2016年考研数学平均分数
2016年全国硕士研究生入学统一考试数学一试题及详细解析
(B) p 随着 的增加而增加. (D) p 随着 的增加而减少.
X
} ( ) 1 ,将试验 3
(8)随机试验 E 有三种两两不相容的结果 A1 , A2 , A3 ,且三种结果发生的概率均为
E 独立重复做 2 次, X 表示 2 次试验中结果 A1 发生的次数, Y 表示试验中结果 A2 发生的
(
)
2016 年考研数学一真题及详细解析——向星荣
(A)单叶双曲面. 【答案】(A)
(B)双叶双曲面.
2 2 2
(C)椭球面.
(D)柱面.
【解析】 f ( x1 , x2 , x3 ) x1 x2 x3 4 x1 x2 4 x1 x3 4 x2 x3 正交变换下二次型
1 2 2 1 2 2 0 4 3 2 1 2 0 1 2 (1 ) 0 1 2 (1 )(8 (1 )(3 )) 2 2 1 1 2 1 1 2 1 (1 )(5 4 2 ) 0 1,5, 1
n n
2016 年考研数学一真题及详细解析——向星荣
(20)(本题满分 11 分)
2 1 1 1 2 a 1 ,B 1 a . 设矩阵 A 2 1 1 a a 1 2
当 a 为何值时,方程 AX B 无解、有唯一解、有无穷多解?在有解时,求此方程.
.
2016 年考研数学一真题及详细解析——向星荣
1 0 0 1 (13) 0 0
4 3 2
0 0 1 1
.
(14)设 x1 , x2, 样本均值 x 9.5 , 参数 的 ,xn 是来自正态总体 N ( , ) 的简单随机样本,
2016考研管综数学真题及答案解析(word版)
2016考研管综数学真题解析:考点对比详解新东方在线一.问题求解:本大题共15小题,每小题3分,共45分. 下列每题给出的五个选项中,只有一项是符合试题要求的. 请在答题卡...上将所选项的字母涂黑.1. 某家庭在一年总支出中,子女教育支出与生活资料支出的比为3:8,文化娱乐支出与子女教育支出为1:2. 已知文化娱乐支出占家庭总支出的10.5%,则生活资料支出占家庭总支出的().(A)40% (B)42% (C)48% (D)56% (E)64%【答案】D【考点】联比【难度】简单【对照】新东方在线《冲刺讲义》例1.3,基础班讲义数例16(2007真题)2. 有一批同规格的正方形瓷砖,用他们铺满整个正方形区域时剩余180块,将此正方形区域的边长增加一块瓷砖的长度时,还需要增加21块瓷砖才能铺满,该批瓷砖共有().(A)9981块(B)10000块(C)10180块(D)10201块(E)10222块【答案】C【考点】应用题(列方程)【难度】简单【对照】《套路化攻略》习题3. 上午9时一辆货车从甲地出发前往乙地,同时一辆客车从乙地出发前往甲地,中午12时两车相遇,已知货车和客车的时速分别是90千米/小时和100千米/小时,则当客车到达甲地时货车距乙地的距离是().(A)30千米(B) 43千米(C) 45千米(D) 50千米(E)57千米【答案】E【考点】应用题(行程问题)【难度】简单【对照】新东方在线强化班讲义应用题例题54. 在分别标记了数字1、2、3、4、5、6的6张卡片中随机取3张,其上数字之和等于10的概率().(A)0.05 (B) 0.1 (C)0.15 (D)0.2 (E)0.25【答案】C【考点】概率【难度】简单【对照】新东方在线强化讲义计数原理与古典概型例345. 某商场将每台进价为2000元的冰箱以2400元销售时,每天销售8台,调研表明这种冰箱的售价每降低50元,每天就能多销售4台. 若要每天销售利润最大,则该冰箱的定价应为().(A)2200 (B) 2250 (C) 2300 (D) 2350 (E)2400【答案】B【考点】二次函数/均值不等式【难度】中等【对照】新东方在线冲刺讲义例5.3+模拟卷B第5题6. 某委员会由三个不同专业的人员组成,三个专业的人数分别是2,3,4,从中选派2位不同专业的委员外出调研,则不同的选派方式有().(A)36种(B) 26种(C) 12种(D) 8种(E)6种【答案】B【考点】计数【难度】简单【对照】新东方在线点题讲义例77. 从1到100的整数中任取一个数,则该数能被5或7整除的概率为().(A)0.02 (B) 0.14 (C) 0.2 (D)0.32 (E)0.34【答案】D【考点】概率+整数【难度】简单【对照】新东方在线基础班讲义第1章例88. 如图1,在四边形ABCD中,AB∥CD,AB与CD的边长分别为4和8,若△ABE的面积为4,则四边形ABCD的面积为().(A)24 (B)30 (C)32 (D)36 (E)40【答案】D【考点】平面几何(梯形)【难度】中等【对照】新东方在线冲刺讲义例题3.2+冲刺经验结论讲义几何第5点(梯形小结论)9. 现有长方形木板340张,正方形木板160张(图2),这些木板加好可以装配成若干竖式和横式的无盖箱子(图3),装配成的竖式和横式箱子的个数为().(A)25,80 (B)60,50 (C),20,70 (D)60,40 (E)40,60【答案】E【考点】立体几何+应用题 【难度】中等【对照】套路化攻略习题10. 圆22640x y x y +-+=上到原点距离最远的点是( ).(A)(-3,2) (B) (3,-2) (C) (6,4) (D) (-6,4) (E)(6,-4)【答案】E【考点】解析几何 【难度】中等【对照】新东方在线强化班讲义解析几何例16(200910真题)11. 如图4,点A ,B ,O 的坐标分别为(4,0),(0,3),(0,0),若(x ,y )是△AOB 中的点,则23x y +的最大值为( ).(A)6 (B) 7 (C) 8 (D) 9 (E)12【答案】D【考点】解析几何(线性规划问题) 【难度】中等【对照】新东方在线点题讲义例题9+冲刺讲义例3.14+冲刺讲义例5.9、5.1012. 设抛物线22y x ax b =++与x 轴相交于A ,B 两点,点C 坐标为(0,2),若△ABC 的面积等于6,则( ).(A) 29a b -= (B)29a b += (C)236a b -= (D)236a b += (E) 249a b -=【答案】A【考点】二次函数+韦达定理 【难度】中等【对照】新东方在线强化讲义函数例12(原题);冲刺经验结论代数第10点;基础班第三章 例1013. 某公司以分期付款方式购买一套定价为1100万元的设备,首期付款100万元,之后每月付款50万元,并支付上期余额的利息,月利率1%,该公司共为此设备支付了( ).(A)1195万元 (B) 1200万元 (C) 1205万元 (D) 1215万元 (E)1300万元【答案】C【考点】数列(等差应用题) 【难度】中等【对照】新东方在线强化班讲义应用题例3314. 某学生要在4门不同课程中选修2门课程,这4门课程中的2门各开设一个班,另外2门各开设2个班,该学生不同的选课方式共有( ).(A)6种 (B)8种 (C) 10种 (D) 13种 (E)15种【答案】D【考点】计数(穷举) 【难度】中等【对照】新东方在线模拟卷A 第8题15. 如图5,在半径为10厘米的球体上开一个底面半径是6厘米的圆柱形洞,则洞的内壁面积为(单位:平方厘米)( ).(A)48π (B) 288 π (C) 96 π (D)576 π (E)192 π【答案】E【考点】立体几何(外接球) 【难度】中等【对照】新东方在线冲刺经验结论几何第19点(外接球)二.条件充分性判断:本大题共10个小题,每小题3分,共30分解题说明:本大题要求判断所给出的条件能否支持题干中陈述的结论. 阅读条件(1)和条件(2)后,请在答题卡上将所选项的字母涂黑.A.条件(1)充分,但条件(2)不充分B.条件(2)充分,但条件(1)不充分C.条件(1)和条件(2)单独都不充分,但条件(1)和条件(2)联合起来充分D.条件(1)充分,条件(2)也充分E.条件(1)和条件(2)单独都不充分,且条件(1)和条件(2)联合起来也不充分16. 已知某公司男员工的平均年龄和女员工的平均年龄,则能确定该公司员工的平均年龄. (1)已知该公司员工的人数(2)已知该公司男女员工的人数之比【答案】B【考点】平均分【难度】简单【对照】新东方在线模拟卷A第24题17. 如图6,正方形ABCD由四个相同的长方形和一个小正方形拼成,则能确定小正方形的面积(1)已知正方形ABCD的面积(2)已知长方形的长宽之比【答案】C【考点】平面几何【难度】中等【对照】《套路化攻略》习题18. 