激光散斑成像的研究进展

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

激光散斑成像的研究进展

摘要:事实上激光散斑成像在我们的生活中早就得到了广泛的应用、只是我们平常没有注意而已。例如在医学方面:利用激光散斑成像仪监测肠系膜上微循环血流时空响应特性,此发明一种利用激光散斑成像仪监测肠系膜上微循环血流时空响应特性的方法,包括光路和成像系统。光路由氦氖激光器发出的光束耦合到光纤束形成均匀扩散光束构成;成像系统由带CCD相机的立体显微镜、图像采集卡与图像采集控制软件、信号分析软件构成(1)。利用激光散斑成像监测光动力治疗的血管损伤效应,研究表明,通过对血管管径和血流速度的监测,激光散斑衬比成像技术可以用于评估光动力治疗过程中的肿瘤周围血管损伤效应(2)。在与环境相关的方面:近几年,研究出了一种先进的方法检测环境污染浓度的方法,提出了一种利用激光散斑和散斑照相技术的污染扩散非定常瞬时全场浓度测量的新方法。根据污染烟雾粒子成像、粒子散射、统计光学以及数字图像处理技术,从理论上详细论证了浓度场全场测量的原理和此方法测量的局限性,为进一步设计浓度场测量系统提供了参考依据(3)。当然激光散斑成像,主要是用在成像方面。特别是现代、随着照相技术的快速发展,激光散斑成像占据了越来越重要的地位。

关键词:激光散斑成像技术成像监测时空散斑效应外差探测信号引言:激光散斑技术由来已久,在牛顿的那个时代就已经开始被人们认识,那时牛顿就已经认识到“恒星闪烁”而“行星不闪烁”。随科学技术的快速发展,激光散斑得到了越来越重要的应用。是在成像方面,可以利用激光成像技术研究坐骨神经刺激时大老鼠躯体的感觉;在军事方面,有了合成孔径激光雷达监测激光散斑时空效应。

激光散斑的基础知识

对于激光散斑在很久以前人类就已经开始了研究。1730年牛顿已经注意到"恒星闪烁"而行星不闪烁,光源发出的光被随机介质散射在空间形成的一种斑纹。1960年世界出现了激光器,高度相干性的激光照在粗糙表面很容易看到这种图样,散斑携带大量有用信息。散斑在工程技术方面等各方面有广泛的应用。散斑的理论是统计光学的一部分,与光的相干理论在很多地方相似和相通。最初人们主要研究如何减弱散斑的影响,在研究的过程中人们发现散斑携带了大量的光束和光束所通过的物体大量信息。于是产生了许多的应用。例如用散光的对比度测量物体的粗糙度,利用散斑的动态情况测量物体的运动速度,利用散斑进行光学处理,甚至利用散斑验光等。

最初的激光散斑抓药用于防伪标识。激光防伪技术包括激光全息图像防伪标识、加密激光全息图像防伪标识和激光全息光刻防伪技术三方面。一、第一代激光防伪技术第一代激光防伪技术是激光模压全息图像防伪标识。全息照相是由美国科学(M · J· Buerger)在利用X射线拍摄晶体的原子结构照片时发现的,并与伽柏(D· Gaber)一起建立了全息照相理论:利用双光束干涉原理,令物光和另一个与物光相干的光束(参考光束)产生干涉图样即可把位相"合并"上去,从而用感光底片能同时记录下位相和振幅,就可以获得全息图像。但是,全息照相是根据干涉法原理拍摄的,须用高密度(分辨率)感光底片记录。由于普通光源单色性不好,相干性差,因而全息技术发展缓慢,很难拍出像样的全息图。(4)可惜激光散斑防伪在其一开始就有其先天的缺陷。.仅仅依靠制作技术的保密和控制来防,属于简单观察类防伪技术,其观察点主要是看是否是全息图象,其次是看图案是否符合公布的图案,但普通消费者只有在仔细对比时才可以分辨出两种不同版本的全息标识。没有防止防伪标识本身被再次利用的技术方法。没有防止附有防伪标识的包装被再次利用的技术方法。没有防止造假者利用收买、行贿等手段获得防伪标识的技术方法。

