知识点包括比的概念、表示方法、种类、性质以及比的应用。
通过学习这些知识点,可以在实际生活中进行数量的比较和解决实际问题。
六年级数学比的知识点
六年级数学比的知识点在六年级的数学学习中,“比”是一个非常重要的概念,它贯穿于数学的各个领域,对于我们理解数量关系、解决数学问题有着关键的作用。
下面就让我们一起来深入了解一下比的相关知识吧!一、比的定义两个数相除,又叫做这两个数的比。
比如 6÷4 可以写成 6:4,“:”是比号。
比号前面的数叫做比的前项,比号后面的数叫做比的后项。
在 6:4 中,6 是前项,4 是后项。
比表示的是两个数的关系,它和除法、分数有着密切的联系。
二、比与除法、分数的关系比与除法的关系:比的前项相当于被除数,比号相当于除号,后项相当于除数,比值相当于商。
例如 6:4 = 6÷4 = 15,这里的 15 就是比值。
比与分数的关系:比的前项相当于分子,比号相当于分数线,后项相当于分母,比值相当于分数值。
比如 6:4 = 6/4 = 3/2。
需要注意的是,虽然比、除法和分数有着密切的联系,但它们也有一些区别。
比如,除法是一种运算,分数是一个数,而比表示两个数的关系。
三、比的基本性质比的前项和后项同时乘或除以相同的数(0 除外),比值不变。
这就是比的基本性质。
例如,6:4 的前项和后项同时乘以 2,得到 12:8,比值仍然是 15;前项和后项同时除以 2,得到 3:2,比值还是 15。
利用比的基本性质,可以将比化简为最简整数比。
最简整数比指的是比的前项和后项都是整数,且这两个整数互质。
比如将 18:24 化简为最简整数比,先找出 18 和 24 的最大公因数是6,然后将前项和后项同时除以 6,得到 3:4,3 和 4 互质,所以 3:4 就是 18:24 的最简整数比。
四、求比值和化简比求比值是用比的前项除以后项,所得的商就是比值。
比值可以是整数、小数或分数。
化简比则是根据比的基本性质,把比化成最简整数比。
例如,求 8:12 的比值,8÷12 = 2/3。
化简 8:12,先找出 8 和 12 的最大公因数 4,然后将前项和后项同时除以 4,得到 2:3。
人教版六年级数学上册第四单元《比》知识点
第四单元《比》知识要点1、两个数相除,又叫做这两个数的比,“:”是比号,比号前面的数叫做比的前项,比号后面的数叫做比的后项,前项除以后项所得的商叫做比值。
比的后项不能为0。
2、分数的基本性质:分数的分子和分母同时乘以或者除以相同的数(0除外),分数的大小不变。
乘积是1的两个数互为倒数。
1的倒数是1,0没有倒数。
3、商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍(0除外),商不变。
4、比的基本性质:比的前项和后项同时乘以或者除以相同的数(0除外),它们的比值不变。
5、小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。
6、公因数只有1的两个数叫做互质数。
最简整数比:比的前项和后项是互质数。
7、比的化简:用商不变的性质、分数的基本性质或比的基本性质来化简。
8、比例:①表示两个比相等的式子叫做比例。
如:(3:4=9:12)。
比例有四个项,分别是两个内项和两个外项。
在3:4=9:12中,其中3与12叫做比例的外项,4与9叫做比例的内项。
比例的四个数均不能为0。
9、比例的基本性质:在一个比例中,两个外项的积等于两个内项的积。
10、比、比例、比例尺、百分数的后面不能带单位。
(一)比的基本概念1.两个数相除又叫做两个数的比。
比的前项除以后项所得的商,叫做比值。
2.比值通常用分数、小数和整数表示。
3.比的后项不能为0。
4.同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商;5.根据分数与除法的关系,比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。
6.比的基本性质:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。
(二)求比值1、求比值:用比的前项除以比的后项(三)化简比1、化简比:用比的前项除以比的后项求出分数的比值后,在把分数比值改成比。
(四)比的应用1、比的第一种应用:已知两个或几个数量的和,这两个或几个数量的比,求这两个或这几个数量是多少?例如:六年级有60人,男女生的人数比是5:7,男女生各有多少人?目解析:60人就是男女生人数的和。
小学六年级数学上册第四单元《比》知识点
(一)、比的意义1、比的意义:两个数相除又叫做两个数的比。
2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
例如 15 :10 = 15÷10=3/2(比值通常用分数表示,也可以用小数或整数表示)15∶ 10= 3/2前项比号后项比值3、比可以表示两个相同量的关系,即倍数关系。
例:长是宽的几倍。
也可以表示两个不同量的比,得到一个新量。
例:路程÷速度=时间。
4、区分比和比值比:表示两个数的关系,可以写成比的形式,也可以用分数表示。
比值:相当于商,是一个数,可以是整数,分数,也可以是小数。
