七年级数学上册期中测试题含答案
七年级上册期中数学测试卷【含答案】
七年级上册期中数学测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少?A. 3厘米B. 10厘米C. 23厘米D. 17厘米3. 一个长方体的长、宽、高分别是2dm、3dm、4dm,那么它的体积是多少?A. 24dm³B. 20dm³C. 18dm³D. 22dm³4. 下列哪个数是偶数?A. 101B. 103C. 105D. 1085. 下列哪个图形是平行四边形?A. 矩形B. 梯形C. 正方形D. 圆形二、判断题(每题1分,共5分)1. 任何一个自然数都可以分解成几个质数的乘积。
()2. 三角形的内角和等于180度。
()3. 长方体的六个面都是矩形。
()4. 0是最小的自然数。
()5. 平行四边形的对角线互相平分。
()三、填空题(每题1分,共5分)1. 2³ = _______2. 如果一个三角形的两个内角分别是45度和90度,那么第三个内角是_______度。
3. 长方体的体积计算公式是:体积 = 长× 宽× _______4. 最大的两位数是_______5. 平行四边形的对边是_______且_______四、简答题(每题2分,共10分)1. 请列举出前五个质数。
2. 简述三角形内角和定理。
3. 请说明长方体的六个面分别是什么形状。
4. 请解释偶数和奇数的区别。
5. 请说明平行四边形的特点。
五、应用题(每题2分,共10分)1. 一个长方体的长、宽、高分别是10cm、6cm、8cm,请计算它的体积。
2. 如果一个三角形的两个内角分别是60度和70度,请计算第三个内角的度数。
3. 请分解质因数:56。
4. 请计算下列各式的值:3² + 4²。
5. 请说明平行四边形和矩形的区别。
七年级上册数学试卷期中【含答案】
七年级上册数学试卷期中【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 37C. 39D. 402. 一个等腰三角形的底边长为8厘米,腰长为5厘米,那么这个三角形的周长是?A. 18厘米B. 20厘米C. 22厘米D. 24厘米3. 有以下数列:2, 4, 8, 16, 32, ,那么第6项是?A. 48B. 64C. 128D. 2564. 如果一个圆的半径增加了10%,那么这个圆的面积将增加多少百分比?A. 10%B. 20%C. 21%D. 40%5. 下列哪个比例是正确的?A. 3:4 = 6:8B. 2:3 = 4:6C. 5:6 = 10:12D. 7:8 = 14:16二、判断题(每题1分,共5分)1. 两个等腰三角形的底边长相等,则这两个三角形全等。
()2. 一个正方形的对角线长度等于它的边长的根号2倍。
()3. 任何两个奇数相加的结果都是偶数。
()4. 如果一个数的平方是36,那么这个数只能是6或-6。
()5. 任何一个偶数都能被4整除。
()三、填空题(每题1分,共5分)1. 一个长方体的长、宽、高分别是6厘米、4厘米和3厘米,那么它的体积是______ 立方厘米。
2. 如果一个数的平方根是9,那么这个数是 ______。
3. 4.5小时可以转换成 ______ 分钟。
4. 一个等边三角形的周长是15厘米,那么它的边长是 ______ 厘米。
5. 下列数列的下一个数是?2, 4, 8, 16, 32, ______。
四、简答题(每题2分,共10分)1. 请简述等差数列的定义。
2. 什么是直角三角形?请给出一个直角三角形的例子。
3. 请解释比例尺的概念。
4. 什么是算术平均数?如何计算一组数的算术平均数?5. 请解释什么是平行线。
五、应用题(每题2分,共10分)1. 一个长方形的长是10厘米,宽是5厘米,求这个长方形的面积。
2. 一个班级有40名学生,其中有10名学生参加了数学竞赛,那么参加数学竞赛的学生占班级总人数的百分比是多少?3. 如果一辆汽车以每小时60公里的速度行驶了3小时,那么这辆汽车行驶了多少公里?4. 一个圆锥的底面半径是3厘米,高是4厘米,求这个圆锥的体积。
七年级上册数学期中考试试卷附答案
七年级上册数学期中考试试题2022年一、单选题1.据媒体报道,我国因环境污染造成的巨大经济损失,每年高达680000000元,这个数用科学记数法表示正确的是()A .6.8×109元B .6.8×108元C .6.8×107元D .6.8×106元2.如果向东为正,那么-50m 表示的意义是()A .向东行进50mB .向南行进50mC .向西行进50mD .向北行进50m 3.下列计算正确..的是()A .(3)21-+=B .(3)21--=-C .(2)(1)(2)-⨯-=-D .(6)23-÷=-4.2--的相反数是()A .12-B .2-C .12D .25.已知有理数a 、b 在数轴上对应的点如图所示,则下列式子正确的是()A .a•b >0B .a+b <0C .|a|<|b|D .a ﹣b >06.下列代数式3a ,﹣xy ,2x,10,x ﹣y ,b ,2x 2y 3中,单项式有()个.A .3B .4C .5D .67.下列各组是同类项的一组是()A .xy 2与﹣12x 2yB .3x 2y 与﹣3xyzC .﹣a 3b 与12ba 3D .a 3与b 38.一个多项式与x 2﹣2x+1的和是3x ﹣2,则这个多项式为()A .x 2﹣5x+3B .﹣x 2+x ﹣3C .﹣x 2+5x ﹣3D .x 2﹣5x ﹣139.对于有理数a ,b ,定义一种新运算,规定a※b =﹣a 2﹣b ,则(﹣2)※(﹣3)=()A .7B .1C .﹣7D .﹣110.某公园计划砌一个形状如图(1)的喷水池(图中长度单位:m ),后来有人建议改为图(2)的形状,且外圆的直径不变,请你比较两种方案,砌各圆形水池的周边需要的材料多的是()(提示:比较两种方案中各圆形水池周长的和)A .图(1)B .图(2)C .一样多D .无法确定二、填空题11.计算:4ab 2﹣5ab 2=_______,(﹣25)﹣(﹣35)=_______,10÷3×13=______.12.多项式1﹣3x ﹣2xy ﹣4xy 2是___次___项式,其中二次项是___.13.数轴上有一点A 对应的数为﹣2,在该数轴上有另一点B ,点B 与点A 相距3个单位长度,则点B 所对应的有理数是_______.14.列代数式表示:“a ,b 和的平方减去它们差的平方”为________________.15.若ab =﹣2,a+b =3,那么2a ﹣ab+2b 的值为___.16.单项式2332a b π的系数是__,次数是__.17.下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第n 个图中所贴剪纸“○”的个数为_____个.三、解答题18.计算题:(1)13﹣(﹣18)+(﹣7)﹣15;(2)﹣24+(﹣3)3﹣(﹣1)10;(3)12﹣6÷(﹣3)﹣22332⨯;(4)﹣|﹣23|﹣|﹣12÷32|﹣(1341-).19.整式的计算:(1)4x 2﹣5x+2+x 2+3x ﹣4;(2)(8a ﹣7b )﹣2(4a ﹣5b );(3)3x 2﹣[5x ﹣(12x ﹣3)+2x 2].20.有8筐白菜,以每筐25千克为准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:2,﹣3,1.5,﹣0.5,1,﹣2,﹣1.5,﹣2.5.(1)这8筐白菜中,最重的一筐白菜比最轻的一筐白菜重了多少千克?(2)若白菜每千克售价3元,则出售这8筐白菜可卖多少元?21.已知多项式A =2x 2-xy ,B =x 2+xy -6,求:(1)4A -B ;(2)当x =1,y =-2时,求4A -B 的值.22.化简求值:4xy-(2x 2+5xy-y 2)+2(x 2+3xy),其中212(02x y ++-=..23.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是40km/h ,水流速度是akm/h .(1)3h 后两船相距多远?(2)4h 后甲船比乙船多航行多少千米?24.阅读理解,并解答问题:观察下列各式:11112122==-⨯,111162323==-⨯,1111123434==-⨯,......,请利用上述规律计算(要求写出计算过程):(1)1111111261220304256++++++;(2)11111111335577991111131315++++++⨯⨯⨯⨯⨯⨯⨯.25.阅读下列材料:我们知道(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩现在我们可以用这个结论来化简含有绝对值的代数式,如化简代数式12x x ++-时,令10x +=,求得1x =-;令20x -=,求得2x =(称-1,2分别为1x +,2x -的零点值).在有理数范围内,零点值-1和2可将全体有理数分成不重复且不遗漏的如下3种情况:①当1x <-时,原式()()1221x x x =-+--=-+;②当12x -≤≤时,原式()123x x =+--=;③当2x >时,原式1221x x x =++-=-.综上所述,21(1)123(12)21(2)x x x x x x x -+<-⎧⎪++-=-≤≤⎨⎪->⎩通过以上阅读,请你解决以下问:(1)分别求出2x +和4x -的零点值;(2)化简代数式24x x ++-.26.探究性问题:在数学活动中,小明为了求23411112222++++……+12n 的值(结果用含n 的式子表示).设计了如图1所示的几何图形.(1)利用这个几何图形,求出23411112222++++ (12)的值为;(2)利用图2,再设计一个能求23411112222++++ (12)的值的几何图形.参考答案1.B 【解析】【详解】680000000元=6.8×108元.故选:B .【点睛】考点:科学记数法—表示较大的数.2.C 【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【详解】∵向东为正,∴-50m表示的意义为向西50m.故选C.【点睛】本题考查正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.3.D【解析】【分析】根据有理数加、减、乘、除运算法则计算出各项的结果,再进行判断即可.【详解】-+=--=-,选项A计算错误,故不符合题意;解:A.(3)2(32)1--=-+=-,选项B计算错误,故不符合题意;B.(3)2(32)5-⨯-=⨯=,选项C计算错误,故不符合题意;C.(2)(1)212-÷=-÷=-,计算正确,符合题意.D.(6)2(62)3故选:D.【点睛】本题考查了有理数的混合运算,解答本题的关键是有理数混合运算的计算方法.4.D【解析】【分析】|-2|去掉绝对值后为2,而-2的相反数为2.【详解】2--的相反数是2,故选:D.【点睛】本题考查了相反数和绝对值的概念,本题的关键是首先要对原题进行化简,然后在求这个数的相反数;其中,正数的相反数是负数,负数的相反数是正数,0的相反数是0.5.D【解析】【详解】试题解析:由数轴可知:10,1 2.b a -<<<<A.0,ab <故错误.B.0.a b +>故错误.C.,a b >故错误.D.0.a b ->正确.故选:D .6.C 【解析】【分析】单项式:数字与字母的积,单个的数或单个的字母也是单项式,根据定义逐一判断即可得到答案.【详解】解:代数式3a ,﹣xy ,2x,10,x ﹣y ,b ,2x 2y 3中,单项式有:23,,10,,2,3axy b x y -共5个,故选C 【点睛】本题考查的是单项式的定义,熟练的运用单项式的概念判断代数式是否是单项式是解本题的关键.7.C 【解析】【分析】根据同类项是字母相同,且相同的字母的指数也相同解答即可.【详解】解:A .字母相同,但相同的字母的指数不相同,不是同类项,故此选项不符合题意;B .所含字母不尽相同,不是同类项,故此选项不符合题;C .字母相同,且相同的字母的指数也相同,故此选项符合题意;D .字母不同,不是同类项,故此选项不符合题意;故选:C .【点睛】本题考查了同类项,关键是根据同类项是所含字母相同,并且相同字母的指数也相同解答.8.C 【解析】【分析】设这个多项式为A ,根据整式的加减即可求出答案.【详解】解:设这个多项式为A ,∴A+(x 2﹣2x+1)=3x ﹣2∴A =3x ﹣2﹣(x 2﹣2x+1)=3x ﹣2﹣x 2+2x ﹣1=﹣x 2+5x ﹣3故选C .【点睛】本题考查整式的加减,掌握去括号和合并同类项是关键.9.D 【解析】【分析】由新定义列式可得:()()223,----再先计算乘方,最后计算加减运算即可.【详解】解: a※b =﹣a 2﹣b ,(﹣2)※(﹣3)=()()223431,----=-+=-故选D 【点睛】本题考查的是新定义运算,含乘方的有理数的混合运算,理解新定义的运算法则是解本题的关键.10.C 【分析】利用圆的周长公式直接计算即可得到答案.11.2ab -15或者0.2109或者1110【解析】【分析】把同类项的系数相减,字母与字母的指数不变,可得第一空的答案;先把减法转化为加法,再计算加法可得第二空的答案;先把除法转化为乘法,再计算乘法运算即可得到第三空的答案.【详解】解:4ab 2﹣5ab 2=()2245,ab ab -=-(﹣25)﹣(﹣35)=231,555-+=10÷3×13=111010,339⨯⨯=故答案为:2110,,59ab -【点睛】本题考查的是合并同类项,有理数的减法运算,有理数的乘除混合运算,易错点是计算乘除同级运算时,不注意运算顺序.12.三四−2xy .【解析】【分析】直接利用几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数,进而得出答案.【详解】解:多项式1﹣3x ﹣2xy ﹣4xy 2是三次四项式,其中二次项是:−2xy .故答案为:三,四,−2xy .【点睛】此题主要考查了多项式,正确掌握多项式的相关次数确定方法是解题关键.13.1或5-##5-或1【解析】【分析】由数轴上有一点A 对应的数为﹣2,数轴上有另一点B ,点B 与点A 相距3个单位长度,则把表示2-的点向左边或右边移动3个单位即可得到答案.【详解】解: 数轴上有一点A 对应的数为﹣2,数轴上有另一点B ,点B 与点A 相距3个单位长度,231∴-+=或235,--=-B ∴对应的数为:1或5-故答案为:1或5-【点睛】本题考查的是数轴上两点之间的距离,有理数的加法与减法运算,掌握“数轴上两点之间的距离的含义”是解题的关键.14.(a +b )2−(a−b )2【解析】【分析】先列两个数和再平方,然后减去它们差的平方即可列出代数式.【详解】解:a ,b 和的平方减去它们差的平方,列出代数式为:(a +b )2−(a−b )2,故答案为:(a +b )2−(a−b )2.【点睛】本题考查了列代数式,解题的关键是理解题意准确列出代数式.15.8【解析】【分析】先把原式化为:()2,a b ab +-再整体代入代数式求值即可.【详解】解: ab =﹣2,a+b =3,∴2a ﹣ab+2b ()2a b ab=+-()=232628,´--=+=故答案为:8【点睛】本题考查的是代数式的值,掌握“整体代入法求解代数式的值”是解题的关键.16.32π5【解析】【分析】根据单项式的定义即可得【详解】因为单项式中的数字因数叫单项式的系数,所有字母的指数和叫单项式的次数,所以32πa2b3.的系数是32π,次数是5.【点睛】本题考查的知识点是单项式,解题的关键是熟练的掌握单项式. 17.3n+2【解析】【详解】解:第一个图案为3+2=5个窗花;第二个图案为2×3+2=8个窗花;第三个图案为3×3+2=11个窗花;…从而可以探究:第n个图案所贴窗花数为(3n+2)个.故答案为:3n+218.(1)9;(2)44-;(3)10;(4)11 12 -【解析】【分析】(1)先把运算统一为省略加号的和的形式,再计算即可;(2)先计算乘方运算,再计算减法运算即可;(3)先计算乘除运算,再计算加减运算即可;(4)先化简绝对值与计算括号内的运算,再计算减法运算即可.【详解】解:(1)13﹣(﹣18)+(﹣7)﹣151318715=+--31229=-=;(2)﹣24+(﹣3)3﹣(﹣1)10 1627144=---=-;(3)12﹣6÷(﹣3)﹣223 32⨯83 12232 =+-⨯14410 =-=;(4)﹣|﹣23|﹣|﹣12÷32|﹣(1341-)212132312=--⨯-2113312=---11111212=--=-【点睛】本题考查的是含乘方的有理数的混合运算,掌握“有理数的混合运算的运算顺序与运算法则”是解题的关键.19.(1)2522x x--;(2)3b;(3)293 2x x--【解析】【分析】(1)直接把同类项的系数相加减,字母与字母的指数不变,从而可得答案;(2)先去括号,再合并同类项即可;(3)先去小括号,再去中括号,再合并同类项即可得到答案.【详解】解:(1)4x2﹣5x+2+x2+3x﹣42522x x=--(2)(8a﹣7b)﹣2(4a﹣5b)87810a b a b=--+3b=(3)3x2﹣[5x﹣(12x﹣3)+2x2]22135322x x x x ⎛⎫=--++ ⎪⎝⎭22135322x x x x =-+--2932x x =--【点睛】本题考查的是整式的化简求值,熟练的运用去括号,合并同类项是解本题的关键.20.(1)4.5千克;(2)585元【解析】【分析】(1)由超过最多的一筐减去不足最多的一筐可得答案;(2)先求解这8筐白菜的总重量,再乘以单价即可得到答案.【详解】解:(1)8筐白菜中,最重的一筐白菜比最轻的一筐白菜重:()1.53 1.53 4.5--=+=千克.(2)()()()()()23 1.50.512 1.5 2.5+-++-++-+-+-Q 5,=-∴这8筐白菜的总重量为:8255195´-=千克,所以白菜每千克售价3元,出售这8筐白菜可卖:1953=585´元.【点睛】本题考查的是正负数的应用,有理数的加法与乘法的实际应用,理解题意,列出正确的运算式是解本题的关键.21.(1)7x 2-5xy +6;(2)23【解析】【分析】(1)本题考查了整式的加减,列式时注意加括号,然后去括号合并同类项;(2)本题考查了求代数式的值,把x=1,y=﹣2代入到(1)化简得结果中求值即可.【详解】解:(1)∵多项式A=2x 2﹣xy ,B=x 2+xy ﹣6,∴4A ﹣B=4(2x 2﹣xy )﹣(x 2+xy ﹣6)=8x 2﹣4xy ﹣x 2﹣xy+6=7x 2﹣5xy+6;(2)∵由(1)知,4A ﹣B=7x 2﹣5xy+6,∴当x=1,y=﹣2时,原式=7×12﹣5×1×(﹣2)+6=7+10+6=23.22.25xy y +,﹣434【解析】【分析】首先去括号合并同类项,再得出x ,y 的值代入即可.【详解】解:原式=22242523xy x xy y x xy -+-++()()22242526xy x xy y x xy =--+++25xy y =+,∵21202x y ++-=(,∴x=﹣2,y=12,故原式=5×(﹣2)×12+14=﹣434.23.(1)240km ;(2)8a km 【解析】【分析】(1)先表示顺水,逆水航行的速度,再求解两船航行3小时的路程和即可;(2)利用甲船航行4小时的路程减去乙船航行4小时的路程即可.【详解】解:(1) 船在顺水中的速度为:()40a +km/h ,船在逆水中的速度为:()40a -km/h ,∴3h 后两船相距:()()34034012031203240a a a a ++-=++-=km.(2)4h 后甲船比乙船多航行:()()440440*********a a a a a +--=+-+=km.本题考查的是列代数式,整式的加减运算,掌握“船在顺水中的速度为:()40a +km/h ,船在逆水中的速度为:()40a -km/h”是解本题的关键.24.(1)78;(2)715【解析】【分析】(1)运用题干中的裂项变形法计算即可;(2)仿照题目规律可得111=11323⎛⎫⨯- ⎪⨯⎝⎭,按照此方法裂项计算即可.【详解】(1)1111111261220304256++++++1111111111111=12233445566778-+-+-+-+-+-+-1=18-7=8(2)11111111335577991111131315++++++⨯⨯⨯⨯⨯⨯⨯11111111111111=12335577991111131315⎛⎫-+-+-+-+-+- ⎪⎝⎭11=1215⎛⎫- ⎪⎝⎭7=15【点睛】本题考查了有理数的运算,解题的关键是找到规律,运用裂项求和的方法.25.(1)2x +的零点值为-2, 4x -的零点值是4.(2)当2x <-时,原式22x =-+;当-2≤x≤4,原式6=;当4x >时,原式22x =-.【解析】【分析】(1)根据题中所给材料,求出零点值;(2)将全体实数分成不重复且不遗漏的三种情况解答;解:(1)令20x +=,解得2x =-,所以2x +的零点值为-2,令40x -=,解得4x =,所以4x -的零点值是4.(2)当2x <-时,原式()()242422x x x x x =-+--=---+=-+;当-2≤x≤4,原式()()24246x x x x =+--=+-+=;当4x >时,原式()()2422x x x =++-=-.综上所述:22(2)246(24)22(4)x x x x x x x -+<-⎧⎪++-=-≤≤⎨⎪->⎩。
七年级上册数学期中考试试卷及答案
七年级上册数学期中考试试题一、单选题1.-12的绝对值是()A .-12B .2C .-2D .122.下列说法正确的是()A .-2不是单项式B .单项式223x y-的系数是2,次数是3C .1x +是整式D .多项式22345x x +-的常数项是53.下列各组中的两项是同类项的是()A .0.5a 和0.5bB .2x -和3xC .2m n -和2mn D .3xy 和yx-4.数轴上点A 表示-2,将点A 在数轴上移动5个单位得到点B ,则点B 表示的数是()A .3B .-7C .7或-3D .-7或35.下列去括号正确的是:()A .(2)2a b c a b c -+-=+-B .2(3)226a b c a b c -+-=--+C .()a b c a b c ---+=-++D .()a b c a b c---=-+-6.计算:()3232-+-的值是()A .0B .-17C .1D .-17.下列运算中,正确的是()A .235a b ab +=B .223a a a +=C .235a a a +=D .2222x y x y x y-=-8.已知8x =,6y =,且x y >,则x y -的值为()A .2B .14C .2或14D .-2或-149.a 、b 两数在数轴上的位置如图所示,则下列各式正确的有()个.①0ab >②0a b +>③0a b ->④220a b ->⑤11b b-=-A .2B .3C .4D .510.根据流程图中的程序,当输入数值为-6时,输出数值y 为()A .2B .8C .-8D .-2二、填空题11.我国第一艘航母“辽宁舰”最大排水量为67500吨,用科学记数法表示67500,其结果应是___________.12.用四舍五入法将数51804精确到千位的近似数为______.13.若a ,b 互为倒数,m ,n 互为相反数,则()232m n ab ++=______.14.已知01x <<,试比较大小:x _____1x.15.若关于x 的多项式()()32211x m x m n x --++-不含二次项和一次项,则m =_____,n =____.16.小明家的住房结构如图所示,爸妈在装修房子时欲将地面铺上瓷砖,试计算他家需要铺设___平方米的瓷砖.17.若规定2*1a b a b =-,则()2*3-的值为________________.三、解答题18.将以下各数填在相应的集合内:-15,6,227,-3.25,0,π,0.01,132-.整数集合:(,……)负分数集合:(,……)19.请在数轴上表示下列各数.并用“<”连接起来2-,()3--,1.5,132-20.计算:()()22228623a b aba b ab ---21.计算:(1)()()1512187-+--+-(2)511.5244⎛⎫⨯÷- ⎪⎝⎭.22.计算:()()2320214220.2541013⎡⎤⎛⎫-⨯-÷-+-+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦23.已知()2221mx ym xy --+是关于x ,y 的四次三项式,求2325m m -+的值.24.阅读理解,并解决问题:“整体思想”是中学数学中的一种重要思想,贯穿于中学数学的全过程,比如整体代入,整体换元,整体约减,整体求和,整体构造,…,有些问题若从局部求解,采取各个击破的方式,很难解决,而从全局着眼,整体思考,会使问题化繁为简,化难为易,复杂问题也能迎刃而解.因而“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛尝试应用.例:当代数式235x x ++的值为7时,求代数式2392x x +-的值.解:因为2357x x ++=,所以232x x +=.所以()223923323224x x x x +-=+-=⨯-=.请根据阅读材料,解决下列问题:(1)把()2x y -看成一个整体,计算()()()222364x y x y x y ---+-的结果是;(2)设22xx y -=,则()2362x x y --+=.(用含y 的代数式表示);(3)已知2320x x +-=,求()22515302021x x x x +⋅++的值.25.我们知道,4a ﹣3a+a =(4﹣3+1)a =2a ,类似地,我们把(x+y )看成一个整体,则4(x+y )﹣3(x+y )+(x+y )=(4﹣3+1)(x+y )=2(x+y ).“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.请尝试:(1)把(m ﹣n )2看成一个整体,合并2(m ﹣n )2﹣4(m ﹣n )2+(m ﹣n )2的结果是;(2)已知x 2﹣4x =2,求3x 2﹣12x ﹣152的值;(3)已知a ﹣2b =3,c ﹣d =3,2b ﹣c =﹣10,求(2b ﹣d )﹣(2b ﹣c )+(a ﹣c )的值.26.某超市在国庆期间对顾客实行优惠,规定如表所示:一次性购物金额优惠办法少于200元不予优惠低于500元但不低于200元九折优惠500元或超过500元其中500元部分给予九折优惠,超过500元部分给予八折优惠(1)如果王叔叔一次性购物700元.那么他实际付款多少元;(2)若顾客在该超市一次性购物x 元,当x 小于500但不小于200时,他实际付款元,当x 大于或等于500时,他实际付款元(用含x 的代数式表示);(3)如果王叔叔两次购物货款合计840元,第一次购物的货款为a 元()0300a <<,用含a 的式子表示两次购物王叔叔实际付款多少元?参考答案1.D 2.C 3.D 4.D 5.B 6.B 7.D 8.C 9.A 10.B 11.6.75×104【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:67500=6.75×104.故答案为:6.75×104.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.12.45.210⨯【分析】根据近似数和有效数字计算即可;【详解】∵451804 5.180410=⨯,∴51804精确到千位的近似数为45.210⨯;故答案是:45.210⨯.【点睛】本题主要考查了近似数和有效数字,准确计算是解题的关键.13.2【解析】【分析】利用倒数,相反数的定义确定出m+n 与ab 的值,代入计算即可求出值.【详解】解:∵a ,b 互为倒数,m ,n 互为相反数,∴1+0ab m n ==,,∴()232m n ab ++==3×20212+⨯=,故答案为:2.【点睛】此题考查了代数式求值,相反数,以及倒数,熟练掌握各自的定义是解本题的关键.14.<【解析】【分析】根据倒数的性质,求得1x的范围,即可求解.【详解】解:∵01x <<∴11x>∴11x x<<,即1x x <故答案为<【点睛】此题考查了倒数的性质,根据题意求得1x的范围是解题的关键.15.1212-【解析】【分析】根据题意可得:(21)0m --=,0m n +=,求解即可.【详解】解:∵关于x 的多项式()()32211x m x m n x --++-不含二次项和一次项,∴(21)0m --=,0m n +=,解得:12m =,12n =-,故答案为:12;12-.【点睛】本题考查了多项式,熟知不含哪一项,则哪一项的系数为0是解题的关键.16.15xy 【解析】【分析】分别求出卫生间面积、卧室面积、厨房面积以及客厅面积,相加即可.【详解】解:卫生间面积=xy ,卧室面积=224y x xy ⋅=,厨房面积=22x y xy ⋅=,客厅面积=248x y xy ⋅=,∴铺地砖的面积=42815xy xy xy xy xy +++=,故答案为:15xy .【点睛】本题考查了列代数式,理解题意,能够根据图形列出正确的代数式是解本题的关键.17.11【解析】【分析】先根据规定的新运算列出运算式子,再计算有理数的乘方、乘法与减法即可得.【详解】解:由规定的新运算得:()2*3-()2231=-⨯-431=⨯-121=-11=故答案为:11.【点睛】本题考查了含乘方的有理数混合运算,理解新运算的定义是解题关键.18.15,6,0-;13.25,32--.【解析】【分析】根据整数(正整数、负整数和0统称为整数)和负分数的定义(小于0的分数即为负分数,或是可以化成分数的负有限小数和负无限循环小数)即可得.【详解】解:整数集合:(15,6,0-,……),负分数集合:(13.25,32--,……),故答案为:15,6,0-;13.25,32--.【点睛】本题考查了整数和负分数的概念,熟记定义是解题关键.19.见解析,()13 1.5232-<<-<--【解析】【分析】先计算,再将各数表示在数轴上,然后根据数轴上右边的数总比左边的数大解答即可.【详解】解:2-=2,()3--=3,数轴如图所示:由图知:()13 1.5232-<<-<--.【点睛】本题考查数轴、绝对值、相反数,会用数轴上的点表示有理数以及利用数轴比较有理数的大小是解答的关键.20.2224a b ab -【解析】【分析】先去括号,然后合并同类项即可.【详解】解:原式()22228662ab ab a b ab =---22228662a b ab a b ab =--+()()228662a b ab =-+-+2224a b ab =-.【点睛】本题考查了整式的加减,熟练掌握去括号法则以及合并同类项法则是解本题的关键.21.(1)8;(2)56-【解析】【分析】(1)根据有理数加减法法则计算即可得答案;(2)根据有理数乘法及除法法则计算即可得答案.【详解】(1)()()1512187-+--+-1512187=-++-2230=-+8=.(2)511.5244⎛⎫⨯÷- ⎪⎝⎭359244=-⨯÷354249=-⨯⨯56=-.【点睛】本题考查有理数加减法法则及乘除法法则,同号两数相加,取与加数相同的符号,并把绝对值相加;异号相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;减去一个数,等于加上这个数的相反数;两数相乘,同号得正,异号得负,并把绝对值相乘;除以一个不为0的数,等于乘这个数的倒数;熟练掌握运算法则是解题关键.22.986【解析】【分析】根据有理数混合运算法则计算即可.【详解】解:原式()()141641000149⎡⎤=-⨯-÷+-+-⎢⎥⎣⎦944100014⎡⎤=--⨯--⎢⎥⎣⎦[]4910001=----()49911=----49911=-+-986=.【点睛】本题考查了有理数的混合运算,熟练掌握相关运算法则以及运算顺序是解本题的关键.23.21【解析】【分析】首先根据题意列出m 所满足的条件,然后求解m 的值,最后代入代数式求解即可.【详解】解:∵()2221m x y m xy --+是关于x ,y 的四次三项式,∴m 应满足:()2420m m ⎧+=⎪⎨--≠⎪⎩①②,由①解得:2m =±,由②解得:2m ≠,∴2m =-,∴()()22325322253445124521m m -+=⨯--⨯-+=⨯++=++=.【点睛】本题考查多项式的定义,以及代数式求值问题,理解“几次几项式”的定义,准确求出参数的值是解题关键.24.(1)()2x y -;(2)22y -;(3)2041【解析】【分析】(1)把()2x y -看成一个整体,合并同类项即可求解;(2)设22x x y -=,逆用分配律将236x x -化为()232x x -,代入化简即可求解;(3)根据2320x x +-=得到232x x +=,再逆用分配律即可求解.【详解】解:(1)()()()222364x y x y x y ---+-()()2=364x y -+-()2=x y -,故答案为:()2x y -;(2)设22x x y -=,则()()()223623223222x x y x x y y y y --+=--+=--=-,故答案为:22y -;(3)解:∵2320x x +-=,∴232x x +=,∴251510x x +=,原式()2210302021103202110220212020212041x x x x =++=++=⨯+=+=.【点睛】本题考查了整体思想的应用,理解题意,灵活运用整体思想,能正确逆用分配律是解题关键.25.(1)﹣(m ﹣n )2;(2)32-;(3)-4【解析】【分析】(1)把(m ﹣n )2看成一个整体,合并同类项即可;(2)将3x 2﹣12x ﹣152的前两项运用乘法分配律可化为x 2﹣4x 的3倍,再将x 2﹣4x =2整体代入计算即可;(3)对(2b ﹣d )﹣(2b ﹣c )+(a ﹣c )去括号,再合并同类项,将a ﹣2b =3,c ﹣d =3,2b ﹣c =﹣10三个式子相加,即可得到a ﹣d 的值,则问题得解.【详解】(1)2(m ﹣n )2﹣4(m ﹣n )2+(m ﹣n )2=﹣(m ﹣n )2,故答案为:﹣(m ﹣n )2;(2)3x 2﹣12x ﹣152=3(x 2﹣4x )﹣152,∵x 2﹣4x =2,(3)(2b ﹣d )﹣(2b ﹣c )+(a ﹣c )=2b ﹣d ﹣2b+c+a ﹣c=a ﹣d ,∵a ﹣2b =3,c ﹣d =3,2b ﹣c =﹣10,∴a ﹣2b+c ﹣d+2b ﹣c =3+3﹣10,∴a ﹣d =﹣4,∴(2b ﹣d )﹣(2b ﹣c )+(a ﹣c )=﹣4.【点睛】本题考查了合并同类项,整式的化简求值,关键是运用整体思想来解决.26.(1)610元;(2)0.9x ,0.850x +;(3)当0200a <<时,0.2722a +;当200300a ≤<时,0.1722a +【解析】【分析】(1)让500元部分按9折付款,剩下的200元按8折付款即可;(2)等量关系为:当x 小于500元但不小于200元时,实际付款=购物款×9折;当x 大于或等于500元时,实际付款=500×9折+超过500的购物款×8折;(3)两次购物王老师实际付款=第一次购物款×9折+500×9折+(总购物款−第一次购物款−第二次购物款500)×8折,把相关数值代入即可求解.【详解】解:(1)()5000.97005000.8450160610⨯+-⨯=+=∴他实际付款610元.(2)解:当x 小于500但不小于200时,打九折优惠,故需付款0.9x ;当x 大于或等于500时,其中500元部分给予九折优惠,超过500元部分给予八折优惠,故需付款()5000.90.854500.84004504000.8500.8x x x x ⨯+-=+-=-+=+故答案为:0.9x ;0.850x +;(3)①当0200a <<时,()5000.98405000.80.2722a a a +⨯+--⨯=+⎡⎤⎣⎦.②当200300a ≤<时()0.95000.98405000.80.1722a a a +⨯+--⨯=+⎡⎤⎣⎦.。