利用长度为a和b的两种管材能连接成长度为37的管道(单位:米)(1)a=3,b=5(2)a=4,b=6【答案】A【考点】整数(不定方程)【难度】简单【对照】新东方在线模拟卷A第21题19. 设x ,y 是实数,则x ≤6,y ≤4(1)x ≤y +2(2)2y ≤x +2【答案】C【考点】不等式 【难度】中等【对照】新东方在线点题讲义几何例420. 将2升甲酒精和1升乙酒精混合得到丙酒精,则能确定甲、乙两种酒精的浓度.(1)1升甲酒精和5升乙酒精混合后的浓度是丙酒精浓度的1/2倍.(2)1升甲酒精和2升乙酒精混合后的浓度是丙酒精浓度的2/3倍.【答案】E【考点】应用题(浓度问题) 【难度】中等【对照】《套路化攻略》习题21. 设有两组数据:3,4,5,6,7和:4,5,6,7,a ,则能确定a 的值.(1)与的均值相等(2)与的方差相等【答案】A【考点】数据描述 【难度】中等【对照】新东方在线点题讲义例8+冲刺经验结论数据分析第7点(连续5个整数方差必定为2),强化班讲义数据分析例7(2014真题)22. 已知M 是一个平面有限点集,则平面上存在到M 中各点距离相等的点(1)M 中只有三个点(2)M 中的任意三点都不共线【答案】C【考点】平面几何 【难度】中等23.设,x y 为实数,则可以确定33x y +的最小值(1)1xy =(2)2x y +=【答案】B【考点】均值不等式+二次函数最值 【难度】中等【对照】《套路化攻略》习题24.已知数列12910,,,,a a a a ,则12349100a a a a a a -+-++-≥(1)1,1,2,,9n n a a n +≥= (2)221,1,2,,9n n a a n +≥=【答案】A【考点】数列+不等式 【难度】中等【对照】《套路化攻略》习题25.已知2()f x x ax b =++,则0(1)1f ≤≤.(1)()f x 在[0,1]中有两个零点(2)()f x 在[1,2]中有两个零点【答案】D【考点】方程根的分布问题 【难度】中等【对照】新东方在线冲刺讲义例题2.9。
2016考研数学求解数列极限
2016考研数学求解数列极限极限平均每年在考研数学中所占的分值在10分左右,而事实上,由于这一部分内容的基础性,每年间接考查或与其他章节结合出题的比重也很大。
极限的计算是核心考点,考题所占比重最大。
熟练掌握求解极限的方法是得高分的关键。
一、极限无外乎出这三个题型:求数列极限、求函数极限、已知极限求待定参数。
熟练掌握求解极限的方法是的高分地关键,极限的运算法则必须遵从,两个极限都存在才可以进行极限的运算,如果有一个不存在就无法进行运算。
以下我们就极限的内容简单总结下。
二、极限的计算常用方法:四则运算、洛必达法则、等价无穷小代换、两个重要极限、利用泰勒公式求极限、夹逼定理、利用定积分求极限、单调有界收敛定理、利用连续性求极限等方法。
四则运算、洛必达法则、等价无穷小代换、两个重要极限是常用方法,在基础阶段的学习中是重点,考生应该已经非常熟悉,进入强化复习阶段这些内容还应继续练习达到熟练的程度;在强化复习阶段考生会遇到一些较为复杂的极限计算,此时运用泰勒公式代替洛必达法则来求极限会简化计算,熟记一些常见的麦克劳林公式往往可以达到事半功倍之效;夹逼定理、利用定积分定义常常用来计算某些和式的极限,如果最大的分母和最小的分母相除的极限等于1,则使用夹逼定理进行计算,如果最大的分母和最小的分母相除的极限不等于1,则凑成定积分的定义的形式进行计算;单调有界收敛定理可用来证明数列极限存在,并求递归数列的极限。
三、与极限计算相关知识点包括:1、连续、间断点以及间断点的分类:判断间断点类型的基础是求函数在间断点处的左右极限;2、可导和可微,分段函数在分段点处的导数或可导性,一律通过导数定义直接计算或检验存在的定义是极限存在;3、渐近线,(垂直、水平或斜渐近线);4、多元函数积分学,二重极限的讨论计算难度较大,常考查证明极限不存在。
下面我们重点讲一下数列极限的典型方法。
求数列极限可以归纳为以下三种形式。
抽象数列求极限这类题一般以选择题的形式出现,因此可以通过举反例来排除。
2016年南京师范大学各专业初试分数线
2016年南京师范大学考研初试分数线南师大考研复试分数线2016年南师大南京师范大学复试分数线2016年南师大各专业初试分数线【文学院】文艺学初试分数线384)语言学及应用语言学初试分数线359)汉语言文字学初试分数线59)中国古典文献学:初试分数线367)中国古代文学:初试分数线365)中国现当代文学:初试分数线387)比较文学:初试分数线383)9电影电视学:初试分数线372)【新闻学】新闻学初试分数线378)传播学初试分数线383)新传专硕初试分数线373)戏剧与影视初试分数线337)广播电视专业(341)【公管】马克思主义基本原理初试分数线365)马克思主义中国化研究初试分数线380)思想政治教育(360-380左右)行政管理:初试分数线377)【法学院】法学理论初试分数线365)法律史初试分数线321)宪法学和行政法学初试分数线358)刑法学初试分数线366)民商法初试分数线366)诉讼法学初试分数线361)经济法学初试分数线331)国际法学初试分数线325)【商学院】区域/产业/国贸经济学:初试分数线330)金融学:初试分数线337)企业管理:初试分数线351)【教科院】教育学原理初试分数线343)课程与教学论初试分数线364)教育史初试分数线320)比较教育学初试分数线339)学前教育学初试分数线362)高等教育学初试分数线354)成人教育学初试分数线341)职业技术教育学初试分数线328)教育领导与管理初试分数线351)德育学初试分数线349)美育学初试分数线324)教育经济与管理初试分数线368)教育管理专业学初试分数线347)小学教育专业学初试分数线343)学前教育专硕初试分数线326)【外院】比较文学与世界文学:初试分数线366)英语语言文学:初试分数线373)外国语言学及应用语言学:初试分数线389)英语笔译:初试分数线380)英语口译:初试分数线379)【社发】中国史初试分数线315)【数学】数学:初试分数线287)统计学:初试分数线299)【物理】理论物理:初试分数线304)凝聚态物理:初试分数线323)【化学】无机化学初试分数线306)分析初试分数线327)有机初试分数线287)物理初试分数线312)高分子初试分数线285)【生科】植物学:初试分数线304)动物学:初试分数线303)生理学:初试分数线327)水生生物学:初试分数线288)微生物学:初试分数线334)遗传学:初试分数线289)发育生物学:初试分数线325)细胞生物学:初试分数线326)生物化学与分子生物学:初试分数线333)生物技术:初试分数线325)2016年南京师范大学考研初试分数线南师大考研复试分数线2016年南师大南京师范大学复试分数线2016年南师大各专业初试分数线【地理】自然地理:初试分数线348)人文地理(355)【教师教育】课程与教学论初试分数线336)教师教育初试分数线383)学科教学思政:初试分数线327)学科教学语文初试分数线351)学科教学数学初试分数线338)学科教学物理:初试分数线354)学科教学化学初试分数线337)学科教学生物初试分数线357)学科教学英语初试分数线371)学科教学历史:初试分数线328)学科教学地理初试分数线344)【国际】对外汉语:初试分数线395汉语国际教育硕士:初试分数线390)【电气学院】电力系统及其自动化初试分数线270)电力电子与电力传动初试分数线269)电工理论与新技术初试分数线324)控制理论与控制工程初试分数线277)电气工程(专业学位)323)【心理学】基础心理学338发张与教育心理学345应用心理学341心理健康教育320应用心理专硕3422016年南京师范大学考研初试分数线南师大考研复试分数线2016年南师大南京师范大学复试分数线2016年南师大各专业初试分数线。
中国人民大学2016年硕士研究生复试分数线
权威师资优质教学博仁考研 中国人民大学2016年硕士研究生复试基本分数线中国人民大学2016年心理学、教育学、历史学、法硕(非法学)研究生招生复试基本分数线已经公布,同学们可以参考院校复试基本分数线着手准备考研复试。
考研复试的准备同样不可小觑,中国人民大学研究生复试考试一般时间较早,同学们要抓紧时间攻克这最后一关。