5、根据分数与除法的关系,两个数的比也可以写成分数形式。
6、比和除法、分数的联系:比前项比号“:”后项比值除法被除数除号“÷”除数商分数分子分数线“—”分母分数值7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。
8、根据比与除法、分数的关系,可以理解比的后项不能为0。
9、体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。
10、求比值:用前项除以后项,结果最好是写为分数(不会约分的就不约分)例如:15∶ 10=15÷10=15/10=3/2更多学习资料加QQ2137626237(二)、比的基本性质1、根据比、除法、分数的关系:商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。
比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。
3、根据比的基本性质,可以把比化成最简单的整数比。
4.化简比:(2)用求比值的方法。
注意:最后结果要写成比的形式。
例如: 15∶10 = 15÷10 =15/10= 3/2 = 3∶2还可以15∶10 = 15÷10 = 3/2最简整数比是3∶25、比中有单位的,化简和求比值时要把单位化相同再化简和求比值,结果没有单位。
小学六年级数学比知识点
小学六年级数学比知识点在平凡的学习生活中,说起知识点,应该没有人不熟悉吧?知识点也可以理解为考试时会涉及到的知识,也就是大纲的分支。
哪些才是我们真正需要的知识点呢?以下是店铺精心整理的小学六年级数学比知识点,希望对大家有所帮助。
小学六年级数学比知识点篇1比:两个数相除也叫两个数的比1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。
连比,如:3:4:5读作:3比4比5。
2、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。
例:12∶20=12÷20=0.612∶20读作:12比20。
区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。
比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。
3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。
4、化简比:化简之后结果还是一个比,不是一个数。
(1)用比的前项和后项同时除以它们的最大公约数。
(2)两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。
也可以求出比值再写成比的形式。
(3)两个小数的比,向右移动小数点的位置,也是先化成整数比。
5、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。
6、比和除法、分数的区别:除法:被除数除号(÷)除数(不能为0)商不变性质除法是一种运算。
分数:分子分数线(—)分母(不能为0)分数的基本性质分数是一个数。
比:前项比号(∶)后项(不能为0)比的基本性质比表示两个数的关系。
商不变性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分子和分母同时乘或除以相同的`数(0除外),分数的大小不变。
分数除法和比的应用1、已知单位“1”的量用乘法。
2、未知单位“1”的量用除法。
3、分数应用题基本数量关系(把分数看成比)(1)甲是乙的几分之几?甲=乙×几分之几乙=甲÷几分之几几分之几=甲÷乙(2)甲比乙多(少)几分之几?4、按比例分配:把一个量按一定的比分配的方法叫做按比例分配。
六年级上册数学比的认识知识点
六年级上册数学比的认识知识点(一)比的基本概念1、两个数相除又叫做两个数的比。
比的前项除以后项所得的商,叫做比值。
2、比值通常用分数、小数和整数表示。
3、比的后项不能为0。
4、同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商;5、根据分数与除法的关系,比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。
6.比的基本性质:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。
(二)求比值求比值:用比的前项除以比的.后项(三)化简比化简比:用比的前项除以比的后项求出分数的比值后,在把分数比值改成比。
(四)比的应用1、比的第一种应用:已知两个或几个数量的和,这两个或几个数量的比,求这两个或这几个数量是多少?例如:六年级有60人,男女生的人数比是5:7,男女生各有多少人?题目解析:60人就是男女生人数的和。
解题思路:第一步求每份:60÷(5+7)=5人第二步求男女生:男生:5×5=25人女生:5×7=35人。
2、比的第二种应用:已知一个数量是多少,两个或几个数的比,求另外几个数量是多少?例如:六年级有男生25人,男女生的比是5:7,求女生有多少人?全班共有多少人?题目解析:“男生25人”就是其中的一个数量。