七年级上册数学期中试题及答案
七年级上册数学期中试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是最小的正整数?A. -1B. 0C. 1D. 2答案:C2. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 10答案:A3. 计算:(-2) + (-3) 的结果是:A. -5B. 5C. -1D. 1答案:A4. 下列哪个选项是不等式 2x - 3 > 5 的解?A. x > 4B. x < 4C. x > 2D. x < 2答案:A5. 一个数的平方是25,那么这个数是:A. 5B. -5C. 5 或 -5D. 0答案:C6. 计算:(-3) × (-2) 的结果是:A. 6B. -6C. 3D. -3答案:A7. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 5 或 -5D. 0答案:C8. 计算:(-1) ÷ (-1) 的结果是:A. 1B. -1C. 0D. 2答案:A9. 一个数的立方是-8,那么这个数是:A. 2B. -2C. 8D. -8答案:B10. 下列哪个选项是方程 3x + 5 = 14 的解?A. x = 3B. x = 1C. x = 2D. x = 4答案:B二、填空题(每题3分,共30分)1. 一个数的倒数是2,那么这个数是 ______ 。
答案:0.52. 一个数的平方根是3,那么这个数是 ______ 。
答案:93. 一个数的立方根是2,那么这个数是 ______ 。
答案:84. 如果一个数的绝对值是6,那么这个数可能是 ______ 或 ______ 。
答案:6 或 -65. 计算:(-4) × (-5) = ______ 。
答案:206. 计算:(-7) ÷ (-1) = ______ 。
答案:77. 计算:(-2)² = ______ 。
答案:48. 计算:√16 = ______ 。
人教版七年级数学上册期中测试卷-有参考答案
人教版七年级数学上册期中测试卷-有参考答案一、选择题(本题共12小题 每小题4分 共48分 在每小题给出的四个选项中 只有一项是符合题目要求的 请用2B 铅笔把答题卡上对应题目答案标号涂黑)1.(4分)古人都讲“四十不惑” 如果以40岁为基准 张明50岁 记为+10岁 那么王横25岁记为( )A .25岁B .﹣25岁C .﹣15岁D .+15岁【分析】以40岁为基准 张明50岁 记为+10岁 25减去40即可解答.【解答】解:以40岁为基准 张明50岁 记为+10岁那么王横25岁记为25﹣40=﹣15(岁).故选:C .2.(4分)中国信息通信研究院测算.2020﹣2025年 中国5G 商用带动的息消费规模将超过8万亿元 直接带动经济总产出达10.6万亿元 其中数据10.6万亿用科学记数法表示为( )A .10.6×104B .1.06×1013C .10.6×1013D .1.06×108【分析】科学记数法的表示形式为a ×10n 的形式 其中1≤|a |<10 n 为整数.确定n 的值时 要看把原数变成a 时 小数点移动了多少位 n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时 n 是正整数;当原数的绝对值<1时 n 是负整数.【解答】解:10.6万亿=10600000000000=1.06×1013.故选:B .3.(4分)下列说法正确的是( )A .52xy 的系数是﹣5 B .单项式a 的系数为1 次数是0C .﹣5232b a 的次数是6D .x y +x ﹣1是二次三项式 【分析】直接利用单项式的次数与系数确定方法、多项式的次数与项数确定方法分别判断得出答案.【解答】解:A .﹣的系数是﹣ 故此选项不合题意;B .单项式a 的系数为1 次数是1 故此选项不合题意;C.﹣的次数是﹣故此选项不合题意;D.xy+x﹣1是二次三项式故此选项符合题意;故选:D.4.(4分)下列各组整式中不是同类项的是()A.3a2b与﹣2a2b B.2xy与5yxC.2x3y2与﹣x2y3D.5和0【分析】根据同类项的定义:所含字母相同相同字母的指数也相同判断即可.【解答】解:A、3a2b与﹣2a2b所含字母相同相同字母的指数也相同是同类项故本选项不符合题意;B、2xy与5yx所含字母相同相同字母的指数也相同是同类项故本选项不符合题意;C、2x3y2与﹣x2y3所含字母相同但相同字母的指数不相同不是同类项故本选项符合题意;D、5和0都是常数项所有常数项都是同类项故本选项不符合题意;故选:C.5.(4分)如图A B C D E为某未标出原点的数轴上的五个点且AB=BC=CD=DE则点C所表示的数是()A.2B.7C.11D.12【分析】先根据点A、E表示的数求出线段AE的长度再根据长度相等的线段表示相同的单位长度求出AB、BC、CD、DE的长即可解答【解答】解:∵AE=17﹣(﹣3)=20又∵AB=BC=CD=DE AB+BC+CD+DE=AE∴DE=AE=5∴D表示的数是17﹣5=12 C表示的数是17﹣5×2=7故选:B.6.(4分)下列各组数中数值相等的是()A.32与23B.﹣23与(﹣2)3C.﹣32与(﹣3)2D.3×22与(3×2)2【分析】先根据有理数的乘方和有理数的乘法进行计算再根据求出的结果进行判断即可.【解答】解:A .∵32=9 23=8∴32≠23 故本选项不符合题意;B .∵﹣23=﹣8 (﹣2)3=﹣8∴﹣23=(﹣2)3 故本选项符合题意;C .∵﹣32=﹣9 (﹣3)2=9∴﹣32≠(﹣3)2 故本选项不符合题意;D .∵3×22=3×4=12 (3×2)2=62=36∴3×22≠(3×2)2 故本选项不符合题意;故选:B .7.(4分)如果a b 互为相反数 c d 互为倒数 m 的绝对值是2 那么cd m m b a 2212-++⨯的值( ) A .2 B .3 C .4 D .不确定【分析】根据a b 互为相反数 c d 互为倒数 m 的绝对值是2 可以得到a +b =0 cd =1 m 2=4 然后代入所求式子计算即可.【解答】解:∵a b 互为相反数 c d 互为倒数 m 的绝对值是2∴a +b =0 cd =1 m 2=4∴=×+4﹣2×1=0+4﹣2=2故选:A .8.(4分)某快递公司受新一次疫情影响 4月份业务量比3月份下降了30% 由于采取了科学的防控措施 5月份疫情明显好转 该快递公司5月份业务量比4月份增长了40% 若设该快递公司3月份业务量为a 则5月份的业务量为( )A .(1﹣30%+40%)aB .(30%+40%)aC .(40%﹣30%)aD .(1﹣30%)(1+40%)a 【分析】先表示出4月份业务量是(1﹣30%)a 再根据5月份业务量比4月份增长了40% 即可列出代数式.【解答】解:∵该快递公司3月份业务量为a 4月份业务量比3月份下降了30%∴4月份业务量是(1﹣30%)a∵5月份业务量比4月份增长了40%∴5月份业务量是(1+40%)(1﹣30%)a故选:D .9.(4分)已知m n 满足6m ﹣8n +4=2 则代数式12n ﹣9m +4的值为( )A .0B .1C .7D .10【分析】将6m ﹣8n +4=2移项变形后 可以与12n ﹣9m +4建立联系 进而计算即可.【解答】解:∵6m ﹣8n +4=2∴8n ﹣6m ﹣2=0∴4n ﹣3m ﹣1=0∴12n ﹣9m ﹣3=0∴12n ﹣9m +4=7 故选:C .10.(4分)下列说法正确的个数有( )(1)若a 2=b 2 则|a |=|b |;(2)若a 、b 互为相反数 则1-=ba ;(3)绝对值相等的两数相等;(4)单项式7×102a 4的次数是6;(5)﹣a 一定是一个负数;(6)平方是本身的数是1 A .1 B .2 C .3D .4 【分析】根据去绝对值法则 相反数的定义 绝对值的性质 单项式的定义 有理数的分类以及性质作答.【解答】解:(1)若a 2=b 2 则|a |=|b | 原说法正确;(2)若a 、b 互为相反数且ab ≠0时 原说法错误;(3)绝对值相等的两数相等或互为相反数 原说法错误;(4)单项式7×102a 4的次数是4 原说法错误;(5)当a =0时 说法“﹣a 一定是一个负数”错误;(6)平方是本身的数是1或0 原说法错误.故选:A .11.(4分)已知|a |=2 b 2=25 3c =27 且ab >0 则a ﹣b +c 的值为( )A .10B .6C .3D .6或者0【分析】先根据绝对值的性质 乘方的性质求得a 、b 、c 再根据ab >0 分情况代值计算便可.【解答】解:∵|a |=2 b 2=25 3c =27∴a =±2 b =±5 c =3∴a、b同号∴当a=2 b=5 c=3时a﹣b+c=2﹣5+3=0;当a=﹣2 b=﹣5 c=3时a﹣b+c=﹣2+5+3=6;故选:D.12.(4分)如图在矩形ABCD中放入正方形AEFG正方形MNRH正方形CPQN点E在AB上点M、N在BC上若AE=4 MN=3 CN=2 则图中右上角阴影部分的周长与左下角阴影部分的周长的差为()A.5B.6C.7D.8【分析】设AB=DC=a AD=BC=b用含a、b的代数式分别表示BE BM DG PD.再表示出图中右上角阴影部分的周长及左下角阴影部分的周长然后相减即可.【解答】解:矩形ABCD中AB=DC AD=BC.正方形AEFG中AE=EF=FG=AG=4.正方形MNRH中MN=NR=RH=HM=3.正方形CPQN中CP=PQ=QN=CN=2.设AB=DC=a AD=BC=b则BE=AB﹣AE=a﹣4 BM=BC﹣MN﹣CN=b﹣3﹣2=b﹣5 DG=AD﹣AG=b﹣4 PD=CD﹣CP=a﹣2.∴图中右上角阴影部分的周长为2(DG+DP)=2(b﹣4+a﹣2)=2a+2b﹣12.左下角阴影部分的周长为2(BM+BE)=2(b﹣5+a﹣4)=2a+2b﹣18∴图中右上角阴影部分的周长与左下角阴影部分的周长的差为(2a+2b﹣12)﹣(2a+2b﹣18)=6.故选:B.二、填空题(本题共4个小题每小题4分共16分答题请用黑色墨水笔或签字笔直接答在答题卡相应13.(4分)已知x y满足|x﹣5|+(x﹣y﹣1)2=0 则(x﹣y)2021的值是.【分析】根据绝对值和偶次方的非负数的性质求出x、y的值再代入计算即可.【解答】解:∵|x﹣5|+(x﹣y﹣1)2=0 而|x﹣5|≥0 (x﹣y﹣1)2≥0∴x﹣5=0 x﹣y﹣1=0解得x=5 y=4∴(x﹣y)2021=12021=1.故答案为:1.14.(4分)如图a b c d e f均有有理数图中各行各列及两条对角线上三个数的和都相等则a﹣b+c﹣d+e﹣f的值为.a4﹣1b3cd e f【分析】先找出具有已知量最多且含有公共未知量的行或列即4﹣1+a=d+3+a得到d=0 再以4+b+0=b+3+c解得c=2 以此类推求出各个字母的值即可得出结论.【解答】解:由题意得:4﹣1+a=d+3+a解得:d=0.∵4+b+0=b+3+c∴c=1.∵4﹣1+a=a+1+f∴f=2.∴a﹣1+4=4+3+2∴a=6 b=5 e=7.∴a﹣b+c﹣d+e﹣f=6﹣5+1﹣0+7﹣2=7.故答案为:7.15.(4分)若多项式2x3﹣8x2+x﹣1与多项式x3+(3m+1)x2﹣5x+7的差不含二次项则m的值为.【分析】先列式化简代数式 再根据条件得出x 的二次项系数为0 列出m 的方程进行解答便可.【解答】解:(2x 3﹣8x 2+x ﹣1)﹣[x 3+(3m +1)x 2﹣5x +7]=2x 3﹣8x 2+x ﹣1﹣x 3﹣(3m +1)x 2+5x ﹣7=x 3﹣(3m +9)x 2+6x ﹣8∵多项式2x 3﹣8x 2+x ﹣1与多项式x 3+(3m +1)x 2﹣5x +7的差不含二次项∴3m +9=0∴m =﹣3.故答案为:﹣3.16.(4分)如M ={1 2 x } 我们叫集合M 其中1 2 x 叫做集合M 的元素.集合中的元素具有确定性(如x 必然存在) 互异性(如x ≠1 x ≠2) 无序性(即改变元素的顺序 集合不变).若集合N ={x 1 2} 我们说M =N .已知集合A ={1 0 a } 集合B ={a 1 |a | ab } 若A =B 则b ﹣a 的值是 .【分析】根据集合的定义和集合相等的条件即可得到答案.【解答】解:∵A =B a ≠0≠0 ∴=0 =1 |a |=a 或=0=a |a |=1 ∴b =0 a =1(舍去)或b =0 a =﹣1∴b ﹣a =0﹣(﹣1)=1故答案为:1.三、解答题(本题共8个小题 共86分 答题请用黑色墨水笔或签字笔直接答在答题卡相应的位置上 解答时应写出必要的文字说明、证明步骤或演算步骤.)17.(8分)计算:(1)2+(﹣3)﹣(﹣5);(2)(﹣143)﹣(+631)﹣2.25+310; (3)(﹣81)÷49×94÷(﹣16); (4)(﹣21+43﹣31)÷(﹣241). 【分析】(1)先化简符号 再计算;(2)把减化为加 再将相加得整数的先相加;(3)把除化为乘 再约分即可;(4)把除化为乘 再用乘法分配律计算.【解答】解:(1)原式=2﹣3+5=4;(2)原式=(﹣1.75﹣2.25)+(﹣6+3)=﹣4﹣3=﹣7;(3)原式=﹣81×××(﹣)=1;(4)原式=(﹣+﹣)×(﹣24)=24×﹣24×+24×=12﹣18+8=2.18.(8分)已知A=8x2y﹣6xy2﹣3xy B=7xy2﹣2xy+5x2y若A+B﹣C=0 求C+A.【分析】直接利用已知得出C进而利用整式的加减运算法则计算得出答案.【解答】解:∵A=8x2y﹣6xy2﹣3xy B=7xy2﹣2xy+5x2y A+B﹣C=0∴C=8x2y﹣6xy2﹣3xy+7xy2﹣2xy+5x2y=13x2y+xy2﹣5xy∴C+A=13x2y+xy2﹣5xy+8x2y﹣6xy2﹣3xy=21x2y﹣5xy2﹣8xy.19.(10分)东江湖蜜桔是我们湖南郴州的特产口感香甜入口即化.科技改变生活当前网络销售日益盛行.湖南某网红主播为了帮助农民脱贫致富在某直播间直播销售东江湖蜜桔计划每天销售20000千克但实际每天的销售量与计划量相比有增减超过计划量记为正不足计划量记为负.下表是该主播在直播带货期间第一周销售蜜桔的情况:星期一二三四五六日蜜桔销售情况(单位:千克)+300﹣400﹣200+100﹣600+1200+500(1)该主播在直播带货期间第一周销售蜜桔最多的一天比最少的一天多销售多少千克?(2)若该主播在直播期间按6元/千克进行蜜桔销售平均快递运费及其它费用为2元/千克则该主播第一周直播带货销售蜜桔为当地农民一共创收多少元?【分析】(1)7天销量求和即可;(2)由7天的总销量即可求解;【解答】解:(1)+1200﹣(﹣600)=1800(千克)答:第一周销售蜜桔最多的一天比最少的一天多销售1800千克.(2)∵20000×7+300﹣400﹣200+100﹣600+1200+500=140900(千克)∴(6﹣2)×140900=563600(元).答:该主播第一周直播带货销售蜜桔为当地农民一共创收563600元.20.(10分)(1)化简:﹣5a ﹣(4a +3b )+(9a +2b );(2)先化简 再求值:2(x 3﹣2y 2)﹣(x 3﹣4y 2+2x 3) 其中x =3 y =﹣2.【分析】(1)把整式去括号、合并同类项即可;(2)把整式去括号、合并同类项化简后 代入计算即可得出答案.【解答】解:(1)﹣5a ﹣(4a +3b )+(9a +2b )=﹣5a ﹣4a ﹣3b +9a +2b=﹣b ;(2)2(x 3﹣2y 2)﹣(x 3﹣4y 2+2x 3)=2x 3﹣4y 2﹣x 3+4y 2﹣2x 3=﹣x 3当x =3时原式=﹣33=﹣27.21.(12分)(1)如图 数轴上的点A B C 分别表示有理数a b c .化简:|a |﹣|b +2|﹣|a +c |﹣|b +1|+|1﹣c |;(2)已知关于x 、y 的多项式(3y ﹣ax 2﹣3x ﹣1)﹣(﹣y +bx ﹣2x 2)中不含x 项和x 2项 且22x a ﹣x +b =0 求代数式:2332x x a ﹣x ﹣b 的值.【分析】(1)由数轴可知 a <﹣2<b <﹣1 0<c <1 据此可得b +2>0 a +c <0 b +1<0 1﹣c >0 再根据绝对值性质去绝对值符号化简可得;(2)多项式合并后 根据结果中不含x 3项和xy 2项 求出a 与b 的值 代入原式计算即可得到结果.【解答】解:(1)∵a <﹣2<b <﹣1 0<c <1∴b +2>0 a +c <0 b +1<0 1﹣c >0∴|a |﹣|b +2|﹣|a +c |﹣|b +1|+|1﹣c |=﹣a ﹣(b +2)﹣(﹣a ﹣c )﹣(﹣b ﹣1)+1﹣c=﹣a ﹣b ﹣2+a +c +b +1+1﹣c=0.(2)原式=3y ﹣ax 2﹣3x ﹣1+y ﹣bx +2x 2=(2﹣a )x 2﹣(b +3)x +4y ﹣1由题意得2﹣a =0 b +3=0解得a =2 b =﹣3∵x 2﹣x ﹣3=0∴x 2﹣x =3∴原式=x 3﹣3x 2﹣x +3=x 3﹣x 2﹣2x 2﹣x +3=x (x 2﹣x )﹣2x 2﹣x +3=3x ﹣2x 2﹣x +3=2x ﹣2x 2+3=﹣2(x 2﹣x )+3=﹣6+3=﹣3.∴﹣x ﹣b 的值为﹣3.22.(12分)对于含绝对值的算式 在有些情况下 可以不需要计算出结果也能将绝对值符号去掉 例如:|7﹣6|=7﹣6;|6﹣7|=7﹣6;|3121-|=3121-;|2131-|=2131-. 观察上述式子的特征 解答下列问题:(1)把下列各式写成去掉绝对值符号的形式(不用写出计算结果):①|23﹣47|= ;②|5232-|= ; (2)当a >b 时 |a ﹣b |= a ﹣b ;当a <b 时 |a ﹣b |= b ﹣a ;(3)计算:2021120221...31412131121-++-+-+-. 【分析】(1)结合有理数加法减法运算法则以及绝对值的意义进行化简;(2)根据绝对值的意义进行化简;(3)根据有理数减法运算法则结合绝对值的意义先化简绝对值 然后根据数字的变化规律进行分析计算.【解答】解:(1)①|23﹣47|=47﹣23;②=﹣;故答案为:47﹣23 ﹣;(2)当a>b时|a﹣b|=a﹣b;当a<b时|a﹣b|=b﹣a;故答案为:a﹣b b﹣a;(3)原式=1﹣+﹣+﹣+•+﹣=1﹣=.23.(12分)【知识回顾】七年级学习代数式求值时遇到这样一类题“代数式ax﹣y+6+3x﹣5y﹣1的值与x的取值无关求a的值”通常的解题方法是:把x、y看作字母a看作系数合并同类项因为代数式的值与x的取值无关所以含x项的系数为0 即原式=(a+3)x﹣6y+5 所以a+3=0 则a=﹣3.(1)若关于x的多项式(2x﹣3)m+m2﹣3x的值与x无关求m的值【能力提升】(2)7张如图1的小长方形长为a宽为b按照图2方式不重叠地放在大长方形ABCD内大长方形中未被覆盖的两个部分(图中阴影部分)设右上角的面积为S1左下角的面积为S2当AB的长变化时S1﹣S2的值始终保持不变求a与b的等量关系.【分析】(1)根据含x项的系数为0建立方程解方程即可得;(2)设AB=x先求出S1、S2从而可得S1﹣S2再根据“当AB的长变化时S1﹣S2的值始终保持不变”可知S1﹣S2的值与x的值无关由此即可得.【解答】解:(1)(2x﹣3)m+m2﹣3x=2mx﹣3m+m2﹣3x=(2m﹣3)x+3m+m2∵关于x的多项式(2x﹣3)m+m2﹣3x的值与x的取值无关∴2m﹣3=0解得m=.(2)设AB=x由图可知S1=a(x﹣3b)=ax﹣3ab S2=2b(x﹣2a)=2bx﹣4ab则S1﹣S2=ax﹣3ab﹣(2bx﹣4ab)=ax﹣3ab﹣2bx+4ab=(a﹣2b)x+ab.∵当AB的长变化时S1﹣S2的值始终保持不变∴S1﹣S2的值与x的值无关∴a﹣2b=0∴a=2b.24.(14分)定义:数轴上有A B两点若点A到原点的距离为点B到原点的距离的两倍则称点A为点B的2倍原距点.已知点A M N在数轴上表示的数分别为4 m n.(1)若点A是点M的2倍原距点①当点M在数轴正半轴上时则m=;②当点M在数轴负半轴上且为线段AN的中点时判断点N是否是点A的2倍原距点并说明理由;(2)若点M N分别从数轴上表示数10 6的点出发向数轴负半轴运动点M每秒运动速度为2个单位长度点N每秒运动速度为a个单位长度.若点M为点A的2倍原距点时点A恰好也是点N的2倍原距点请直接写出a所有可能的值.【分析】(1)①点A到原点的距离为4 根据定义可知点M到原点距离为2 点M在数轴正半轴进而可求出m.②m<0 则m=﹣2 4﹣(﹣2)=﹣2﹣n得出n的值再根据定义来判断.(2)设t秒时点M为点A的2倍原距点点A恰好也是点N的2倍原距点;由|10﹣2t|=2×4求出t 的值将t代入4=2×|6﹣at| 求出a的所有可能值即可.【解答】解:(1)①∴m=±2.∵m>0∴m=2.故答案为:2.②∵m<0∴m=﹣2.∵点M为线段AN的中点∴4﹣(﹣2)=﹣2﹣n解得n=﹣8.∴ON=8 ON=2OA故N点是点A的2倍原距点.(2)设t秒时点M为点A的2倍原距点点A恰好也是点N的2倍原距点.∴解①得:t1=9 t2=1.将t1=9代入②得:4=2×|6﹣9t|解得:;将t2=1代入②得:4=2×|6﹣a|解得:a3=4 a4=8.故a所有的可能值为:4 8 .。
七年级上册数学期中考试试卷含答案
七年级上册数学期中考试试题一、单选题1.一天早晨的气温是-3°C,中午上升到15°C,则这天中午比早晨的气温上升了()A .15℃B .18°C C .-3℃D .-18°C2.下列各个运算中,结果为负数的是()A .2-B .()2--C .2(2)-D .22-3.下列说法正确的是()A .一个数的绝对值一定比0大B .最小的正整数是1C .绝对值等于它本身的数一定是正数D .一个数的相反数一定比它本身小4.下列各式12mn -,8,1a ,226x x ++,25x y-,1y ,a -中,整式有()A .4个B .5个C .6个D .7个5.对于多项式2235x x -+,下列说法错误的是()A .它是二次三项式B .最高次项的系数是2C .它的常数项是5D .它的项分别是22x ,3x ,56.若-2a 2b m+2与﹣a n -1b 4的和是单项式,则m ﹣n 的值为()A .0B .-1C .1D .-27.已知一个多项式与239x x +的和等于2541x x +-,则这个多项式是()A .28131x x +-B .2251x x -++C .2851x x -+D .2251x x --8.若|2|2a a -=,则下列结论正确的是()A .0a >B .0a <C .0a ≥D .0a ≤9.a,b,c 在数轴上的对应点的位置如图所示,化简|b-c|+|a+b|-|a|的结果是()A .cB .c-2bC .2a+cD .-c10.下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x 的值为()A .135B .170C .209D .252二、填空题11.﹣13的相反数是_____.12.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法可表示为_____.13.(用“>”,“<”或“=”填空):13-________25-.14.绝对值大于1.1而小于3.9的所有整数有________.15.已知233m m --的值为2,那么代数式2202126m m -+的值是________.16.数轴上有一动点A ,从原点出发沿着数轴移动,第一次点A 向左移动1个单位长度到达点1A ,第二次将点A 向右移动2个单位长度到达点2A ,第三次将点A 向左移动3个单位长度到达点3A ,按照这种移动规律移动下去,第n 次移动到点n A ,当2022n =时,点A 与原点的距离是________个单位.三、解答题17.计算:(1)()()()()10125+-++---;(2)()()3432⎛⎫+⨯+÷- ⎪⎝⎭;(3)()25124382⎛⎫-⨯-+ ⎪⎝⎭;(4)()()()24083218÷-+-⨯-+;(5)()()()20213116822⎛⎫-+-⨯--÷- ⎪⎝⎭;(6)()()222104132⎡⎤-+---⨯⎣⎦.18.化简:(1)232322343a a a a a --++;(2)2211218522a a a a ⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭.19.先化简,后求值:()()32323224a ab b a ab b -+---+,其中1a =-,17b =.20.已知多项式2512A x my =+-与多项式21B nx y =++(m 、n 为常数),如果23A B +中不含x 和y ,求mn 的值.21.某同学绘制了如图所示的火箭模型截面图,图的下面是梯形,中间是长方形,上面是三角形.(1)用含有a 、b 的代数式表示该截面的面积S ;(2)当 2.8a cm =, 2.2b cm =时,求这个截面的面积.22.某登山队5名队员以大本营为基地,向海拔距离大本营500米的顶峰发起登顶冲击,假设向上走为正,向下走为负,行程记录如下(单位:米)+120,-30,-45,+205,-30,+25,-20,-5,+30,+105,-25,+90.(1)他们有没有登上顶峰?如果没有登上顶峰,他们距离顶峰多少米?(2)登山时,5名队员在进行中全程均使用了氧气,每人每100米消耗氧气0.5升,求共使用了多少升氧气?23.观察下面三行数:2-,4,8-,16,32-,64,…;①0,6,6-,18,30-,66,…;②1-,2,4-,8,16-,32,…;③(1)第一行的第8个数是________,第二行的第8个数是________,第三行的第n 个数是________;(2)在第三行中,某三个连续数的和为96,求这三个数.24.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是________,表示3-和2两点之间的距离是________.(2)一般地,数轴上表示数m 和数n 的两点之间的距离等于m n -.如果表示数a 和1-的两点之间的距离是3,那么=a ________.(3)若数轴上表示数a 的点位于4-与2之间,则42a a ++-的值为________;(4)利用数轴找出所有符合条件的整数点x ,使得|x +2|+|x -5|=7,这些点表示的数的和是.(5)当=a ________时,314a a a ++-+-的值最小,最小值是________.25.如图,若点A 在数轴上对应的数为a ,点B 在数轴上对应的数为b ,且a ,b 满足2|1|(2)0a b -++=.(1)求线段AB 的长.(2)点C 在数轴上对应的数是c ,且c 是方程1232x x -=的解,在数轴上是否存在点P ,使得PA +PB =PC ?若存在,求出点P 对应的数;若不存在,请说明理由.(3)在(1)、(2)的条件下,点A 、B 、C 开始在数轴上运动,若点B 以每秒1个单位长度的速度向左运动,同时点A 和点C 分别以每秒4个单位长度和9个单位长度的速度向右运动,t 秒钟后,若点A 和点C 之间的距离表示为AC ,点A 和点B 之间的距离表示为AB ,那么AB -AC 的值是否随着时间的变化而变化?若变化,请说明理由;若不变,请求出AB -AC 的值.参考答案1.B【解析】【分析】利用有理数的减法运算,即可.【详解】--=,故选B.15(3)18【点睛】本题主要考查有理数的减法运算的实际运用,对题意的准确理解,列出算式,是解题的关键. 2.D【解析】【分析】先把各项分别化简,再根据负数的定义,即可解答.【详解】A、|-2|=2,不是负数;B、-(-2)=2,不是负数;C、(-2)2=4,不是负数;D、-22=-4,是负数.故选D.【点睛】本题考查了正数和负数,解决本题的关键是先进行化简.3.B【解析】【分析】根据绝对值的定义即可判断A和C,根据正整数的定义即可判断B,根据相反数的定义即可判断D.【详解】解:∵0的绝对值是0,∴A选项不合题意,∵由正整数的定义知最小的正整数是1,∴B选项符合题意,∵0的绝对值是0,但0不是正数,∴C选项不合题意,∵负数的相反数是正数,而正数大于负数,∴D选项不合题意,故选B.【点睛】本题主要考查了绝对值的定义,相反数的定义,整数的定义,解题的关键在于能够熟知定义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;如果两个数只有符号不同,数字相同,那么这两个数就叫做相反数,0的相反数是0.4.B【解析】【分析】根据整式的定义,结合题意即可得出答案.单项式和多项式都统称为整式.【详解】解:1a和1y的分母含有字母,是分式,不是整式;整式有12mn-,8,226x x++,25x y-,a-,共有5个,故选:B.【点睛】本题考查了整式的判断,理解整式的定义是解题的关键.5.D【解析】【分析】根据多项式的项以及单项式的次数、系数的定义即可作出判断.