(1)学术型专业:学科门类初试成绩政治、外语、专一(数学)、专二、总分01 哲学50 50 90 90 33002 经济学55 55 90 90 36503 法学55 55 90 90 35004 教育学55 55 180 35005 文学55 55 90 90 36006 历史学55 55 180 35007 理学45 45 80 80 30008 工学45 45 80 80 30009 医学50 50 180 30012 管理学55 55 90 90 36513 艺术学45 45 90 90 330 注:心理学学术考研分数线同教育学学术复试分数线。
(2)专业学位:专业学位初试成绩政治、外语、专一、专二、总分经济类专业学位(金融、应用统计、税务、国际商务、保险、资产评估)全日制50 50 90 90 360 非全日制50 50 90 90 330035101 法律(非法学)50 50 90 90 355 035102 法律(法学)50 50 90 90 345 0352 社会工作50 50 90 90 350 0453 汉语国际教育50 50 90 90 350 0551 翻译55 55 90 90 350 0552 新闻与传播55 55 90 90 370被学员誉为“最信得过、最值得上”的辅导班0651 文物与博物馆50 50 170 310 0852 软件工程45 45 80 80 300 0951 农村与区域发展50 50 90 90 3301251 工商管理正常批: 100 55 175 提前批:同国家A类复试分数线1252 公共管理正常批: 90 50 170 提前批:同国家A类复试分数线1253会计(全日制)120 60 240 会计(非全日制)120 50 2051255 图书情报120 55 2101351 艺术50 50 90 90 330复试基本要求说明:1.此复试分数线为参加我校复试的基本成绩要求,各学院可根据生源情况调整分数线。
2016考研数学一真题及答案解析完整版
2016考研数学一真题及答案解析(完整版)2016年考研数学一真题及答案解析(完整版)一、单选题1.已知函数 f(x) 在(0, +∞) 上连续,且满足 f(x+y) = f(x) + f(y) +2√[f(x)f(y)],则 f(x) 的解析式是() A. f(x) = x^2 B. f(x) = x^2 + 2x C. f(x) = x^2 + 4x D. f(x) = x^2 + 6x答案:C解析:将 x=y=0 代入方程得到 f(0) = 0,将 y=0 代入方程得到 f(x) = f(x) + f(0),所以 f(0) = 0。
将 y=x 代入方程得到 f(2x) = 4f(x),所以 f(2x) =4f(x) = 4(x^2 + 2x) = (2x + 4)^2。
所以 f(x) = (x + 2)^2 = x^2 + 4x + 4。
2.在等差数列 1, 3, 5, 2015 中,有多少个数能被 3 整除? A. 672 B. 671C. 670D. 669答案:A解析:等差数列的公差是 2,所以第 n 项是 1 + (n-1)2 = 2n-1。
要使 2n-1 能被 3 整除,则 n 必须是 3 的倍数。
2015 ÷ 3 = 671 余 2,所以有 671 个数能被 3 整除。
3.设 A 是m×n 的矩阵,B 是n×m 的矩阵,则 AB 的秩为() A. m B. nC. m + nD. 0答案:D解析:秩的定义是矩阵的非零行的最大数目。
AB 的秩等于 B 的非零行的最大数目,因为 AB 的行是 A 的行与 B 的列的线性组合,所以 AB 的秩不可能超过 B 的非零行的最大数目。
而 B 的非零行的最大数目不可能大于 n,所以 AB 的秩不可能大于 n,所以 AB 的秩为 0。
二、填空题1.设函数 f(x) = x^2 + ax + b,其中 a, b 是常数,f(x) 的图像经过点 (1,2),则 a + b 的值是 ______。
重要:2016-2020考研历年国家分数线汇总
),你初试要考多少分才有戏?以下的对照表⼀定要仔细看了!虽说不是过了国家线就代表能够考上研,但是过国家线是进⼊复试和进⾏调剂的基本要求,所以它是考研⼈⾮常重要的参考数据。
根据官⽅给出的公共课平均分和试题难度分析,结合实际经验来看看你⼤概可以考到多少分呢?3平均分、试题难度是什么?平均分:是教育部考试中⼼官⽅的抽样数据,样本数据有效且数量⾜够⼤。
2020年英语⼀、⼆的难度分析和平均分,共抽取了2320705名考⽣的答卷(报考总⼈数为341万)。
考总⼈数为341万)。
试题难度:是对抽样数据的统计分析,反应试题难易程度,数值越⼩,难度越⾼。
01英语(难度稳定,但平均分仅49.15)难度系数,通俗地说,⼀道题只有40%的考⽣做对这道题,这道题的难度系数就是0.4。
因此难度系数越⼩,代表难度越⼤。
2020年的英语真题难度和往年相⽐更简单,平均分为49.15。
关于试卷各部分题的难度,2020年英语知识运⽤部分(完形)⽐前两年难,阅读理解C节⽐前两年稍简单点,阅读理解的A、B节和写作的难度都在18年和19年之间。
再来看看英语⼆:2020年英语(⼆)平均分为55.21,难度0.552,和18年难度差不多,⽐19年简单。
关于试卷各部分题的难度,2020年英语知识运⽤部分(完形)难度⽐前两年稍难,阅读理解B节相较前两年稍难,翻译部分和写作B节⽐前两年稍易。
对⽐预测:21年应该在难度上也不会有太⼤变化。
结合前段时间发布的⼤纲变化——⼤纲词汇的增加,虽然试题难度会略有提升,但是总体⽽⾔难度应该变化不⼤。
英语的复习要始终围绕真题就对了,后期名师冲刺试卷出来了,也不需要太当回事!02数学官⽅未公布2020年平均分和难度的相关数据,只是做了⼀个总体的分析。
但⾼教社⼤纲解析⾥⾯还是明确说了「2020年三套数学试卷的得分率普遍偏低,难度较⼤」。
说了这句话之后,还补充了⼀段:官⽅对2020数学考研的解释是:【官⽅考试分析中明确指出:考⽣对概念和性质的掌握流于形式,并没有掌握实质。
2016年数学一考研大纲汇总
2016考研数学一大纲考试科目高等数学、线性代数、概率论与数理统计考试形式和试卷结构1、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.2、答题方式答题方式为闭卷、笔试.3、试卷内容结构高等数学56%线性代数22%概率论与数理统计 22%4、试卷题型结构单选题 8小题,每题4分,共32分填空题 6小题,每题4分,共24分解答题(包括证明题) 9小题,共94分考试内容之高等数学一.函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵等价分块矩阵及其运算考试要求:1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.理解矩阵的初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.第三章:向量考试内容:向量的概念向量的线性组合和线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量空间以及相关概念 n维向量空间的基变换和坐标变换过渡矩阵向量的内积线性无关向量组的正交规范化方法规范正交基正交矩阵及其性质考试要求:1.理解n维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系5.了解n维向量空间、子空间、基底、维数、坐标等概念.6.了解基变换和坐标变换公式,会求过渡矩阵.7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.8.了解规范正交基、正交矩阵的概念以及它们的性质.第四章:线性方程组考试内容:线性方程组的克莱姆(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解考试要求l.会用克莱姆法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.第五章:矩阵的特征值及特征向量考试内容:矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及相似对角矩阵考试要求:1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.