解题思路:第一步求每份:25÷5=5人第二步求女生:女生:5×7=35人。
全班:25+35=60人3、比的第三种应用:已知两个数量的差,两个或几个数的比,求这两个或这几个数量是多少?例如:六年级的男生比女生多20人(或女生比男生少20人),男女生的比是7:5,男女生各有多少人?全班共有多少人?【北师大版六年级上册数学比的认识知识点】。
小学六年级数学知识点:比的基本性质知识点
小学六年级数学知识点:比的基本性质知识点小学六年级数学知识点:比与除法知识点一、比的意义和性质1、比的意义两个数相除又叫做两个数的比。
“:”是比号,读作“比”。
比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。
比值通常用分数表示,也可以用小数表示,有时也可能是整数。
比的后项不能是零。
根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。
2、比的性质比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质。
3、求比值和化简比求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。
根据比的基本性质可以把比化成最简单的整数比。
它的结果必须是一个最简比,即前、后项是互质的数。
4、比例尺图上距离:实际距离=比例尺要求会求比例尺;已知图上距离和比例尺求实际距离;已知实际距离和比例尺求图上距离。
线段比例尺:在图上附有一条注有数目的线段,用来表示和地面上相对应的实际距离。
5、按比例分配在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。
这种分配的方法通常叫做按比例分配。
方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。
二、比例的意义和性质1、比例的意义表示两个比相等的式子叫做比例。
组成比例的四个数,叫做比例的项。
两端的两项叫做外项,中间的两项叫做内项。
2、比例的性质在比例里,两个外项的积等于两个两个内向的积。
这叫做比例的基本性质。
3、解比例根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。
求比例中的未知项,叫做解比例。
三、正比例和反比例1、成正比例的量两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。
六年级数学比例知识点
六年级数学比例知识点一、比例的基本概念比例是用来表示两个比(也就是两个分数)之间的关系。
如果两个比相等,我们就说这两个比是成比例的。
比例通常用冒号表示,例如A:B = C:D,读作“A与B的比例等于C与D的比例”。
二、比例的基本性质1. 反比例性质:如果A:B = C:D,那么AD = BC。
2. 合比性质:如果A:B = C:D,那么A/B + C/D = 1。
3. 分比性质:如果A:B = C:D,那么A/C = B/D。
4. 合分比性质:如果A:B = C:D,那么(A+C)/B = D/B。
三、比例的应用1. 比例在几何中的应用:通过比例可以解决相似图形的问题,如相似三角形、相似多边形等。
2. 比例在实际问题中的应用:如速度与时间的关系(速度×时间=路程),工作效率与工作时间的关系等。
四、比例的计算1. 直接计算:根据比例的定义,直接计算两个比是否相等。
2. 交叉相乘验证:如果A:B = C:D,可以通过验证AD是否等于BC来判断比例是否成立。
3. 比例的简化:通过找到比例项的公因数,消除它们,使比例达到最简形式。
五、比例线段1. 定义:如果线段AB与线段CD成比例,记作AB∥CD,那么AB与CD 平行且长度之比是常数。
2. 计算:通过测量线段AB和CD的长度,计算出它们的比例系数。
六、比例的应用题1. 直接比例问题:解决与比例直接相关的问题,如“小明的身高与他的影子长度成正比”。
2. 间接比例问题:解决比例关系不明显的问题,需要先确定比例关系,再进行计算。
七、比例的图形表示1. 绘制比例线段:通过直尺和比例尺,可以在图纸上绘制出按比例缩放的图形。
2. 绘制相似图形:利用比例关系,可以绘制出与给定图形相似的图形。
八、比例的练习题1. 计算比例:如果A:B = 2:3,C:D = 4:6,判断A与C的比例是否等于B与D的比例。
2. 比例应用:如果小明以每小时5公里的速度行走,他走了2小时,那么他走了多少公里?3. 比例线段:一条线段长12厘米,另一条线段的比例系数是1:3,求第二条线段的长度。
六年级数学比的知识点
六年级数学比的知识点比是数学中常见的一种运算关系,它可以用来比较两个或多个量的大小关系。
掌握比的概念和运算方法对于学习数学和解决实际问题都非常重要。
下面将介绍六年级数学中关于比的知识点。
一、比的概念比是用来表示两个量的大小关系的数学概念。
比的运算通常用分数或百分数表示,其中较大的数叫做被比较数,较小的数叫做比较数。
比的符号为“:”或“/”。
二、比的性质1.比的性质一:比的顺序无关紧要对于两个数a和b,a:b和b:a表示的都是同一个比。
比如,2:4和4:2都表示2和4的比。
