数学分析考研真题南开

合集下载

南开大学数学分析考研真题资料

南开大学数学分析考研真题资料

南开大学数学分析考研真题资料
南开大学数学分析考研复习都是有依据可循的,考研学子关注事项流程为:考研报录比-大纲-参考书-资料-真题-复习经验-辅导-复试-导师。

缺一不可,复习时候需要的,除了拥有教材之外,再拥有复习全书、考试大纲、历年真题、模拟题,这样是相当足够的。

且不说备考时间有限,想要把每个教材都过一遍很浪费时间,再者市面上的资料参差不齐,当然质量也有很大的区别。

对于复习资料的选择还是要重质不在于重量,根据自身情况和具体需求,按部就班,有条不紊,选好复习辅导资料。

下面是数学分析的一些真题答案解析截图:
这是我从“南开大学数学分析考研真题解析(答案+讲解视频)”这段视频里截取的,如果你需要可以直接去搜索。

这些视频解析都是来自天津考研网主编的《南开大学应用数学专业(数学分析+高等代数)考研红宝书-全程版》资料的,里面包含了近十几年来的真题和参考答案解析,蛮全面的,还有高分学长学姐重点总结笔记,包含深度解析目标专业、辅助制定合理复习计划、剖析考试重点等方面的指导,甚至最后的复试的详细分析,我相信你了解一下天津考研网资料的口碑,和资料的全面程度就会很放心的认定它。

关于参考书也和大家分享一下,数学分析《数学分析》(上、下)陈传璋等(复旦大学)高教出版社。

因为版本问题很多人都发愁用哪版好,但是我要告诉你,参考书的变化不会有多大的,你先复习着,等大纲出来如果变化大,再研究一下哪版参考书的重点更为对应,再换也来得及。

因为内容只能是增减,而不是改变。

最后希望南开大学数学分析考研学子能够更好的掌握典型的题型,更好、更全面的提高综合学习能力和水平,成功地考入南开大学!。

南开大学2000年和2001年数学分析考研试题及解答

南开大学2000年和2001年数学分析考研试题及解答

南开大学2000年数学分析考研试题.1. 设()()()()()()()22sin ,,0,0,0,0,0x y xy x y x y f x y x y +⎧≠⎪+=⎨⎪=⎩,, 证明(),f x y 在点()0,0处连续,但不可微.2. 设()f u 具有连续的导函数,且()lim 0u f u A →+∞'=>,,(){}222,:,,0D x y x y R x y =+≤≥,()0R >, (1)证明 ()lim u f u →+∞=+∞;(2)求()22R DdI f x y dxdy '=+⎰⎰;(3)求2limRR I R →+∞.3.(1)叙述()f x 于区间I 上一致连续的定义; (2)设()f x ,()g x 都于区间I 上一致连续且有界, 证明()()()F x f x g x =也于I 上一致连续,4.设函数列(){}n f x 于区间I 上一致收敛于()f x ,且存在数列{}n a ,使得当x I ∈时,总有()n n f x a ≤,证明()f x 于I 上有界.5.设0n a >,()1,2,n =L ,1nn k k S a ==∑,证明(1)若1nn na S ∞=∑收敛,则1n n a ∞=∑也收敛.(2)如果1λ>,1nn na S λ∞=∑收敛,问1n n a ∞=∑是否也收敛?说明理由.6.设(),f x t 于[)[],,a c d +∞⨯上连续,(),af x t dx +∞⎰于[),c d 上一致收敛,证明(),af x d dx +∞⎰收敛.南开大学2000年数学分析考研试题解答1.解:()0,00f =,()22,x y xyf x y x y+⋅≤+ ()222212x y x y x y +⋅+≤+()12x y ≤+, ()()()(),0,0lim,0,00x y f x y f →-=,于是(),f x y 在点()0,0处连续.显然()0,00x f =,()0,00y f =,0→时,,0,00,0f x y f x f y ⎡⎤∆∆-∆+∆sin x y x y ∆+∆∆⋅∆=的极限不存在,所以(),f x y 在点()0,0处不可微. 2.(1)证明 由()lim 0u f u A →+∞'=>,存在0M >,当u M ≥时,有()2A f u '≥, ()()()()f u f u f M f M =-+ ()()()f u M f M ξ'=-+ ()()2Au M f M ≥-+, 由此,可知()lim u f u →+∞=+∞; (2)解 ()22R DI f x y dxdy '=+⎰⎰()220Rd f r rdr πθ'=⎰⎰()()21022f R f π⎡⎤=⋅-⎣⎦; (3)解 ()()2220lim lim 4R R R f R f I R R π→+∞→+∞-=()22lim 42R f R R Rπ→+∞'⋅=()2lim 44R f R A ππ→+∞'==.3、简略。