第六章:二次型考试内容:二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求:1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变化和合同矩阵的概念了解二次型的标准形、规范形的概念以及惯性定理.2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法考试内容之概率与统计第一章:随机事件和概率考试内容:随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求:1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系与运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式,以及贝叶斯(Bayes)公式.3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.第二章:随机变量及其分布考试内容:随机变量随机变量的分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求:1.理解随机变量的概念.理解分布函数的概念及性质.会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布及其应用.3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用,其中参数为λ(λ>0)的指数分布的概率密度为5.会求随机变量函数的分布.第三章:多维随机变量及其分布考试内容多维随机变量及其分布二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常用二维随机变量的分布两个及两个以上随机变量简单函数的分布考试要求1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质. 理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率.2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件.3.掌握二维均匀分布,了解二维正态分布的概率密度,理解其中参数的概率意义.4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.第四章:随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征2.会求随机变量函数的数学期望.第五章:大数定律和中心极限定理考试内容切比雪夫(Chebyshev)不等式切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗-拉普拉斯(De Moivre-laplace)定理列维-林德伯格(Levy-Lindberg)定理考试要求1.了解切比雪夫不等式.2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律) .3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理) .第六章:数理统计的基本概念考试内容总体个体简单随机样本统计量样本均值样本方差和样本矩分布分布分布分位数正态总体的常用抽样分布考试要求1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为:2.了解分布、分布和分布的概念及性质,了解上侧分位数的概念并会查表计算.3.了解正态总体的常用抽样分布.第七章:参数估计考试内容点估计的概念估计量与估计值矩估计法最大似然估计法估计量的评选标准区间估计的概念单个正态总体的均值和方差的区间估计两个正态总体的均值差和方差比的区间估计考试要求1.理解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.3.了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性.4.理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间.第八章:假设检验考试内容显著性检验假设检验的两类错误单个及两个正态总体的均值和方差的假设检验考试要求1.理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误.2.掌握单个及两个正态总体的均值和方差的假设检验。
2016年考研数学(一)真题及答案
2016年考研数学(一)真题及答案首先,我得感谢您给予的任务,我将会按照您提供的格式要求来写这篇关于2016年考研数学(一)真题及答案的文章。
【正文】2016年考研数学(一)真题及答案1.选择题部分本部分共有10道选择题,每题5分,共计50分。
1.在数学分析中,给定函数f(x),如果f'(x)>0,则函数f(x)的增加区间是:A. (-∞, +∞)B. (-∞, 0)C. (0, +∞)D. (a, b)答案:C2.集合论中,对于任意集合A,空集是其子集的:A. 真子集B. 并集C. 交集答案:A3.离散数学中,二项式系数C(n, k)的计算公式是:A. n!B. n/(n-k)!C. n!/k!D. n!/k!(n-k)!答案:D4.微积分中,函数f(x)关于x=1对称,则函数f(x)的表达式是:A. f(1-x)B. f(1+x)C. f(-x)D. f(x-1)答案:D5.在概率论中,设事件A、B相互独立,且P(A)=0.4,P(B)=0.3,则P(A∩B)的值是:A. 0.12B. 0.18C. 0.25答案:B6.线性代数中,对于n阶方阵A,如果满足A^2=A,则A的特征值为:A. 0或1B. -1或1C. -1或0D. 0或1或-1答案:A7.离散数学中,设f(x)=log2(x),则f(f(x))的表达式为:A. log2(log2(x))B. log2(x^2)C. log4(x)D. (log2(x))^2答案:A8.在线性代数中,设矩阵A、B的秩分别为ra、rb,且满足ra+rb>n,则矩阵C=A·B的秩满足:A. rc=ra+rbB. rc=nD. rc>max(ra,rb)答案:C9.微积分中,求曲线y=f(x)与x轴所围成的平面图形的面积,可以使用下列哪个定积分公式来计算:A. ∫f(x)dxB. ∫f(x)dyC. ∫f(x)√(1+(f'(x))^2)dxD. ∫f'(x)dx答案:C10.在概率论中,设事件A、B互不相容,且P(A)=0.2,P(B)=0.3,则P(A∪B)的值是:A. 0.05B. 0.08C. 0.15D. 0.3答案:C2.解答题部分本部分共有5道解答题,每题20分,共计100分。
2016考研数学之数学(二)各题考点分析
2016考研数学之数学(二)各题考点分析2016考研数学已落下帷幕,跨考教育数学教研室吴老师为考生进行数学一的各题考点分析。
希望对2017考生的数学备考有所帮助。
一、选择题部分:前6题是高等数学部分内容:第1题,是关于高等数学第一章的无穷小量比阶数的问题,这类题在之前的考研试题中是经常出现的,这里就要求同学们一定要在我们学第一部分内容极限的时候,把有关等价无穷小量给看一看,特别是我们通过泰勒公式总结出来的那几个常用的等价无穷小量的替换,若是同学把我们之前讲过的这种等价无情小量替换,那么这题还是可以轻松过的。
第2题是有关原函数的问题,这部分是要知道原函数的概念的,别切要求我们知道哪些函数一定有原函数(连续函数),哪些函数一定没有原函数的(含有可去、跳跃、无穷间断点的函数)。
第3题是关于一元函数积分学中的反常积分判别收敛问题,这部分是要求我们会计算反常积分和判别其收敛性的,关于反常积分的计算就把它当做定积分来计算即可,最把端点这取极限。
第4题是关于拐点和极值点的问题,此类题型我们在之前是做过的,这种给你某函数的图形问题来做题的,一定要对拐点、极值点以及渐近线问题做一个系统的总结,这样你自己会对这一部分内容有个深刻的了解,这样以后再做这种题目的时候能够很快的找到突破口,来处理相关的问题。
关于间断点、极值点、拐点以及渐近线是我们常考的小题型,希望同学们能够熟练掌握。