【详解】多项式2x2−3x+5是二次三项式,它的项分别是2x2,-3x,5;最高次项的系数是2,它的常数项是5,故A、B、C、正确,只有D 错误.故选D.【点睛】此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.6.B【解析】【分析】两个单项式的和是单项式,说明这两个单项式是同类项,根据同类项的定义可知n-1=2,m+2=4,从而求出m 、n ,继而求出m-n 的值.【详解】解:由题意可知:n-1=2,m+2=4,解得:n=3,m=2,∴m-n=2-3=-1.故选B.【点睛】本题考查了同类项的定义.7.D【解析】【分析】由和减去一个加数等于另一个加数,列出关系式,去括号合并即可得到结果.【详解】解:根据题意列得:2541x x +--(239x x +)=2251x x --,故选D .【点睛】此题考查了整式的加减运算,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.8.C【解析】根据非正数的绝对值是它的相反数即可求解.【详解】∵|-2a|=2a,∴-2a≤0,解得a≥0.故选:C.【点睛】此题考查绝对值,解题关键在于掌握如果用字母a表示有理数,则数a绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a 的绝对值是它的相反数-a;③当a是零时,a的绝对值是零.9.B【解析】【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【详解】根据题意得:a<b<0<c,∴b-c<0,a+b<0,则原式=c-b-a-b+a=c-2b.故选B.【点睛】此题考查整式的加减,熟练掌握运算法则是解本题的关键.10.C【解析】【分析】观察数字的变化设表格中左上角的数字为a,则左下角的数字为a+1,右上角的数字为2a+2,右下角的数字为(a+1)(2a+2)+a,进而可得结论.【详解】解:∵a+(a+2)=20,∵b=a+1,∴b=a+1=9+1=10,∴x=20b+a=20×10+9=200+9=209故选C.【点睛】本题考查了规律型:数字的变化类,解决本题的关键是观察数字的变化寻找规律,总结规律,运用规律.11.1 3【解析】【详解】解:根据相反数的定义可知1-3的相反数是13.故答案为:1 3.12.6.75×104【解析】【详解】解:67500=6.75×104.故答案为:6.75×104.13.>【解析】【分析】根据两个负数绝对值大的反而小进行比较即可.【详解】解:1153315-==,2265515-==,∵56 1515<,∴1235->-.故答案为:>.【点睛】本题考查了有理数大小比较,要熟练掌握并正确运用有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数比较大小,绝对值大的其值反而小.14.2±,3±【解析】【分析】根据绝对值意义以及有理数的大小比较即可求得答案.【详解】解:绝对值大于1.1而小于3.9的所有整数有2±,3±.故答案为:2±,3±.【点睛】本题考查了绝对值的意义,有理数的大小比较,理解绝对值的意义是解题的关键.15.2011【解析】【分析】将所求代数式适当变形,利用整体代入的思想方法解答即可得出结论.【详解】解:∵233m m --的值为2,∴2332m m --=,∴235m m -=.∴()222021262021232021252021102011m m m m -+=--=-⨯=-=.故答案为:2011.【点睛】此题考查了代数式求值,解题的关键是掌握整体代入的求解方法.16.1011【解析】【分析】由点的运动方式,可得到规律运动次数是奇数时,A 点在数轴上表示的数为1-,2-,3-,…运动次数是偶数时,A 点在数轴上表示的数为1,2,3,…,由于2022n =是偶数,则可求解.【详解】解:第一次A 点在数轴上表示的数为1-,第二次A 在数轴上表示的数为1,第三次A 在数轴上表示的数为到2-,第四次A 在数轴上表示的数为2,第五次A 在数轴上表示的数为3-,第六次A 在数轴上表示的数为3,⋯由此发现,运动次数是奇数时,A 点在数轴上表示的数为1-,2-,3-,⋯运动次数是偶数时,A 点在数轴上表示的数为1,2,3,⋯当2022n =时,A 点在数轴上表示的数为1011,∴点A 与原点的距离是1011个单位,故答案为:1011.【点睛】本题考查数字的变化规律;能够理解题意,并能由点运动后在数轴上表示的数总结出规律是解题的关键.17.(1)12;(2)-8;(3)-13;(4)1;(5)3;(6)-68【解析】【分析】(1)先把减法转化为加法,然后根据有理数加法的计算方法计算即可;(2)根据有理数的乘除法计算即可;(3)根据乘法分配律计算即可;(4)(5)先算乘方、再算乘除法、最后算加减法即可;(6)先算乘方和括号内的式子,然后算括号外的加法即可.【详解】解:(1)()()()()()()101251012512+-++---=+-+-+=;(2)()()324343823⎛⎫+⨯+÷-=-⨯⨯=- ⎪⎝⎭;(3)()25124382⎛⎫-⨯-+ ⎪⎝⎭()()()251242424382=-⨯--⨯-⨯()()161512=-++-13=-;(4)()()()()()()()2408321853418512181÷-+-⨯-+=-+-⨯+=-+-+=;(5)()()()()()()2021311682138813132⎛⎫-+-⨯--÷-=-+-÷-=-++= ⎪⎝⎭;(6)()()222104132⎡⎤-+---⨯⎣⎦()10016192=-+--⨯⎡⎤⎣⎦()1001682=-+--⨯⎡⎤⎣⎦()1001616=-++10032=-+68=-.【点睛】本题考查了有理数的混合运算,正确的计算是解题的关键.18.(1)2a -;(2)2734a a +-【解析】【分析】(1)根据合并同类项法则求解即可求出答案.(2)先去括号,然后合并同类项即可求出答案.【详解】解:(1)232322343a a a a a --++222332433a a a a a =-++-2a =-.(2)2211218522a a a a ⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭2235285522a a a a =-+-+-2235258522a a a a =++---2734a a =+-【点睛】本题考查整式的加减,熟练运用整式的加减运算法则是解题的关键.19.3257a b -,157-【解析】【分析】去括号,合并同类项,再把1a =-,17b =,代入化简后的多项式计算.【详解】解:()()32323224a ab b a ab b -+---+323232228a ab b a ab b ++=-+-3257a b =-,当1a =-,17b =,原式()2311517577⎛⎫=⨯--⨯=- ⎪⎝⎭.【点睛】本题考查了整式的加减—化简求值,熟练掌握整式的加减—化简求值的步骤:先化简,再把给定字母的值代入计算,得出整式的值,合并同类项是解题关键.20.5【解析】【分析】先根据整式的加减计算法则求出()()2231032321A B n x m y +=+++-,然后;令含x 和含y的项的系数为0,即可得到m 、n 的值,然后代值计算即可【详解】解:∵2512A x my =+-,21B nx y =++,∴()()2223251231A B x my nx y +=+-+++2210224333x my nx y =+-+++()()21032321n x m y =+++-,∵23A B +中不含x 和y ,∴1030 230nm+=⎧⎨+=⎩,∴32103 mn⎧=-⎪⎪⎨⎪=-⎪⎩,∴310523mn⎛⎫=-⨯-=⎪⎝⎭.【点睛】本题主要考查了整式的加减计算,代数式求值,解题的关键在于熟知如果一个多项式中不含某个字母,则含有这个字母的项的系数为0.21.(1)S=2a2+2ab;(2)28cm2.【解析】【分析】(1)根据题意和图形中的数据可以用代数式表示出截面的面积S;(2)将a、b的值代入(1)中的代数式即可解答本题.【详解】解:(1)由题意可得,该截面的面积S=12ab+a•2a+12(a+2a)•b=12ab+2a2+12ab+ab=2a2+2ab,即该截面的面积S是2a2+2ab;(2)当a=2.8cm,b=2.2cm时,S=2×2.82+2×2.8×2.2=15.68+12.32=28cm2,答:这个截面的面积是28cm2.【点睛】本题考查代数式求值、列代数式,解答本题的关键是明确题意,列出相应的代数式,求出代数式的值,利用数形结合的思想解答.22.(1)他们没有登上顶峰,他们距离顶峰80米;(2)18.25【解析】【分析】(1)将行程的数据相加,与500比较,进而判断是否登上顶峰,再计算距离顶峰多少米;(2)将行程的数据的绝对值相加,根据每人每100米消耗氧气0.5升,计算即可【详解】(1)12030452053025205301052590--+-+--++-+420=(米).50042080-=(米),答:他们没有登上顶峰,他们距离顶峰80米.(2)12030452053025205301052590730+++++++++++=(米),每人每100米消耗氧气0.5升,∴73051000.518.25⨯÷⨯=(升),答:他们共消耗18.25升氧气.【点睛】本题考查了有理数加减法的应用,有理数的混合运算,理解题意正确的计算是解题的关键.23.(1)256,258,()22n-÷;(2)32,64-,128【解析】【分析】(1)观察每一行数的规律即可写出每一行的第n 个数;(2)根据(1)中得到的规律得第三行的第n 个数为()12n --,根据条件建立方程,就可解决问题.【详解】解:(1)观察三行数的规律可知:第1行第1个数为:()122-=-,第1行第2个数为:()224-=,第1行第3个数为:()328-=-,第1行第4个数为:()4216-=,∴第1行数的第n 个数为:()2n-;第2行数的第1个数为:()122220-+=-+=,第2行数的第2个数为:()222426-+=+=,第2行数的第3个数为:()322826-+=-+=-,第2行数的第4个数为:()42216218-+=+=,∴第2行数的第n 个数为:()22n -+;第3行数的第1个数为:()122221-÷=-÷=-,第3行数的第2个数为:()222422-÷=÷=,第3行数的第3个数为:()322824-÷=-÷=-,第3行数的第4个数为:()4221628-÷=÷=,∴第3行数的第n 个数为:()22n -÷.∴第一行的第8个数是()82256-=,第二行的第8个数是()8222562258-+=+=,第三行的第n 个数是()22n -÷,故答案为:256,258,()22n-÷;(2)第三行的第n 个数为()22n -÷,若第三行的第n 个数、第()1n +个数、第()1n -个数的和为96,则有()()()1122222296n n n -+-÷+-÷+-÷=,∴()()()11222192n n n -+-+-+-=,∴()()()()()()111222222192n n n ----+-⨯-+-⨯-⨯-=∴()()12124192n --⨯-+=,∴()162642n --==,∴16n -=,∴7n =,∴()712232--÷=,()72264-÷=-,()7122128+-÷=,∴这三个数为32,64-,128.【点睛】本题主要考查了含乘方的有理数混合计算,数字类的规律问题,解题的关键在于能够根据题意准确得到规律.24.(1)3,5;(2)2或-4;(3)6;(4)12;(5)1;7【解析】【分析】(1)根据数轴上两点之间的距离等于两点所表示数的绝对值进行解答即可;(2)根据数轴上两点之间的距离等于两点所表示数的绝对值得到13a +=,解得即可;(3)先根据表示数a 的点位于5-与2之间可知52a -<<,再根据绝对值的性质把原式去掉绝对值符号求出a 的值即可;(4)根据线段上的点到线段两端点的距离的和最小,可得答案.(5)根据分类讨论的数学思想可以解答本题.【详解】解:(1)由数轴上两点之间的距离公式可知:数轴上表示4和1的两点之间的距离是413-=;表示3-和2两点之间的距离是325--=;故答案为:3,5;(2)若表示数a 和1-的两点之间的距离是3,则13a +=,解得2a =或4a =-,故答案为:2或4-;(3)∵42a -<<,∴42426a a a a ++-=++-=;故答案为:6;(4)当5x >时,7252523x x x x x ++-=++=->-,当25x -≤≤时,25257x x x x ++-=++-=,当2x <-时,2525237x x x x x ++-=--+-=-+>,∴使得257x x ++-=的所有整数为:2-,1-,0,1,2,3,4,5,∵()2101234512-+-++++++=,故答案为:12;(5)当4a >时,3143143210a a a a a a a ++-+-=++-+-=->,当14a <≤时,3143146a a a a a a a ++-+-=++-+-=+,则7610a <+≤,当31a -<≤时,3143148a a a a a a a ++-+-=++-+-=-,则7181a ≤-<,当3x ≤-时,3143143211a a a a a a a ++-+-=--+-+-=-+≥,由上可得,当1a =时,314a a a ++-+-的值最小,最小值是7,故答案为:1,7.【点睛】本题考查数轴、绝对值等知识点,明确题意,利用数轴的特点和分类讨论的数学思想解答是解答本题的关键.25.(1)3;(2)存在,3-或1-;(3)2,理由见解析【解析】【分析】(1)根据非负数的性质可确定,a b 的值,进而求得AB 的长度;(2)先解方程求得x 的值,再根据PA PB PC +=,求得点P 对应的数;(3)根据,,A B C 的运动情况,即可确定,AB AC 的变化情况,进而确定AB BC -的值.【详解】(1) 2|1|(2)0a b -++=,10,20a b ∴-=+=,解得1,2a b ==-,∴线段AB 的长为:1(2)3--=;(2)解1232x x -=,解得2x =,C ∴点对应的数是2,如图,设P 对应的数为y , PA PB PC +=,由图可知P 在A 的右侧时不存在,①当P 在B 点的左侧时,122y y y ---=-,解得3y =-,②当P 点在A ,B 之间时,32y =-,解得1y =-,∴存在点P 使得PA PB PC +=,P 对应的数是3-或1-;(3)AB AC -的值不随着时间t 的变化而变化,理由如下:t 秒钟后,A 点的位置为:14t +,B 点的位置为2t --,C点的位置为29t+,=+---=+,14(2)53AB t t t=+-+=+,AC t t t29(14)51-=+-+=,AB AC t t53(51)2∴AB AC-的值不随着时间t的变化而变化,值为2.。
七年级上册数学期中试卷【含答案】
七年级上册数学期中试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 37C. 39D. 402. 一个等腰三角形的底边长是10cm,腰长是13cm,那么这个三角形的周长是?A. 32cmB. 36cmC. 42cmD. 46cm3. 下列哪个数是偶数?A. 101B. 102C. 103D. 1044. 一个正方形的边长是8cm,那么它的面积是?A. 32cm²B. 64cm²C. 128cm²D. 256cm²5. 下列哪个分数是最简分数?A. 2/4B. 3/6C. 4/8D. 5/10二、判断题(每题1分,共5分)1. 0是最小的自然数。
()2. 任何两个奇数相加的和都是偶数。
()3. 一个等边三角形的三个角都是60度。
()4. 两个负数相乘的结果是正数。
()5. 1是任何非0数的倒数。
()三、填空题(每题1分,共5分)1. 最大的两位数是______。
2. 5的立方是______。
3. 6的平方根是______。
4. 一个圆的半径是5cm,那么它的直径是______cm。
5. 1千克等于______克。
四、简答题(每题2分,共10分)1. 请简述平行线的性质。
2. 请解释什么是质数。
3. 请说明什么是等腰三角形。
4. 请解释什么是比例。
5. 请简述什么是概率。
五、应用题(每题2分,共10分)1. 一个长方形的长是10cm,宽是5cm,求这个长方形的周长和面积。
2. 一个等腰三角形的底边长是12cm,腰长是15cm,求这个三角形的周长。
3. 一个正方形的边长是6cm,求这个正方形的面积。
4. 两个数的和是17,差是5,求这两个数。
5. 一个数的3倍加5等于这个数的2倍减3,求这个数。
六、分析题(每题5分,共10分)1. 有一个长方形的长是10cm,宽是5cm,如果长和宽都增加2cm,那么这个长方形的周长和面积分别是多少?2. 有一个等腰三角形的底边长是8cm,腰长是10cm,如果底边长增加2cm,腰长增加3cm,那么这个三角形的周长是多少?七、实践操作题(每题5分,共10分)1. 请画出一个边长为6cm的正方形,并标出它的对角线。
七年级上册数学期中考试试卷及答案
七年级上册数学期中考试试题一、单选题1.下面四个数中比﹣5小的数是()A .1B .0C .﹣4D .﹣62.如果a 与2020-互为倒数,那么a 的值是()A .2020B .2020-C .12020D .12020-3.下列各式计算结果为负数的是()A .﹣(﹣1)B .|﹣(+1)|C .﹣|﹣1|D .|1﹣2|4.由中国南车制造的CTT500型高铁,它的实验速度高达605公里/小时,打破了法国高速列车574.8公里/小时的世界纪录.若保持这样的速度,用科学记数法写出行驶10小时的路程为()A .46.0510⨯公里B .36.0510⨯公里C .56.0510⨯公里D .30.60510⨯公里5.下列去括号正确的是()A .﹣(a+b ﹣c )=a+b ﹣cB .﹣2(a+b ﹣3c )=﹣2a ﹣2b+6cC .﹣(﹣a ﹣b ﹣c )=﹣a+b+cD .﹣(a ﹣b ﹣c )=﹣a+b ﹣c 6.下列判断中正确的是()A .23a bc 与2b ca 是同类项B .25m n 不是整式C .单项式32x y -的系数是1-D .2235x y xy -+是二次三项式7.有理数a ,b ,c 在数轴上的位置如图所示,则a b b c +--的值为()A .2a b c --B .a c +C .2a b c--+D .a c--8.已知21a b -+的值是1-,则()3224a b a b --+的值是()A .4-B .10-C .0D .2-9.如图,A 、B 、C 、D 是数轴上的四个整数所对应的点,且1B A C B D C -=-=-=,而数m 在A 与B 之间,数n 在C 与D 之间,若3m n +-=,且A 、B 、C 、D 中有一个是原点,则此原点可能是()A .A 点或D 点B .B 点或D 点C .A 点D .D 点10.已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,求422a bx cdx ++-的值是()A .10B .-10C .20D .-20二、填空题11.用四舍五入法按照要求对0.43295取近似值,精确到千分位是________.12.若25-m x y 与n x y 是同类项,则m n +=__________.13.某超市销售的一种水果原价为m 元,因为销量不好,降价10%进行销售,一段时间后销量良好,决定提价20%,提价20%后这种水果的价格为________.14.若式子()333394mx x x nx -+--的值与x 无关,则mn 的值是________.15.对于有理数a ,b 定义一种新运算:*24a b a b =-+-.则()3*4*2-⎡⎤⎣⎦的值是________.16.如图是用大小相等的小正方形拼成的一组图案:…(1)(2)(3)(4)…观察并探索:第(100)个图案中有小正方形的个数是________.17.如果水库水位上升2m 记作+2m ,那么水库水位下降6m 记作_____.三、解答题18.计算:(1)()()1536---+.(2)()948149-÷⨯.(3)()157362612⎛⎫--⨯- ⎪⎝⎭.(4)()2411133162⎛⎫⎡⎤--⨯+-÷- ⎪⎣⎦⎝⎭.19.化简:(1)()()223222a a a a ++-+.(2)()2243324y y y y ⎡⎤---+⎣⎦.20.先化简,再求值:()()225214382a a a a+---+,其中3a =-.21.已知a 、b 互为相反数,x 、y 互为倒数,m 到原点距离2个单位.(1)根据题意,m =________.(2)求()202022a b mxy +++-的值.22.某公园中一块草坪的形状如图中的阴影部分.()1用整式表示草坪的面积;()2若2a =米,5b =米,求草坪的面积.23.已知一个三角形的第一条边长为3a b +,第二条边比第一条边短2a b -,第三条边比第二条边长2a b +.(1)则第二边的边长为________,第三条的边长为________.(2)用含a ,b 的式子表示这个三角形的周长,并化简.(3)若a ,b 满足()2870a b -+-=,求这个三角形的周长.24.小丽暑假期间参加社会实践活动,从某批发市场以每个a 元的价格购进50个手机充电宝,然后每个加价b 元到市场出售.(以下结果用含a ,b 的式子表示)(1)全部售出50个手机充电宝的总销售额为多少元?(2)由于开学临近,小丽在成功售出30充电宝后,决定将剩余充电宝按售价8折出售,并很快全部售完.①她的总销售额是多少元?②如果不采取降价销售,并且全部售出这50个充电宝,小丽将比实际销售多盈利多少元?25.“幸福是奋斗出来的”,在数轴上,若C 到A 的距离刚好是3,则C 点叫做A 的“幸福点”;若C 到A 、B 的距离之和为6,则C 叫做A 和B 的“幸福中心”.(1)如图1,点A 表示的数为1-,则A 的幸福点C 所表示的数应该是________.(2)如图2,M 、N 为数轴上两点,点M 所表示的数为4,点N 所表示的数为2-,若点C 就是M 和N 的幸福中心,则C 所表示的所有数中,整数之和为________.(3)如图3,A 、B 、C 为数轴上三点,点A 所表示的数为1-,点B 所表示的数为4,点C 所表示的数为8,点P 从点C 出发,以每秒2个单位的速度向左运动,同时,点M ,N 分别从点A ,B 以每秒1个单位的速度向右运动,经过多少秒时,点P 是M 和N 的幸福中心?26.已知A 点的初始位置位于数轴上表示1的点,现对点A 做如下移动:第1次向左移动3个单位长度至1A 点,第2次从1A 点向右移动6个单位长度至2A 点,第3次从2A 点向左移动9个单位长度至3A 点,第4次从3A 点向右移动12个单位长度至4A 点,…,依此类推.设点i A (1,2,3,i =⋅⋅⋅)对应的数为i a (1,2,3,i =⋅⋅⋅).(1)点5A 对应的数5a =________,点6A 对应的数6a =________.(2)第n 次移动到点n A ,求n a 的表达式(用含n 的式子表示).(3)是否存在第m 次移动到的点m A 到原点的距离为2020?如果存在,请求出m 的值,若不存在,请说明理由.参考答案1.D【解析】【详解】解:根据有理数比较大小的方法,可得﹣5<1,﹣5<0,﹣5<﹣4,﹣5>﹣6,∴四个数中比﹣5小的数是﹣6.故选:D.2.D【解析】【分析】根据倒数的概念求解可得.【详解】解:∵1()(2020)1 2020-⨯-=,∴-2020的倒数是1 2020 -,故选:D.【点睛】本题主要考查了倒数,解题的关键是掌握乘积是1的两数互为倒数.3.C【解析】【分析】将各式的结果计算出来,再根据小于零的数是负数,可得答案.【详解】A.﹣(﹣1)=1,1是正数,故A错误;B.|﹣(+1)|=1,1是正数,故B错误;C.﹣|﹣1|=﹣1,﹣1是负数,故C正确;D.|1﹣2|=|-1|=1,1是正数,故D错误.故选:C.【点睛】本题考查了正数和负数.掌握正数和负数的分辨,明确小于零的数是负数,能够正确化简各数是解题的关键.4.B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:605×10=6.05×103(公里),故选:B.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.B【解析】【分析】若括号前是“+”,去括号后,括号里的各项都不改变符号;若括号前是“﹣”,去括号后,括号里的各项符号发生改变,“﹣”遇“+”变“﹣”号,“﹣”遇“﹣”变“+”;据此判断.【详解】解:A、﹣(a+b﹣c)=﹣a﹣b+c,所以A不符合题意;B、﹣2(a+b﹣3c)=﹣2a﹣2b+6c,正确;C、﹣(﹣a﹣b﹣c)=a+b+c,所以C不符合题意;D、﹣(a﹣b﹣c)=﹣a+b+c,所以D不符合题意;故选:B.【点睛】本题考查去括号的知识,若括号前是“+”,去括号后,括号里的各项都不改变符号;若括号前是“﹣”,去括号后,括号里的各项符号发生改变.6.C【解析】【分析】分别根据同类项的定义,整式的定义,单项式的定义以及多项式的定义逐一判断即可.【详解】解:A 、23a bc 与2b ca ,所含字母相同,但是相同字母的指数不相同,故本选项不合题意;B 、25m n 属于整式,故本选项不合题意;C 、单项式32x y -的系数是1-,故本选项符合题意;D 、2235x y xy -+是三次三项式,故本选项不合题意;故选:C .【点睛】本题主要考查了同类项,整式,单项式与多项式的定义,熟记相关定义是解答本题的关键.7.D 【解析】【分析】先根据数轴判断出a 、b 、c 的正负情况以及绝对值的大小,然后判断出a+b ,b-c 的正负情况,再根据绝对值的性质去掉绝对值号,合并同类项即可.【详解】解:根据图形可知,b <c <0<a ,且|b|>|a|>|c|,∴a+b <0,b-c <0,∴|a+b|−|b−c|=-(a+b )+(b-c )=-a-b+b-c =-a-c .故选:D .【点睛】本题考查了整式的加减,数轴与绝对值的性质,根据数轴判断出a 、b 、c 的大小关系以及a+b ,b-c 的正负情况是解题的关键,也是难点.8.D 【解析】【分析】先化简多项式,再变形已知条件,最后整体代入求值.【详解】解:3(2)24a b a b --+3624a b a b=--+2a b =-,21a b -+ 的值是1-,211a b ∴-+=-.即22a b -=-.∴原式2=-.故选:D .【点睛】本题考查了整式的加减,掌握整式加减的运算法则是解决本题的关键.9.A 【解析】【分析】先根据图形和已知条件找出各线段长度,然后由3m n +-=推测原点位置.【详解】解:由“B-A=C-B=D-C=1且数m 在A 与B 之间,数n 在C 与D 之间”可以得出:1AB BC CD ===3AD ∴=①当原点是B 点或C 点时,3m n +-<与已知3m n +-=相矛盾,故原点不可能是B 点或C 点;②当原点在A 点或D 点且A m D n -=-时,3m n m n +-=+=,综上可知:数轴原点可能是A 点或D 点.故选A .【点睛】本题主要考查了数轴和绝对值,解决本题的关键在于理解绝对值的几何意义.10.C 【解析】【分析】根据相反数的定义,倒数的定义,绝对值的定义求出a+b=0,cd=1,2x =±,分两种情况代入数值计算即可.【详解】解:∵a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,∴a+b=0,cd=1,2x =±,当x=2时,422a bx cdx ++-=16+4-0=20,当x=-2时,422a b x cdx ++-=16+4-0=20,故选:C .【点睛】此题考查已知式子的值求代数式的值,正确掌握相反数的定义,倒数的定义,绝对值的定义是解题的关键.11.0.433【解析】【分析】把万分位上的数字9进行四舍五入即可.【详解】解:0.43295≈0.433(精确到千分位).故答案是:0.433.【点睛】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有精确到哪一位,保留几个有效数字等说法.12.3.【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程等式,求出n ,m 的值,再相加即可.【详解】∵-5x 2y m 和x n y 是同类项,∴n=2,m=1,∴m+n=2+1=3.13.1.08m 【解析】【分析】直接利用降价与提价的变化得出变化后实际价格.【详解】解:由题意可得:m (1-10%)(1+20%)=1.08m (元).故答案为:1.08m .【点睛】本题主要考查了列代数式,正确表示出变化后价格是解题关键.14.4【解析】【分析】先将原式化简为()()33439m x n x -+-+,,再根据多项式的值与x 无关,可得340m -=,30n -=,由此即可求得mn 的值.【详解】解:33339(4)mx x x nx -+--333394mx x x nx =-+-+()()33439m x n x =-+-+,式子33339(4)mx x x nx -+--的值与x 无关,340m ∴-=,30n -=,43m ∴=,3n =.4343mn ∴=⨯=.故答案为:4.【点睛】本题考查了整式的加减运算,重点是根据题中条件得到340m -=,30n -=,同学们应灵活掌握.15.-7【解析】【分析】先计算(-3)*4得出其结果,再代入[(-3)*4]*2列式计算即可.【详解】解:∵(-3)*4=-(-3)+2×4-4=3+8-4=7,∴[(-3)*4]*2=7*2=-7+2×2-4=-7+4-4=-7,故答案为:-7.【点睛】本题主要考查了有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.16.397【解析】【分析】观察图形可知后面一个图形比前面一个图形多4个小正方形,所以可得规律为:第n 个图形中共有4(1)1n -+个小正方形.【详解】解:由图片可知:第(1)个图案中有4011⨯+=个小正方形,第(2)个图案中有4115⨯+=个小正方形,第(3)个图案中有4219⨯+=个小正方形,⋯∴规律为小正方形的个数4(1)143n n =-+=-.当100n =时,小正方形的个数41003397=⨯-=.故答案为:397.【点睛】此题考查了规律型:图形的变化,是找规律题,目的是培养同学们观察、分析问题的能力.注意由特殊到一般的分析方法,此题的规律为:第n 个图形中共有4(1)1n -+个小正方形.17.﹣6m .【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:∵“正”和“负”相对,水位上升2m ,记作+2m ,∴水位下降6m ,记作﹣6m .故答案为﹣6m .【点睛】本题主要考查了理解“正”和“负”的相对性,确定一对具有相反意义的量,比较简单.18.(1)6-;(2)16-;(3)33;(4)13【解析】【分析】(1)根据有理数的加减运算法则计算即可;(2)根据有理数的乘除运算法则计算即可;(3)根据乘法的分配律计算即可;(4)根据有理数的乘方以及混合运算,计算即可;【详解】解:(1)()()()153615366---+=-++=-(2)()94448181164999-÷⨯=-⨯⨯=-(3)()15715736(36)(36)(36)1830213326122612⎛⎫--⨯-=⨯--⨯--⨯-=-++= ⎪⎝⎭(4)()2411133162⎛⎫⎡⎤--⨯+-÷- ⎪⎣⎦⎝⎭121(39)(63=--⨯+⨯-12112(63=--⨯⨯-413=-+13=【点睛】此题考查了有理数的运算,涉及了加减、乘除以及乘方,熟练掌握有理数的运算法则是解题的关键.19.(1)254a +;(2)35y -.【解析】【分析】(1)先去括号,然后合并同类项即可求出答案;(2)先去小括号,再去中括号,然后合并同类项即可求出答案.【详解】解:(1)原式2232224a a a a =++-+254a =+;(2)原式224(3324)y y y y =--++2243324y y y y =-+--35y =-.【点睛】本题考查整式的加减运算,解题的关键是熟练运用整式的加减运算法则,本题属于基础题型.20.233413a a -+-,142-【解析】【分析】先将原式去括号合并同类项得到最简结果,再将a 的值代入计算即可求出值.