2.比的性质二:比的倍数仍为同一比如果把比的两个数同时乘上一个相同的非零数,所得的新比与原来的比相等。
比如,2:4与4:8表示的是同一个比。
三、比的运算1.比的等值如果两个比的结果相等,则称两个比是等值的。
例如,2:4和1:2是等值的,因为它们表示的都是2和4的比。
2.比的简化如果一个比的两个数可以同时除以一个相同的非零数,得到的新比与原比相等,那么就把这个比叫做简化比。
简化比可以用最简分数来表示。
例如,4:8可以简化为1:2。
3.比的求值对于给定的比,可以通过除法运算求出比的结果。
例如,将4:6进行除法运算,得到4÷6=2/3,即4:6=2:3。
四、比的应用比在日常生活中有广泛的应用,特别是在解决实际问题时常常需要用到比。
1.比的比较比可以用来判断两个数的大小关系。
例如,比较1:3和2:5的大小,可以将其转化为分数进行比较,即1/3与2/5进行比较。
2.比的扩大和缩小如果将一个比的两个数同时乘以一个相同的数,得到的新比叫做扩大比;如果将一个比的两个数同时除以一个相同的非零数,得到的新比叫做缩小比。
扩大和缩小比可以用来描述数量的变化。
例如,将2:3扩大2倍,得到4:6;将4:6缩小一半,得到2:3。
3.比的实际应用比在计量、商业、金融等领域有广泛的应用,比如用来计算百分比、计算比例、比较价格等。
在解决实际问题时,掌握比的概念和运算方法可以帮助我们更好地理解和应用数学知识。
人教版六年级上册数学第四单元《比》知识点归纳与总结+相关练习
第四单元比知识点归纳与总结一、 比的意义1、两个数相除又叫做两个数的比。
“:”是比号,读作“比”。
比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的后项不能是零。
例如21:7 其中21是前项,7是后项。
2、比的前项除以后项所得的商,叫做比值。
比值通常用分数表示,也可以用小数表示,有时也可能是整数。
=5∶6,乙∶丙3,因为[6,4]=12,所以5∶ 6=10∶ 12, 4∶3=12∶9,得到甲∶乙∶丙=10∶12∶9。
3、比与分数、除法之间的关系。
比同除法比较:比的前项相当于被除数,后项相当于除数,比值相当于商。
比同分数相比较:比的前项相当于分子,后项相当于分母,比值相当于分数值。
二、比的基本性质1、比的前项和后项同时乘或除以相同的数(0除外),比值不变,这叫做分数的基本性质。
2、比的前项和后项是互质数的比,叫做最简单的整数比。
把两个数的比化简成最简单的整数比叫做化简比,也叫做比的化简。
3、整数比的化简方法:把比的前项和后项同时除以它们的最大公因数。
例如:180:120=(180÷60):(120÷60)=3:24、分数比的化简方法:比的前项和后项同时乘它们分母的最小公倍数,变成整数比,再进行化简:例如:61:92=(61×18):(92×18)=3:4 5、小数比的化简方法:把比的前项和后项的小数点同时向右移动相同的位数,变成整数比,再化简。
例如:0.75:0.2=(0.75×100):(0.2×100)=75:20=15:46、一个比中,既有小数,又有分数,可以把小数化成分数,按照化简分数比的方法进行化简;也可以把分数化成小数,按照化简小数比的方法进行化简。
例如:0.5:53=21:53=5:6 0.5:52=0.5:0.4=5:4 三、求比值和化简比的比较1.目的不同。
求比值就是求比的前项除以后项所得的商;而化简比是把两个数的比化成最简单的整数比,也就是化简后的比要符合两个条件,一是比的前、后项都应是整数;二是前、后项的两个数要互质。
六年级数学上册《比》知识点整理
六年级数学上册《比》知识点整理第四单元比比:两个数相除也叫两个数的比1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。
连比如:3:4:5读作:3比4比52、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。
例:12∶20==12÷20==0.612∶20读作:12比20区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。
3比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。
3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。
4、化简比:化简之后结果还是一个比,不是一个数。
(1)、用比的前项和后项同时除以它们的最大公约数。
(2)、两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。
也可以求出比值再写成比的形式。
(3)、两个小数的比,向右移动小数点的位置,也是先化成整数比。
5、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。
6、比和除法、分数的区别:除法:被除数除号(÷)除数(不能为0)商不变性质除法是一种运算分数:分子分数线(—)分母(不能为0)分数的基本性质分数是一个数比:前项比号(∶)后项(不能为0)比的基本性质比表示两个数的关系商不变性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