第5题考查的是曲率问题,此类问题属于边角问题,需要同学们在考试前一定要熟记曲率的公式,以及去曲率半径个求法等。
难度不大,主要是记忆不太方便,容易忘,这个很正常。
反复的去记住这些公式,考试时有时便会派上用场。
第6题选择题主要考察了多元函数偏导数的计算问题,本题数一般题型,算是比较基础的内容了,这个考生同学们一点那个要会。
选择题的后面两题是关于线性代数部分的内容:第7题是有关矩阵相似的问题,这题我们利用相似定义很快便可得出答案选C,关于矩阵相似的问题我们已经做过很多练习了,相对而言本题还是容易判别的。
2016年考研数学三考试大纲原文
2016年考研数学三考试大纲原文2016年考研数学三考试大纲原文考试科目:微积分、线性代数、概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟二、答题方式答题方式为闭卷、笔试三、试卷内容结构微积分约56%线性代数约22%概率论与数理统计约22%四、试卷题型结构单项选择题选题8小题,每小题4分,共32分填空题6小题,每小题4分,共24分解答题(包括证明题)9小题,共94分微积分一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1、理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系2、了解函数的有界性、单调性、周期性和奇偶性3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念4、掌握基本初等函数的性质及其图形,了解初等函数的概念5、了解数列极限和函数极限(包括左极限与右极限)的概念6、了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法7、理解无穷小量的概念和基本性质,掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系8、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型9、了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质二、一元函数微分学考试内容导数和微分的概念导数的几何意义和经济意义函数的可导性与连续性之间的关系平面曲线的切线与法线导数和微分的四则运算基本初等函数的导数复合函数、反函数和隐函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值考试要求1、理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程2、掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,会求分段函数的导数,会求反函数与隐函数的导数3、了解高阶导数的概念,会求简单函数的高阶导数4、了解微分的概念、导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分5、理解罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理,了解泰勒(Taylor)定理、柯西(Cauchy)中值定理,掌握这四个定理的简单应用6、会用洛必达法则求极限7、掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用8、会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点和渐近线9、会描述简单函数的图形三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法反常(广义)积分定积分的应用考试要求1、理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法与分部积分法2、了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿-莱布尼茨公式以及定积分的换元积分法和分部积分法3、会利用定积分计算平面图形的面积、旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题4、了解反常积分的概念,会计算反常积分四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上二元连续函数的性质多元函数偏导数的概念与计算多元复合函数的求导法与隐函数求导法二阶偏导数全微分多元函数的极值和条件极值、最大值和最小值二重积分的概念、基本性质和计算无界区域上简单的反常二重积分考试要求1、了解多元函数的概念,了解二元函数的几何意义2、了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质3、了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数4、了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题5、了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标),了解无界区域上较简单的反常二重积分并会计算五、无穷级数考试内容常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法任意项级数的绝对收敛与条件收敛交错级数与莱布尼茨定理幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式考试要求1、了解级数的收敛与发散、收敛级数的和的概念2、了解级数的基本性质及级数收敛的必要条件,掌握几何级数及级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法3、了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法4、会求幂级数的收敛半径、收敛区间及收敛域5、了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函数6、了解,,,及的麦克劳林(Maclaurin)展开式六、常微分方程与差分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程及简单的非齐次线性微分方程差分与差分方程的概念差分方程的通解与特解一阶常系数线性差分方程微分方程的简单应用考试要求1、了解微分方程及其阶、解、通解、初始条件和特解等概念2、掌握变量可分离的微分方程、齐次微分方程和一阶线性微分方程的求解方法3、会解二阶常系数齐次线性微分方程4、了解线性微分方程解的性质及解的结构定理,会解自由项为多项式、指数函数、正弦函数、余弦函数的二阶常系数非齐次线性微分方程5、了解差分与差分方程及其通解与特解等概念6、了解一阶常系数线性差分方程的求解方法7、会用微分方程求解简单的经济应用问题线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1、了解行列式的概念,掌握行列式的性质2、会应用行列式的性质和行列式按行(列)展开定理计算行列式二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1、理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质2、掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质3、理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵4、了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法5、了解分块矩阵的概念,掌握分块矩阵的运算法则三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的正交规范化方法考试要求1、了解向量的概念,掌握向量的加法和数乘运算法则2、理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法3、理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩4、理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系5、了解内积的概念.