南开大学数学分析

南开大学数学分析

南开大学2000年硕士研究生入学考试1.设222222()sin 0(,)00x y xy x y x yf x y x y +⎧+≠⎪+=⎨⎪+=⎩,证明(,)f x y 在点(0,0)处连续但不可微2.设()f u 具有连续的导数,且{}2lim ()0,(,)|,,0(0)u f u A D x y x y R x y R →+∞=>=+≤≥>1) 证明lim ()u f u →+∞=+∞2) 求22()R DI f x y dxdy =+⎰⎰3) 求2limR R I R→+∞3.(1)叙述()f x 于区间I 一致连续的定义(2)设(),()f x g x 都于区间I 一致连续且有界,证明()()()F x f x g x =也于上I 一致连续 4.设函数列{}()f x 于区间I 上一致收敛于()f x ,且存在数列{}n a 使得x I ∈当是,总有 (),(1,2...)n f x a n ≤=,证明()f x 于I 上有界5,设10(1,2...),nn n kk a n S a=≥==∑,证明(1) 若1n n na S =∑收敛,则1n n a =∑也收敛(2) 如果 ?>1,1n n na S =∑收敛,问1n n a =∑是否必收敛?说明理由6.设(,)f x t 于[],;,a c d +∞连续,(,)af x t dx +∞⎰于(],c d 一致收敛,证明(,)af x d dx +∞⎰收敛南开大学2001年硕士研究生入学考试1. 计算三重积分22()x y dxdydz Ω+⎰⎰⎰,其中Ω为由曲面22x y z +=与平面4z =为界面的区域2. 计算220sin x xy dx xdy yπ⎰⎰3. 计算2222()yx I y dx dy xyx y=--++⎰,c 为椭圆22194xy+=,方向为正4. 设{}n a 为一数列,满足lim ,0n n na a a →∞=>(1) 证明1n n a ∞=∑收敛(2) 能否确定1n n a ∞=∑的敛散性?说明理由5.设()f x 于[),a +∞可导,且'()0f x c ≥>(c 为常数),证明 (1)lim ()n f x →∞=+∞(2)()f x 于[),a +∞必有最小值6.设()f x 于[)0,+∞有定义,对任意实数,()A a f x >于[]0,A 可积,且lim ()0n f x →∞=,证明01lim()0x f x dt x+∞→∞=⎰7.设0,0x y ≤≤+∞<<+∞时(,)f x y 连续且有界,证明 (1)对任意正数0,(,)xyxef x y dx δ+∞-⎰,于(),δ+∞一致收敛(2)0()(,)xyF y xef x y dx +∞-=⎰于()0,+∞连续(3)问0(,)xyxef x y dx +∞-⎰于()0,+∞是否必不一致收敛?说明理由南开大学2002年硕士研究生入学考试1.计算三重积分Ω⎰⎰⎰,其中Ω为由222x y z +=及2z =所围成2. 设s 为抛物面22x y z +=位于0,1z z ==之间的部分,取外侧,求222sxydydz y dzdx x dxdy --⎰⎰3. 设1n n a nα∞=∑收敛,βα>,证明1n n a nβ∞=∑收敛4. 设{}()n f x 于()00,,0x x δδδ-+>内一致收敛,且0lim ()(1,2,...)n n x x f x a n →==证明{}n a 收敛5. 设()f x 于区间I 一致连续,(1,2,...)n x I n ∈=且{}n x 收敛,证明{}()n f x 也收敛 问若将()f x 于区间I 一致连续改为()f x 于I 连续,上述结论是否仍成立?说明理由6. 设()f x 于[),a +∞(a 为实数)连续,且()0,lim ()0x f x f x →+∞≥=,证明()f x 于[),a +∞有最大值,问()f x 于[),a +∞是否比有最小值?说明理由7. 证明0()xyf y xedx ∞-=⎰于()0,+∞连续问()f x 于[),a +∞是否比有最小值?说明理由南开大学2003年硕士研究生入学考试1. 设(,,)w f x y x y x =+-,其中(,,)f x y z 有二阶连续偏导数,求xy u2. 设数列{}n a 非负单增且lim n n a a →∞=证明112lim ()nn n n nn a a a a →∞+++=3.设2ln(1)0()00x x x f x x α⎧->=⎨≤⎩试确定α的取值范围,使()f x 分别满足(1) 极限0lim ()x f x +→存在(2) ()f x 在0x =连续 (3) ()f x 在0x =可导3. 设()f x 在(),-∞+∞连续,证明积分22()()Lf x y xdx ydy ++⎰与积分路径无关5. 设()f x 在[],a b 上可导,()02a b f +=且'()f x M <,证明2()b zf x dx ≤⎰M(b-a )46. 设{}n a 单减而且收敛于0.1sin n n a n ∞=∑发散(1)证明级数1sin n n a n ∞=∑收敛(2)证明lim 1n n nu v →∞=其中11(sin sin ),(sin sin )nnn kk n kk k k u ak a k u ak a k ===+=-∑∑7. 设1sin ()txxF t edx x +∞-=⎰证明(1)1sin txx edx x+∞-⎰在[)0,+∞一致收敛(2) ()F t 在[)0,+∞连续8. 命{}()n f x 是[],a b 上定义的函数列,满足(1) 对[]{}00,,()n x a b f x ∈任意是一个有界数列(2) 对任意0ε>,存在一个0δ>,当[],,x y a b ∈且x y δ-<时,对一切自然数n,有()()n n f x f y ε-<求证存在一个子序列{}()n f x 在[],a b 上一致收敛南开大学2004年硕士研究生入学考试1. 设()f x 在点a 的一个邻域中有定义,'()0,()0f a f a ≠=,求1()lim ()x ax af x f a -→⎛⎫ ⎪⎝⎭2. 设(,)f u v 所有二阶偏导数都连续,(,)y z f xy x=,求2z x y∂∂∂3. 证明不等式 12l n (1)1(0)1xx x x x+<+>+ 4. 计算二重积分2222221ln()x y x y x y dxdy +≤+⎰⎰5. 计算第二型线积分22()2Lx y dx xydy --⎰其中L 是从(0,1)A 沿sin x y x=到(,0)B π的一段曲线6.证明级数11n nα∞=∑在0α>时收敛,在0α≤时发散7. 设()f x 在[),a +∞上可微且有界,证明存在一个数列{}[),n x a ⊂+∞,使得l i m n n x →∞=-∞且'lim ()0n n f x →∞=8. 设{}()n f x 是[],a b 上的连续函数序列,且存在常数0M >,使得对任何n N ∈和任何[],x a b ∈,有()n f x M <(1) 证明对任何n N ∈,{}12()min (),(),,()n n F x f x f x f x = 在[],a b 上连续 (2) 举一个例子使{}()inf ()n n NF x f x ∈=在[],a b 上不连续(3) 若{}()inf ()n n NF x f x ∈=在[],a b 上连续,则{}()n F x 在[],a b 上不一致收敛于()F x ,其中{}12()min (),(),,()n n F x f x f x f x =9. 