分数除法和比的应用1、已知单位“1”的量用乘法。
2、未知单位“1”的量用除法。
3、分数应用题基本数量关系(把分数看成比)(1)甲是乙的几分之几?甲=乙×几分之几乙=甲÷几分之几几分之几=甲÷乙(2)甲比乙多(少)几分之几?4、按比例分配:把一个量按一定的比分配的方法叫做按比例分配。
5、画线段图:(1)找出单位“1”的量,先画出单位“1”,标出已知和未知。
六年级数学比知识点
六年级数学比知识点数学是一门抽象而重要的学科,对于六年级的学生来说,掌握数学比知识点是必不可少的。
在这篇文章中,我将通过几个主要的知识点来探讨六年级数学比的重要性和应用。
一、倍数和约数倍数和约数是六年级数学中的基础知识点。
倍数是指一个数可以被另一个数整除,而约数则是指可以整除一个数的数。
通过理解倍数和约数的概念,学生可以更好地理解整数之间的关系,应用于分数、小数和百分数的运算中。
二、分数和小数的加减乘除分数和小数是数学中常见的表示方法,六年级的学生需要具备对分数和小数进行加减乘除运算的能力。
这涉及到分数和小数的换算、化简、通分和约分等操作,通过这些运算,学生可以加深对数学比的理解和运用。
三、百分数百分数在日常生活中经常出现,比如商品打折、考试成绩等。
六年级的学生应该学会将百分数转化为小数或分数进行计算,同时也需要掌握将小数或分数转化为百分数的方法。
对于百分数的理解,学生能够更好地理解实际问题,并灵活运用数学比进行计算。
四、面积和周长面积和周长是几何中的重要概念,也是六年级数学比的重要知识点之一。
学生需要学会计算各种形状的面积和周长,如长方形、正方形、三角形和圆形等。
通过实际问题的练习,学生能够提高对数学比的应用能力,进一步理解几何概念。
五、单位换算单位换算是六年级数学比的一大难点,需要学生掌握各种常见的单位换算关系。
例如长度单位的换算、重量单位的换算和时间单位的换算等等。
学生通过理解和运用单位换算规则,能够更好地处理实际问题,并提高数学比的运算能力。
六、数据统计数据统计是数学中的一项重要技能,六年级的学生需要学会收集、整理和分析数据,并用合适的图表形式展示数据。
学生可以通过数据统计问题,锻炼分析和解决问题的能力,同时也可以提高对数学比的理解和应用。
总结:在六年级的数学学习中,数学比知识点是非常重要的。
通过学习和应用倍数和约数、分数和小数的加减乘除、百分数、面积和周长、单位换算以及数据统计等知识点,学生能够提高对数学比的理解和运用能力。
六年级数学知识点:比和比例
六年级数学知识点:比和比例1、比的意义和性质(1) 比的意义:两个数相除又叫做两个数的比。
“:”是比号,读作“比”。
比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。
比值通常用分数表示,也可以用小数表示,有时也可能是整数。
比的后项不能是零。
根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。
(2)比的性质比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质。
(3) 求比值和化简比求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。
根据比的基本性质可以把比化成最简单的整数比。
它的结果必须是一个最简比,即前、后项是互质的数。
(4)比例尺图上距离:实际距离=比例尺要求会求比例尺;已知图上距离和比例尺求实际距离;已知实际距离和比例尺求图上距离。
线段比例尺:在图上附有一条注有数目的线段,用来表示和地面上相对应的实际距离。
(5)按比例分配在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。
这种分配的方法通常叫做按比例分配。
方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。
2、比例的意义和性质(1) 比例的意义表示两个比相等的式子叫做比例。
组成比例的四个数,叫做比例的项。
两端的两项叫做外项,中间的两项叫做内项。
(2)比例的性质在比例里,两个外项的积等于两个两个内向的积。
这叫做比例的基本性质。
(3)解比例根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。
求比例中的未知项,叫做解比例。
3、正比例和反比例(1) 成正比例的量两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。
小学六年级数学比知识点总结
小学六年级数学比知识点总结比是由一个前项和一个后项组成的除法算式,只不过把“÷”(除号)改成了“:”(比号)而已,是除法另一种表现方式。
但除法算式表示的是一种运算,而比则表示两个数的关系。
下面是整理的小学六年级数学比知识点,仅供参考希望能够帮助到大家。
小学六年级数学比知识点比:两个数相除也叫两个数的比1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。
连比,如:3:4:5读作:3比4比5。
2、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。