【详解】解:原式2252112328a a a a =+--+-,233413a a =-+-,当3a =-时,原式23(3)34(3)13=-⨯-+⨯--2710213=---142=-.【点睛】此题考查了整式的加减-化简求值,涉及的知识有:去括号法则以及合并同类项法则,熟练掌握运算法则是解本题的关键.21.(1)2或-2;(2)5.【解析】【分析】(1)根据绝对值的定义可得答案;(2)先根据相反数的性质、倒数的定义得出a+b=0,xy=1,再结合m 的值分别代入计算即可.【详解】解:(1)∵m 到原点距离2个单位,∴m=2或-2,故答案为:2或-2;(2)根据题意知a+b=0,xy=1,m=2或-2,当m=2时,()202022a b m xy +++-=22+0+(-1)2020=4+1=5;当m=-2时,()202022a b m xy +++-=(-2)2+0+(-1)2020=4+1=5;综上,()202022a b m xy +++-的值为5.【点睛】本题主要考查了有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.22.(1)草坪的面积为18ab 平方米;()2草坪的面积是180平方米.【解析】【分析】(1)草坪的面积=大长方形的面积-两个空白长方形的面积,应该根据图中数据逐一进行计算,然后求差;(2)将a 2=米,b 5=米代入求值即可.【详解】(1)(1.5b+2.5b )(a+2a+a+2a+a )-2.5b×2a×2=18ab ,即草坪的面积为18ab 平方米;(2)当a 2=米,b 5=米时,18ab 1825180=⨯⨯=(平方米),答:草坪的面积是180平方米.【点睛】本题考查了列代数式和代数式求值,解决这类问题首先要从简单图形入手,认清各图形的关系,然后求解.23.(1)23a b +,44a b +;(2)98a b +;(3)128【解析】【分析】(1)根据题意列出算式即可求出答案;(2)列出算式后,根据整式的运算法则即可求出答案;(3)先求出a 与b 的值,然后代入原式即可求出答案.【详解】解:(1)第二条边为(3)(2)3223a b a b a b a b a b +--=+-+=+,第三条边为:(23)(2)23244a b a b a b a b a b +++=+++=+,故答案为:23a b +,44a b +;(2)该三角形的周长为:(3)(23)(44)a b a b a b +++++32344a b a b a b=+++++98a b =+;(3)∵()2870a b -+-=,且80a -≥,()270b -≥,∴80a -=,70b -=,∴8a =,7b =,∴该三角形的周长为:9887128⨯+⨯=.【点睛】本题考查整式加减的应用,解题的关键是熟练运用整式加减的运算法则,本题属于基础题型,也考查了绝对值和平方的非负性.24.(1)全部售出50个手机充电宝的总销售额为50(a+b )元(2)①她的总销售额是(46a+46b )元;②小丽将比实际销售多盈利(4a+4b )元.【解析】【分析】(1)根据总销售额=销售单价×数量列出式子即可.(2)①总销售额等于未打折的30个充电宝的销售额+(50-30)个打8折的充电宝的销售额,列出算式并化简即可;②用(1)中的销售额减去(2)①中的销售额,计算即可.【详解】解:(1)由题意可知,每个手机充电宝的售价为(a+b )元,∴全部售出50个手机充电宝的总销售额为:50(a+b )元.(2)①由题意得:30(a+b )+(50-30)(a+b )×0.8=30a+30b+16a+16b=(46a+46b )元,∴她的总销售额是(46a+46b )元;②由题意得:50(a+b )-46(a+b )=(4a+4b )元,∴小丽将比实际销售多盈利(4a+4b )元.【点睛】本题考查了列代数式在成本利润问题中的应用,明确成本利润问题的基本数量关系是解题的关键.25.(1)2或4-;(2)7;(3)76秒或196秒【解析】【分析】(1)根据幸福点的定义即可求解,注意分类讨论;(2)先根据题意可求得6MN =,由此再结合幸福中心的定义即可求解;(3)分两种情况讨论:①P 在N 的右边;②P 在M 的左边,由此可以得出结论.【详解】解:(1)132-+= ,134--=-,A ∴的幸福点C 所表示的数应该是2或4-,故答案为:2或4-;(2)4(2)6MN =--= ,M ∴,N 之间的所有数都是M ,N 的幸福中心,故C 所表示的整数可以是2-或1-或0或1或2或3或4,21012347∴--+++++=,故答案为:7;(3)设经过x 秒时,点P 是M 和N 的幸福中心,由题意可得:点P 表示的数为82x -,点M 表示的数为1x -+,点N 表示的数为4x +,∴4(1)56MN x x =+--+=<,又∵点P 是M 和N 的幸福中心,∴点P 在点M 的左边或者在点N 的右边,①当点P 在N 的右边时,有82(4)82(1)6x x x x --++---+=,解得:76x =;②当点P 在M 的左边时,有4(82)(1)(82)6x x x x +--+-+--=,解得:196x =.答:当经过76秒或196秒时,点P 是M 和N 的幸福中心.【点睛】本题考查了一元一次方程的应用、数轴及数轴上两点的距离、动点问题,熟练掌握动点中三个量的数量关系式:路程=时间⨯速度,认真理解新定义,学会运用分类讨论思想是解决本题的关键.该类题型主要考查学生对新知识的接受和应用能力.26.(1)8-;10;(2)()()312322n n n a n n +⎧-⎪⎪=⎨+⎪⎪⎩为奇数时为偶数时;(3)1346【解析】【分析】(1)按照题目,找出已知规律,推算即可;(2)根据数轴上点所对应的数的变化和平移规律(左减右加),分别求出点所对应的数,进而求出点到原点的距离;然后对第奇数个以及第偶数个分别探究,找出其中的规律(相邻两数都相差3),进而写出表达式就可解决问题;(3)利用(2)中的结论,代入求值.【详解】解:(1)第1次点A 向左移动3个单位长度至点1A ,则1A 表示的数,132-=-;第2次从点1A 向右移动6个单位长度至点2A ,则2A 表示的数为264-+=;第3次从点2A 向左移动9个单位长度至点3A ,则3A 表示的数为495-=-;第4次从点3A 向右移动12个单位长度至点4A ,则4A 表示的数为5127-+=;第5次从点4A 向左移动15个单位长度至点5A ,则5A 表示的数为7158-=-;第6次从点5A 向右移动18个单位长度至点6A ,则6A 表示的数为81810-+=;故答案是:8-;10;(2)由(1)可知,当移动次数n 为奇数时,点n A 在原点的左侧,1369123n a n-+-+--=…1(36)(912)[3(2)3(1)]3n n n=+-++-+++--+--…11332n n-=+⨯-312n +=-,当移动次数n 为偶数时,点n A 在原点的右侧,1369123(1)3n a n n-+-+---+=...1(36)(912)[3(1)3]n n =+-++-+++--+ (13)2n=+⨯322n +=,综上所述,()()312322n n n a n n +⎧-⎪⎪=⎨+⎪⎪⎩为奇数时为偶数时;(3)根据题意,得当移动次数n 为奇数时,3120202m +-=-,解得:40393m =(不符合题意,舍去),当移动次数n 为偶数时,3220202m +=,解得:1346m =,∴存在第m 次移动到的点m A 到原点的距离为2020,此时m 的值为1346.。
七年级上册数学期中考试试卷附答案
七年级上册数学期中考试试题2022年一、单选题1.中国人最早使用负数,可追溯到两千多年前的秦汉时期,2021-的相反数是()A.2021-B.2021C.12021D.12021-2.下列运算正确的是()A.4m-m=3B.2a2-3a2=-a2C.a2b-ab2=0D.x-(y-x)=-y3.下列各数中最大的是()A.3-B.2-C.0D.14.12-的倒数是()A.﹣2B.12C.12-D.12±5.与a﹣b﹣c 的值不相等的是()A.a﹣(b﹣c)B.a﹣(b+c)C.(a﹣b)+(﹣c)D.(﹣b)+(a﹣c)6.将这个数285000000用科学记数法表示为()A.628510⨯B.728.510⨯C.82.8510⨯D.90.28510⨯7.一个多项式与5a 2+2a﹣1的和是6a 2﹣5a+3,则这个多项式是()A.a 2﹣7a+4B.a 2﹣3a+2C.a 2﹣7a+2D.a 2﹣3a+48.用四舍五入法,0.00356精确到万分位的近似数是()A.0.003B.0.004C.0.0035D.0.00369.定义一种新运算“*”,即()*23m n m n =+⨯-,例如()2*322339=+⨯-=.则()6*3-的值为()A.12B.24C.27D.3010.已知a 、b 是不为0的有理数,且a a =-,b b =,a b >,那么用数轴上的点来表示a 、b ,正确的是()A.B.C.D.二、填空题11.如果把“增加16%”记作“16%”,那么“______”表示“减少8%”.12.已知飞机的飞行高度为10000m ,上升5000m -后,飞机的飞行高度是____m .13.多项式232xy x y -+的次数是_____.14.如果223m n xy -与35m x y -是同类项,则n m 的值为______.15.若代数式5x-5与2x-9的值互为相反数,则x=________.16.已知a、b、c 三个数在数轴上对应点的位置如图所示,下列几个判断:①a<c<b;②﹣a<b;③a+b>0;④c﹣a<0中,错误的是_____(写序号)17.当2x =时,代数式31ax bx -+的值等于-17,那么当1x =-时,代数式33125bx ax -+-的值____.18.若单项式﹣23ax y与﹣2513b x y +是同类项,则a+b=___.三、解答题19.计算:()2411236⎡⎤--⨯--⎣⎦20.计算:22711150(6)(7)9126⎡⎤⎛⎫--+⨯-÷- ⎪⎢⎥⎝⎭⎣⎦.21.先化简,再求值:()223233()a ab a b ab b ⎡⎤---++⎣⎦,其中3a =-,13b =.22.已知多项式22622452x mxy y xy x --+-+化简后的结果中不含xy 项.(1)求m 的值;(2)求代数式32322125m m m m m m ---+--++的值.23.若a、b 互为相反数,c、d 互为倒数,m 的绝对值为2.(1)直接写出:a+b=,cd=,m=;(2)求a bm cd m+++的值.24.某公司5天内货品进出仓库的吨数如下:(“+”表示进库,“一”表示出库)+23,﹣30,﹣16,+35,﹣33(1)经过这5天,仓库里的货品是(填“增多了”还是“减少了”).(2)经过这5天,仓库管理员结算发现仓库里还有货品508吨,那么5天前仓库里存有货品多少吨?(3)如果进出货的装卸费都是每吨4元,那么这5天一共要付多少元装卸费?25.已知多项式2244A x xy y =-+,225Bx xy y =--.(1)求23A B -;(2)若0A B C ++=,求多项式C .26.某人去水果批发市场采购猕猴桃,他看中了A、B 两家猕猴桃.这两家猕猴桃品质一样,零售价都为6元/千克,批发价各不相同,A 家规定:批发数量不超过1000千克,按零售价的92%优惠;批发数量不超过2000千克,按零售价的90%优惠;超过2000千克的按零售价的88%优惠.B 家的规定如下表:数量范围(千克)0~500500以上~15001500以上~25002500以上价格(元)零售价的95%零售价的85%零售价的75%零售价的70%(1)如果他批发600千克猕猴桃,则他在A 、B 两家批发分别需要多少元?(2)如果他批发x 千克猕猴桃(1500<x<2000),请你分别用含x 的代数式表示他在A、B 两家批发所需的费用;(3)现在他要批发1800千克猕猴桃,你能帮助他选择在哪家批发更优惠吗?请说明理由.27.小明妈妈在某玩具厂工作,厂里规定每个工人生产某种玩具,原计划每天生产20个,但由于种种原因,实际每天生产个数与原计划每天生产个数相比有出入.下表是小明妈妈十天内的生产情况记录表(超过记为正、不足记为负):天数12214增、减产值+6﹣7﹣4+5﹣1(1)与原计划相比,小明妈妈十天生产玩具总计超过或不足多少个?(2)该厂实行“每日计件工资制”,每生产一个玩具可得工资5元,求小明妈妈这十天的工资总额是多少元?参考答案1.B【解析】【分析】根据相反数的定义求解即可.【详解】解:根据相反数的定义:−2021的相反数是2021,【点睛】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.B 【解析】【分析】根据整式加减法的运算法则“如果遇到括号.按去括号法则先去括号:括号前是“+”号,把括号和它前面的“+”号去掉.括号里各项都不变符号,括号前是“-”号,把括号和它前面的“-”号去掉.括号里各项都改变符号.合并同类项:同类项的系数相加,所得的结果作为系数.字母和字母的指数不变.”进行逐项判断即可.【详解】解:A.43m m -=,故A 选项错误;B.22223a a a -=-,故B 选项正确;C.不是同类项,无法进行减法运算,故C 选项错误;D.()2x y x x y --=+,故D 选项错误;故答案为:B.【点睛】本题考查整式加减运算.合并同类项关键把握字母相同,并且各字母的指数也分别对应相同.需要注意,所有的常数项也都是同类项.去括号时,括号前是负号,去括号后括号里各项都变号.3.D 【解析】把选项中的4个数按从小到大排列,即可得出最大的数.【详解】由于-3<-2<0<1,则最大的数是1故选:D.【点睛】本题考查了有理数的大小比较,一般地,正数大于零,零大于负数,两个负数,绝对值大的反而小.4.A【解析】【分析】直接利用倒数的定义得出答案.【详解】解:12的倒数是:-2.故选:A.【点睛】本题主要考查了倒数,正确掌握相关定义是解题关键.5.A【解析】【分析】根据去括号方法逐一计算即可【详解】A、a﹣(b﹣c)=a﹣b+c.故本选项正确;B、a﹣(b+c)=a﹣b﹣c,故本选项错误;C、(a﹣b)+(﹣c)=a﹣b﹣c,故本选项错误;D、(﹣b)+(a﹣c)=﹣c﹣b+a,故本选项错误.故选A 【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是”+“,去括号后,括号里的各项都不改变符号;括号前是”﹣“,去括号后,括号里的各项都改变符号6.C 【解析】【分析】用科学记数法表示较大的数时,一般形式为10n a ⨯,其中1||10a ≤<,n 为整数,据此分析即可.【详解】解:8285000000 2.8510=⨯故选:C 【点睛】本题考查了科学记数法,科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原来的数,变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正数;当原数的绝对值1<时,n 是负数,确定a 与n 的值是解题的关键.7.A【解析】【分析】根据题意列出关系式,去括号合并即可得到结果.【详解】解:根据题意得:(6a2﹣5a+3)﹣(5a2+2a﹣1)=6a2﹣5a+3﹣5a2﹣2a+1=a2﹣7a+4,故选A.【点睛】此题考查整式的加减,解题关键是熟练掌握运算法则.8.D【解析】【分析】把万分位后的数字6进行四舍五入即可.【详解】解:精确到万分位,0.003560.0036故选:D【点睛】此题考查了近似数和有效数字,解题关键在于掌握近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.9.C【解析】【分析】根据新定义的公式代入计算即可.【详解】∵()*23m n m n =+⨯-,∴()6*3-=()623(3)27+⨯--=,故选C.【点睛】本题考查了新定义下的实数计算,准确理解新定义公式是解题的关键.10.C 【解析】【分析】根据绝对值的含义和数轴的性质判断即可.【详解】解:由a a =-,b b =,a b>可得:0a ≤,0b ≥,a 到原点的距离大于b 到原点的距离,观察各选项,可得C 选项符合题意,故选C 【点睛】本题考查了绝对值的意义和数轴的性质,解题的关键是熟练掌握绝对值和数轴的基础性质.11.﹣8%【解析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】如果把“增加16%”记作“16%”,那么“﹣8%”表示“减少8%”.故答案为:﹣8%.12.5000【解析】【分析】根据题意列式10000+(-5000)计算即可.【详解】根据题意,得飞机的飞行高度是10000+(-5000)=5000(m),故答案为:5000.【点睛】本题考查了有理数的加法,熟练掌握有理数加法的运算法则是解题的关键.13.4##四【解析】【分析】根据多项式次数的定义求解即可,多项式的次数是指多项式中次数最高的项的次数.【详解】解:多项式232xy x y -+含有两个单项式2xy -,32x y ,它们的次数分别为34,所以,多项式232xy x y -+的次数为4故答案为4此题考查了多项式次数的定义,掌握多项式次数的定义是解题的关键.14.8【解析】【分析】根据同类项的定义,列式计算即可.【详解】∵223m n x y -与35m x y -是同类项,∴2m-2=m,n=3,∴n m =32=8,故答案为:8.【点睛】本题考查了同类项即含有的字母相同且相同字母的指数也相同,熟练掌握定义并灵活计算是解题的关键.15.2【解析】【分析】由5x-5的值与2x-9的值互为相反数可知:5x-5+2x-9=0,解此方程即可求得答案.【详解】解:由题意可得:5x-5+2x-9=0,移项,得7x=14,系数化为1,得x=2.故答案为:2【点睛】本题考查了相反数的性质以及一元一次方程的解法.16.②③④.【解析】【分析】由数轴分别得出a、b、c三个数的范围,再根据有理数的运算法则对四个结论一一判断即可.【详解】由数轴可得:﹣3<a<﹣2,0<b<1,﹣1<c<0,①数轴上右边的点表示的数总比左边的点表示的数大,所以a<c<b,此结论正确;②由数轴图不难得出2<﹣a<3,所以﹣a>b,此结论错误;③异号两数相加,取绝对值大的加数的符号,很明显,|a|>|b|,所以a+b<0,此结论错误;④正数减去负数所得差必为正数,所以c﹣a>0,此结论错误.故答案为②③④.【点睛】本题主要考查数轴、有理数的加减运算法则.17.22【解析】【分析】先对已知条件进行代入变形,可得代数式4a-b的值,再把所求代数式化成已知的形式,然后利用整体代入法求解即可.解:当x=2时,代数式3182117ax bx a b +=+=---,∴8218a b -=-,∴()2418a b -=-,∴49a b -=-,当1x =-时,代入33125bx ax -+-,原式3125b a =--,()345a b =---,()395=-⨯--,275=-,22=,∴代数式33125bx ax -+-的值等于22,故答案为:22.【点睛】题目主要考查利用“整体代入法”求解代数式的值,从题设中获取条件,对代数式化简代入求值是解题关键.18.0【解析】【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,可求得a,b 的值,继而可求得a+b.解:∵单项式﹣23a x y 与﹣2513b x y +是同类项,∴a=2,b+5=3,解得a=2,b=﹣2,∴a+b=2﹣2=0.故答案为:0.【点睛】本题考查了同类项即所含字母相同,并且相同字母的指数也相同,准确理解定义满足的条件是解题的关键.19.16【解析】【分析】按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号先算括号里面的;【详解】解:原式()11711291716666=--⨯-=-+⨯=-+=.【点睛】此题要注意正确掌握运算顺序以及符号的处理.20.1【解析】【分析】先算乘方,再算利用乘法分配律将小括号展开,再计算加减法,最后算除法.【详解】解:()()22711150679126⎡⎤⎛⎫--+⨯-÷- ⎪⎢⎥⎝⎭⎣⎦71115036499126⎡⎤⎛⎫=--+⨯÷ ⎪⎢⎥⎝⎭⎣⎦711150363636499126⎡⎤⎛⎫=-⨯-⨯+⨯÷ ⎪⎢⎥⎝⎭⎣⎦[]502833649=-+-÷4949=÷1=【点睛】本题主要考查了有理数的乘方、乘除以及加减,熟练掌握有理数的乘方、乘除以及加减法则是解答此题的关键.21.229a ab -;27【解析】【分析】先去括号,再合并同类项,然后将值代入计算即可.【详解】解:原式2236333a ab a b ab b=--+--229a ab=-当3a =-,13b =时,原式212(3)9(3)3=⨯--⨯-⨯27=.【点睛】本题考查整式的加减.去括号时,注意要正确运用去括号法则考虑括号内的符号是否变号.22.(1)2m =;(2)14-.【解析】【分析】(1)先合并已知多项式中的同类项,然后根据合并后的式子中不含xy 项即可求出m 的值;(2)由(1)得m=2,先化简合并同类项,然后代入m 的值计算即可.【详解】解:(1)22622452x mxy y xy x --+-+,()22=6+42252x m xy y x ---+由题意中不含xy 项,可得4-2m=0,∴m=2;(2)32322125m m m m m m ---+--++=3226m m --+.23.(1)a+b=0,cd=1,m=±2;(2)3或-1【解析】【分析】(1)根据相反数的性质,倒数的性质,绝对值的性质计算即可;(2)根据(1)中的计算结果整体代入计算即可.【详解】解:(1)因为a、b 互为相反数,c、d 互为倒数,m 的绝对值为2;所以a+b=0,cd=1,2m =±.故答案为:0,1,2±.(2)当m=2时,原式02132=++=;当2m =-时,原式02112=-++=--.所以原式的值为3或1-.【点睛】本题考查相反数的性质,倒数的性质和绝对值的性质,熟练掌握以上知识点是解题关键,同时注意分类讨论思想的应用.24.(1)减少了;(2)5天前仓库里存有货品529吨;(3)这5天一共要付548元装卸费.【解析】【分析】(1)求出这5天的进出货的总和,根据总和的结果,判断货品的增多或减少.(2)根据现在的货品的吨数,逆推出5天前的货品的吨数.(3)计算进出货的绝对值的和,再乘以单价即可.【详解】(1)23﹣30﹣16+35﹣33=﹣21吨,答:仓库的货品减少了,故答案为:减少了;(2)508﹣(﹣21)=529吨,答:5天前仓库里存有货品529吨;(3)4×(|+23|+|﹣30|+|﹣16|+|+35|+|﹣33|)=4×137=548元,答:这5天一共要付548元装卸费.【点睛】本题考查了正数和负数在实际生活中的应用,掌握有理数的加法法则,正数和负数的意义是解题的关键.25.(1)225517xxy y -+;(2)22545x xy y -++【解析】【分析】(1)用多项式替换,适当添加括号,去括号后,合并同类项即可;(2)先计算A+B,根据已知C=-(A+B)即可得到结果.【详解】(1)∵2244A x xy y =-+,225B x xy y =--,∴23A B -=222(44)x xy y -+-223(5)xxy y --=22882x xy y -+-223315x xy y ++=225517x xy y -+;(2)∵2244A x xy y =-+,225B x xy y =--,∴A+B=22(4)4xxy y -++22(5)x xy y --=2244x xy y -++225x xy y --=22554x xy y --,∵0A B C ++=,∴C=-(A+B)=-(22554xxy y --)=22545x xy y -++.【点睛】本题考查了整式的加减中的化简,去括号,合并同类项,熟练掌握去括号,添括号的法则,灵活进行合并同类项是解题的关键.26.(1)A家:3312元,B家:3360元;(2)A家:275x;B家:912002x+;(3)选择B家更优惠,理由见解析【解析】【分析】(1)根据题意和表格可以得到他批发600千克猕猴桃时,在A、B两家批发各需要花费多少钱,从而本题得以解决;(2)根据题意和表格可以得到他批发x千克猕猴桃时(1500<x<2000),在A、B两家批发分别需要花费多少钱,从而本题得以解决;(3)将x=1800分别代入(2)求得的两个式子,计算出结果,然后进行比较,即可解答本题.【详解】解:(1)由题意可得,当批发600千克猕猴桃时,在A家批发需要:6×600×92%=3312(元),当批发600千克猕猴桃时,在B家批发需要:6×500×95%+6×(600-500)×85%=2850+510=3360(元);(2)由题意可得,当他批发x千克猕猴桃(1500<x<2000),他在A家批发需要:6×x×90%=275x(元),当他批发x千克猕猴桃(1500<x<2000),他在B家批发需要:6×500×95%+6×(1500-500)×85%+6×(x-1500)×75%=2850+5100+4.5x-6750=912002x+(元);(3)现在他要批发1800千克猕猴桃,他选择在B家批发更优惠.理由:当他要批发1800千克猕猴桃时,他在A家批发需要:5.4×1800=9720(元),当他要批发1800千克猕猴桃时,他在B家批发需要:4.5×1800+1200=9300(元),∵9720>9300,∴现在他要批发1800千克猕猴桃,他选择在B家批发更优惠.【点睛】本题考查列代数式和代数式求值,解题的关键是明确题意,列出相应的代数式,求相应的代数式的值.27.(1)司机最后在原地的东边,离原地3千米(2)925元【解析】【分析】(1)根据有理数的加法运算法则和乘法运算法则列式计算即可;(2)用小明妈妈十天生产玩具的总数乘5即可.【详解】解:(1)(+6)×1+(﹣7)×2+(﹣4)×2+(+5)×1+(﹣1)×4=﹣15(个),故与原计划相比,小明妈妈十天生产玩具总计不足15个;(2)5×(20×10﹣15)=925(元).故小明妈妈这一周的工资总额是925元.21。
七年级上册数学期中考试卷及答案【含答案】
七年级上册数学期中考试卷及答案【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少厘米?A. 3厘米B. 23厘米C. 17厘米D. 27厘米3. 下列哪个数是偶数?A. 101B. 102C. 103D. 1044. 下列哪个数是奇数?A. 151B. 152C. 153D. 1545. 下列哪个分数是最简分数?A. 2/4B. 3/6C. 4/8D. 5/10二、判断题(每题1分,共5分)1. 0是最小的自然数。
()2. 任何偶数乘以偶数都是偶数。
()3. 任何奇数乘以奇数都是奇数。
()4. 1是质数。
()5. 两个质数相乘的积一定是合数。
()三、填空题(每题1分,共5分)1. 1千米=______米。
2. 1米=______分米。
3. 1分米=______厘米。
4. 1厘米=______毫米。
5. 2的3次方等于______。
四、简答题(每题2分,共10分)1. 请简述质数和合数的区别。
2. 请简述偶数和奇数的区别。
3. 请简述分数的约分方法。
4. 请简述三角形的基本性质。
5. 请简述因数分解的方法。
五、应用题(每题2分,共10分)1. 小明有10个苹果,他吃掉了3个,还剩下多少个苹果?2. 一个长方形的长是8厘米,宽是4厘米,求这个长方形的面积。
3. 2的5次方等于多少?4. 一个数既是3的倍数,又是4的倍数,这个数最小是多少?5. 一个等边三角形的边长是10厘米,求这个三角形的周长。
六、分析题(每题5分,共10分)1. 小红有15个糖果,小明有20个糖果,他们一共有多少个糖果?如果小红给小明5个糖果,他们各自有多少个糖果?2. 一个长方体的长是10厘米,宽是6厘米,高是4厘米,求这个长方体的体积。
七、实践操作题(每题5分,共10分)1. 请用直尺和圆规画一个边长为5厘米的正方形。
七年级上册数学期中考试试卷及答案