掌握线性无关向量组正交规范化的施密特(Schmidt)方法四、线性方程组考试内容线性方程组的克拉默(Cramer)法则线性方程组有解和无解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线性方程组(导出组)的解之间的关系非齐次线性方程组的通解考试要求1、会用克拉默法则解线性方程组2、掌握非齐次线性方程组有解和无解的判定方法3、理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法4、理解非齐次线性方程组解的结构及通解的概念5、掌握用初等行变换求解线性方程组的方法五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值和特征向量及相似对角矩阵考试要求1、理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法2、理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法3、六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1、了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念2、了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形3、理解正定二次型、正定矩阵的概念,并掌握其判别法概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1、了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算2、理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等3、理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法二、随机变量及其分布考试内容随机变量随机变量分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1、理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率2、理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布及其应用3、掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布4、理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用5、会求随机变量函数的分布三、多维随机变量的分布考试内容多维随机变量及其分布函数二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常见二维随机变量的分布两个及两个以上随机变量简单函数的分布考试要求1、理解多维随机变量的分布函数的概念和基本性质2、理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度,掌握二维随机变量的边缘分布和条件分布3、理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系4、掌握二维均匀分布和二维正态分布,理解其中参数的概率意义5、会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其简单函数的分布四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望切比雪夫(Chebyshev)不等式矩、协方差、相关系数及其性质考试要求1、理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征2、会求随机变量函数的数学期望3、了解切比雪夫不等式五、大数定律和中心极限定理考试内容切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗-拉普拉斯(DeMoivre-Laplace)定理列维-林德伯格(Levy-Lindberg)定理考试要求1、了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律)2、了解棣莫弗-拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维-林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率.六、数理统计的基本概念考试内容总体个体简单随机样本统计量经验分布函数样本均值样本方差和样本矩分布分布分布分位数正态总体的常用抽样分布考试要求1、了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念2、了解产生变量、变量和变量的典型模式;了解标准正态分布、分布、分布和分布的上侧分位数,会查相应的数值表3、掌握正态总体的样本均值、样本方差、样本矩的抽样分布4、了解经验分布函数的概念和性质七、参数估计考试内容点估计的概念估计量和估计值矩估计法最大似然估计法考试要求1、了解参数的点估计、估计量与估计值的概念2、掌握矩估计法(一阶矩、二阶矩)和最大似然估计法2016考研大纲原文及解析下载汇总(全)最新2016政治考研大纲原文及解析汇总2016英语考研大纲原文及解析汇总最全2016数学考研大纲原文及解析汇总2016考研统考专业课大纲原文及解析汇总推荐2016年考研大纲解析专题2016考研择校、择专业指导。
2016考研数学试卷分值构成
2016考研数学试卷分值构成近5年的数学大纲保持稳定,相对应的真题的题型与难度也是比较稳定的。
因此对于线性代数这门考试科目,建议广大学子抓住重点难点,把基础知识“点”串联成“面”,再配以典型题目构架成完善的知识“体”,这样才能做到在考研这一战场上于线代阵中将分数收入囊中而丝毫不费吹灰之力!一、行列式与矩阵行列式、矩阵是线性代数中的基础章节,从命题人的角度来看,可以像润滑油一般结合其它章节出题,因此必须熟练掌握。
行列式的核心内容是求行列式——具体行列式的计算和抽象行列式的计算。
其中具体行列式的计算又有低阶和高阶两种类型,主要方法是应用行列式的性质及按行(列)展开定理化为上下三角行列式求解;而对于抽象行列式而言,考点不在如何求行列式,而在于结合后面章节内容的比较综合的题。
矩阵部分出题很灵活,频繁出现的知识点包括矩阵各种运算律、矩阵相关的重要公式、矩阵可逆的判定及求逆、矩阵的秩的性质、初等矩阵的性质等。
二、向量与线性方程组向量与线性方程组是整个线性代数部分的核心内容。
相比之下,行列式和矩阵可视作是为了讨论向量和线性方程组部分的问题而做铺垫的基础性章节,而其后两章特征值和特征向量、二次型的内容则相对独立,可以看作是对核心内容的扩展。
向量与线性方程组的内容联系很密切,很多知识点相互之间都有或明或暗的相关性。
复习这两部分内容最有效的方法就是彻底理顺诸多知识点之间的内在联系,因为这样做首先能够保证做到真正意义上的理解,同时也是熟练掌握和灵活运用的前提。
这部分的重要考点一是线性方程组所具有的两种形式——矩阵形式和向量形式;二是线性方程组与向量以及其它章节的各种内在联系。
(1)齐次线性方程组与向量线性相关、无关的联系齐次线性方程组可以直接看出一定有解,因为当变量都为零时等式一定成立——印证了向量部分的一条性质“零向量可由任何向量线性表示”。
齐次线性方程组一定有解又可以分为两种情况:①有唯一零解;②有非零解。
当齐次线性方程组有唯一零解时,是指等式中的变量只能全为零才能使等式成立,而当齐次线性方程组有非零解时,存在不全为零的变量使上式成立;但向量部分中判断向量组是否线性相关、无关的定义也正是由这个等式出发的。
2016年考研数学二真题及答案解析
16π .