设()f x 在(),a b 上有定义且对任何()12,,x x a b ∈和任何[]0,1λ∈,有1212((1))()(1)()f x x f x f x λλλλ+-<+-(1) 证明()f x 在(),a b 内处处有右导数'()()()lim x f x x f x f x x++∆→+∆-=∆且'()f x +是(),a b 上的单增函数(2)'()f x +在(),a b 内至多只有可数个间断点南开大学2005年硕士研究生入学考试1. 计算二重积分2DI xydxdy =⎰⎰ 其中{}2(,)|1D x y R x y =∈+≤2. 设()u u x =为由方程组(,,)(,,)0(,,)0u f x y z g x y z h x y z =⎧⎪=⎨⎪=⎩确定的隐函数,求du dx3.求极限lim n →∞+4. 求证0sin ()t f x dx x t+∞=+⎰在()0,+∞上连续5. 判断级数1111(1)1!2!!n e n ∞=⎡⎤-++++⎢⎥⎣⎦∑ 的敛散性 6. 设函数()f x 在[]1,1-上连续可导且(0)0f =(1) 求证11()n xf n n∞=∑在[]1,1-上一致收敛 (2) 设11()()n xS x f n n∞==∑,求证()S x 在[]1,1-上连续可导 7. 设(,),(,)P x y Q x y 在全平面2R 上有连续的偏导数,并且对任何一个圆周C ,有(,)(,)0CP x y d x Q x y d y +=⎰求证Q P xy∂∂=∂∂8. 设()f x 在[]0,a 上两次可导,''(0)(0)()0,()1f f f a f a ====,并且对任何[]0,x a ∈,有"()1f x ≤,设,02(),2a x x g x a a x x a⎧≤≤⎪⎪=⎨⎪-<≤⎪⎩(1) 求证'()()f x g x ≤(2) 求证()00,x a ∈存在,使得'00()()f x g x < (3) 求证0a > 9.设()f x 和()g x 在区间(),a b 内有定义,且对任何()0,,x x a b ∈,有00()()()()f x f xg x x x -≥-(1)求证()f x 在(),a b 内连续南开大学2006年硕士研究生入学考试.1.求极限24sin()limt t tx dx t→⎰2.设122221211112111n nn n n nx x x u xxxx x x ---=,试证1(1)2nii iu n n x u x =∂-=∂∑3.设()f x 在[]0,2上有界可积,20()0f x dx =⎰求证存在[]0,1a ∈使得1()0a af x dx +=⎰4.若幂级数nnn ax∞=∑在()1,1-内收敛于()f x ,设()01,1n x ≠∈-满足l i m 0()0,nn n x f x n →∞===和,则()0f x =对所有()1,1x ∈-5.设函数()f x 在(),-∞∞有任意阶导数,且导数函数列()()n f x 在(),-∞∞一致收敛于(),(0)1x ϕϕ=,求证()xx e ϕ= 6.设(,,)f x y z 在球{}222(,,)|1x y z x y z ++≤上连续令{}{}2222222()(,,)|,()(,,)|,0B r x y z x y z r S r x y z x y z rr =++≤=++=>求证()()(,,)(,,),(0,1)B r S r d f x y z dxdydz f x y z dS r dr=∈⎰⎰⎰⎰⎰7.设(,,)f x y z 在全空间上具有连续的偏导数,且关于x,y,,z 都是1周期的,即对任意点(x,y,,z )成立(1,,)(,1,)(,,1)(,,)f x y z f x y z f x y z f x y z +=+=+=则对任意实数,,αβγ,有f f f dxdydz xyz αβγΩ⎡⎤∂∂∂++=⎢⎥∂∂∂⎣⎦⎰⎰⎰ 这里[][][]0,10,10,1Ω=⨯⨯是单立方体8.设A 为三阶实对称方阵,定义函数(,,)(,,)x h x y z x y z A y z ⎛⎫ ⎪= ⎪ ⎪⎝⎭求证(,,)h x y z 在条件2221y z ++=下的最大值为矩阵A 的最大特征值9.(1)设0n a ≠数列满足0,n a n →→∞,定义集合{|,}i p ka k Z i N =∈∈,Z 为整数集,N 为自然数集,求证对任何实数b ,存在数列k b p ∈使得lim k k b b →∞=(2)试证一个非常数的周期连续函数必有最小正周期10.设()x ϕ是(),-∞∞定义的周期连续函数,周期为1,且1()0x dx ϕ=⎰,令10()xn a e x dx ϕ=⎰,对任意自然数n ,求证级数21nn a ∞=∑收敛南开大学2007年硕士研究生入学考试1.填空 (1)111lim ()122n n n n→∞+++++(2)1sin te tdt t+∞--⎰(3)函数22(,)212f x y x xy y =++在闭区域{}222(,)|425D x y R x y =∈+≤的最小值 (4)设{}222(,)|1,0,0D x y R x y x y =∈+≤≥≥,则二重积分D⎰⎰(5)设{}3222(,,)|1,n n n S x y z R x y z n N =∈++=∈,则下面曲面积分333()Sx y z dS ++⎰⎰的值(6)设L 为单位圆221x y +=的方向,则下曲线积分[]22(sin cos )(sin )yLex x y x dx y x xcox dy xy++-+⎰的值是2.设()f x 函数在[)0+∞,上连续,(0)0f <,并且'()2f x >对0x >成立,求证方程(0)0f =在区间(0)0,2f ⎛⎫ ⎪⎝⎭中有且仅有一根3.设()f x 在[]0,1上连续,求证121lim (()()(1)())nn n f f f n nn→+∞--++-4.若正项级数1n n a ∞=∑收敛,求证(1)1p n n a ∞=∑收敛,1p >(2)1n n∞=∑收敛,,2k N k ∈≥5.求证含参变量广义积分2txtedx +∞-⎰在关于[)0,t ∈+∞的任何有界闭子区间上一致收敛6.设()f x 在区间()0,+∞连续有界,且(1)()f x f x +≠对所有0x >成立,求证 ()l i m ()(1)0n f nf n →+∞--=7.设{}:1n x R x Ω=∈<,函数()u x 在Ω内二阶连续可微,在Ω上连续,且在Ω内满足0u bu ∆-=,其中221ni ix =∂∆=∂∑为Laplace 算子,0b >为常数,设对任意边界上的点x ∈∂Ω有()0u x >,证明:对任意x ∈Ω,有()0u x >南开大学2008年硕士研究生入学考试一.计算题1.()[]x x x +-∞→1ln lim 22.()()∑∞=-+-1121n n n n3.求()x f ,已知()()()1''+-=x fx x f4. 5.()[][]{}1,1,2,0,-∈∈=y x y x D ,求⎰⎰-DdS y x二.61+=+n n x x ,61-≥x ,求n x x ∞→lim三.()[]b a C x f ,∈,[]b a x ,∈∀,[]b a y ,∈∃,使()()x f y f 21≤,证明[]b a ,∈∃ξ,()0=ξf四.()x f 在[)+∞,a 一致连续且广义几分()⎰+∞adx x f 收敛,证()0lim=+∞→x f x五.()∑-=nxnex f ,证:(1)()x f 在()+∞,0收敛但不一致(2)()x f 在()+∞,0无穷次可导六.()1ln -=n n a f a ,()()x mf x f≤',10<<m ,证∑--1n n a a 收敛 七.x yu =,x v =,y xz +=ω,0222=+∂∂+∂∂y x zx zx ,求()v u ,ω八.求222a az y x =++分az z y x 2222=++成两部分体积之比。