七年级上册数学期中考试试题一、单选题1.在0.15-、 1.3+、0、32-这四个数中,最小的数是()A .0.15-B . 1.3+C .0D .32-2.计算()32-,正确结果是()A .-6B .-8C .6D .83.1x =-是下列哪个方程的解()A .56x -=B .1262x +=C .314x +=D .440x +=4.2||3-的相反数是()A .32B .23-C .32-D .235.下列去括号正确的是()A .-2(a +b)=-2a +bB .-2(a +b)=-2a -bC .-2(a +b)=-2a -2bD .-2(a +b)=-2a +2b6.下列说法中正确的是()A .单项式235xy 的系数是3,次数是2B .单项式15ab -的系数是15,次数是2C .12xy -是二次多项式D .多项式243x -的常数项是37.已知a 是三位数,b 是两位数,将a 放在b 的左边,所得的五位数是()A .abB .a b+C .10a b+D .100a b+8.代数式227y y ++的值是6,则2485y y +-的值是()A .9B .9-C .18D .18-9.如果a >0,b <0,且|a|<|b|,则下列正确的是()A .a+b <0B .a+b >0C .a+b=0D .ab=010.如图,两个正方形的面积分别为16,9,两阴影部分的面积分别为a ,b (a b >),则()-a b 等于()A .7B .6C .5D .4二、填空题11.如果80m 表示向东走80m ,那么60m -表示________.12.中国领水面积约为370000km 2,用科学记数法表示370000为_______.13.若单项式3m ab 和4-n a b 是同类项,则m n +=_________.14.已知|a|=5,|b|=7,且|a+b|=a+b ,则a−b 的值为___________.15.近似数63.2010⨯精确到____________位.16.若()223310a b ++-=,则ab =__________.17.观察下列式子:22222210101;21213;32325;-=+=-=+=-=+=222243437;54549-=+=-=+=……若字母n 表示自然数,请把你观察到的规律用字母n 表示出来:______________.18.如图所示,用火柴棍拼成一排由三角形组成的图形,如果图形中包含2个三角形就需要5根火柴棍,如果图形中包含8个三角形就需要______根火柴棍,如果图形中包含n 个三角形就需要____根火柴棍.(用含n 的代数式表示)三、解答题19.计算()()16252435+-++-20.解方程:23(1)12(10.5)-+=-+x x 21.计算:2335(2)10.8(2)4⎡⎤⎛⎫---+-⨯÷- ⎪⎢⎥⎝⎭⎣⎦22.先化简,再求值.224[62(42)]1x y xy xy x y ----+,其中12x =-,1y =.23.若多项式2||25(3)2m x y n y +--是关于x ,y 的四次二项式,求222m mn n -+的值.24.有理数a 、b 在数轴上的对应点位置如图所示(1)用“<”连接0、a -、b -、1-;(2)化简:||2||||-+--a a b b a .25.某出租车驾驶员从公司出发,在东西向的路上连续接送5批客人,行驶路程记录分别为:+5,+2,﹣4,﹣3,+10(规定向东为正,向西为负,单位:千米)(1)接送完第5批客人后,该驾驶员在公司的什么方向?距离公司多少千米?(2)若该出租车每千米耗油0.2升,则在这个过程中共耗油多少升?(3)若该出租车的计价标准为行驶路程不超过3千米收费10元,超过3千米的部分按每千米1.8元收费,在这过程该驾驶员共收到车费多少?26.观察下列各算式:221342,13593,1357164+==++==+++==.(1)试猜想:135720052007++++++ 的值?(2)推广:13579(21)(21)++++++-++ n n 的和是多少?27.一个跑道由两个半圆和一个长方形组成.已知长方形的长为a 米,宽为b 米.(1)用代数式表示该跑道的周长C .(2)用代数式表示该跑道的面积S .(3)当100a =,40b =时,求跑道的周长()π3C ≈.参考答案1.D【解析】【分析】根据有理数比较大小的方法求解即可.正数大于负数,两个负数比较大小,绝对值大的反而小.【详解】解:∵正数大于负数,又∵3 0.15<2--,∴3 0.15>2 --,∴这四个数中,最小的数是3 2-.故选:D.【点睛】此题考查了有理数比较大小,解题的关键是熟练掌握有理数比较大小的方法.正数大于负数,两个负数比较大小,绝对值大的反而小.2.B【解析】【分析】根据乘方的性质计算,即可得到答案.【详解】()328-=-故选:B.【点睛】本题考查了乘方的知识;解题的关键是熟练掌握乘方的性质,从而完成求解.3.D【解析】【分析】把1x=-分别代入四个选项的方程中,能够使得方程左右两边相等的选项即为所求.解:A 、把1x =-代入方程56x -=得156--=,即66=-不成立,故不符合题意;B 、把1x =-代入方程1262x +=得1262-+=,即362=不成立,故不符合题意;C 、把1x =-代入方程314x +=得314-+=,即24-=不成立,故不符合题意;D 、把1x =-代入方程440x +=得440-+=,即00=成立,故符合题意;故选D .【点睛】本题主要考查了一元一次方程的解,解题的关键在于能够熟练掌握一元一次方程解的定义.4.B 【解析】【分析】利用相反数的定义,先列式,再化简绝对值即可.【详解】−2-3的相反=-2-3=-23.故选择:B .【点睛】本题考查相反数与绝对值问题,掌握相反数与绝对值概念是关键.5.C 【解析】【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【详解】A.原式=−2a−2b ,故本选项错误;B.原式=−2a−2b ,故本选项错误;C.原式=−2a−2b ,故本选项正确;D.原式=−2a−2b ,故本选项错误;故选C.【点睛】考查去括号法则,当括号前面是“-”号时,把括号去掉,括号里的各项都改变正负号.6.C【分析】根据单项式与多项式的概念进行判断,即可得出正确结论.【详解】解:A .单项式235xy 的系数是35,次数是3,故本选项错误,不符合题意;B .单项式15ab -的系数是15-,次数是2,故本选项错误,不符合题意;C .12xy -是二次二项式,故本选项正确,符合题意;D .多项式243x -的常数项是3-,故本选项错误,不符合题意,故选:C .【点睛】本题主要考查了单项式与多项式的概念,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数,熟练掌握单项式与多项式的概念是解决本题的关键.7.D 【解析】【分析】组成五位数后,a 是原来的100倍,b 不变,相加即可.【详解】解:a 原来的最高位是百位,组成五位数后,a 的最高位是万位,是原来的100倍,b 的大小不变,那么这个五位数应表示成100a+b .故选:D .【点睛】本题主要考查列代数式,关键是看哪个数变大了,只把那个数变化即可.8.B 【解析】【详解】∵227y y ++=6,∴22y y +=-1,=4×(-1)-5=-9,故选B.9.A【解析】【分析】根据a>0,b<0,且|a|<|b|,可得a<-b,即a+b<0.【详解】∵a>0,b<0,且|a|<|b|,∴a<-b,即a+b<0.故选A.【点睛】本题考查了有理数的大小比较,解答本题的关键是根据题意得出a<-b.10.A【解析】【分析】设重叠部分面积为c,(a-b)可理解为(a+c)-(b+c),即两个正方形面积的差.【详解】设重叠部分面积为c,a-b=(a+c)-(b+c)=16-9=7,故选A.【点睛】本题考查了等积变换,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键.11.向西走60米【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负来表示;【详解】80m表示向东走80m,规定向东为正,则-60m表示向西走60米.故答案为向西走60米.【点睛】本题主要考查了正数和负数的概念,掌握正数和负数的概念是解题的关键.12.3.7×105【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.确定a×10n(1≤|a|<10,n 为整数)中n的值,由于370000有6位,所以可以确定n=6-1=5.【详解】370000=3.7×105,故答案为3.7×105.【点睛】此题考查科学记数法—表示较大的数,解题关键在于掌握其一般表示形式.13.2【解析】【分析】根据同类项的概念求解.【详解】ab和4-n a b是同类项,解:∵单项式3m∴n=1,m=1,+=2,∴m n故答案为:2.【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.14.−2或−12.【解析】【分析】根据绝对值的性质求出a 、b 的值,然后代入进行计算即可求解.【详解】∵|a|=5,|b|=7,∴a=5或−5,b=7或−7,又∵|a+b|=a+b ,∴a+b ⩾0,∴a=5或−5,b=7,∴a−b=5−7=−2,或a−b=−5−7=−12.故答案为−2或−12.【点睛】此题考查绝对值,解题关键在于掌握其性质.15.万【解析】【分析】3.20×106精确到0.01×106位即万位.【详解】近似数3.20×106=3200000精确到万位,故答案为:万.【点睛】本题主要考查近似数,对于用科学记表示的数,精确到哪一位是需要识记的内容,经常会出错.16.12-【解析】【分析】由绝对值和平方的非负性结合已知条件求得a 、b 的值,再代入ab 中计算即可.【详解】解:∵223(31)0a b ++-=,∴3123a b =-=,∴311232ab =-⨯=-.故答案为12-.17.22(1)(1)21n n n n n --=+-=-【解析】【分析】观察式子即可得出结论.【详解】解:观察式子可发现22(1)(1)21n n n n n --=+-=-,故答案为:22(1)(1)21n n n n n --=+-=-.【点睛】本题考查规律型,观察式子得到规律是解题的关键.18.1721n +##12n+【解析】【分析】一个三角形时,将左边一根固定,后面每增加一个三角形就加2根火柴棍,据此可分别计算出有8个及n 个三角形时,火柴棍数量.【详解】有1个三角形时,需要123+=根火柴棍,有2个三角形时,需要1225+⨯=根火柴棍,有3个三角形时,需要1327+⨯=根火柴棍,有4个三角形时,需要1429+⨯=根火柴棍,……有8个三角形时,需要18217+⨯=根火柴棍,有n 个三角形,需要1221n n +⨯=+根火柴棍.故答案为:17,21n +.【点睛】本题考查了图形的变化规律,找出图形之间的联系是关键,并将得出的运算规律解决问题,属中档题.19.-20【解析】【分析】先根据有理数加法的交换律和结合律,得到()()16242535++-+-⎡⎤⎣⎦,再利用有理数加法法则,计算即可求解.【详解】解:()()16252435+-++-()()16242535=++-+-⎡⎤⎣⎦()406020=+-=-.【点睛】本题主要考查了有理数的加法运算,能利用有理数加法的交换律和结合律简化运算是解题的关键.20.x =0【解析】【分析】根据解一元一次方程的基本步骤依次去括号、移项、合并同类项、系数化为1即可.【详解】解:去括号,得:2﹣3x ﹣3=1﹣2﹣x ,移项,得:﹣3x+x =1﹣2﹣2+3,合并同类项,得:﹣2x =0,系数化为1,得:x =0.【点睛】本题主要考查解一元一次方程,解题的关键是熟练掌握等式的基本性质和解一元一次方程的基本步骤.21.4165-.【解析】【分析】先计算乘方,小数化分数,把除化乘,计算小括号的乘方,再计算小括号减法,计算中括号乘法,去括号,进行有数加法即可.【详解】解:2335(2)10.8(2)4⎡⎤⎛⎫---+-⨯÷- ⎢⎥⎝⎭⎣⎦,=4312581()542⎡⎤⎛⎫---+-⨯⨯- ⎪⎢⎥⎝⎭⎣⎦,=312581()52⎡⎤⎛⎫---+-⨯- ⎪⎢⎥⎝⎭⎣⎦,=21258()52⎡⎤---+⨯-⎢⎥⎣⎦,=12585⎛⎫---- ⎪⎝⎭,=12585-++,=4165-.【点睛】本题考查含乘方的有理数混合运算,掌握有理数混合运算顺序为先乘法,再乘除,最后加减,有括号先计算小括号,再算中括号,最后大括号是解题关金.22.2523x y xy +-,114-.【解析】【详解】解:原式=224[684]1x y xy xy x y --+-+=224[24]1x y xy x y --+-+,=224241x y xy x y +-++=2523x y xy +-,把12x =-,1y =代入上式得:原式=211115()12()13224⨯-⨯+⨯-⨯-=-.23.1,25.【解析】【分析】先根据多项式的次数与项数得出2430m n ⎧+=⎨-=⎩,解方程组,然后分类代入代数式计算即可.【详解】解:∵多项式2||25(3)2m x y n y +--是关于x ,y 的四次二项式,∴2430m n ⎧+=⎨-=⎩,解得23m n =±⎧⎨=⎩,当2,3m n ==时,222222223341291m mn n -+=-⨯⨯+=-+=;当2,3m n =-=时,()()2222222233412925m mn n -+=--⨯-⨯+=++=.【点睛】本题考查多项式的项数与次数,方程组,代数式求值,根据多项式的次数与项数得出2430m n ⎧+=⎨-=⎩是解题关键.24.(1)﹣1<﹣b <0<﹣a ;(2)2a+b 【解析】【分析】(1)先根据相反数的意义在数轴上分别表示出﹣a ,﹣b ,所对应的点,再根据数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,由此即可比较出0,﹣a ,﹣b ,﹣1的大小关系;(2)首先根据数轴可得a <0,a+b <0,b ﹣a >0,由此可得|a|=﹣a ,|a+b|=﹣(a+b ),|b ﹣a|=b ﹣a ,然后根据整式加减的运算法则化简即可.【详解】解:(1)由题意可得:由此可得:﹣1<﹣b <0<﹣a .(2)由数轴可得:a <0,a+b <0,b ﹣a >0,∴|a|=﹣a ,|a+b|=﹣(a+b ),|b ﹣a|=b ﹣a ,∴|a|﹣2|a+b|﹣|b﹣a|=﹣a+2(a+b)﹣(b﹣a)=﹣a+2a+2b﹣b+a=2a+b.【点睛】(1)此题主要考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.(2)此题还考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.(3)此题还考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a 是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.(4)此题还考查了整式的加减运算,要熟练掌握,解答此类问题的关键是要明确:整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.25.(1)接送完第五批客人后,该驾驶员在公司的东边10千米处.(2)4.8升.(3)68元.【解析】【分析】(1)根据有理数加法即可求出答案.(2)根据题意列出算式即可求出答案.(3)根据题意列出算式即可求出答案.【详解】解:(1)5+2+(−4)+(−3)+10=10(km)答:接送完第五批客人后,该驾驶员在公司的东边10千米处.(2)(5+2+|−4|+|−3|+10)×0.2=24×0.2=4.8(升)答:在这个过程中共耗油4.8升.(3)[10+(5−3)×1.8]+10+[10+(4−3)×1.8]+10+[10+(10−3)×1.8]=68(元)答:在这个过程中该驾驶员共收到车费68元.【点睛】本题考查正负数的意义,解题的关键是熟练运用正负数的意义,本题属于基础题型.n+.26.(1)1008016;(2)()21【分析】(1)根据2213134=22+⎛⎫+== ⎪⎝⎭,2215135932+⎛⎫++=== ⎪⎝⎭,221713571642+⎛⎫+++=== ⎪⎝⎭,2219135792552+⎛⎫++++=== ⎪⎝⎭,发现规律是n 个连续奇数的和等于第一个奇数与最后一个奇数和的一半的平方,由此可求135720052007++++++ =221200710042+⎛⎫= ⎪⎝⎭(2)根据规律可得一般形式,2212113579(21)2n n n +-⎛⎫+++++⋅⋅⋅+-== ⎪⎝⎭,从而可以求解推广.【详解】解:(1)2213134=22+⎛⎫+== ⎪⎝⎭,2215135932+⎛⎫++=== ⎪⎝⎭,221713571642+⎛⎫+++=== ⎪⎝⎭,2219135792552+⎛⎫++++=== ⎪⎝⎭,∴135720052007++++++ =221200710042+⎛⎫= ⎪⎝⎭=1008016;(2)一般形式2212113579(21)2n n n +-⎛⎫+++++⋅⋅⋅+-== ⎪⎝⎭,由此可以发现()()221211357921(21)12n n n n ++⎛⎫+++++⋅⋅⋅-++==+ ⎪⎝⎭,【点睛】本题主要考查了数字类规律,解题的关键在于能够根据题意发现规律是n 个连续奇数的和等于第一个奇数与最后一个奇数和的一半的平方,2212113579(21)2n n n +-⎛⎫+++++⋅⋅⋅+-== ⎪⎝⎭.27.(1)()2πa b +米(2)2π44b ab +平方米(3)320米【分析】(1)跑道的周长是两条“直道”和两条“弯道”的长度和;(2)长方形的面积与圆的面积和即可;(3)将a=100,b=40代入(1)中的代数式计算即可.(1)两条“直道”的长为2a 米,两条“弯道”的长为πb 米,因此该跑道的周长()2πC a b =+(米),答:该跑道的周长C 为()2πa b +米.(2)两个半圆的面积为22ππ24b b ⎛⎫⨯= ⎪⎝⎭(平方米),长方形的面积为ab (平方米),因此跑道的面积为22ππ444ab b b ab=+=+(平方米).(3)当100a =,40b =时,2π20040π200120320a b +=+≈+=(米),答:当100a =,40b =时跑道的周长C 约为320米.【点睛】本题考查列代数式和代数式求值,正确的列代数式是求值的前提.。
七年级上册数学期中考试题【含答案】
七年级上册数学期中考试题【含答案】一、选择题(每小题3分,共30分)1.下列各组数中,互为相反数的是()A.2和-2B.-2和C.-2和-D.和22.如图QZ2-1,点M表示的数可能是()图QZ2-1A.1.5B.-1.5C.2.5D.-2.53.一个圆的面积是πa2b m,如果这个单项式是一个六次单项式,那么指数m等于()A.1B.2C.3D.44.化简m+n-(m-n)的结果为()A.2mB.-2mC.2nD.-2n5.下列计算结果中,正确的是()A.(-9)÷(-3)2=1B.(-9)2÷(-32)=-9C.-(-2)3×(-3)2=1D.-(-2)6×(-3)2=-86.2017年某市生产总值约2450亿元,将2450....亿.用科学记数法表示为()A.0.245×104B.2.45×103C.24.5×1010D.2.45×10117.下列判断正确的是()A.3a2b与ba2不是同类项B.不是整式C.单项式-x3y2的系数是-1D.3x2-y+5xy2是二次三项式8.某种商品原价是m元,第一次降价打八折,第二次降价每件又减15元,第二次降价后的售价是()A.0.8m元B.0.2m元C.(0.8m-15)元D.(0.2m-15)元9.若整式2x2+3x+7的值是8,则整式4x2+6x+15的值是()A.2B.17C.3D.1610.若a<-1,下面4个结论:①|a|>a;②a>-a;③<a;④>a,其中不正确的有()A.0个B.1个C.2个D.3个请将选择题答案填入下表:第Ⅱ卷(非选择题共70分)二、填空题(每小题3分,共18分)11.-的绝对值的相反数是.12.比较大小:--(填“>”“=”或“<”).13.点A在数轴上距原点5个单位长度,且位于原点左侧,若将点A向右移动4个单位长度,再向左移动1个单位长度,此时点A表示的数是.14.按照如图QZ2-2所示的操作步骤,若输入的x的值为2.5,则输出的值为.图QZ2-215.若一个长方形的周长为2a-4b+6,长比宽多a-3,则这个长方形的宽是.16.图形表示运算a-b+c,图形x+n-y-m,则=.三、解答题(共52分)17.(6分)计算:(1)(-24)÷-2+×--0.25;(2)×|-24|-××(-8).18.(6分)化简:(7x2-4xy+2y2)-2,并求当x=1,y=-1时,其值为多少.19.(6分)电力工人开车沿着一条南北方向的公路来回行驶,某天早晨从A地出发,晚上到达了B地,约定向北为正,向南为负,当天行驶的各段路程记录如下(单位:千米):-17,+8,+6,-14,-8,+17,+5,-6.(1)问B地在A地何处,相距多少千米?(2)若汽车每千米耗油0.2升,那么这一天共耗油多少升?20.(6分)某食品厂从生产的袋装食品中抽出样品8袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:(1)这8袋样品的总质量比标准质量多还是少?多或少几克?(2)若标准质量为500克,则抽样检测这8袋的总质量是多少?21.(6分)邮购一种图书,每本定价为m元,不足100本时,另加总书价的5%作为邮费.(1)当邮购x(x<100且为正整数)本书时,总计金额是多少元?(2)当一次邮购超过100本时,本店除免付邮费外,同时还给予优惠10%,计算当m=3.2,x=120时的总计金额是多少元.22.(6分)已知两个关于x,y的单项式mx a y3与-2nx3y3b-6是同类项(其中xy≠0).(1)求a,b的值;(2)如果它们的和为零,求(m-2n-1)2017的值.23.(8分)明明在计算机中设计了一个有理数运算的程序:a*b=a2-b2-2(a3-1)-÷(a-b).当输入a,b的数据时,屏幕会根据运算程序显示出结果.(1)求(-2)*的值;(2)芳芳在运用这个程序计算时,输入a,b的数据后屏幕显示“操作无法进行”,请你猜想芳芳输入数据时可能出现了什么情况,为什么?24.(8分)将连续的奇数1,3,5,7,9,…,排列成如图QZ2-3所示的数表:图QZ2-3(1)十字框中的五个数的和与中间数23有什么关系?(2)设中间数为a,用式子表示十字框中五个数之和.(3)将十字框上、下、左、右平移,可框住另外五个数,这五个数还有这种规律吗?(4)十字框中的五个数之和能等于2015吗?若能,请写出这五个数;若不能,请说明理由.阶段综合测试二(期中)1.A2.D3.D4.C5.B6.D7.C8. C9.B10.C11.-12.<13.-214.2015. -b+316.017.解:(1)原式=-16×-×-=---=-.(2)原式=-×24-×24+×24-××8=-6-12+16-25=-43+16=-27.18.解:原式=5x2-4xy+5y2.当x=1,y=-1时,原式=5×12-4×1×(-1)+5×(-1)2=14.19.解:(1)∵(-17)+(+8)+(+6)+(-14)+(-8)+(+17)+(+5)+(-6)=-9,∴B地在A地南边9千米处.(2)|-17|+|+8|+|+6|+|-14|+|-8|+|+17|+|+5|+|-6|=81(千米),81×0.2=16.2(升).答:这一天共耗油16.2升.20.解:(1)由题意,得-3×1+(-1)×2+0×3+2×2=-1(克).答:这8袋样品的总质量比标准质量少,少1克.(2)500×8+(-1)=4000-1=3999(克).答:抽样检测这8袋的总质量是3999克.21.解:(1)邮购的本数不足100本时,总计金额为(1+5%)mx=1.05mx(元).(2)邮购的本数超过100本时,总计金额为(1-10%)mx=0.9mx(元).当m=3.2,x=120时,0.9mx=0.9×3.2×120=345.6(元).答:当m=3.2,x=120时的总计金额为345.6元.22.解:(1)依题意,得a=3,3b-6=3,解得a=3,b=3.(2)∵mx3y3+(-2nx3y3)=0,∴m-2n=0,∴(m-2n-1)2017=(-1)2017=-1.23.解:(1)(-2)*=(-2)2--[2×(-8-1)-2]÷=4--20×=-4.(2)有两种可能性:①输入b=0,因为0没有倒数,所以计算机无法操作;②输入的a,b两数相等,因为a=b,所以a-b=0,而0不能作除数,所以电脑也无法操作.24.解:(1)计算十字框中五个数的和,得7+21+23+25+39=115,而115=23×5,所以十字框中的五个数的和是中间数23的5倍.(2)若中间数为a,则十字框中五个数之和用式子表示是5a.(3)通过计算,不管框住怎样的五个数,这五个数仍具有这种规律.(4)若能等于2015,根据上面的规律,有5a=2015,解得a=403.因为403是奇数,所以十字框中的五个数之和能等于2015.这五个数分别为387,401,403,405,419.七年级(上)数学期中考试题及答案一、选择题(每小题3分,共30分)1.的绝对值是()A.2B.﹣2C.D.【分析】根据绝对值的定义直接进行计算.解:根据绝对值的概念可知:||=,故选:C.【点评】本题考查了绝对值的概念,注意掌握一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.武汉长江二桥是世界上第一座弧线形钢塔斜拉桥,该桥全长16800m,用科学记数法表示这个数为()A.1.68×104m B.16.8×103m C.0.168×104m D.1.68×103m 【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:将16 800用科学记数法表示为1.68×104.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.n是一个正整数,则10n表示的是()A.10个n相乘所得的结果B.n个10相乘所得的结果C.10后面有n个0的数D.是一个n位整数【分析】根据乘方的含义,求n个相同因数的积的运算,叫做乘方.在a n中,a 叫做底数,n叫做指数.解:n是一个正整数,则10n表示的是n个10相乘所得的结果.故选:B.【点评】本题考查了有理数乘方的定义,同学们一定要完全理解a n中表示的含义,才能做到灵活应用.如本题所示的10n的意义.4.如图,在数轴上表示互为相反数的两数的点是()A.点A和点C B.点B和点C C.点A和点B D.点B和点D 【分析】分别表示出数轴上A、B、C、D所表示的数,再根据相反数的定义确定表示互为相反数的两数的点.解:A、B、C、D所表示的数分别是2,1,﹣2,﹣3,因为2和﹣2互为相反数,故选A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.5.下列说法中正确的是()A.的系数是B.的系数是2C.﹣5x2的系数是5D.3x2的系数是3【分析】根据单项式系数的定义来选择,单项式中数字因数叫做单项式的系数.解:A、因为=,所以根据单项式系数的定义知,的系数是π,故本选项错误;B、因为=,所以根据单项式系数的定义知,的系数是,故本选项错误;C、因为﹣5x2=﹣5•x2,所以根据单项式系数的定义知,﹣5x2的系数是﹣5,故本选项错误;D、因为3x2=3•x2,所以根据单项式系数的定义知,3x2的系数是3,故本选项正确;故选:D.【点评】确定单项式的系数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数的关键.6.下列各式中,与x2y是同类项的是()A.xy2B.2xy C.﹣x2y D.3x2y2【分析】本题是同类项的定义的考查,同类项是所含的字母相同,并且相同字母的指数也相同的项.解:x2y中x的指数为2,y的指数为1.A、x的指数为1,y的指数为2;B、x的指数为1,y的指数为1;C、x的指数为2,y的指数为1;D、x的指数为2,y的指数为2.故选:C.【点评】考查了同类项的定义.同类项一定要记住两个相同:同类项是所含的字母相同,并且相同字母的指数也相同.7.买一个足球需要m元,买一个篮球需要n元,则买4个足球、7个篮球共需()A.28mn元B.11mn元C.(7m+4n)元D.(4m+7n)元【分析】买一个足球需要m元,则买4个足球需要4m元,买一个篮球需要n元,则买7个篮球需要7n元,然后它们的和为所求.解:买4个足球、7个篮球共需(4m+7n)元.故选:D.【点评】本题考查了列代数式:利用代数式表示实际问题中的数量关系.8.下列运算有错误的是()A.﹣5+(+3)=8B.5﹣(﹣2)=7C.﹣9×(﹣3)=27D.﹣4×(﹣5)=20【分析】根据有理数的加减和乘法的运算法则计算可得.解:A.﹣5+(+3)=﹣2,此选项计算错误;B.5﹣(﹣2)=5+2=7,此选项计算正确;C.(﹣9)×(﹣3)=27,此选项计算正确;D.﹣4×(﹣5)=20,此选项计算正确;故选:A.【点评】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则及其运算律.9.下列各题中计算结果正确的是()A.2x+3y=5xy B.3.5ba﹣=0C.4a2b﹣5ab2=﹣ab D.x2+x=x3【分析】根据合并同类项的法则求解.解:2x和3y不是同类项,不能合并,故本选项错误;B、3.5ba﹣=0.计算正确,故本选项正确;C、4a2b和5ab2不是同类项,不能合并,故本选项错误;D、x2和x不是同类项,不能合并,故本选项错误.故选:B.【点评】本题考查了合并同类项,解答本题的关键是掌握合并同类项法则.10.下列说法正确的是()A.绝对值是它本身的数一定是正数B.任何数都不等于它的相反数C.如果a>b,那么<D.若a≠0,则总有|a|>0【分析】根据绝对值的性质、有理数的分类、相反数的定义、不等式的性质判断即可.解:A、绝对值是它本身的数一定是非负数;故本选项错误.B、0等于它的相反数;故本选项错误.C、如果a>0>b,那么<;故本选项错误.D、若a≠0,则总有|a|>0;故本选项正确.故选:D.【点评】本题主要考查的是绝对值、有理数、相反数、不等式,掌握相关知识是解题的关键.二、填空题(本大题每空2分,共24分)11.(2分)把1.8075精确到0.01的近似数是 1.81 .【分析】把千分位上的数字7进行四舍五入即可.解:1.8075精确到0.01的近似数是1.81.故答案为1.81.【点评】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.12.(6分)﹣的相反数是;﹣6的倒数是【分析】直接利用互为相反数以及互为倒数的定义分析得出答案.解:﹣的相反数是:;﹣6的倒数是:﹣.故答案为:,﹣.【点评】此题主要考查了互为倒数以及互为相反数,正确把握相关定义是解题关键.13.(2分)某日傍晚,南京的气温由上午的零上5℃下降了10℃,这天傍晚南京的气温是﹣5 ℃.【分析】根据题意列出算式,计算即可求出值.解:根据题意得:5﹣10=﹣5,则这天傍晚南京的气温是﹣5℃.故答案为:﹣5【点评】此题考查了有理数的减法,熟练掌握运算法则是解本题的关键.14.(4分)计算:①﹣(﹣2)2=﹣4 ;②|﹣32|=9【分析】根据有理数的乘方的运算法则和绝对值的性质求解可得.解:①﹣(﹣2)2=﹣4;②|﹣32|=|﹣9|=9;故答案为:﹣4,9.【点评】本题主要考查有理数的乘方,解题的关键是掌握有理数的乘方的运算法则和绝对值的性质.15.(4分)多项式的次数是 3 ,常数项是﹣.【分析】根据多项式的组成元素的单项式,即多项式的每一项都是一个单项式,单项式的个数就是多项式的项数,如果一个多项式含有a个单项式,次数是b,那么这个多项式就叫b次a项式,进而得出答案.解:多项式的次数是3,常数项是﹣.故答案为:3,﹣.【点评】此题主要考查了多项式的次数与常数项,根据定义直接判断得出是解题关键.16.(2分)3x m+4y与x3y是同类项,则m=﹣1 .【分析】根据同类项的概念求解.解:∵3x m+4y与x3y是同类项,∴m+4=3,∴m=﹣1.故答案为:﹣1.【点评】本题考查了同类项的概念:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.17.元旦期间,明视眼镜店开展优惠学生配镜的活动,某款式眼镜的广告如图,请你为广告牌补上原价.【分析】设广告牌上的原价是x元,根据原价的8折=现价160元,列出方程,再求解即可.解:设广告牌上的原价是x元,根据题意得:0.8x=160,解得:x=200.答:广告牌上的原价是200元.【点评】此题考查了一元一次方程的应用,关键是读懂题意,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.18.(2分)数轴上,到原点的距离小于2的所有点表示的正整数是 1【分析】根据正整数的概念和有理数的大小比较解答即可.解:数轴上,到原点的距离小于2的所有点表示的正整数是1,故答案为:1【点评】此题考查有理数的大小比较,关键是根据正整数的概念和有理数的大小比较解答.19.(2分)若(a﹣1)2+|b+5|=0,那么5a+b=0 .【分析】直接利用偶次方的性质以及绝对值的性质得出a,b的值,进而得出答案.解:∵(a﹣1)2+|b+5|=0,∴a﹣1=0,b+5=0,解得:a=1,b=﹣5,故5a+b=0.故答案为:0.【点评】此题主要考查了非负数的性质,正确得出a,b的值是解题关键.三、计算题(要求写出必要的解题过程和步骤)20.(30分)计算下面各题①﹣40﹣28﹣(﹣19)+(﹣24)②(﹣1)×(﹣10)÷|﹣0.7|③﹣32﹣4×(﹣3)+15÷(﹣3)④3x2﹣[7x﹣(4x﹣3)﹣2x2]⑤5(a2b﹣3ab2)﹣2(a2b﹣7ab2)【分析】①将减法转化为加法,再根据法则计算可得;②将除法转化为乘法,再计算乘法即可得;③根据有理数的混合运算顺序和运算法则计算可得;④先去括号,再合并同类项即可得;⑤先去括号,再合并同类项即可得.解:①原式=﹣40﹣28+19﹣24=﹣40﹣28﹣24+19=﹣92+19=﹣73;②原式=﹣×(﹣10)×=20;③原式=﹣9+12+(﹣5)=3+(﹣5)=﹣2;④原式=3x2﹣7x+(4x﹣3)+2x2=3x2﹣7x+4x﹣3+2x2=5x2﹣3x﹣3;⑤原式=5a2b﹣15ab2﹣2a2b+14ab2=3a2b﹣ab2.【点评】本题主要考查整式和有理数的混合运算,解题的关键是掌握有理数的混合运算与整式的加减运算顺序和运算法则.四、解答题(本大题共3题,每小题6分,共18分)21.(6分)先化简再求值:(b+3a)+2(3﹣5a)﹣(6﹣2b),其中:a=﹣1,b =2.【分析】先算乘法,再合并同类项,最后代入求出即可.解:(b+3a)+2(3﹣5a)﹣(6﹣2b)=b+3a+6﹣10a﹣6+2b=3a﹣10a+b+2b+6﹣6=﹣7a+3b,当a=﹣1,b=2时,原式=﹣7×(﹣1)+3×2=7+6=13.【点评】本题考查了整式的混合运算和求值的应用,能正确根据整式的运算法则进行化简是解此题的关键.22.(6分)已知a、b互为相反数,c、d互为倒数,并且x的绝对值等于2.试求:x2﹣(a+b+cd)+2(a+b)的值.【分析】由相反数及倒数的性质可求得a+b及cd,由绝对值的定义可求得x的值,代入计算即可.解:∵a、b互为相反数,c、d互为倒数,x的绝对值等于2,∴a+b=0,cd=1,x=±2,∴原式=4﹣(0+1)+2×0=4﹣1+0=3.【点评】本题主要考查有理数的混合运算以及代数式求值,掌握互为相反数的两数的和为0、互为倒数的两数积为1是解题的关键.23.(6分)有理数a,b,c在数轴上的位置如图所示,化简:|b﹣a|﹣|c﹣b|+|a+b|.【分析】根据数轴可以判断a、b、c的正负情况,从而可以将绝对值去掉,然后合并同类项即可解答本题.解:由数轴可知:c<b<0<a,|a|>|b|,∴b﹣a<0,c﹣b<0,a+b>0,∴原式=﹣(b﹣a)+(c﹣b)+(a+b)=﹣b+a+c﹣b+a+b=2a﹣b+c.【点评】本题考查数轴、绝对值,解答本题的关键是明确数轴的特点,利用数轴和绝对值的知识解答.五、应用题(本大题每小题9分,共18分)24.(9分)小车司机李师傅某天下午的营运全是在东西走向的振兴路上进行的,如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:+14,﹣3,+7,﹣3,+11,﹣4,﹣3,+11,+6,﹣7,+9①李师傅这天最后到达目的地时,在下午出车点的什么位置?②若李师傅的车平均行驶每千米耗油a升,则这天下午李师傅用了多少升油?