s
s
0
5
21.(本题满分
11
分) [
]
()
已知 f (x) 在
3π 0,
上连续, 在
3π 0,
内是函数
cosx
的一个原函数, 且
2
2
2x − 3π
f (0) = 0.
[
]
( I ) 求 f (x) 在区间
3π 0,
上的平均值;
2
()
( II ) 证明 f (x) 在区间
3π 0,
内存在唯一零点.
0
ˆ 1 t2 dy −1 t2
− +
1 1
dt
=
ˆ 1 t2 0 t2
− +
1 1
dt
y2
y2
ˆ1 1
1
π
=1−2
0
t2 + 1 dt = 1 − 2 arctan t
=1− .
0
2
19.(本题满分 10 分)
已知 y1(x) = ex, y2(x) = µ(x)ex 是二阶微分方程 (2x − 1) y′′ − (2x + 1) y′ + 2y = 0 的两个解, 若 µ(−1) = e, µ(0) = −1, 求 µ(x) 并写出该微分方程的通解.
(B) a < −2. (D) a = 1 或 a = −2.
二、填空题:9 ∼ 14 小题, 每小题 4 分, 共 24 分.
9. 曲线 y =
x3
+ arctan (1 + x2) 的斜渐近线方程为
π y = x+
.
1 + x2
考研数学二历年难度排行
考研数学二历年难度排行摘要:I.引言- 介绍考研数学二的重要性- 提出历年难度排行的问题II.考研数学二历年难度情况- 2015年: 难度系数0.55, 难度适中- 2016年: 难度系数0.60, 难度偏大- 2017年: 难度系数0.52, 难度适中- 2018年: 难度系数0.50, 难度适中- 2019年: 难度系数0.47, 难度略大III.难度排名及原因分析- 2016年难度系数最高,原因:- 题目出题套路有所变化- 计算量超级大- 2019年难度系数次高,原因:- 题目难度适中,但考生普遍反映题目较新颖,需要深入思考IV.对考生的建议- 针对性地进行复习- 提高做题速度和准确率- 注重基础知识和基本技能的掌握正文:考研数学二是考研科目中非常重要的一个科目,对于许多专业来说,它是必考科目之一。
因此,了解考研数学二的历年难度排行,对于考生们制定合理的复习计划具有重要的参考价值。
根据对历年真题的分析,我们可以得出以下考研数学二历年难度排行:2016年难度系数最高,2019年难度系数次高,2015年和2018年难度适中,2017年难度系数偏低。
2016年的考研数学二难度系数达到了0.60,是近年来难度最高的一年。
这一年的题目出题套路有所变化,导致很多考生无法适应。
此外,这一年的计算量也超级大,使得考生们在考试过程中感到非常吃力。
2019年的考研数学二难度系数为0.47,虽然比2016年低,但仍然是近年来难度排名第二的一年。
这一年的题目难度适中,但由于题目较为新颖,需要考生深入思考,因此考生们在考试过程中普遍感到压力较大。
针对这些难度较高的年份,我们建议考生们在复习过程中要更加有针对性地进行复习,提高做题速度和准确率。
同时,也要注重基础知识和基本技能的掌握,以应对考试中可能出现的各种题型。
总的来说,考研数学二的难度历年都有所变化,但总体上难度适中。
2016考研数学一大纲原文 完整版 (教育部考试中心).