随着科学技术的发展,人类的进步。激光散斑成像在越来越多的领域的到广泛的应用,例如医学、环境、摄像等。

激光散斑成像的研究进展

医学方面的进展

(一)、在医学方面我们可以利用激光散斑成像技术监测脊髓血流。

脊髓血流动力学的变化一直是脊髓损伤研究中的热点。目前,常用的研究动物脊髓流动力学的方法存在着空间分辨率不够高或需加入外源性标记物、对脊髓组织有损伤等各种各样的缺陷。激光散斑成像技术自20 世纪80 年代Brier s 等人提出后逐渐被用于监测人的皮肤、眼底的血流分布等。最近,Dunn 等[1 ] 利用该技术成功地监测了脑局部缺血和皮层扩展性抑制模型中大鼠脑皮层的血流动态变化。激光散斑成像作为一种新的区域性流速监测技术,能够实现在无需扫描的条件下,以较高的空间分辨率(13 μm) 和时间分辨率(25 ms) 活体、动态、非接触地监测血流速度、血管管径和血流量的变化,获得血流动力学的多个指标[2 ] 。本实验探讨采用激光散斑成像技术监测大鼠脊髓正常状态和压迫刺激后脊髓背部表面血管内的血流速度和血流量以及血管管径的变化,为脊髓血流动力学的研究提供一种新方法。(4)利用激光散斑成像系统(由华中科技大学生命科学与技术学院生物医学光子学教育部重点实验室提供) 监测大鼠脊髓血流动力学的变化。

激光散斑成像系统该系统包括光路和成像系统两部分(图1) 。光路由氦氖( He2Ne) (λ=632. 8 nm ,3 mW) 激光器发出的光束耦合到直径为8 mm 的光纤束形成;成像系统由带电子耦合器件(CCD) (Pixelfly ,PCO COMPU TER OPTICS) 相机的变焦体视显微镜( SZ6045 TR ,OL YMPUS) 、图像采集卡与图像采集控制软件、信号分析软件构成。激光散斑成像技术能到达的探测深度大约在500μm~1 mm。图1 激光散斑成像系统示意图1. 2. 2 图像采集与处理将制作好的大鼠脊髓模型放在体视显微镜的正下方,调焦,以能够清楚地观察到大鼠脊髓背部为准。先用白光照射大鼠脊髓背部,利用激光散斑成像系统透过硬脊膜获得正常大鼠脊髓背部表面血管的白光图,再改用激光,透过硬脊膜,由计算机控制在动物模型制作成功后即刻(0min) 和10 min 分别连续采集20 帧正常脊髓背部表面血管的原始散斑图像,然后保持大鼠位置不动,施行压迫刺激,10 min 后再采集20 帧原始散斑图像。每帧原始散斑图像大小为640 象素×480 象素,体视显微镜的放大倍数为1.5 倍,激光照射区域面积为4. 2 mm ×3. 2 mm ,CCD 曝光时间为20 ms。(5)用Matlab 6. 1 软件对原始的散斑图像进行处理,获得散斑衬比图和各时间点的伪彩色血流图,颜色越红代表相应的流速越快。以0 min 时的伪彩色血流图为基准,各时间点上的伪彩色血流图与它相比较,通过Matlab 6. 1 软件计算,得出正常状态下10 min 时和压迫刺激后10 min 时脊髓血流动力学指标变化的百分数。(6)

研究显示,激光散斑成像技术可以准确、动态、活体、非接触地监测脊髓血流动力学的变化,直观地观察血管形态和血流速度的改变,为研究实性脊髓压迫刺激或损伤前后以及药物干预等条件下血流动力学的变化提供了一种确实、可靠的监测手

(二)超深低温作用下大鼠脑血流变化的激光散斑成像监测。

这是由华中科技大学生物医学光子学教育部重点实验室- 武汉光电国家实验室(筹)的

相关文档
最新文档