【分析】①把题中的11个数相加,然后利用和的正负可判断李师傅的车在下午出车点的东边或西边,利用和的绝对值判断他离下午出车点的距离;②把题中的11个数的绝对值相加得到李师傅的车行驶的距离,从而得到用油的多少.解:①14﹣3+7﹣3+11﹣4﹣3+11+6﹣7+9=14+11+11+6+9﹣3﹣3﹣4﹣3+7﹣7=38(千米),答:李师傅这天最后到达目的地时,在下午出车点的东边38千米;(2)14+3+7+3+11+4+3+11+6+7+9=78(千米),78×a=78a(升).答:这天下午李师傅用了78a升油.【点评】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.也考查了正、负数的意义.25.(9分)某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产为正、减产为负):(1)产量最多的一天是星期六,产量最少一天的是星期五;(2)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣15元,那么该厂工人这一周的工资总额是多少?【分析】根据正负数的意义即可求出答案.解:(1)由表格可知:产量最多是星期六产量最少是星期五(2)由题意可知:5+(﹣2)+(﹣4)+13+(﹣10)+(+16)+(﹣9)=9这个一周的生产量为:200×7+9=1409所以本周工资为:1409×60+9×15=84675答:该厂工人这一周的工资总额是84675元故答案为:(1)六;五【点评】本题考查正负数的意义,解题的关键是熟练运用正负数的意义,本题属于基础题型.人教版七年级第一学期期中模拟数学试卷【含答案】一、选择题(每小题3分,共30分)1.在﹣1,15,﹣10,0,﹣(﹣5),﹣|+3|中,负数的个数有()A.2个B.3个C.4个D.5 个2.下列计算正确的是()A.6b﹣5b=1B.2m+3m2=5m3C.﹣2(c﹣d)=﹣2c+2d D.﹣(a﹣b)=﹣a﹣b3.共享单车为市民短距离出行带来了极大便利.据2017年“深圳互联网自行车发展评估报告”披露,深圳市日均使用共享单车2590000人次,其中2590000用科学记数法表示为()A.259×104B.25.9×105C.2.59×106D.0.259×1074.在,x+1,﹣2,,0.72xy,,中单项式的个数有()A.2个B.3个C.4个D.5个5.a,b,c三个数的位置如图所示,下列结论不正确的是()A.a+b<0B.b+c<0C.b+a>0D.a+c>06.如图中,是正方体的表面展开图的是()A.B.C.D.7.知﹣a+2b+8=0,则代数式2a﹣4b+10的值为()A.26B.16C.2D.﹣68.小强购买绿、橙两种颜色的珠子串成一条手链,已知绿色珠子a个,每个2元,橙色珠子b个,每个5元,那么小强购买珠子共需花费()A.(2a+5b)元B.(5a+2b)元C.2(a+5b)元D.5(2a+b)元9.已知M是一个五次多项式,N是一个三次多项式,则M﹣N是一个()次整式.A.5B.3C.小于等于5D.210.现有以下五个结论:①正数、负数和0统称为有理数;②若两个非0数互为相反数,则它们相除的商等于﹣1;③数轴上的每一个点均表示一个确定的有理数;④绝对值等于其本身的有理数是零;⑤几个有理数相乘,负因数个数为奇数,则乘积为负数.其中正确的有()A.0个B.1个C.2个D.3个二.填空题(每小题3分,共15分)11.如果|a+1|+(b﹣3)2=0,那么a﹣b的值是.12.用以平面去截一个正方体,得到的截面形状中最多是边形.13.一商店把彩电按标价的9折出售,仍可获利20%,若该彩电的进价是2400元,则彩电的标价为元.14.有理数a,b,c在数轴上的位置如图所示,化简|b+a|﹣|b﹣c|+|a﹣c|的结果是.15.已知长方形的长为4cm,宽3cm,现将这个长方形绕它的一边所在直线旋转一周,则所得到的几何体的体积为cm3.三.解答题16.(12分)计算题:(1)(1﹣)×(﹣24)(2)﹣×[(﹣3)3×(﹣)2﹣6](3)﹣()2×9﹣2×(﹣)+|﹣4|×0.52+2×(﹣1)217.(15分)计算或化简求值(1)6x+7x2﹣9+4x﹣x2+6(2)5m﹣2(4m+5n)+3(3m﹣4n)(3)先化简,再求值:5(3a2b﹣ab2)﹣(ab2+3a2b),其中a=﹣,b=18.(5分)如果a,b互为相反数,c,d互为倒数,x的绝对值是1,y是数轴负半轴上到原点的距离为1的数,求代数式﹣cd+y2017的值.19.(6分)已知如图为一几何体的三视图:主视图和左视图都是长方形,俯视图是等边三角形(1)写出这个几何体的名称;(2)若主视图的高为10cm,俯视图中三角形的边长为4cm,求这个几何体的侧面积.20.(8分)数轴上点A对应的数为a,点B对应的数为b,且多项式﹣x2y﹣xy2﹣2xy+5的次数为a,常数项为b.(1)直接写出a、b的值;(2)数轴上点A、B之间有一动点P(不与A、B重合),若点P对应的数为x,试化简:|2x+6|+4|x ﹣5|﹣|6﹣x|+|3x﹣9|.21.(9分)解答下面的问题:(1)如果a2+a=3,求a2+a+2015的值.(2)已知a﹣b=﹣3,求3(b﹣a)2﹣5a+5b+5的值.(3)已知a2+2ab=﹣3,ab﹣b2=﹣5,求4a2+ab+b2的值.一、填空题(每小题3分共18分)B卷(50分)22.规定*是一种新的运算符号,且a*b=a2+a×b﹣a+2,例如:2*3=22+2×3﹣2+2=10,请你根据上面的规定可求:1*3*5的值为.23.已知代数式ax5+bx3﹣3x+c,当x=0时,该代数式的值为﹣1.已知当x=3时,该代数式的值为9,试求当x=﹣3时该代数式的值为.24.若A=nx n+4+x3﹣n﹣x3,B=3x n+4﹣x4+x3+nx2,当整数n=时,A﹣B是五次四项式.25.桌上摆着一个由若干个相同正方体摆成的几何体,从正面、左面看所得的平面图形如图所示,这个几何体最多可以由个这样的正方体组成.26.x1、x2、x3、…x20是20个由1,0,﹣1组成的数,且满足:①x1+x2+x3+…+x20=4,②(x1﹣1)2+(x2﹣1)2+(x3﹣1)2…+(x20﹣1)2=32,则这列数中1的个数为个.27.如图,在数轴上,点A表示1,现将点A沿数轴做如下移动,第一次点A向左移动3个单位长度到达点A1,第2次从点A1向右移动6个单位长度到达点A2,第3次从点A2向左移动9个单位长度到达点A3,…,按照这种移动规律进行下去,第n次移动到达点A n,如果点A n与原点的距离不小于50,那么n的最小值是.二、解答题(每小题8分,共32分)28.(8分)已知代数式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1).(1)当a=,b=时,此代数式的值与字母x的取值无关;(2)在(1)的条件下,求多项式3(a2﹣2ab﹣b2)﹣(3a2+ab+b2)的值;(3)在(1)的条件下,求(b+a2)+(2b+•a2)+(3b+•a2)+…+(9b+•a2)的值.29.(8分)某超市对顾客实行优惠购物,规定如下:①若一次性购物商品总价不超过100元则不予优惠;②若一次性购物总价超过100元,但不超过300元,给予九折优惠;若一次性购物商品总价超过300元,其中300元以下部分(包括300元)给予九折优惠;超过300元部分给予八折优惠.小李前后分两次去该超市购物,分别付款234元和94.5元.(1)求小李第一次购物所购商品的总价是多少元?(2)小张决定一次性购买小李分两次购买的商品,他可以比小李节约多少元?30.(8分)现用棱长为1cm的若干小立方体,按如图所示的规律在地上搭建若个几何体.图中每个几何体自上而下分别叫第一层,第二层…第n层(n为正整数),其中第一层摆放一个小立方体,第二层摆放4个小立方体,第三层摆放9个小立方体…,依次按此规律继续摆放.(1)求搭建第4个几何体需要的小立方体个数;(2)为了美观,若将每个几何体的所有露出部分(不包含底面)都喷涂油漆,已知喷涂1cm2需要油漆0.2g.①求喷涂第4个几何体需要油漆多少g?②求喷涂第n个几何体需要油漆多少g?(用含n的代数式表示)31.(8分)已知数轴上的点A和点B之间的距离为28个单位长度,点A在原点左边,距离原点8个单位长度,点B在原点的右边.(1)请直接写出A,B两点所对应的数.(2)数轴上点A以每秒1个单位长度的速度出发向左运动,同时点B以每秒3个单位长度的速度出发向左运动,在点C处追上了点A,求C点对应的数.(3)已知,数轴上点M从点A向左出发,速度为每秒1个单位长度,同时点N从点B向左出发,速度为每秒2个单位长度,经t秒后点M、N、O(O为原点)其中的一点恰好到另外两点的距离相等,求t的值.参考答案一、选择题1.在﹣1,15,﹣10,0,﹣(﹣5),﹣|+3|中,负数的个数有()A.2个B.3个C.4个D.5 个【分析】根据正数与负数的定义求解.【解答】解:在﹣1,15,﹣10,0,﹣(﹣5),﹣|+3|中,负数有﹣1、﹣10、﹣|+3|这3个,故选:B.【点评】本题考查了正数和负数:在以前学过的0以外的数叫做正数,在正数前面加负号“﹣”,叫做负数,一个数前面的“+”“﹣”号叫做它的符号.2.下列计算正确的是()A.6b﹣5b=1B.2m+3m2=5m3C.﹣2(c﹣d)=﹣2c+2d D.﹣(a﹣b)=﹣a﹣b【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=b,不符合题意;B、原式不能合并,不符合题意;C、原式=﹣2c+2d,符合题意;D、原式=﹣a+b,不符合题意,故选:C.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.3.共享单车为市民短距离出行带来了极大便利.据2017年“深圳互联网自行车发展评估报告”披露,深圳市日均使用共享单车2590000人次,其中2590000用科学记数法表示为()A.259×104B.25.9×105C.2.59×106D.0.259×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将2590000用科学记数法表示为:2.59×106.故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.在,x+1,﹣2,,0.72xy,,中单项式的个数有()A.2个B.3个C.4个D.5个【分析】根据单项式的定义即可求出答案.【解答】解:﹣2,,0.72xy,是单项式,故选:C.【点评】本题考查单项式的定义,解题的关键是熟练运用单项式的定义,本题属于基础题型.5.a,b,c三个数的位置如图所示,下列结论不正确的是()A.a+b<0B.b+c<0C.b+a>0D.a+c>0【分析】根据数轴上点的位置判断出a,b,c的大小,利用有理数的加法法则判断即可.【解答】解:根据数轴上点的位置得:﹣4<b<﹣3<﹣1<0<1<c,即|a|<|c|<|b|,∴a+b<0,b+c<0,b+a<0,a+c>0,故选:C.【点评】此题考查了有理数的加法,以及数轴,熟练掌握运算法则是解本题的关键.6.如图中,是正方体的表面展开图的是()A.B.C.D.【分析】根据正方体的特征以及展开图的特点进行解答即可.【解答】解:A、C、D它们不是正方体的表面展开图.故选:B.【点评】此题考查了正方体的展开图,解题时要充分发挥学生的空间想象力,注意有“田”字格的展开图都不能围成正方体.7.知﹣a+2b+8=0,则代数式2a﹣4b+10的值为()A.26B.16C.2D.﹣6【分析】由已知得出a﹣2b=8,代入原式=2(a﹣2b)+10计算可得.【解答】解:∵﹣a+2b+8=0,∴a﹣2b=8,则原式=2(a﹣2b)+10=2×8+10=16+10=26,故选:A.【点评】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.8.小强购买绿、橙两种颜色的珠子串成一条手链,已知绿色珠子a个,每个2元,橙色珠子b个,每个5元,那么小强购买珠子共需花费()A.(2a+5b)元B.(5a+2b)元C.2(a+5b)元D.5(2a+b)元【分析】直接利用两种颜色的珠子的价格进而求出手链的价格.【解答】解:∵绿色珠子每个2元,橙色珠子每个5元,∴小强购买珠子共需花费(2a+5b)元,故选:A.【点评】此题主要考查了列代数式,正确得出各种颜色珠子的数量是解题关键.9.已知M是一个五次多项式,N是一个三次多项式,则M﹣N是一个()次整式.A.5B.3C.小于等于5D.2【分析】根据合并同类项的法则即可判断M﹣N是一个五次多项式.【解答】解:因为M是一个五次多项式,N是一个三次多项式,所以M﹣N的结果中,M的五次项没有同类项与它合并,即M﹣N仍然是一个五次整式.故选:A.【点评】此题考查了整式的加减,用到的知识点为:只有同类项才能合并成一项,不是同类项的项不能合并.熟练掌握合并同类项法则是解本题的关键.。
期中达标测试卷(含答案)2024-2025学年人教版(2024)数学七年级上册
人教版(2024)数学七年级上册期中达标测试卷(本试卷满分120分)一、选择题(本大题共10小题,每小题3分,共30分)1.的倒数是( )A.B .C .D .2.李老师在实验室中发现了四个因操作不规范沾染污垢或被腐蚀的砝码,经过测量,超出标准质量的部分记为正数、不足标准质量的部分记为负数,它们中质量最接近标准质量的是( )ABCD3.单项式-12x 3y 的系数和次数分别是( )A .-12,4B .-12,3C .12,3D .12,44.著名的数学家苏步青被誉为“数学大王”.为纪念其卓越贡献,国际上将一颗距地球约218 000 000公里的行星命名为“苏步青星”.数据218 000 000用科学记数法表示为( )A .0.218×109B .2.18×108C .2.18×109D .218×1065.下列运算结果正确的是( )A .a +2a 2=3a 2B .3a 2b -2ba 2=a 2b C .5a -a =5D .2a +b =2ab6.下列说法中正确的是( )A .0不是单项式B .-a 一定小于0C .最大的负有理数是-1D .2-a -ab 是二次三项式7.若-x 3y m 与2x n y 是同类项,则2024m +n 的值为( )A .2027B .2021C .4051D .40458.2024年,第33届夏季奥林匹克运动会在法国巴黎举行.如图1,将5个城市的国际标准时间(单位:时)在数轴上表示,那么开幕式的巴黎时间7月26日19时30分对应的是( )A .纽约时间7月26日14时30分B .伦敦时间7月26日18时30分23-233232-23-C .北京时间7月27日3时30分D .汉城时间7月26日3时30分图19.多项式x 3-3x 2+2x +1与多项式-2x 3-3x 2+3x +5相减,化简后不含的项是( )A .三次项B .二次项C .一次项D .常数项10.【跨学科】苯是一种有机化合物,是组成结构最简单的芳香烃,可以合成一系列衍生物.如图2是某小组用小木棒摆放的苯及其衍生物的结构式,第1个图形需要9根小木棒,第2个图形需要16根小木棒,第3个图形需要23根小木棒……按此规律,第n 个图形需要的小木棒的根数是( )A .7n +2B .7n +5C .7n +7D .7n +9图2二、填空题(本大题共6小题,每小题4分,共24分)11.化简:-(-4)=__________.12.2024年3月8日,我国在南海珠江口盆地发现首个深水深层大油田——开平南油田,探明油气地质储量1.02亿吨油当量.该油田是全球核杂岩型凹陷最大的商业发现.数据“1.02亿”精确到的数位是______位. 13强p 与受力面积S 成__________比例关系.14=__________.15.如图3是一个数据转换器的示意图,它的作用是求转换器内各代数式的和.现输入x 的值,经过转换器,输出的值为y ,若无论输入的x 为何值,输出的y 不变,则m =__________.图3图416.如图4,若从一个宽为5 cm 的长方形纸片中剪去两个形状和大小完全相同的小长方形卡片,那么余下的两块阴影部分的周长之和是__________ cm .三、解答题(本大题共7小题,共66分)17.(6分)根据下列语句列代数式:(1)b 的倍的相反数;(2)比a 与b 的积的2倍小5的数;(3)一件商品原价为a 元,现按原价的九折销售,则售价是多少元?18.(8分)计算:.阅读下面的解答过程并完成相应任务:解:原式………… 第一步=(-15)÷(-1)………………………第二步=15.………………………………………第三步任务:(1)上面解题过程中,第__________步开始就出现了错误,错误的原因是____________________;(2)把正确的解题过程写出来.19.(8分)先化简,再求值:3(a 2b +b )-2(4a 2b -2),其中a =-3,b =2.43()1115632⎛⎫-÷-⨯ ⎪⎝⎭()11566⎛⎫=-÷-⨯ ⎪⎝⎭20.(10分)某摩托车厂本周内计划每日生产300辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表:(增加的车辆数记为正数,减少的车辆数记为负数)(1)星期三生产了__________辆摩托车,本周产量最多的一天比产量最少的一天多生产__________辆;(2)本周总生产量与计划生产量相比,是增加还是减少了?增加或减少了多少辆?21.(10分)食品加工厂准备把一批新酿的醋装瓶运往商店,每瓶容量和所装瓶数如下表:(1)表中a=____________;(2)用n表示所装瓶数,m表示每瓶容量,用式子表示n与m的关系,n与m成什么比例关系?(3)如果把这批新酿的醋装了150瓶,那么每瓶的容量是多少毫升?22.(12分)用数学的眼光观察:甲、乙两位同学用标有数字1,2,…,9的9张卡片做游戏.甲同学:“你先从这9张卡片中随意抽取两张(按抽取的先后顺序分别称为“卡片A”和“卡片B”),别告诉我卡片上是什么数字,然后你把卡片A上的数字先乘5,再加7,再乘2,再加上卡片B的数字,把最后得到的数告诉我,我就能猜出你抽出的是哪两张卡片啦!”乙同学:“这么神奇?我不信.”……用数学的思维思考:(1)如果乙同学抽出的卡片A上的数字为3,卡片B上的数字为6,他最后得到的数M为__________;(2)若乙同学最后得到的数M为76,则卡片A上的数字为_________,卡片B上的数字为_________;用数学的语言表达:(3)请你说明:对任意告知的数M,甲同学是如何猜到乙抽出的是哪两张卡片的.23.(13分)已知A,B,P为数轴上三点,我们规定:点P到点A的距离是点P到点B的距离的k倍,则称P是[A,B]的“k倍点”,记作P[A,B]=k.例如:若点P表示的数为0,点A表示的数为-2,点B表示的数为1,则P是[A,B]的“2倍点”,记作P[A,B]=2.【知识运用】(1)如图5,A,B,P为数轴上三点,回答下面问题:①P[B,A]=__________;②若点C在数轴上,且C[A,B]=1,则点C表示的数为__________ ;③若D是数轴上一点,且D[A,B]=2,求点D所表示的数.图5【知识拓展】(2)E,F为数轴上两点(点E在点F的左边),M,N为线段EF上的两点,且M,N两点之间的距离为a,若M[E,N]=3,N[F,M]=2,直接写出E,F两点之间的距离.(用含a的代数式表示)期中自我评估 参考答案答案速览一、1. C 2. D 3. A 4. B 5. B 6. D 7. A 8. B 9. B 10. A 二、11. 4 12. 百万 13. 反 14. 9 15. -3 16. 20三、17.(1)-b ;(2)2ab -5;(3)0.9a .18.解:(1)二运算顺序错误(2)原式=(-15)×(-6)×6=540.19.解:原式=3a 2b +3b -8a 2b +4=-5a 2b +3b +4.当a =-3,b =2时,原式=-5×(-3)2×2+3×2+4=-5×9×2+3×2+4=-90+6+4=-80.20.解:(1)335 114(2)根据题意,得-50-72+35+42+10=-35(辆).答:本周总生产量与计划生产量相比,减少了35辆.21.解:(1)600(2.(3)每瓶的容量是2000毫升.22. 解:(1)50(2)6 2(3)设卡片A 上的数字为x ,卡片B 上的数字为y .经过题中的计算后得到的数M =2(5x +7)+y =10x +y +14.所以10x +y 的值为M-14.因为x ,y 都是1至9这9个数字,所以由告知的数M 减去14,所得两位数的十位上数字为卡片A 上的数字x ,个位上数字为卡片B 上的数字y .23. 解:(1)①4②2③因为D 是数轴上一点,且D [A ,B]=2,所以DA =2DB .因为点A 表示的数为-1,点B 表示的数为5,所以AB =5-(-1)=6.当点D 在点B 的右边时,点D 表示的数为-1+2×6=11.所以点D 表示的数为3或11.(2)E ,F 两点之间的距离为6a 或4a .43()11566⎛⎫=-÷-⨯ ⎪⎝⎭解析:因为M,N两点之间的距离为a,M[E,N]=3,N[F,M]=2,所以ME=3MN=3a,NF=2MN=2a.因为M,N为线段EF上的两点,所以分两种情况:当点M在点N的左边时,如图2-①,E,F两点之间的距离为ME+MN+NF=3a+a+2a=6a.①②图2当点M在点N的右边时,如图2-②,E,F两点之间的距离为ME-MN+NF=3a-a+2a=4a.综上,E,F两点之间的距离为6a或4a.。
人教版七年级上册期中考试数学试卷及详细答案解析(共5套)
人教版七年级上册期中考试数学试卷(一)一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为℃.3.用“<”“=”或“>”填空:﹣(﹣1)﹣|﹣1|.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为毫升.5.近似数2.30万精确到位.6.如果一个负数的平方等于它的相反数,那么这个数是.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为(用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 318.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= .9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= .10.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= .二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.913.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=317.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.018.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.505619.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?参考答案与试题解析一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm .【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以若水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm.故答案为:水位下降了16cm.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为310 ℃.【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:白天,阳光垂直照射的地方温度高达+127℃,夜晚,温度可降至﹣183℃,所以月球表面昼夜的温差为:127℃﹣(﹣183℃)=310℃.故答案为:310℃.3.用“<”“=”或“>”填空:﹣(﹣1)>﹣|﹣1|.【考点】有理数大小比较.【分析】先依据相反数和绝对值的性质化简各数,然后进行比较即可.【解答】解:﹣(﹣1)=1,﹣|﹣1|=﹣1.∵1>﹣1,∴﹣(﹣1)>﹣|﹣1|.故答案为:>.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为 1.44×103毫升.【考点】科学记数法—表示较大的数.【分析】首先把4小时化为秒,再用时间×0.05×2计算可得答案.【解答】解:0.05×2×4×3600=1440=1.44×103,故答案为:1.44×103.5.近似数2.30万精确到百位.【考点】近似数和有效数字.【分析】近似数2.30万精确到0.01万位,即百位.【解答】解:近似数2.30万精确到百位.故答案为百.6.如果一个负数的平方等于它的相反数,那么这个数是﹣1 .【考点】有理数的乘方;相反数.【分析】设这个数为x(x<0),由于一个负数的平方等于它的相反数得到x2=﹣x,解得x=0或x=﹣1,因此这个数只能为﹣1.【解答】解:设这个数为x(x<0),根据题意得x2=﹣x,x(x+1)=0,∴x=0或x=﹣1,∴这个数为﹣1.故答案为﹣1.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为3a (用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 31【考点】列代数式.【分析】认真观察日历中,竖列相邻的三个数之间的规律,问题即可解决.【解答】解:任意圈出一竖列相邻的三个数,设中间一个数为a,则另外两个数为:a﹣7,a+7,∴这三个数之和=a+a﹣7+a+7=3a.故答案为3a.8.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= ﹣5 .【考点】多项式.【分析】根据单项式的系数和次数的定义,多项式的定义求解.【解答】解:∵x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,∴﹣p=﹣5.9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= 0 .【考点】有理数的混合运算;相反数;倒数.【分析】利用相反数,负倒数的定义求出m+n,xy与的值,代入原式计算即可求出值.【解答】解:根据题意得:m+n=0,xy=﹣1,即=﹣1,则原式=0﹣2010+2010=0.故答案为:010.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= ﹣1005a .【考点】整式的加减.【分析】首先去括号,然后再把化成(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,再合并即可.【解答】解:原式=a+3a+5a+…+2009a﹣2a﹣4a﹣6a﹣…﹣2010a,=(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,=﹣a+(﹣a)+(﹣a)+(﹣a)+…+(﹣a),=﹣1005a,故答案为:﹣1005a.二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④【考点】有理数的乘方;相反数;绝对值.【分析】根据a n表示n个a相乘,而﹣an表示an的相反数,而(﹣a)2n=a2n,(﹣a)2n+1=﹣a2n+1(n是整数)即可对各个选项中的式子进行化简,然后根据相反数的定义即可作出判断.【解答】解:①﹣(﹣2)=2,﹣|﹣2|=﹣2,故互为相反数;②(﹣1)2=1,﹣12=﹣1,故互为相反数;③23=8,32=9不互为相反数;④(﹣2)3=﹣8,﹣23=﹣8,相等,不是互为相反数.故选B.12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.9【考点】有理数的乘方.【分析】先求出(﹣3)2的值,∵32=9,(﹣3)2=9,可求出a的值.【解答】解:∵a2=(﹣3)2=9,且(±3)2=9,∴a=±3.故选C.13.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个【考点】单项式.【分析】根据单项式的定义进行解答即可.【解答】解: a2b2,是数与字母的积,故是单项式;,,a2﹣2ab+b2中是单项式的和,故是多项式;﹣25是单独的一个数,故是单项式.故共有2个.故选C.14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个【考点】有理数大小比较;数轴.【分析】根据实数的分类以及绝对值的性质即可作出判断.【解答】解:①最大的负整数是﹣1,正确;②数轴上表示数2和﹣2的点到原点的距离相等,正确;③当a≤0时,|a|=﹣a成立,正确;④a+5一定比a大,正确.故选D15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y【考点】多项式.【分析】由于多项式次数是多项式中次数最高的项的次数,项数是多项式中所有单项式的个数,由此可确定所有答案的项数和次数,然后即可作出选择.【解答】解:A、a2+﹣3是分式,故选项错误;B、32+3+1是常数项,可以合并,故选项错误;C、32+a+ab是二次三项式,故选项正确;D、x2+y2+x﹣y是二次四项式,故选项错误.故选C.16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=3【考点】解二元一次方程组;同类项.【分析】两个单项式的和为单项式,则这两个单项式是同类项再根据同类项的定义列出方程组,即可求出m、n的值.【解答】解:由题意,得,解得.故选C.17.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.0【考点】有理数的乘方.【分析】根据有理数乘方的含义,得(﹣1)2n+1=﹣1,(﹣1)2n=1,再计算求和即可.【解答】解:(﹣1)2n+(﹣1)2n+1=1+(﹣1)=0.故选D.18.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.5056【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数4.50所表示的准确值a的取值范围是4.495≤a<4.505.故选A.19.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数【考点】代数式.【分析】根据代数式,可得代数式的表达意义.【解答】解:用数学语言叙述﹣bA、比a的倒数小b的数,故A正确;B、1除以a的商与b的绝对值的差,故B错误;C、1除以a的商与b的相反数的和,故C正确;D、b与a的倒数的差的相反数,故D正确;故选:B.20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能【考点】有理数的乘法;有理数的加法.【分析】根据有理数的加法和有理数的乘法运算法则进行判断即可.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值较大,综上所述,a、b异号且负数的绝对值较大.故选B.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)【考点】整式的加减;有理数的混合运算.【分析】利用实数的运算法则和整式的运算法则即可求出答案.【解答】解:(1)原式=3.5﹣2.5﹣1.4﹣4.6=1﹣6=﹣5;(2)原式=﹣4÷(﹣64)+0.2×=+=;(3)原式=[﹣(9+4﹣18)]÷5×(﹣1)=÷5×(﹣1)=﹣;(4)原式=x﹣2x﹣2+3x=2x﹣2;(5)原式=3x2+2xy﹣4y2﹣3xy+4y2﹣3x2=﹣xy;(6)原式=4x2﹣20x﹣10x2﹣15x=﹣6x2﹣35x;22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.【考点】有理数大小比较;数轴.【分析】先在数轴上表示出各数,再按照从左到右的顺序用“<”连接起来即可.【解答】解:各点在数轴上的位置如图所示:故﹣2.5<﹣<0<1<2.5.