南开大学2004年数学分析

南开大学2004年数学分析

南开大学2004年数学分析1、(15分)设()f x 在点a 的一个领域中有定义,()0f a ≠,()0f a '=.求1()lim ()()x ax af x f a -→.2、(15分)设(,)f u v 所有二阶偏导数都连续,(,)y z f xy x=.求2z x y∂∂∂.3、(15分)证明不等式12ln(1)11x x x x+<++(0x >).4、(15分)计算二重积分2222221ln()x y x y x y dxdy +≤+⎰⎰.5、(15分)计算第二型线积分22()2Lx y dx xydy --⎰,其中L 是从(0,1)A 沿sin x y x=到(,0)B π的一段曲线.6、(16分)证明级数11n nα∞=∑在0α>时收敛,在0α≤时发散.7、(15分)设()f x 在[),a +∞上可微且有界.证明存在一个数列{}[),n x a ⊂+∞,使得li m n n x →∞=+∞且lim ()0n n f x →∞'=.8、(24分)设{}()n f x 是[],a b 上的连续函数序列,且存在常数0M >,使得对任何n N ∈和任何[],x a b ∈,有()n f x M ≤.(1)证明对任何n N ∈,{}12()min (),(),,()n n F x f x f x f x = 在[],a b 上连续. (2)举一个例子使()inf ()n n NF x f x ∈=在[],a b 上不连续.(3)若()inf ()n n NF x f x ∈=在[],a b 上连续,则{}()n F x 在[],a b 上一致收敛于()F x ,其中{}12()min (),(),,()n n F x f x f x f x = .9、(20分)设()f x 在(,)a b 上有定义且对任何()12,,x x a b ∈和任何[]0,1λ∈,有1212((1))()(1)()f x x f x f x λλλλ+-≤+-.(1)证明()f x 在(,)a b 内处处有右导数()()()lim x f x x f x f x x++∆→+∆-'=∆且()f x +'是(,)a b 上的单调递增函数.(2)()f x +'在(,)a b 内至多只有可数个间断点.。

南开大学2000年数学分析考研试题

南开大学2000年数学分析考研试题

南开大学2000年数学分析考研试题1. 设()()()()()()()22sin ,,0,0,0,0,0x y xy x y x y f x y x y +⎧≠⎪+=⎨⎪=⎩,, 证明(),f x y 在点()0,0处连续,但不可微.2. 设()f u 具有连续的导函数,且()lim 0u f u A →+∞'=>,()0R >,(){}222,:,,0D x y x y R x y =+≤≥ (1)证明 ()lim u f u →+∞=+∞;(2)求()22R DdI f x y dxdy '=+⎰⎰;(3)求2limRR I R →+∞.3.(1)叙述()f x 于区间I 上一致连续的定义; (2)设()f x ,()g x 都于区间I 上一致连续且有界, 证明()()()F x f x g x =也于I 上一致连续,4.设函数列(){}n f x 于区间I 上一致收敛于()f x ,且存在数列{}n a ,使得当x I ∈时,总有()n n f x a ≤,证明()f x 于I 上有界.5.设0n a >,()1,2,n =,1nn k k S a ==∑,证明(1)若1nn n a S ∞=∑收敛,则1n n a ∞=∑也收敛.(2)如果1λ>,1nn n a S λ∞=∑收敛,问1n n a ∞=∑是否也收敛?说明理由.6.设(),f x t 于[)[],,a c d +∞⨯上连续,(),af x t dx +∞⎰于[),c d 上一致收敛,证明(),af x d dx +∞⎰收敛.南开大学2000年数学分析考研试题解答1.解:()0,00f =,()22,x y xyf x y x y +⋅≤+()222212x y x y x y +⋅+≤+()12x y ≤+, ()()()(),0,0lim,0,00x y f x y f →-=,于是(),f x y 在点()0,0处连续.显然()0,00x f =,()0,00y f =,0→时,()()(),0,00,0f x y f x f y ⎡⎤∆∆-∆+∆sin x y x y ∆+∆∆⋅∆=的极限不存在,所以(),f x y 在点()0,0处不可微. 2.(1)证明 由()lim 0u f u A →+∞'=>,存在0M >,当u M ≥时,有()2A f u '≥, ()()()()f u f u f M f M =-+ ()()()f u M f M ξ'=-+ ()()2Au M f M ≥-+, 由此,可知()lim u f u →+∞=+∞; (2)解 ()22R DI f x y dxdy '=+⎰⎰()220Rd f r rdr πθ'=⎰⎰()()21022f R f π⎡⎤=⋅-⎣⎦; (3)解 ()()2220lim lim 4R R R f R f I R R π→+∞→+∞-= ()22lim42R f R R Rπ→+∞'⋅=()2lim 44R f R A ππ→+∞'==.4.证明 由于(){}n f x 在I 上一致收敛于()f x , 对1ε=,存在正整数N ,当n N ≥时,有()()1n f x f x -≤,()x I ∈, ()()1N f x f x -≤,()x I ∈,()()()()N N f x f x f x f x ≤-+1N a ≤+,()x I ∈, 即知()f x 在I 上有界. 5、设0>n a ,n n a a a S +++= 21,证明: (1)当1>α时, ∑∞=1n nnS a α收敛;(2) 当1≤α,且+∞=∞→n n S lim 时, ∑∞=1n nnS a α发散。