2016年考研数学一考试大纲2015年数学一考试大纲考试科目:高等数学、线性代数、概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等教学约56%线性代数约22%概率论与数理统计约22%四、试卷题型结构单选题 8小题,每小题4分,共32分填空题 6小题,每小题4分,共24分解答题(包括证明题 9小题,共94分高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续,会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理,并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle定理、拉格朗日(Lagrange中值定理和泰勒(Taylor定理,了解并会用柯西(Cauchy中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义积分定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等及函数的平均值.四、向量代数和空间解析几何考试内容向量的概念向量的线性运算向量的数量积和向量积向量的混合积两向量垂直、平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程直线方程平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件点到平面和点到直线的距离球面柱面旋转曲面常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程考试要求1.理解空间直角坐标系,理解向量的概念及其表示.2.掌握向量的运算(线性运算、数量积、向量积、混合积,了解两个向量垂直、平行的条件.3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.4.掌握平面方程和直线方程及其求法.5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等解决有关问题.6.会求点到直线以及点到平面的距离.7.了解曲面方程和空间曲线方程的概念.8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程.9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.五、多元函数微分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分全微分存在的必要条件和充分条件多元复合函数、隐函数的求导法二阶偏导数方向导数和梯度空间曲线的切线和法平面曲面的切平面和法线二元函数的二阶泰勒公式多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用考试要求1.理解多元函数的概念,理解二元函数的几何意义.2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.4.理解方向导数与梯度的概念,并掌握其计算方法.5.掌握多元复合函数一阶、二阶偏导数的求法.6.了解隐函数存在定理,会求多元隐函数的偏导数.7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.8.了解二元函数的二阶泰勒公式.9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.六、多元函数积分学考试内容二重积分与三重积分的概念、性质、计算和应用两类曲线积分的概念、性质及计算两类曲线积分的关系格林(Green公式平面曲线积分与路径无关的条件二元函数全微分的原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯(Gauss 公式斯托克斯(Stokes公式散度、旋度的概念及计算曲线积分和曲面积分的应用考试要求1.理解二重积分、三重积分的概念,了解重积分的性质,,了解二重积分的中值定理.2.掌握二重积分的计算方法(直角坐标、极坐标,会计算三重积分(直角坐标、柱面坐标、球面坐标.3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.4.掌握计算两类曲线积分的方法.5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.7.了解散度与旋度的概念,并会计算.8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、形心、转动惯量、引力、功及流量等.七、无穷级数考试内容常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法交错级数与莱布尼茨定理任意项级数的绝对收敛与条件收敛函数项级数的收敛域与和函数的概念幂级数及其收敛半径、收敛区间(指开区间和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式函数的傅里叶(Fourier系数与傅里叶级数狄利克雷(Dirichlet定理函数在上的傅里叶级数函数在上的正弦级数和余弦级数考试要求1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.2.掌握几何级数与级数的收敛与发散的条件.3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.4.掌握交错级数的莱布尼茨判别法.5.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系.6.了解函数项级数的收敛域及和函数的概念.7.理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法.8.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分,会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.9.了解函数展开为泰勒级数的充分必要条件.10.掌握麦克劳林(Maclaurin展开式,会用它们将一些简单函数间接展开为幂级数.11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在上的函数展开为傅里叶级数,会将定义在上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.八、常微分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程伯努利(Bernoulli方程全微分方程可用简单的变量代换求解的某些微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程欧拉(Euler方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法.3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.4.会用降阶法解下列形式的微分方程:和.5.理解线性微分方程解的性质及解的结构.6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.8.会解欧拉方程.9.会用微分方程解决一些简单的应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量空间及其相关概念维向量空间的基变换和坐标变换过渡矩阵向量的内积线性无关向量组的正交规范化方法规范正交基正交矩阵及其性质考试要求1.理解维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列向量组的秩之间的关系.5.了解维向量空间、子空间、基底、维数、坐标等概念.6.了解基变换和坐标变换公式,会求过渡矩阵.7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt方法.8.了解规范正交基、正交矩阵的概念以及它们的性质.四、线性方程组考试内容线性方程组的克拉默(Cramer法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解考试要求1.会用克拉默法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理.2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes公式.3.理解事件独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量随机变量分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson分布及其应用.3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用,其中参数为的指数分布的概率密度为5.会求随机变量函数的分布.三、多维随机变量及其分布考试内容多维随机变量及其分布二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常用二维随机变量的分布两个及两个以上随机变量简单函数的分布考试要求1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率.2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件.3.掌握二维均匀分布,了解二维正态分布的概率密度,理解其中参数的概率意义.4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值、方差、标准差及其性质随机变量函数的数学期望矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.五、大数定律和中心极限定理考试内容切比雪夫(Chebyshev不等式切比雪夫大数定律伯努利(Bernoulli大数定律辛钦(Khinchine大数定律棣莫弗-拉普拉斯(De Moivre-Laplace定理列维-林德伯格(Levy-Lindberg定理考试要求1.了解切比雪夫不等式.2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律.3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理.六、数理统计的基本概念考试内容总体个体简单随机样本统计量样本均值样本方差和样本矩分布分布分布分位数正态总体的常用抽样分布考试要求1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为2.了解分布、分布和分布的概念及性质,了解上侧分位数的概念并会查表计算.3.了解正态总体的常用抽样分布.七、参数估计考试内容点估计的概念估计量与估计值矩估计法最大似然估计法估计量的评选标准区间估计的概念单个正态总体的均值和方差的区间估计两个正态总体的均值差和方差比的区间估计考试要求1.理解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩和最大似然估计法.3.了解估计量的无偏性、有效性(最小方差性和一致性(相合性的概念,并会验证估计量的无偏性.4、理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间.八、假设检验考试内容显著性检验假设检验的两类错误单个及两个正态总体的均值和方差的假设检验考试要求 1.理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误. 2.掌握单个及两个正态总体的均值和方差的假设检验.。
2016年考研数学一评分参考
2016年考研数学一评分参考一、概述2016年考研数学一科目是许多考生备考的重点科目之一,有着举足轻重的地位。
在考研数学一科目中,评分标准是每一位考生非常关注的话题。
本文将基于对2016年考研数学一科目的评分标准进行详细分析和总结,为广大考生提供参考。
二、选择题评分2016年考研数学一科目的选择题是考生必须要做好的一部分,也是容易得分的一部分。
在选择题的评分标准中,主要侧重于考生对基本概念和常规解题方法的掌握程度。
评分的主要依据包括考生对题目的理解是否准确、解题步骤是否清晰、计算是否规范和答案是否正确等方面。
而且,在选择题的评分中,对于解题过程的合理性和思维逻辑的清晰性也有着一定的考量。
三、解答题评分除了选择题外,解答题也是2016年考研数学一科目考生关注的重点。
在解答题的评分标准中,主要侧重于考生对知识点的掌握程度和解题能力的发挥。
评分的主要依据包括解答题目的思路是否清晰、对相关概念和定理的应用是否准确、解题步骤是否规范和答案是否正确等方面。
而且,在解答题的评分中,对于解题过程的逻辑性和完整性也有着一定的考量。
四、解题步骤评分2016年考研数学一科目的评分标准中,对于解题步骤的规范性也有着重要的考量。
在解题步骤的评分中,主要侧重于考生对解题过程的规范性和逻辑性的把握程度。
评分的主要依据包括解题步骤是否清晰、是否有遗漏和冗余、计算是否准确和推理是否合理等方面。
而且,在解题步骤的评分中,对于解题过程的合理性和规范性也有着一定的考量。
五、总体评分综合考虑选择题、解答题和解题步骤的评分情况,2016年考研数学一科目的总体评分是对考生综合能力的综合考量。
在总体评分中,主要侧重于考生对数学知识的整体掌握程度和解题能力的发挥情况。
评分的主要依据是考生的得分情况和试卷的整体表现,包括题目难易程度的适应性、解题思路的清晰性、解题能力的突出性和解题过程的规范性等方面。
六、总结与建议在2016年考研数学一科目的评分标准中,考生需要全面准确地掌握数学知识,熟练掌握常规解题方法,规范应用解题步骤,清晰表达解题思路。