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).【考点】数轴.【分析】(1)读出数轴上的点表示的数值即可;(2)根据两点的距离公式,即可求出A、B两点之间的距离;(3)与点A的距离为2的点有两个,一个向左,一个向右.【解答】解:(1)根据所给图形可知A:1,B:﹣2;(2)依题意得:AB之间的距离为:1+2=3;(3)设这两点为C、D,则这两点为C:1+2=3,D:1﹣2=﹣1.如图所示:24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据非负数的性质,可求出a、b的值,然后再去括号、合并同类项,对原代数式进行化简,最后把a,b的值代入计算即可.【解答】解:∵|a﹣4|+(b+1)2=0,∴a=4,b=﹣1;原式=5ab2﹣(2a2b﹣4ab2+2a2b)+4a2b=5ab2﹣4a2b+4ab2+4a2b=9ab2=36.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.【考点】列代数式;代数式求值.【分析】(1)根据梯形的面积=(上底+下底)×高,阴影部分的面积等于梯形的面积减去半圆的面积,列式进行计算即可得解;(2)把a=10代入(1)中的代数式进行计算即可得解.【解答】解:(1)∵梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40,半圆的直径为4a,∴阴影部分的面积=(a2+2a﹣10+3a2﹣5a﹣80)×40﹣π()2,=80a2﹣60a﹣1800﹣2a2π,=80a2﹣60a﹣1800﹣2a2×3,=74a2﹣60a﹣1800;(2)当a=10时,74a2﹣60a﹣1800=74×102﹣60×10﹣1800=5000.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据一次用的时间乘以次数,可得答案.【解答】解:(1)+10+(﹣9)+8+(﹣6)+7.5+(﹣6)+8+(﹣7)=5.5毫米,答:振子停止时所在位置距A点5.5毫米;(2)0.02×(10+|﹣9|+8+|﹣6|+7.5+|﹣6|+8+|﹣7|)=0.02×61.5=1.23秒.答:共用时间1.23秒.人教版七年级上册期中考试数学试卷(二)一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和14.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×1035.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.210.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是.12.由四舍五入法得到的近似数10.560精确到位.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= .14.请写出一个只含有想x,y两个字母的三次四项式.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.18.化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?21.小明和小红在一起玩数学小游戏,他们规定:a*b=a2﹣2ab+b2;=a+b﹣c; =ad﹣bc.请你和他们一起按规定计算:(1)2*(﹣5)的值;(2)(3).22.我国出租车的收费标准因地而异,济宁市规定:起步价为6元,3千米之后每千米1.4元;济南市规定:起步价8元,3千米之后每千米1.2元.(1)求济宁的李先生乘出租车2千米,5千米应付的车费;(2)写出在济宁乘出租车行x千米时应付的车费;(3)当行驶路程超过3千米,不超过l3千米时,求在济南、济宁两地坐出租车的车费相差多少?(4)如果李先生在济南和济宁乘出租车所付的车费相等,试估算出李先生乘出租车多少千米(直接写出答案,不必写过程).参考答案与试题解析一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣【考点】绝对值.【分析】根据正数的绝对值等于它本身即可求解.【解答】解:的绝对值是.故选A.【点评】本题主要考查绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米【考点】有理数的减法;有理数的加法.【专题】常规题型.【分析】先定义向上爬为正,向下爬为负,用井深减去各个数就得到此时蜗牛离井口的距离.【解答】解:向上爬记作“+”,往下爬记作“﹣”蜗牛离井口的距离为10﹣3﹣(﹣1)﹣3﹣(﹣1)=10﹣3+1﹣3+1=6(米)故选C.【点评】本题考查了有理数的加减运算.计算有理数的加减,先把减法转化为加法,可以运用加法的交换律和结合律.3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和1【考点】相反数;有理数.【分析】根据相反数的概念解答即可.【解答】解:A、整数有负整数、0、正整数,故A错误;B、小于零的数是负数,故B错误;C、分数都是有理数,故C正确;D、相反数是它本身的数是非负数,故D错误;故选:C.【点评】本题考查了相反数的意义:只有符号不同的两个数互为相反数,0的相反数是0.4.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×103【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3000万用科学记数法可表示为3×107,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值【考点】有理数的乘法;正数和负数;绝对值;有理数的加法.【分析】两有理数相乘,同号得正,异号得负,因为ab<0,所以a、b异号,再根据a+b<0进一步判定负数的绝对值大于正数的绝对值.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值大于正数的绝对值.故选:D.【点评】考查了有理数的乘法,有理数的加法,本题主要利用两有理数相乘,同号得正,异号得负.6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个【考点】多项式;单项式.【分析】根据单项式和多项式的系数、次数、项数的定义可得.【解答】解:①单独的数字或字母是单项式,正确;②单项式﹣的系数是﹣,次数是2,错误;③多项式x2+x﹣1的常数项是﹣1,错误;④多项式x2+2xy+y2的次数是2,正确;故选:B.【点评】本题主要考查单项式和多项式,熟练掌握单项式的系数、次数和多项式的项数、次数、常数项等概念是关键.7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.【考点】同类项.【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,结合选项进行判断.【解答】解:A、相同字母的指数不同不是同类项,故A错误;B、字母不同不是同类项,故B错误;C、相同字母的指数不同不是同类项,故C错误;D、字母相同,相同字母的指数相同,故D正确;故选:D.【点评】本题考查了同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y【考点】整式的加减.【分析】根据题意对两个多项式作差即可.【解答】解:(x+2y)﹣(2x﹣y)=x+2y﹣2x+y=﹣x+3y故选(A)【点评】本题考查多项式运算,要注意多项式参与运算时,需要对该多项式添加括号.9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.2【考点】代数式求值.【分析】先化简条件得a﹣2b=﹣2,再将(a﹣2b)2+2a﹣4b整理,代值即可得出结论.【解答】解:∵a﹣2b+1的值是﹣l,∴a﹣2b+1=﹣1,∴a﹣2b=﹣2,∴(a﹣2b)2+2a﹣4b=(a﹣2b)2+2(a﹣2b)=4+2×(﹣2)=0,故选C.【点评】此题是代数式求值,主要考查了整式的加减、整体思想,整体代入是解本题的关键.10.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405【考点】规律型:图形的变化类.【分析】观察图形可知后面一个图形比前面一个图形多4个小正方形,所以可得规律为:第n个图形中共有4(n﹣1)+1个小正方形.【解答】解:由图片可知:规律为小正方形的个数=4(n﹣1)+1=4n﹣3.n=100时,小正方形的个数=4n﹣3=397.故选B.【点评】此题考查了规律型:图形的变化,是找规律题,目的是培养同学们观察、分析问题的能力.注意由特殊到一般的分析方法,此题的规律为:第n个图形中共有4(n﹣1)+1个小正方形.二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是1或﹣1 .【考点】倒数.【专题】计算题.【分析】根据倒数的定义得倒数等于它本身只有1和﹣1.【解答】解:1或﹣1的倒数等于它本身.故答案为1或﹣1.【点评】本题考查了倒数:a的倒数为.12.由四舍五入法得到的近似数10.560精确到千分位.【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数10.560精确到千分位.故答案为千分位.【点评】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= ﹣1 .【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】首先根据非负数的性质:几个非负数的和等于0,则每个数等于0,从而列方程求得x和y的值,进而求解.【解答】解:根据题意得:x﹣1=0,y+2=0,解得:x=1,y=﹣2,则原式=(1﹣2)2017=﹣1.故答案是:﹣1.【点评】本题考查了非负数的性质:几个非负数的和等于0,则每个数等于0,理解性质是关键.14.请写出一个只含有想x,y两个字母的三次四项式x3+xy+y+1(答案不唯一).【考点】多项式.【分析】由多项式的定义即可求出答案.【解答】解:故答案为:x3+xy+y+1(答案不唯一)【点评】本题考查多项式的概念,属于基础题型.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是πr2﹣ab .【考点】列代数式.【分析】利用大图形面积减去小图形面积即可求出答案.【解答】解:阴影部分面积=πr2﹣ab故答案为:πr2﹣ab【点评】本题考查列代数式,涉及圆面积公式,三角形面积公式.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)【考点】有理数的混合运算.【专题】常规题型;实数.【分析】(1)原式先计算乘除运算,再计算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算即可得到结果;(3)原式利用除法法则变形,再利用乘法分配律计算即可得到结果.【解答】解:(1)原式=10+5=15;(2)原式=﹣8××=﹣8;(3)原式=(﹣+)×(﹣)=﹣3+2﹣=﹣1.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.【考点】图形的剪拼;矩形的判定与性质;梯形.【分析】(1)直接利用已知图形进而拼凑出梯形与长方形;(2)直接利用已知图形得出其周长.【解答】解:(1)如图所示:;(2)大梯形的周长为:2a+4a+2b=6a+2b(cm),长方形的周长为:2(3a+a)=8a(cm).【点评】此题主要考查了图形的剪拼,正确得出符合题意的图形是解题关键.18.(1)化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:(1)原式=5x+2x+y﹣x+4y=6x+5y;(2)原式=2x2﹣1+x﹣2x+2x2+6=4x2﹣x+5,当x=﹣时,原式=1++5=6.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】把M与N代入3M+2N中,去括号合并得到最简结果,将x与y的值代入计算即可求出值.【解答】解:∵M=x3﹣3xy+2x+1,N=﹣3x+xy,∴3M+2N=3(x3﹣3xy+2x+1)+2(﹣3x+xy)=3x3﹣9xy+6x+3﹣6x+2xy=3x3﹣7xy+3,当x=﹣1,y=时,原式=﹣3++3=.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?【考点】数轴;正数和负数.【分析】(1)根据数轴的三要素画出数轴,并根据题意在数轴上表示出A、B、C、D、E的位置;(2)求出行驶记录的数据的绝对值的和即可;(3)根据有理数的加法进行计算即可.【解答】解:(1如图所示:取1个单位长度表示1千米,;。
七年级上册数学试卷期中【含答案】
七年级上册数学试卷期中【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少?A. 3厘米B. 23厘米C. 17厘米D. 25厘米3. 下列哪个数是偶数?A. 101B. 102C. 103D. 1044. 一个长方形的长是10厘米,宽是5厘米,那么这个长方形的面积是多少平方厘米?A. 15B. 50C. 30D. 255. 下列哪个数是9的倍数?A. 27B. 28C. 29D. 30二、判断题(每题1分,共5分)1. 两个质数相乘,其结果一定是合数。
()2. 一个三角形的内角和一定是180度。
()3. 任何奇数乘以偶数,其结果一定是偶数。
()4. 一个长方形的对角线长度一定大于它的长和宽。
()5. 任何整数乘以0,其结果一定是0。
()三、填空题(每题1分,共5分)1. 100以内的质数有____个。
2. 一个等边三角形的每个内角是____度。
3. 两个偶数相加,其结果一定是____数。
4. 一个长方形的长是8厘米,宽是4厘米,那么这个长方形的面积是____平方厘米。
5. 9的倍数有____、____、____等。
四、简答题(每题2分,共10分)1. 请列举出10以内的质数。
2. 请简述等边三角形的性质。
3. 请说明偶数和奇数的区别。
4. 请简述长方形的面积公式。
5. 请说明什么是倍数。
五、应用题(每题2分,共10分)1. 一个长方形的长是10厘米,宽是5厘米,请计算这个长方形的面积。
2. 请列举出50以内的所有质数。
3. 一个三角形的两个内角分别是60度和70度,请计算第三个内角的度数。
4. 请找出100以内的所有9的倍数。
5. 请计算下列各数的因数:12、15、18。
六、分析题(每题5分,共10分)1. 请分析质数和合数的区别,并举例说明。
2. 请分析等边三角形和等腰三角形的区别,并举例说明。
初一上册数学期中试题及答案【四篇】
【导语】上学期期中考试马上到了,想要测试⼀下⾃⼰数学半个学期的学习⽔平吗?下⾯是为您整理的初⼀上册数学期中试题及答案【四篇】,仅供⼤家参考。
【篇⼀】初⼀上册数学期中试题及答案 ⼀、精⼼选⼀选(每题3分,共计24分) 1.在2、0、﹣3、﹣2四个数中,最⼩的是()A.2B.0C.﹣3D.﹣2 【考点】有理数⼤⼩⽐较. 【分析】在数轴上表⽰出各数,利⽤数轴的特点即可得出结论. 【解答】解:如图所⽰, , 由图可知,最⼩的数是﹣3. 故选C. 【点评】本题考查的是有理数的⼤⼩⽐较,熟知数轴上右边的数总⽐左边的⼤是解答此题的关键. 2.下列式⼦,符合代数式书写格式的是()A.a÷3B.2xC.a×3D. 【考点】代数式. 【分析】利⽤代数式书写格式判定即可 【解答】解: A、a÷3应写为, B、2a应写为a, C、a×3应写为3a, D、正确, 故选:D. 【点评】本题主要考查了代数式,解题的关键是熟记代数式书写格式. 3.在﹣,3.1415,0,﹣0.333…,﹣,﹣0.,2.010010001…中,⽆理数有()A.1个B.2个C.3个D.4个 【考点】⽆理数. 【分析】⽆理数是指⽆限不循环⼩数,根据定义逐个判断即可. 【解答】解:⽆理数有﹣,2.010010001…,共2个, 故选B. 【点评】本题考查了对⽆理数定义的应⽤,能理解⽆理数的定义是解此题的关键,注意:⽆理数包括三⽅⾯的数:①含π的,②开⽅开不尽的根式,③⼀些有规律的数. 4.若|m﹣3|+(n+2)2=0,则m+2n的值为()A.﹣1B.1C.4D.7 【考点】⾮负数的性质:偶次⽅;⾮负数的性质:绝对值. 【分析】先根据⾮负数的性质求出m、n的值,再代⼊代数式进⾏计算即可. 【解答】解:∵|m﹣3|+(n+2)2=0, ∴m﹣3=0,n+2=0,解得m=3,n=﹣2, ∴m+2n=3﹣4=﹣1. 故选A. 【点评】本题考查的是⾮负数的性质,熟知⼏个⾮负数的和为0时,其中每⼀项必为0是解答此题的关键. 5.下列计算的结果正确的是()A.a+a=2a2B.a5﹣a2=a3C.3a+b=3abD.a2﹣3a2=﹣2a2 【考点】合并同类项. 【专题】常规题型. 【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,判断各选项即可. 【解答】解:A、a+a=2a,故本选项错误; B、a5与a2不是同类项,⽆法合并,故本选项错误; C、3a与b不是同类项,⽆法合并,故本选项错误; D、a2﹣3a2=﹣2a2,本选项正确. 故选D. 【点评】本题考查合并同类项的知识,要求掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:带有相同系数的代数项;字母和字母指数. 6.⽤代数式表⽰“m的3倍与n的差的平⽅”,正确的是()A.(3m﹣n)2B.3(m﹣n)2C.3m﹣n2D.(m﹣3n)2 【考点】列代数式. 【分析】认真读题,表⽰出m的3倍为3m,与n的差,再减去n为3m﹣n,最后是平⽅,于是答案可得. 【解答】解:∵m的3倍与n的差为3m﹣n, ∴m的3倍与n的差的平⽅为(3m﹣n)2. 故选A. 【点评】本题考查了列代数式的知识;认真读题,充分理解题意是列代数式的关键,本题应注意的是理解差的平⽅与平⽅差的区别,做题时注意体会. 7.下列各对数中,数值相等的是()A.(2)3和(﹣3)2B.﹣32和(﹣3)2C.﹣33和(﹣3)3D.﹣3×23和(﹣3×2)3 【考点】有理数的乘⽅. 【分析】分别利⽤有理数的乘⽅运算法则化简各数,进⽽判断得出答案. 【解答】解:A、∵(﹣3)2=9,23=8, ∴(﹣3)2和23,不相等,故此选项错误; B、∵﹣32=﹣9,(﹣3)2=9, ∴﹣23和(﹣2)3,不相等,故此选项错误; C、∵﹣33=﹣27,(﹣33)=﹣27, ∴﹣33和(﹣3)3,相等,故此选项正确; D、∵﹣3×23=﹣24,(﹣3×2)3=,﹣216, ∴﹣3×23和(﹣3×2)3不相等,故此选项错误. 故选:C. 【点评】此题主要考查了有理数的乘⽅运算,正确掌握运算法则是解题关键. 8.等边△ABC在数轴上的位置如图所⽰,点A、C对应的数分别为0和﹣1.若△ABC绕顶点沿顺时针⽅向在数轴上连续翻转,翻转1次后,点B所对应的数为1,则连续翻转2015次后,点B()A.不对应任何数B.对应的数是2013C.对应的数是2014D.对应的数是2015 【考点】数轴. 【专题】规律型. 【分析】结合数轴根据翻折的次数,发现对应的数字依次是:1,1,2.5;4,4,5.5;7,7,8.5…即第1次和第⼆次对应的都是1,第四次和第五次对应的都是4,第7次和第8次对应的都是7.根据这⼀规律:因为2015=671×3+2=2013+2,所以翻转2015次后,点B所对应的数2014. 【解答】解:因为2015=671×3+2=2013+2, 所以翻转2015次后,点B所对应的数是2014. 故选:C. 【点评】考查了数轴,本题是⼀道找规律的题⽬,要求学⽣通过观察,分析、归纳发现其中的规律,并应⽤发现的规律解决问题.注意翻折的时候,点B对应的数字的规律:只要是3n+1和3n+2次翻折的对应的数字是3n+1. ⼆、细⼼填⼀填(每空2分,共计30分) 9.﹣5的相反数是5,的倒数为﹣. 【考点】倒数;相反数. 【分析】根据相反数及倒数的定义,即可得出答案. 【解答】解:﹣5的相反数是5,﹣的倒数是﹣. 故答案为:5,﹣. 【点评】本题考查了倒数及相反数的知识,熟练倒数及相反数的定义是关键. 10.⽕星和地球的距离约为34000000千⽶,这个数⽤科学记数法可表⽰为3.4×107千⽶. 【考点】科学记数法—表⽰较⼤的数. 【分析】科学记数法的表⽰形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,⼩数点移动了多少位,n的绝对值与⼩数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数. 【解答】解:34000000=3.4×107, 故答案为:3.4×107. 【点评】此题考查科学记数法的表⽰⽅法.科学记数法的表⽰形式为a×10n的形式,其中1≤|a|<10,n为整数,表⽰时关键要正确确定a的值以及n的值. 11.⽐较⼤⼩:﹣(+9)=﹣|﹣9|;﹣>﹣(填“>”、“ 【考点】有理数⼤⼩⽐较. 【分析】先去括号及绝对值符号,再根据负数⽐较⼤⼩的法则进⾏⽐较即可. 【解答】解:∵﹣(+9)=﹣9,﹣|﹣9|=﹣9, ∴﹣(+9)=﹣|﹣9|; ∵|﹣|==,|﹣|==, ∴﹣>﹣. 故答案为:=,>. 【点评】本题考查的是有理数的⼤⼩⽐较,熟知负数⽐较⼤⼩的法则是解答此题的关键. 12.单项﹣的系数是﹣,次数是4次;多项式xy2﹣xy+24是三次三项式. 【考点】多项式;单项式. 【分析】根据单项式的系数及次数的定义,多项式的次数及项数的概念解答. 【解答】解:单项﹣的系数是﹣,次数是4次,多项式xy2﹣xy+24是三次三项式. 【点评】根据单项式的单项式的系数是单项式前⾯的数字因数,次数是单项式所有字母指数的和; 多项式是由单项式组成的,常数项也是⼀项,多项式的次数是“多项式中次数的项的次数”. 13.若﹣7xyn+1与3xmy4是同类项,则m+n=4. 【考点】同类项. 【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出⽅程,求出n,m的值,再代⼊代数式计算即可. 【解答】解:根据题意,得:m=1,n+1=4, 解得:n=3, 则m+n=1+3=4. 故答案是:4. 【点评】本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点. 14.⼀个多项式加上﹣3+x﹣2x2得到x2﹣1,这个多项式是3x2﹣x+2. 【考点】整式的加减. 【分析】本题涉及整式的加减运算、合并同类项两个考点,解答时根据整式的加减运算法则求得结果即可. 【解答】解:设这个整式为M, 则M=x2﹣1﹣(﹣3+x﹣2x2), =x2﹣1+3﹣x+2x2, =(1+2)x2﹣x+(﹣1+3), =3x2﹣x+2. 故答案为:3x2﹣x+2. 【点评】解决此类题⽬的关键是熟练掌握同类项的概念和整式的加减运算.整式的加减实际上就是合并同类项,这是各地中考的常考点,最后结果要化简. 15.按照如图所⽰的操作步骤,若输⼊x的值为﹣3,则输出的值为22. 【考点】有理数的混合运算. 【专题】图表型. 【分析】根据程序框图列出代数式,把x=﹣3代⼊计算即可求出值. 【解答】解:根据题意得:3x2﹣5=3×(﹣3)2﹣5=27﹣5=22, 故答案为:22 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 16.⼀只蚂蚁从数轴上⼀点A出发,沿着同⼀⽅向在数轴上爬了7个单位长度到了B点,若B点表⽰的数为﹣3,则点A所表⽰的数是4或﹣10. 【考点】数轴. 【分析】“从数轴上A点出发爬了7个单位长度”,这个⽅向是不确定的,可以是向左爬,也可以是向右爬. 【解答】解:分两种情况: 从数轴上A点出发向左爬了7个单位长度,则A点表⽰的数是4; 从数轴上A点出发向右爬了7个单位长度,则A点表⽰的数是﹣10, 故答案为:4或﹣10. 【点评】考查了数轴,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,在学习中要注意培养数形结合的数学思想以及分类的思想. 17.若3a2﹣a﹣2=0,则5+2a﹣6a2=1. 【考点】代数式求值. 【专题】整体思想. 【分析】先观察3a2﹣a﹣2=0,找出与代数式5+2a﹣6a2之间的内在联系后,代⼊求值. 【解答】解;∵3a2﹣a﹣2=0,∴3a2﹣a=2, ∴5+2a﹣6a2=5﹣2(3a2﹣a)=5﹣2×2=1. 故答案为:1. 【点评】主要考查了代数式求值问题.代数式中的字母表⽰的数没有明确告知,⽽是隐含在题设中,把所求的代数式变形整理出题设中的形式,利⽤“整体代⼊法”求代数式的值. 18.已知f(x)=1+,其中f(a)表⽰当x=a时代数式的值,如f(1)=1+,f(2)=1+,f(a)=1+,则f(1)•f(2)•f(3)…•f(100)=101. 【考点】代数式求值. 【专题】新定义. 【分析】把数值代⼊,计算后交错约分得出答案即可. 【解答】解:∵f(1)=1+=2,f(2)=1+=,…f(a)=1+=, ∴f(1)•f(2)•f(3)…•f(100) =2×××…×× =101. 故答案为:101. 【点评】此题考查代数式求值,理解题意,计算出每⼀个式⼦的数值,代⼊求得答案即可. 三、认真答⼀答(共计46分) 19.画⼀条数轴,然后在数轴上表⽰下列各数:﹣(﹣3),﹣|﹣2|,1,并⽤“ 【考点】有理数⼤⼩⽐较;数轴. 【分析】根据数轴是⽤点表⽰数的⼀条直线,可⽤数轴上得点表⽰数,根据数轴上的点表⽰的数右边的总⽐左边的⼤,可得答案. 【解答】解:在数轴上表⽰各数: ⽤“ 【点评】本题考查了有理数⽐较⼤⼩,数轴上的点表⽰的数右边的总⽐左边的⼤. 20.计算: (1)﹣20+(﹣5)﹣(﹣18); (2)(﹣81)÷×÷(﹣16) (3)(﹣+﹣)÷(﹣) (4)(﹣1)100﹣×[3﹣(﹣3)2]. 【考点】有理数的混合运算. 【专题】计算题. 【分析】(1)原式利⽤减法法则变形,计算即可得到结果; (2)原式从左到右依次计算即可得到结果; (3)原式利⽤除法法则变形,再利⽤乘法分配律计算即可得到结果; (4)原式先计算乘⽅运算,再计算乘法运算,最后算加减运算即可得到结果. 【解答】解:(1)原式=﹣20﹣5+18=﹣25+18=﹣7; (2)原式=81×××=1; (3)原式=(﹣+﹣)×(﹣24)=6﹣4+3=5; (4)原式=1﹣×(﹣6)=1+1=2. 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 21.化简 (1)3b+5a﹣(2a﹣4b) (2)5(3a2b﹣ab2)﹣4(﹣ab2+3a2b); (3)先化简,再求值:4(x﹣1)﹣2(x2+1)+(4x2﹣2x),其中x=﹣3. 【考点】整式的加减—化简求值;整式的加减. 【专题】计算题. 【分析】(1)原式去括号合并即可得到结果; (2)原式去括号合并即可得到结果; (3)原式去括号合并得到最简结果,把x的值代⼊计算即可求出值. 【解答】解:(1)原式=3b+5a﹣2a+4b=3a+7b; (2)原式=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2; (3)原式=4x﹣4﹣2x2﹣2+2x2﹣x=3x﹣6, 当x=﹣3时,原式=﹣15. 【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键. 22.有这样⼀道题⽬:“当a=3,b=﹣4时,求多项式3(2a3b﹣a2b﹣a3)﹣(6a3b﹣3a2b+3)+3a3的值”.⼩敏指出,题中给出的条件a=3,b=﹣4是多余的,她的说法有道理吗?为什么? 【考点】整式的加减—化简求值. 【专题】计算题. 【分析】原式去括号合并得到结果为常数,故⼩敏说法有道理. 【解答】解:原式=6a3b﹣3a2b﹣3a3﹣6a3b+3a2b﹣3+3a3=﹣3, 多项式的值为常数,与a,b的取值⽆关, 则⼩敏说法有道理. 【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键. 23.定义⼀种新运算:观察下列式: 1⊙3=1×4+3=7; 3⊙(﹣1)=3×4﹣1=11; 5⊙4=5×4+4=24; 4⊙(﹣3)=4×4﹣3=13;… (1)根据上⾯的规律,请你想⼀想:a⊙b=4a+b; (2)若a⊙(﹣2b)=6,请计算(a﹣b)⊙(2a+b)的值. 【考点】有理数的混合运算. 【专题】新定义. 【分析】(1)利⽤已知新定义化简即可得到结果; (2)已知等式利⽤已知新定义化简求出2a﹣b的值,原式利⽤新定义化简后代⼊计算即可求出值. 【解答】解:(1)根据题中新定义得:a⊙b=4a+b; 故答案为:4a+b; (2)∵a⊙(﹣2b)=4a﹣2b=6,∴2a﹣b=3, 则(a﹣b)⊙(2a+b)=4(a﹣b)+(2a+b)=4a﹣4b+2a+b,=6a﹣3b=3(2a﹣b)=3×3=9. 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 24.某⼯艺⼚计划⼀周⽣产⼯艺品2100个,平均每天⽣产300个,但实际每天⽣产量与计划相⽐有出⼊.表是某周的⽣产情况(超产记为正、减产记为负): 星期⼀⼆三四五六⽇ 增减(单位:个)+5﹣2﹣5+15﹣10﹣6﹣9 (1)写出该⼚星期三⽣产⼯艺品的数量; (2)本周产量中最多的⼀天⽐最少的⼀天多⽣产多少个⼯艺品? (3)请求出该⼯艺⼚在本周实际⽣产⼯艺品的数量; (4)已知该⼚实⾏每周计件⼯资制,每⽣产⼀个⼯艺品可得60元,若超额完成任务,则超过部分每个另奖50元,少⽣产⼀个扣80元.试求该⼯艺⼚在这⼀周应付出的⼯资总额. 【考点】正数和负数. 【分析】(1)根据每天平均300辆,超产记为正、减产记为负,即可解题; (2)⽤15﹣(﹣10)即可解答; (3)把正负数相加计算出结果,再与2100相加即可; (3)计算出本周⼀共⽣产电车数量,根据⼀辆车可得60元即可求得该⼚⼯⼈这⼀周的⼯资总额. 【解答】解:(1)300﹣5=295(个). 答:该⼚星期三⽣产⼯艺品的数量是295个; (2)15﹣(﹣10)=25(个). 答:最多⽐最少多25个; (3)5﹣2﹣5+15﹣10﹣6﹣9=﹣12, 2100﹣12=2088(个). 答:该⼯艺⼚在本周实际⽣产⼯艺品的数量为2088个; (4)2088×60﹣12×80=124320(元). 答:该⼯艺⼚在这⼀周应付出的⼯资总额为124320元. 【点评】本题考查了正数和负数的定义,明确超产记为正、减产记为负是解题的关键. 25.先看数列:1,2,4,8,…,263.从第⼆项起,每⼀项与它的前⼀项的⽐都等于2,象这样,⼀个数列:a1,a2,a3,…,an﹣1,an;从它的第⼆项起,每⼀项与它的前⼀项的⽐都等于⼀个常数q,那么这个数列就叫等⽐数列,q 叫做等⽐数列的公⽐. 根据你的阅读,回答下列问题: (1)请你写出⼀个等⽐数列,并说明公⽐是多少? (2)请你判断下列数列是否是等⽐数列,并说明理由;,﹣,,﹣,…; (3)有⼀个等⽐数列a1,a2,a3,…,an﹣1,an;已知a1=5,q=﹣3;请求出它的第25项a25.(结果不需化简,可以保留乘⽅的形式) 【考点】规律型:数字的变化类. 【专题】新定义. 【分析】(1)根据定义举⼀个例⼦即可; (2)根据定义,即每⼀项与它的前⼀项的⽐都等于⼀个常数q(q≠0),那么这个数列就叫做等⽐数列,进⾏分析判断; (3)根据定义,知a25=5×224. 【解答】解:(1)1,3,9,27,81.公⽐为3; (2)等⽐数列的公⽐q为恒值, ﹣÷=﹣,÷(﹣)=﹣,﹣÷=﹣, 该数列的⽐数不是恒定的,所以不是等⽐数例; (3)由等⽐数列公式得an=a1qn﹣1=5×(﹣3)24, 它的第25项a25=5×(﹣3)24. 【点评】此题考查数字的变化规律,理解等⽐数列的意义,抓住计算的⽅法是解决问题的关键. 【篇⼆】初⼀上册数学期中试题及答案 ⼀、选择题(每题3分,共30分) 1-的相反数是().A.-2016B.2016C.D.- 2.甲⼄两地的海拔⾼度分别为300⽶,-50⽶,那么甲地⽐⼄地⾼出().A.350⽶B.50⽶C.300⽶D.200⽶ 3.下⾯计算正确的是()A.5x2-x2=5B.4a2+3a2=7a2C.5+y=5yD.-0.25mn+mn=0 4.学校、家、书店依次坐落在⼀条南北⾛向的⼤街上,学校在家的南边20⽶,书店在家北边100⽶,李明同学从家⾥出发,向北⾛了50⽶,接着⼜向北⾛了-70⽶,此时李明的位置()A.在家B.在书店C.在学校D.不在上述地⽅ 5.下列去括号正确的是()A.-(3x+7)=-3x+7B.-(6x-3)=-2x+3C.(3m-5n)=m+nD.-(m-2a)=-m+2a 6.下列⽅程中,是⼀元⼀次⽅程的为()A.5x-y=3B.C.D. 7.已知代数式x+2y+1的值是5,则代数式2x+4y+1的值是()A.1B.5C.9D.不能确定 8.已知有理数,所对应的点在数轴上如图所⽰,化简得()A.a+bB.b-aC.a-bD.-a-b 9.列说法错误的是().A.若,则x=y;B.若x2=y2,则-4x2=-4y2;C.若-x=6,则x=-;D.若6=-x,则x=-6. 10.某区中学⽣⾜球赛共赛8轮(即每队均参赛8场),胜⼀场得3分,平⼀场得1分,输 ⼀场得0分,在这次⾜球联赛中,猛虎⾜球队踢平的场数是所负场数的2倍,共得17 分,则该队胜了()场.A.6B.5C.4D.3 ⼆、填空题(每题3分,共24分) 11.地球绕太阳每⼩时转动经过的路程约为110000千⽶,⽤科学记数法记为⽶ 12.若,,且,则的值可能是:. 13.当时,代数式的值为2015.则当时,代数式的 值为。