南开大学(已有09试题)

南开大学(已有09试题)

南开大学陈省身数学研究所数学分析2000——2023年年(2023年年有答案)高等代数2003——2023年年(2023年年有答案)空间解析几何与高等代数2000——2002抽象代数2002微分几何1999——2000实变函数1999——2000泛函分析1999——2000概率统计1999——2000拓扑学1999——2000实变函数与泛函分析1999——2000数理方程1999——2000概率论与数理统计1999——2000偏微分方程数值解法1999——2000计算主意1999——2000数理统计1999——2000概率统计信息1999——2000量子力学1999——2023年年量子力学(物理)1999——2000量子力学导论2002——2023年年数学物理主意2003——2023年年数学科学学院数学分析2000——2023年年(2023年年有答案)高等代数2003——2023年年(2023年年有答案)空间解析几何与高等代数2000——2002抽象代数2002第 1 页/共22 页微分几何1999——2000实变函数1999——2000泛函分析1999——2000概率统计1999——2000拓扑学1999——2000实变函数与泛函分析1999——2000数理方程1999——2000概率论与数理统计1999——2000偏微分方程数值解法1999——2000计算主意1999——2000数理统计1999——2000概率统计信息1999——2000数学物理主意2003——2023年年物理科学学院材料化学2023年年材料物理2004——2023年年热力学统计物理2003——2004统计物理1999——2000理论力学1999——2000,2003——2004固体物理(基础部分)2004——2023年年大学物理2000大学物理(物理科学学院)2023年年大学物理(信息技术科学学院)2003——2004普通物理1999——2000,2003——2004晶体物理2004激光物理2003——2004光学(信息技术科学学院)2000,2003——2023年年光物理学2023年年应用光学1999——2000,2003——2023年年电动光学1999晶体管原理1999——2000量子力学1999——2023年年量子力学(物理)1999——2000量子力学导论2002——2023年年量子物理概论2003——2004细胞生物学1999——2000高等数学1999——2000高等数学(信息技术科学学院)2003——2023年年电磁学2003——2023年年电力电子学基础2003——2004经典物理学2023年年普通生物化学2003——2023年年生物物理学2003——2023年年数学物理主意2003——2023年年泰达生物技术学院数学分析2000——2023年年(2023年年有答案)高等代数2003——2023年年(2023年年有答案)微生物学1999——2000细胞生物学1999——2000生物化学1999——2000动物学1999,2003——2023年年昆虫学2003——2023年年普通生物化学2003——2023年年信息技术科学学院高等数学1999——2000第 3 页/共22 页高等数学(信息技术科学学院)2003——2023年年光学(信息技术科学学院)2000,2003——2023年年应用光学1999——2000,2003——2023年年信号与系统1999——2023年年控制原理1999——2000自动控制2023年年自动控制原理2003——2004现代控制论基础1999——2000,2003——2004综合基础课(光学、电路与系统、通信与信息系统、信号与信息系统、物理电子学、微电子学与固体电子学、光学工程专业)1999——2000,2002——2023年年编译原理1998数据结构(含程序设计)2002数据结构与算法2003——2004数据结构1998——2000软件基础1999——2000计算机软硬件基础2023年年C语言与数据结构2004计算机原理1999——2000,2003综合基础课(模拟电路、数字电路、计算机原理)1999——2000大学物理2000大学物理(物理科学学院)2023年年大学物理(信息技术科学学院)2003——2004晶体管原理2003——2004普通物理1999——2000,2003——2004通信原理2003——2023年年物理学2023年年运筹学2003——2023年年高分子化学与高分子物理1999——2000高分子化学与物理2004,2023年年环境科学与工程学院水污染控制工程2004——2023年年安全学导论2004——2023年年环境监测1999——2000,2002——2023年年环境经济学2003——2023年年环境微生物学1999——2000环境生物学2003——2023年年环境学导论2004——2023年年环境管理1999——2000,2003——2023年年动物生理学1999——2000环境化学1999——2000,2002,2023年年环境化学与分析化学2003——2004(注:2004年试卷缺页,惟独“环境化学”内容)环境质量评价1999——2000环境工程1999——2000细胞生物学1999——2000生物化学1999——2000环境科学概论1999——2000,2002——2003化学学院综合化学2023年年——2023年年无机化学1999——2000,2003——2023年年分析化学1999——2000,2003——2023年年,2023年年高分子化学与高分子物理1999——2000高分子化学与物理2004,2023年年有机化学1999——2000,2003——2023年年,2023年年物理化学2000,2003,2023年年——2023年年第 5 页/共22 页药物化学2004——2023年年细胞生物学1999——2000生物化学1999——2000固体物理(基础部分)2004——2023年年普通生物化学2003——2023年年植物化学保护1999——2000,2004生命科学学院微生物学1999——2000,2003——2023年年细胞生物学1999——2000生物化学1999——2000数学分析2000——2023年年(2023年年有答案)高等代数2003——2023年年(2023年年有答案)遗传学1999——2000,2003,2023年年真菌学1999——2000普通植物生理学1999——2000,2003——2023年年植物学1999——2000,2003动物学1999,2003——2023年年昆虫学2003——2023年年分子遗传学1999——2000植物生理学2000,2003——2023年年植物化学保护1999——2000,2004植物解剖学2023年年普通生态学1999——2000,2003——2023年年普通生物化学2003——2023年年普通微生物学2003——2023年年普通物理1999——2000,2003——2004数据结构(含程序设计)2002数据结构与算法2003——2004数据结构1998——2000医学院病理学2004——2023年年人体解剖学2004——2023年年生理学2004——2023年年生物化学(医)2004——2023年年药理学2004——2023年年汉语言文化学院汉语2023年年古代汉语2002现代汉语(文学院)2001现代汉语(汉语言文化学院)2002——2004语言学理论基础(汉语言文化学院)2001——2004 语言学理论2023年年文学院文学基础2023年年中国古代文学2023年年人文社科基础2004——2023年年世界文学2023年年综合考试(文学)1999——2000文学综合1999——2000文艺理论1999——2000,2004——2023年年文艺评论2004——2023年年文艺写作2023年年文艺评论写作1999——2000中国文学史1998——2002第7 页/共22 页中国文学批评史1998——2001古代汉语2002现代汉语与古代汉语2003——2023年年古典文学文献学2004——2023年年语言学概论2023年年现代汉语(文学院)2001现代汉语(汉语言文化学院)2003——2004语言理论基础(文学院)2003——2004语言学理论基础(汉语言文化学院)2001——2004 汉语基础知识2004汉语知识2004中国文学史2003——2023年年人文地理学1999——2000传扬学2003传扬学原理2004——2023年年绘画基础与创作2004——2023年年美学原理2003——2023年年书法技法2003——2004书法史论2003——2004新闻学原理2004——2023年年艺术史论2004——2023年年艺术与设计史论2003——2023年年中外美术史论2003——2023年年专业设计(环境设计)2003专业设计(设计艺术学、环境设计专业)2004专业设计(设计艺术学、视觉设计)2023年年历史学院古代汉语2003——2023年年古代文献2003——2004古典文献学2004——2023年年拉丁美洲史2003——2004历史地理2004——2023年年历史文献学2004——2023年年历史学基础理论2023年年美国史2003——2004美国学综论2023年年明清史2003——2004史学史2023年年世界近现代史(历史学院)2003——2023年年世界近现代史(日研院)2023年年世界上古中古史2003——2023年年世界通史2003——2023年年文物博物馆学2003——2023年年中国古代史2003——2023年年中国近现代史2003——2023年年中国史学史与史学理论2003——2004中国思想史2003——2023年年中国通史1994——1997,2003——2023年年中国文献学基础2003——2004中国近代史(中共党史专业)2003——2023年年哲学系马克思主义哲学(哲学各专业)2004——2023年年马克思主义哲学(马克思主义教诲学院)2003——2023年年宗教学概论2004——2023年年伦理学原理2004——2023年年美学概论2023年年第9 