例:12∶20=12÷20=0.612∶20读作:12比20。
区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。
比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。
3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。
4、化简比:化简之后结果还是一个比,不是一个数。
(1)用比的前项和后项同时除以它们的最大公约数。
(2)两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。
也可以求出比值再写成比的形式。
(3)两个小数的比,向右移动小数点的位置,也是先化成整数比。
5、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。
6、比和除法、分数的区别:除法:被除数除号(÷) 除数(不能为0) 商不变性质除法是一种运算。
分数:分子分数线(—)分母(不能为0) 分数的基本性质分数是一个数。
比:前项比号(∶) 后项(不能为0) 比的基本性质比表示两个数的关系。
商不变性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
分数除法和比的应用1、已知单位“1”的量用乘法。
2、未知单位“1”的量用除法。
3、分数应用题基本数量关系(把分数看成比)(1)甲是乙的几分之几?甲=乙×几分之几乙=甲÷几分之几几分之几=甲÷乙(2)甲比乙多(少)几分之几?4、按比例分配:把一个量按一定的比分配的方法叫做按比例分配。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学六年级数学比知识点
比是由一个前项和一个后项组成的除法算式,只不过把“÷”(除号)改成了“:”(比号)而已,是除法另一种表现方式。
但除法算式表示的是一种运算,而比则表示两个数的关系。
下面是小编整理的小学六年级数学比知识点,仅供参考希望能够帮助到大家。
小学六年级数学比知识点
比:两个数相除也叫两个数的比
1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。
连比,如:3:4:5读作:3比4比5。
2、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。
例:12∶20=12÷20=0.6
12∶20读作:12比20。
区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。
比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。
3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。
4、化简比:化简之后结果还是一个比,不是一个数。
(1)用比的前项和后项同时除以它们的最大公约数。
(2)两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。
也可以求出比值再写成比的形式。
(3)两个小数的比,向右移动小数点的位置,也是先化成整数比。
5、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。
6、比和除法、分数的区别:
除法:被除数除号(÷) 除数(不能为0) 商不变性质除法是一种运算。
分数:分子分数线(—)分母(不能为0) 分数的基本性质分数是一个数。
比:前项比号(∶) 后项(不能为0) 比的基本性质比表示两个数的关系。
商不变性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
分数除法和比的应用
1、已知单位“1”的量用乘法。
2、未知单位“1”的量用除法。
3、分数应用题基本数量关系(把分数看成比)
(1)甲是乙的几分之几?
甲=乙×几分之几
乙=甲÷几分之几
几分之几=甲÷乙
(2)甲比乙多(少)几分之几?
4、按比例分配:把一个量按一定的比分配的方法叫做按比例分配。
5、画线段图:
(1)找出单位“1”的量,先画出单位“1”,标出已知和未知。
(2)分析数量关系。
(3)找等量关系。
( 4)列方程。
两个量的关系画两条线段图,部分和整体的关系画一条线段图。
小学数学真分数与假分数知识点
理解真分数、假分数、带分数的意义。
像1/2、1/4、2/3、3/4,…这样的分数叫作真分数。
特点:分子都比分母小;分数值小于1。
像 3/2、3/3、5/4、9/4,…这样的分数叫作假分数。
特
点:分子比分母大,或者分子与分母相等;分数值大于或等于1。
像,这样的分数叫作带分数。
特点:由整数和真分数两部分组成的;分数值大于1。
带分数的读法:读作:二又四分之一。
★补充知识点:
分子是分母倍数的假分数可以化成整数。
分子不是分母倍数的假分数可以化成带分数。
小学数学求倒数的方法
①求分数的倒数:交换分子、分母的位置。
②求整数的倒数:整数分之1。
③求带分数的倒数:先化成假分数,再求倒数。
④求小数的倒数:先化成分数再求倒数。