七年级上册数学期中考试试题含答案
七年级上册数学期中考试试卷2022年一、单选题1.如果+10%表示“增加10%”,那么“减少8%”可以记作( )A .-18%B .-8%C .+2%D .+8% 2.已知x =3是关于x 的方程x+2a =1的解,则a 的值是( )A .﹣1B .﹣5C .1D .53.4-的倒数是( )A .14B .4C .14-D .4- 4.则数据 55000 用科学记数法表示为( )A .55510⨯B .45.510⨯C .55.510⨯D .50.5510⨯ 5.下列运算有错误的是( )A .1(5)5(5)5÷-=⨯-B .15()5(6)6-÷-=-⨯- C .9﹣(﹣5)=9+5 D .3﹣9=(+3)+(﹣9)6.下列式子:22132,4,,,5,07ab ab x x a c ++-中,整式的个数是( ) A .6 B .5 C .4 D .37.运用等式性质进行的变形,不正确的是( )A .如果a=b ,那么a ﹣c=b ﹣cB .如果a ﹣c=b ﹣c ,那么a=bC .如果ac2=bc2,那么a=bD .如果a(c2+1)=b(c 2+1),那么a=b 8.下列各组式中是同类项的是( )A .a 与−12a 2 B .x 2y 3z 与-x 2y 3 C .x 2与y 2 D .94yx 2与-5x 2y 9.下列运算正确的是( )A .3(1)31x x --=--B .3(1)31x x --=-+C .3(1)33x x --=--D .3(1)33x x --=-+10.已知整数a 1,a 2,a 3,a 4,…满足下列条件:a 1=0,a 2=﹣|a 1+1|,a 3=﹣|a 2+2|,a 4=﹣|a 3+3|,……以此类推,则a 2018的值为( )A .﹣1007B .﹣1008C .﹣1009D .﹣2018二、填空题11.已知实数a ,在数轴上如图所示,则|a ﹣1|=______.12.2a 4+a 3b 2﹣5a 2b 2﹣1是 ___次 ___项式,常数项是 ___.13.比较下列每对数的大小:(用“>,<,=”填空)5___﹣3,﹣4___﹣7,|﹣6|___π.14.用四舍五入法把1.3429精确到千分位所得近似数是 ________.15.化简:﹣3x 3+x 3=_______.16.已知方程(m -2)x |m|-1+16=0是关于x 的一元一次方程,则m 的值为_______.17.3x =,则x=____________;如果3a >,则3a -=_________,三、解答题18.计算:(1)﹣20+(﹣14)﹣(﹣3)﹣13;(2)12×(﹣43)÷3;(3)23×(﹣5)﹣(﹣3)÷3128÷|﹣134 |×12;(4)﹣12﹣(1﹣12)÷3×[2﹣(﹣3)2].19.计算:(1)5a 2+2a ﹣4a 2﹣7a ;(2)(2m 2﹣3mn )﹣3(m 2﹣2mn );(3)5x 2﹣[3x ﹣2(2x ﹣3)+4x 2],其中x =﹣1.20.解下列方程:(1)2x﹣4x+3x=5;(2)10(x﹣1)=5;(3)3157 46y y--=;(4)x﹣12x-=2+25x+.21.已知A=2x2+xy+3y﹣1,B=x2﹣xy.(1)若(x+2)2+|y﹣3|=0,求A﹣2B的值;(2)若A﹣2B的值与y的值无关,求x的值.22.先化简,再求值:22(43)2(23)2a a a a---+,其中2a=-.23.某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负.某天自A地出发到收工时所走路线(单位:千米)为:+10,-3,+4,+2,-8,-12,-2,+12,+8,+5.(1)问收工时距A地多远?(2)若每千米路程耗油0.2升,问从A地出发到收工共耗油多少升?24.(1)在数轴上画出下列各点:+2,0,-3.75,-3,-112,+1,(2)并把它们用“<”连接起来。
七年级上册数学期中考试试卷有答案
七年级上册数学期中考试试题2022年一、单选题1.2-的相反数是( )A .2-B .2C .12D .12- 2.在0,﹣4,﹣1,3这四个数中,最小的数是( )A .0B .﹣1C .﹣4D .33.过度包装既浪费资源又污染环境,据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3120000吨,把数3120000用科学记数法表示为( ) A .63.1210⨯ B .53.1210⨯ C .531.210⨯ D .70.31210⨯ 4.单项式:223x y -的系数和次数分别是( ) A .23和2 B .23-和3 C .23和3 D .23-和2 5.下列各组式子中,是同类项的是( )A .2x 2和3x 3B .5x 2y 和-yx 2C .6x 2y 和6xy 2D .3x 和6y6.下列方程是一元一次方程的为( )A .2531-=+x x xB .3711+=x yC .29x =D .424-=x x7.下列计算正确的是( )A .1284--=-B .-21÷(-7)=-3C .239-=D .2(1)---=38.一件衣服的进价为a ,在进价的基础上增加20%标价,则标价可表示为( ) A .(1﹣20%)a B .20%a C .(1+20%)a D .a+20% 9.有理数a 、b 在数轴上的位置如图,化简∣a |-|a -b |+|b -a |的结果是( )A .-3a+2bB .2b -aC .a -2bD .-a10.在平面直角坐标系中,一只蚂蚁从原点0出发,,按如图所示方向依次不断移动,每次移动1个单位长度,其行走路线如图所示,则蚂蚁从点2016A 到点2017A 的移动方向为( )A .向左B .向右C .向上D .向下二、填空题11.比较大小:-1_____12(>,<,=填空). 12.已知2x =是关于x 的方程1(1)2a x a x +=+的解,则a 的值是__________. 13.多项式12x|m|﹣(m ﹣3)x+6是关于x 的三次三项式,则m 的值是_____. 14.已知1x =-是方程23ax a =-的解,则=a __________.15.数轴上点A 表示的数是3-,数轴上另一点B 与点A 相距7个单位长度,则点B 表示的数是_______________16.规定了一种新运算*:若a 、b 是有理数,则*32a b a b =-,请你计算()2*5-=______. 17.如图,在长为a 宽为b 的长方形中剪去两个半径为b 的四分之一圆,用代数式表示图中阴影部分面积_(用含a 、b 的代数式表示).三、解答题18.计算:(1) (-20) + (+3) - (-5) - (+7)(2)13 ⨯ (-5 ) - (-3 ) ÷32519.计算 (2 x 2 + 1) - 2 (5 - x 2 ) -320.解方程:3x+7=6x ﹣2.21.先化简,再求值:[( 2xy + 2 y - 3x ) - 5 ]- (4 xy + 10 y ) ,其中 x = -1 , y = -222.小明在计算多项式M 减去多项式32231x y x y -+时,误计算成加上这个多项式,结果得到答案3254x y x y x -+.(1)请你帮小明求出多项式M ;(2)对于(1)式中的多项式M ,当2x =-时,1y =,求多项式M 的值.23.某服装店以每件32元的价格购进30件衣服,针对不同的顾客,30件衣服的售价不完全相同,若以50元为标准价,将超过的钱数记为正,不足的钱数记为负,则记录结果如下表(1)该服装店售完这30件衣服的总销售额是多少?(2)该服装店售完这30件衣服赚了多少元?24.某市的A 地和B 地秋季育苗,急需化肥分别为80吨和70吨,该市的C 地和D 地分别储存化肥100吨和50吨,全部调给A 地和B 地,已知从C 、D 两地运化肥到A 、B 两地的运费(元/吨)如下表所示(1)设C地运到A地化肥为x吨,则C地运到B地的化肥为吨,D地运到A地的化肥为吨,D地运到B地的化肥为吨;x 时的总运费.(2)用含x(吨)代数式表示表示总运费W(元),并写出4025.如图,A、B分别为数轴上的两点,A点对应的数为-5,B点对应的数为55.现有一动点P以6个单位/秒的速度从B点出发,同时另一动点Q恰好以4个单位/秒的速度从A点出发:(1)若P向左运动,同时Q向右运动,在数轴上的C点相遇,求C点对应的数.(2)若P向左运动,同时Q向左运动,在数轴上的D点相遇,求D点对应的数.(3)若P向左运动,同时Q向右运动,当P与Q之间的距离为20个单位长度时,求此时Q 点所对应的数.参考答案1.B【解析】【分析】根据相反数的定义可得结果.【详解】因为-2+2=0,所以-2的相反数是2,故选:B .【点睛】本题考查求相反数,熟记相反数的概念是解题的关键.2.C【解析】【分析】根据正数大于0,负数小于0,正数大于负数,两个负数,绝对值大的反而小进行比较即可.【详解】 解:4411-=-=,∣4103-<-<<,故选:C .【点睛】本题主要考查有理数的大小比较,熟练掌握有理数的大小比较的方法是解题的关键. 3.A【解析】【分析】根据科学记数法可直接进行求解.【详解】解:由把数3120000用科学记数法表示为63.1210⨯,故选A .【点睛】本题主要考查科学记数法,熟练掌握求一个数的科学记数法是解题的关键.4.B【解析】【分析】根据单项式系数的定义来选择,单项式中数字因数叫做单项式的系数,单项式的次数就是所有字母指数的和.【详解】 单项式23-x 2y 的数字因数为23-,所以系数为23-,所有字母指数的和为2+1=3,所以次数为3.故选B .【点睛】本题考查了单项式的相关概念,解答此题关键是构造单项式的系数和次数,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.5.B【解析】【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案,注意同类项与字母的顺序无关,与系数无关.【详解】A 、相同字母的指数不相等,不是同类项;B 、字母相同,相同字母的指数相等,是同类项;C 、x 的指数不相等,y 的指数也不相等,不是同类项;D 、所含字母不同,不是同类项.故选B .【点睛】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项.注意同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同.6.A【解析】【分析】一元一次方程要求:含有一个未知数,未知数的最高次数是一次,并且是整式方程,由此即可判断得到正确答案.【详解】解:A 、2531-=+x x x 符合一元一次方程的要求,选项正确;B 、3711+=x y 含有两个未知数,不是一元一次方程,选项错误;C 、29x =,未知数的指数是2次,不是一元一次方程,选项错误;D 、424-=x x,不是整式方程,不是一元一次方程,选项错误.故选:D【点睛】本题考查一元一次方程的定义,牢记相关要求是解此类题的关键.7.D【解析】【分析】根据有理数的乘除运算法则和乘方运算判断即可;【详解】12820--=-,故A错误;()-÷-=,故B错误;21732-=-,故C错误;39---=3,故D正确;2(1)故选D.【点睛】本题主要考查了有理数加减乘除乘方的运算,准确分析计算是解题的关键.8.C【解析】【详解】【分析】根据:标价=进价+提价可得a+20%a.【详解】一件衣服的进价为a,在进价的基础上增加20%标价,则标价可表示为a+20%a=(1+20%)a;故选:C【点睛】本题考核知识点:列式表示数量. 解题关键点:用式子表示数量关系.9.D【解析】【分析】根据数轴可以判断a,b,a-b,b-a的正负情况,从而可以把绝对值符号去掉,然后化简即可解答本题.【详解】根据题目中的数轴可得,a<0,b>0,∣a−b<0,b−a>0.∣|a|−|a−b|+|b−a|=−a−(b−a)+(b−a)=−a.故答案为D.【点睛】此题考查绝对值,数轴,整式的加减,解题关键在于利用数轴结合图形判断a,b 的值. 10.C【解析】【详解】由图可知,A1在y 轴上,A3,A12都在x 轴上.∣蚂蚁每次移动1个单位,∣OA1=1,OA3=1,OA12=6,∣A1(0,1),A3(1,0),A12(6,0);若n 是4的倍数,那么连续四个点的坐标是11,02n n A -⎛⎫- ⎪⎝⎭ ,,02n n A ⎛⎫ ⎪⎝⎭,1,12n n A +⎛⎫ ⎪⎝⎭,21,12n n A +⎛⎫+ ⎪⎝⎭; ∣2016÷4=504,∣2016是4的倍数,∣A2016(1008,0).∣2017÷4=504…1,∣A2017与A2016横坐标相同,∣A2017(1008,1),∣从点A2016到点A2017的移动方向与从点O 到A1的方向一致,为从下向上.故选C.11.<【解析】【分析】根据正数大于负数进行比较即可.【详解】因为正数大于负数, 所以112-<. 故答案为:<.【点睛】考查了有理数的大小比较,解题关键是熟记“在数轴上表示的两个数,右边的总比左边的数大;正数都大于零,负数都小于零,正数大于负数;两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小”.12.45【解析】【详解】解:把x=2代入方程得:3a=12a+2,解得:a=45. 故答案为:45. 13.-3【解析】【分析】由题意可知:|m|=3,且m -3≠0即可作答.【详解】由题意可知:|m|=3,且m -3≠0;∣m= -3;故答案为-3.【点睛】本题考查了单项式与多项式的概念,掌握一个单项式中,所有字母的指数的和叫做这个单项式的次数.多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数是解题的关键.14.1【解析】【分析】直接把1x =-代入23ax a =-,即可求出a 的值.【详解】解:把1x =-代入23ax a =-,则2(1)3a a ⨯-=-,解得:1a =;故答案为:1.【点睛】本题考查了一元一次方程的解,解题的关键是熟练掌握解一元一次方程.15.4或-10 或者 -10或4【解析】【分析】根据数轴上点的表示方法和数轴上两点间的距离分两种情况讨论求解即可.【详解】解:∣数轴上点A 表示的数是3-,数轴上另一点B 与点A 相距7个单位长度, 当B 在A 的左边时,B 表示的数=3710--=-;当B 在A 的右边时,B 表示的数=374-+=;∣点B 表示的数是4或-10.故答案为:4或-10.【点睛】此题考查了数轴上点的表示方法和数轴上两点间的距离,解题的关键是熟练掌握数轴上点的表示方法和数轴上两点间的距离.16.16【解析】【分析】直接根据新运算法则运算即可.【详解】根据题意得,()()2*5322561016-=⨯-⨯-=+=故答案为16.【点睛】此题主要考查新定义下的运算,解题关键是理解题意.17.212ab b π-【分析】由图可得,阴影部分的面积是长方形的面积与两个半径为b 的14圆的面积之差,由长方形的长为a ,宽为b ,从而可以表示出阴影部分的面积.【详解】解:依题意可知,图中阴影部分面积为ab ﹣14πb 2×2=212ab b π-. 故答案为:212ab b π-. 【点睛】 本题主要考查列代数式,解题的关键是明确题意,利用数形结合的思想找出所求问题需要的条件.18.(1)-19;(2)-40【解析】【分析】(1)先去括号,再相加减即可;(2)先计算乘除,再相减即可.【详解】(1) (-20) + (+3) - (-5) - (+7)=-20+3+5-7=-19.(2)13 ⨯ (-5 ) - (-3 ) ÷325=-65-(-25)=-40.【点睛】考查了有理数的加减、乘除,解题关键是熟记去括号法则及其计算法则.19.2 412x -【解析】【分析】先去括号,再合并同类项即可.22 21253()()x x +---22 211023x x =+-+-21 42x =-【点睛】考查了整式加减、去括号,解题关键是熟记去括号法则.20.3x =【解析】【分析】直接利用移项、合并同类项即可求解.【详解】解:移项,得3627x x -=--,合并同类项,得39x -=-,系数化为1,得3x =.【点睛】本题考查解一元一次方程,注意移项要变号.21.2385xy x y ----,10【解析】【分析】原式去括号、合并同类项化简,再将x 、y 的值代入计算即可【详解】解:[( 2xy + 2 y - 3x ) - 5 ]- (4 xy + 10 y )=2235410xy y x xy y +----2385xy x y =----把x = -1,y = -2代入原式2(1)(2)3(1)8(2)5=-⨯-⨯--⨯--⨯--43165=-++-10=.【点睛】考查整式的加减-化简求值,解题的关键是掌握非负数的性质和去括号、合并同类项法则.22.(1)3231x y x y x -+-;(2)-31【解析】(1)根据小明在计算多项式M 减去多项式32231x y x y -+时,误计算成加上这个多项式,得到结果3254xy x y x -+,令3254x y x y x -+减去32231x y x y -+可以得到M ,即可解答本题. (2)根据(1)中的结果,代入即可得解.【详解】(1)根据题意,得M+32231x y x y -+=3254x y x y x -+M=3254x y x y x -+-(32231x y x y -+)=3231x y x y x -+-(2)当2x =-时,1y =,M=3231x y x y x -+-=()()323212121-⨯--⨯--=-31.【点睛】本题考查整式的加减,解题的关键是明确题意,进行正确的计算.23.(1)该服装店售完这30件衣服的总销售额是1522元;(2)该服装店售完这30件衣服赚了562元【解析】【分析】(1)把销售数量和销售价相乘加起来计算即可;(2)用售价减去进价计算即可;【详解】解:(1)7×(+3)+6×(+2)+3×(+1)+5×0+4×(-1)+5×(-2),=21+12+3+0-4-10,=22(元),50×30+22=1522(元);所以该服装店售完这30件衣服的总销售额是1522元;(2)1522-32×30=1522-960=562(元),该服装店售完这30件衣服赚了562元.【点睛】本题主要考查了有理数的混合运算应用,准确计算是解题的关键.24.(1)(100)x -、(80)x -、(30)x -;(2)103350W x =+,3750元【解析】【分析】(1)根据C 地运到A 地化肥为x 吨,且C 地储存化肥100吨,可求C 地运到B 地化肥的吨数,再由A 地和B 地急需化肥分别为80吨和70吨,即可表示出D 地运到A 地化肥以及D 地运到B 地化肥的吨数;(2)分别求出C 地运往A 地、B 地的费用以及D 地运往A 地、B 地的费用,然后相加进行化简即可,然后将40x =代入即可求出费用.【详解】解:(1)∣C 地储存化肥100吨,且C 地运到A 地化肥为x 吨,∣C 地运到B 地化肥为(100)x -吨,又∣A 地急需化肥分别为80吨,∣D 地运到A 地化肥为(80)x -吨,又∣B 地急需化肥70吨,∣D 地运到B 地化肥为[]70(100)(30)x x --=-吨,故答案为:(100)x -、(80)x -、(30)x -;(2)根据题意可知:2520(100)30(80)35(30)103350W x x x x x =+-+-+-=+, 当40x =时,103350104033503750W x =+=⨯+=,∣当40x =时,总费用为3750元.【点睛】本题考查了列代数式以及代数式求值,解题的关键是根据题意找出之间的数量关系. 25.(1)19;(2)-125;(3)11或27.【解析】【分析】(1)首先求出A 、B 两点之间的距离,然后求出相遇时间,再求出点Q 所走的路程,根据左减右加的原则,可求出相遇地点所对应的数;(2)此题是追及问题,先求出P 追上Q 所需的时间,然后求出Q 所走的路程,根据左减右加的原则,可求出点D 所对应的数;(3)首先设其运动时间为t,根据题意列出关系式,解得t,然后求出Q点运动的路程,即可求出Q此时对应的数.【详解】(1)∣A点对应的数为-5,B点对应的数为55∣A、B两点之间的距离是55-(-5)=60它们相遇的时间是60÷(6+4)=6即相同时间Q点运动路程是4×6=24即从数-5向右运动24个单位到19即C点对应的数是19;(2)P点追到Q点的时间是60÷(6-4)=30即此时Q点运动的路程是4×30=120即从数-5向左运动120个单位到数-125即D点对应的数为-125.(3)∣相遇前PQ=20时,设运动时间为a秒,4a+6a=55-(-5)-20,解得:a=4,因此Q点对应的数为-5+4×4=11,∣相遇后PQ=20时,设运动时间为b秒,4b+6b=55-(-5)+20,解得:b=8,因此Q点对应的数为-5+4×8=27,故Q点对应的数为11或27.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学上册期中测试题含答案七年级数学期中考试题一、精心选一选(本大题共8题,每小题3分,共24分。
)1.-3的相反数是-3/1.2.已知矩形周长为20cm,设长为xcm,则宽为(20-x)/2 cm。
3.下列化简,正确的是:A。
-(-3)=3 B。
-(-(-10))=10 C。
-(+5)=-5 D。
-(-(+8))=8.4.据统计,截止5月31日上海世博会累计入园人数为803万。
这个数字用科学记数法表示为B。
8.03×107.5.绝对值大于2且小于5的所有整数的和是14.6.若3<a<4时,化简|a-3|+|a-4|=2a-7.7.已知代数式x+2y+1的值是3,则代数式2x+4y+1的值是7.8.计算:3×(1×2+2×3+3×4+…+99×100)=99×100×101.二、细心填一填(本大题共10题,每小题3分,共30分)9.如果+6%表示增加6%。
10.单项式-5的系数是-1.11.表示“x与4的差的3倍”的代数式为3(x-4)。
12.若3am+2b4与-a5bn-1的和仍是一个单项式,则m+n=9.13.多项式m223xy+(m+2)xy-1是四次三项式,则m的值为2.14.化简:-(5x+3y)+(7y-x)=2y-6x。
15.若关于a,b的多项式2a-2ab-b-a+mab+2b不含ab项,则m=-3.16.M、N是数轴上的二个点,线段MN的长度为2,若点M表示的数为-1,则点N表示的数为1.17.有一列数a1,a2,a3,…,an,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若a1=2,则a2007≈0.45.18.给定一个运算程序,输入一个数x,根据x的奇偶性执行不同的运算,最终输出结果。
其中,如果x为偶数,则执行x/2的操作,如果x为奇数,则执行x+3的操作。
现在给定x的初始值为48,求第2010次输出的结果。
19.计算以下四个数学式子的值:1) 2^2 - (-3) × (1 - (-3)) + (-4) - (+11) - (-19)2) -23 - (1 - 0.5) ÷ 33) (-) × (-60)4) -3.5 ÷ 2 × (-xxxxxxxx5) × |-|20.化简以下两个代数式:1) y^2 - [3y - (3 - 2y) + 2y^2]2) (4xy - 3xy) - (1 + 4xy - 3xy)21.先化简代数式2ab + 2ab,然后求其值。
22.已知(x + 3)与(y - 2)互为相反数,z是绝对值最小的有理数,求(x + y) + xyz的值。
23.某地电话拔号入网有两种收费方式:计时制和包月制。
计时制为0.1元/分,包月制为50元/月(限一部个人住宅电话上网)。
此外,每种方式都需加收通信费0.2元/分。
现在某用户上网x小时,请计算两种收费方式下该用户应支付的费用,并判断在用户一个月内上网20小时时,哪种方式更为合算。
24.1) 代数式a - b表示a、b两数的差,代数式(a + b)(a - b)表示a、b两数的平方差。
2) 根据不同的a、b取值,计算a - b和(a + b)(a - b)的值,并填入表格中。
3) 任意给a、b各取一个数值,计算a - b和(a + b)(a - b)的值。
当a=_____,b=_____时,a-b=_______,(a+b)(a-b)=________。
在我的发现中,我发现了一些规律,但需要进一步的计算和验证。
根据题目中的坐标关系,可以得出:A→C(+1,+4),B→D(+4,-1),C→(+1,-4)。
该甲虫从A到B再到C再到D,总共走过的路程为:|1|+|4|+|1|+|5|=11.根据表格中的数据,星期六生产了16辆自行车。
本周实际生产自行车的数量为:5-2-4+12-10+16-9=8辆。
产量最多的一天比产量最少的一天多生产自行车22辆。
该厂工人这一周的工资总额为:1400*50+8*15-20=元。
其中,1400为计划生产量,8为实际生产量与计划量的差距,15为超额完成任务的奖励,20为少生产一辆的扣款。
1.单项式8的系数是1,次数是0.单项式2-5 3 ab5 R的系数是-5,次数是8.2.多项式2-1 5 2 xy-4 x y 3是次项式,它的项数为3,次数是5.xy、x y的各项为xy、-x y,次数为1.多项式2 3 2 4的次数是4.最高次项系数是2.3.任写两个与a b 2 2是同类项的单项式:a b 3、-3a b。
4.在代数式1 12 3 2 22.3.1.4.4 3 xy x x y mn x ab x x中,单项式有6个,多项式有3个。
5.a、b两数的平方和减去a b与乘积的2倍的差用代数式表示是a^2+b^2-2ab。
6.一个两位数,个位数字是a,十位数字比个位数字大2,则这个两位数是10a+(a+2)=11a+2.7.三个连续偶数中,n是最小的一个,这三个数的和为3n+6.8.已知轮船在逆水中前进的速度是m千米/时,水流的速度是2千米/时,则这轮船在静水中航行的速度是(m+2)千米/时。
9.长方形的周长是2(a+b),已知周长为1,则它的长和宽之和为1/2,即a+b=1/4.又已知长是2a+11,宽是3a+10,代入式子得到3a+2=1/4,解得a=-23/12,代入得到b=59/12.所以长方形的长是-13/6,宽是49/12.10.___同学到文具商店为学校美术组的30名同学购买铅笔和橡皮,已知铅笔和橡皮的单价分别为x元和___,且___同学购买的铅笔数是橡皮数的2倍,则方程为2x+1y=360,解得x=120,y=240.所以铅笔的总价为2x*20=4800元,橡皮的总价为y*10=元。
2.改写每段话。
不是单项式B,因为B没有给出具体的代数式。
x没有系数C,因为C没有给出x的系数。
7 3 x xxy是单项式,因为它只包含一个变量的幂次乘积。
D是多项式,因为它包含多个单项式的和。
填空题中,最大的负整数是-1.相反数指的是与该数相加等于0的数,所以2bc的相反数是-+2bc。
如果多项式2 3 7 2的值为10,则多项式6 9 7 2+x+x的值为16+x。
___卖报收入为0.4a+0.5b+0.2(a+b-315/0.5),化简后可得0.1a+0.3b+63=收入。
购甲、乙、丙三种商品各一件共需165元钱。
解法:将第一个等式乘2,再与第二个等式相减,可得2甲+丙=45,代入第一个等式可得3甲+2乙=210,代入丙的值即可求得甲、乙、丙的价格。
不能被3整除的数可以表示为3n+1或3n+2的形式,其中n为整数。
设该三位数为100a+10x+b,由题意可得b=x-3,a=3b,代入原式可得该三位数为297.1、在代数式 $2x^2-3xy+5x-2y^2+12xy+3y^2$ 中,整式有()。
A。
3个 B。
4个 C。
5个 D。
6个2、下列各组代数式中互为相反数的有()。
1)$a-b$ 与 $-a-b$;(2)$a+b$ 与 $-a-b$;(3)$a+1$ 与 $1-a$;(4)$-a+b$ 与 $a-b$。
A.(1)(2)(4)B.(2)与(4)C.(1)(3)(4)D.(3)与(4)3、把 $(x-3)^2-2(x-3)-5(x-3)^2+(x-3)$ 中的 $(x-3)$ 看成一个因式合并同类项,结果应是()。
A。
$-4(x-3)^2+(x-3)$ B。
$4(x-3)^2-x(x-3)$ C。
$4(x-3)^2-(x-3)$ D。
$-4(x-3)^2-(x-3)$4、两个四次多项式的和的次数是()。
A。
八次 B。
四次 C。
不低于四次 D。
不高于四次5、如果 $a-b=\frac{1}{2}$,那么 $-3(b-a)$ 的值是()。
A。
$-\frac{3}{5}$ B。
$\frac{2}{3}$ C。
$\frac{3}{2}$ D。
$1$6、如果 $5-1m$ 的值是 $\frac{-n}{2}$,那么 $-2=n-m$。
A。
$5$ B。
$\frac{2}{5}$ C。
$-5$ D。
$-2$7、已知 $(a-c)+2=(b-d)+2$,且 $(a-c)-2=(b-d)-2$,则 $(b-d)-(a-c)$ 的值是()。
A。
$0$ B。
$2$ C。
$4$ D。
$-4$8、若多项式 $3x^2+53x-8$ 与 $-2x^2+28x+1$ 的和是单项式,那么 $x=$,$x=$。
9、若 $B$ 是一个四次多项式,$C$ 是一个二次多项式,则“$B-C$”()。
A。
可能是七次多项式 B。
一定是大于七项的多项式 C。
可能是二次多项式 D。
一定是四次多项式10、已知 $x=-1$,$y=1$,求 $y-3(2)^2x-y+2(2)^2x-y-4(2)^2x-1,2(2)^2x^2$。
11、我国进口关税近年来有两次大幅度下调,第一次降低了 $40\%$,第二次又在第一次的基础上降低了 $30\%$。
1) 若未降税前某种商品的税款为 $a$ 万元,用整式表示现在的实际税款。
2) 若现在实际税款为$600$ 万元,试求未降税前的税款。
参考答案:一、精心选一选题号。
1.2.3.4.5.6.7答案。
A。
D。
B。
C。
A。
C。
-二、细心填一填9.6.36.10.-3/5.11.3x-12.12.8.13.1/214.-6x+4y。
15.-4.16.(-3,1)。
17.-1.18.219.1) -182) -41/63) -7/820.1) -12) 2y-221.-822.-4改写后的文章:一份试卷中,有选择题和填空题两部分。
选择题共8题,每题3分,填空题共10题,每题3分。
其中填空题第9题要求计算增加6%后的数值,第10题要求计算一个分数的值,第11题要求化简一个代数式,第12至13题要求计算简单的数值,第14至18题要求填写数字或坐标。
试卷还包括四道计算题,每题6分,分别要求计算表达式的值。
这些题目需要认真计算,避免粗心错误。
最后两道题是应用题,需要在计算的基础上进行推理和分析。
第21题要求化简一个表达式并代入数值计算,第22题要求根据已知条件计算一个表达式的值。
在做试卷时,要认真审题,注意题目中的条件和要求,避免粗心错误。
同时,要掌握基本的计算方法和代数式化简技巧,这样才能在考试中取得好成绩。