页/共22 页欧美哲学通史2003——2023年年西方哲学通史2023年年形式逻辑2003——2023年年中国哲学史2023年年中外哲学史2003——2023年年外国语学院二外日语2001——2023年年二外德语2001——2023年年二外法语2001——2023年年二外俄语2003——2023年年专业英语2000——2003,2023年年——2023年年(2023年年——2023年年有答案)(注:2023年年答案惟独英美文学部分,2023年年答案有英美文学部分和语言学部分)基础英语1997,2000——2023年年(1997,2004——2023年年,2023年年有答案)语言学基础2023年年(2023年年有答案)翻译2004(2004有答案)双语翻译与文学2004英美文学2004(2004有答案)语言学2004——2023年年(2004——2023年年有答案)二外英语2001,2003——2023年年,2023年年基础日语2001,2003——2023年年专业日语2001,2003——2023年年基础俄语2004——2023年年法学院刑法学2023年年法学综合(含法理学、宪法、民法、刑法、刑诉、民诉)2000——2023年年(2023年年试题有答案)民法与商法2003——2023年年,2023年年民法(民商法专业)2002民法(经济法专业)2002民法2000——2001(法理学)法学理论2023年年法学理论2003法制史(含中国法制史、外国法制史)2003——2023年年,2023年年国际法学(含国际经济法、国际公法、国际私法)2003——2023年年,2023年年国际经济法概论2000经济法与商法2003——2023年年,2023年年经济法1999诉讼法学(含行政诉讼法、刑事诉讼法、民事诉讼法)2004——2023年年,2023年年宪法学、行政法与行政诉讼法2003——2023年年,2023年年(2004有答案)环境法2023年年周恩来政府管理学院行政管理学2003——2023年年政策原理与政策分析2003——2023年年(2004有答案)国际关系史1999——2000,2003——2023年年国际关系学2003——2023年年国际关系概论1999——2000外交学概论与当代中国外交2004——2023年年外国政治制度史1999——2000政治学原理1999——2023年年中国政治制度史1999——2000中国通史1994——1997第11 页/共22 页中外政治思想史2003——2023年年中国政治思想史1999——2000,2002西方政治思想史1999——2000中外经济地理1999——2000世界近现代历史2002社会保障学2004——2023年年社会学理论2023年年社会学概论1995——2001,2003——2004社会调查主意与社会统计1995——2023年年社会工作2001环境学与环境法2004——2023年年西方经济学流派2004——2023年年(2004——2023年年有答案)心理学主意2004——2023年年(2004有答案)心理学基础2004——2023年年(2004有答案)马克思主义教诲学院马克思主义哲学(哲学各专业)2004——2023年年马克思主义哲学(马克思主义教诲学院)2003——2023年年科学社会主义原理2004——2023年年专业综合基础理论(科学社会主义与国际共产主义运动理论专业)2004——2023年年思想政治教诲原理2003——2023年年中共党史2003——2023年年中国近代史(中共党史专业)2003——2023年年中外哲学史2003——2023年年经济学院微观、宏观经济学2002,2023年年(2023年年有答案)微观经济学1999——2001宏观经济学1999——2001(1999——2000有答案)专业基础(微观经济学、宏观经济学、保险学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、财政学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、产业经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、国际经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、金融工程学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、经济思想史)2003(2003有答案)专业基础(微观经济学、宏观经济学、劳动经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、区域经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、人口经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、台湾经济)2003(2003有答案)专业基础(微观经济学、宏观经济学、西方经济学流派)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、应用统计学)2003(2003有答案)专业基础(微观经济学、宏观经济学、政治经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、中国近代经济史)2003——2004(2003——2004有答案)专业基础(国际经济学)(世界经济、国际贸易专业)2003西方经济学1999——2003(1999——2000,2002有答案)政治经济学1999——2000,2002,2023年年(1999——2000,2002,2023年年第13 页/共22 页有答案)当代西方经济学1999——2001(2000——2001有答案)区域经济学2002——2003(2002——2003有答案)产业经济学2002——2003(2002——2003有答案)货币银行学1999——2001(1999——2001有答案)国际金融1999——2001(1999——2001有答案)中国近代经济史1999——2000社会经济统计学原理1999——2000中国近代经济史(经研所)1999——2000企业人力资源开辟与管理1999——2000保险学原理1999——2000劳动经济学1999——2000人口经济学1999——2000人口学理论2003——2023年年计量经济学1999——2000世界经济概论1999——2000房地产经济1999——2000财产学1999——2000世界经济概论与世界经济情况1999——2000市场学1999——2000信息系统技术1999——2000环境经济学1999——2000国际经济学1999——2002(2000——2002有答案)外国近现代经济史1999——2000综合基础课(保险)1999——2000金融学基础(联考)2002——2023年年(2002——2023年年有答案)商学院会计学综合2023年年——2023年年会计学综合考试1999——2000,2003——2023年年(2000,2003——2023年年有答案)财务管理1999——2000财务管理与管理会计1999——2000(1999——2000有答案)公司治理2023年年技术经济学2003——2023年年市场学1999——2000管理综合(含管理学、微观经济学)2003——2023年年(2003——2023年年有答案)(注:2023年年——2023年年的答案惟独管理学部分的答案,无微观经济学部分的答案)管理学概论2002信息系统技术1999——2000管理信息系统2003——2023年年旅游管理1999旅游学综合(旅游概论和旅游经济学)2001——2023年年旅游学概论1997企业人力资源开辟与管理1999——2000(1999——2000有答案)人文地理学1999——2000中外经济地理1999——2000计算机应用(设计程序、数据库系统)2004——2023年年编辑学2001出版学2001网络技术基础2001档案管理学2004——2023年年档案学概论2004——2023年年目录学(含目录学概论、中西文工具书)2003——2004文献目录学2023年年情报学(含情报学概论、科技文献检索、计算机情报检索)2003情报学(含情报学概论、信息检索)2004第15 页/共22 页情报学综合2023年年图书馆学理论2003——2023年年高等教诲研究所高等教诲原理2003——2023年年(2023年年有答案)经济学原理2023年年——2023年年(2023年年——2023年年有答案)高等教诲管理学2003——2023年年教诲社会学2004——2023年年教诲学原理2004——2023年年(2004有答案)普通心理学2003——2023年年(2004有答案)中国高等教诲史2003——2023年年经济与社会发展研究院专业综合(含微观经济学、区域经济学)2004——2023年年(2004——2023年年有答案)专业综合(宏观经济学、产业经济学)2004——2023年年(2004——2023年年有答案)微观、宏观经济学2002,2023年年(2023年年有答案)微观经济学1999——2001宏观经济学1999——2001(1999——2000有答案)专业基础(微观经济学、宏观经济学、保险学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、财政学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、产业经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、国际经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、金融工程学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、经济思想史)2003(2003有答案)专业基础(微观经济学、宏观经济学、劳动经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、区域经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、人口经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、台湾经济)2003(2003有答案)专业基础(微观经济学、宏观经济学、西方经济学流派)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、应用统计学)2003(2003有答案)专业基础(微观经济学、宏观经济学、政治经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、中国近代经济史)2003——2004(2003——2004有答案)专业基础(国际经济学)(世界经济、国际贸易专业)2003西方经济学1999——2003(1999——2000,2002有答案)政治经济学1999——2000,2002,2023年年(1999——2000,2002,2023年年有答案)当代西方经济学1999——2001(2000——2001有答案)区域经济学2002——2003(2002——2003有答案)产业经济学2002——2003(2002——2003有答案)货币银行学1999——2001(1999——2001有答案)国际金融1999——2001(1999——2001有答案)中国近代经济史1999——2000社会经济统计学原理1999——2000中国近代经济史(经研所)1999——2000企业人力资源开辟与管理1999——2000第17 页/共22 页保险学原理1999——2000劳动经济学1999——2000人口经济学1999——2000人口学理论2003——2023年年计量经济学1999——2000世界经济概论1999——2000房地产经济1999——2000财产学1999——2000世界经济概论与世界经济情况1999——2000市场学1999——2000信息系统技术1999——2000环境经济学1999——2000国际经济学1999——2002(2000——2002有答案)外国近现代经济史1999——2000深圳金融工程学院专业基础(金融学)2003——2023年年(2003——2023年年有答案)微观、宏观经济学2002,2023年年(2023年年有答案)微观经济学1999——2001宏观经济学1999——2001(1999——2000有答案)专业基础(微观经济学、宏观经济学、保险学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、财政学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、产业经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、国际经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、金融工程学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、经济思想史)2003(2003有答案)专业基础(微观经济学、宏观经济学、劳动经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、区域经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、人口经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、台湾经济)2003(2003有答案)专业基础(微观经济学、宏观经济学、西方经济学流派)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、应用统计学)2003(2003有答案)专业基础(微观经济学、宏观经济学、政治经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、中国近代经济史)2003——2004(2003——2004有答案)专业基础(国际经济学)(世界经济、国际贸易专业)2003西方经济学1999——2003(1999——2000,2002有答案)政治经济学1999——2000,2002,2023年年(1999——2000,2002,2023年年有答案)当代西方经济学1999——2001(2000——2001有答案)区域经济学2002——2003(2002——2003有答案)产业经济学2002——2003(2002——2003有答案)货币银行学1999——2001(1999——2001有答案)国际金融1999——2001(1999——2001有答案)中国近代经济史1999——2000社会经济统计学原理1999——2000中国近代经济史(经研所)1999——2000企业人力资源开辟与管理1999——2000第19 页/共22 页保险学原理1999——2000劳动经济学1999——2000人口经济学1999——2000人口学理论2003——2023年年计量经济学1999——2000世界经济概论1999——2000房地产经济1999——2000财产学1999——2000世界经济概论与世界经济情况1999——2000市场学1999——2000信息系统技术1999——2000环境经济学1999——2000国际经济学1999——2002(2000——2002有答案)外国近现代经济史1999——2000日本研究院日本经济2004日本史2003,2023年年日本通史2004世界近现代史(历史学院)2003——2023年年世界近现代史(日研院)2023年年微观、宏观经济学2002,2023年年(2023年年有答案)微观经济学1999——2001宏观经济学1999——2001(1999——2000有答案)专业基础(微观经济学、宏观经济学、保险学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、财政学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、产业经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、国际经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、金融工程学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、经济思想史)2003(2003有答案)专业基础(微观经济学、宏观经济学、劳动经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、区域经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、人口经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、台湾经济)2003(2003有答案)专业基础(微观经济学、宏观经济学、西方经济学流派)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、应用统计学)2003(2003有答案)专业基础(微观经济学、宏观经济学、政治经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、中国近代经济史)2003——2004(2003——2004有答案)专业基础(国际经济学)(世界经济、国际贸易专业)2003西方经济学1999——2003(1999——2000,2002有答案)政治经济学1999——2000,2002,2023年年(1999——2000,2002,2023年年有答案)当代西方经济学1999——2001(2000——2001有答案)区域经济学2002——2003(2002——2003有答案)产业经济学2002——2003(2002——2003有答案)货币银行学1999——2001(1999——2001有答案)国际金融1999——2001(1999——2001有答案)第21 页/共22 页中国近代经济史1999——2000社会经济统计学原理1999——2000中国近代经济史(经研所)1999——2000劳动经济学1999——2000人口经济学1999——2000人口学理论2003——2023年年计量经济学1999——2000世界经济概论1999——2000房地产经济1999——2000财产学1999——2000世界经济概论与世界经济情况1999——2000市场学1999——2000信息系统技术1999——2000环境经济学1999——2000国际经济学1999——2002(2000——2002有答案)外国近现代经济史1999——2000。

南开大学2000-2016数学分析考研试题汇总

南开大学2000-2016数学分析考研试题汇总


07
83

4
当α
∞ an = S n = +∞ 时, ∑ α ∑ an 发散; = 0 ,且 nlim →∞ n =1 S n n =1
0
n 所以 ∑ α 发散; n =1 S n
(
w
w

a
w
N an an S N ≥ = α ∑ 因为 ∑ α α S1 n =1 S n n =1 S1
.

k
N
A'
收集整理:我欲封天
07
A"
0
83
4
Q
由条件得 f ( x, u ) 在 [ A' , A' ' ] × [α , β ] 上一致连续,从而 lim f ( x, u ) = f ( x, β ) ,
u →β
且关于 x ∈ [ A′, A′′] 是一致收敛的;或者说 在

A'
A′′
A′
f ( x, u )dx 在 [α , β ] 上连续,
f ( x, u )dx 在 [α , β ) 上一致收敛,
所以 ∀ε > 0, ∃A0 (ε ) > 0 ,当 A' , A" > A0 (ε ) 时, ∀u ∈ [α , β ) ,有 又由 f ( x, u ) 在 [ a, +∞ ) × [α , β ] 中连续,
5
∫ f (x, u )dx < ε ,

w然
n
= +∞ 时,
comÐO›
方法一
n+ p

式成立,于是 {∑ 方法二 因为
N
k =2

南开大学数学分析考研真题

南开大学数学分析考研真题

天津考研网()南开大学数学分析考研真题南开大学数学分析考研复习都是有依据可循的,考研学子关注事项流程为:考研报录比-大纲-参考书-资料-真题-复习经验-辅导-复试-导师,缺一不可。

对于专业课是南开大学数学分析科目的考生而言,在这一考试中取得一个不错的成绩对于我们进入复试而言影响还是蛮大的。

鉴于前段时间有学妹像我询问这一科目的复习经验和方法,我决定把自己的一点想法写下来,下面就给大家说一说南开大学数学分析的复习和一些心得体会。

第一轮的复习当然是看课本,做书上的课后习题。

基础知识要扎实,相关的定理、概念一定要清楚,不要脑子里一团浆糊。

一些难度比较大的题目自己尽量做,做到哪一步都没有关系,但是记得一定要做好标记。

第二轮的时候复习核心知识点,并且需要配套练习大量的习题,笔者在这一阶段用到的资料是《南开大学数学专业(数学分析+高等代数)考研红宝书-全程版》,天津考研网主编的。

资料中包含的真题内容如下:南开大学数学分析2000-2012、2014、2015、2016年考研真题;南开大学数学分析2000-2012、2014、2016年考研试题参考答案;南开大学数学分析2010-2012年考研真题解析(单买30元/年);南开大学高等代数2000-2012、2014、2015、2016年考研真题;南开大学高等代数2000-2012、2014、2016年考研试题参考答案;南开大学数学分析2010-2012年考研真题解析。

此外,数学分析这个科目在复习的时候还需要注意的一点就是对解题方法的归纳和总结。

要学会整理自己的学习笔记,比如说对级数收敛问题的证明方法的总结等等。

另外一点就是我个人比较喜欢的练习方法:分题型分知识点做题。

这种方法对于知识点的掌握比较快而且弄的懂。

最后,再次提醒要参加南开大学数学分析研究生考试的同学,千万要抓真题试题这部分的学习,公式什么的可以在做题当中自己总结出来,通过大量的真题扩充自己的知识储备。

南开大学701数学分析2014年考研专业课真题试卷

南开大学701数学分析2014年考研专业课真题试卷


六、(20分·)求 证 : (1) 苎凵丝在 (0,+∞)不 一致收敛;

£号竺在3;cD,连
;乒
七、(20分 )已 知r←)在 【O,+∞ )二 阶可导。
(1)设 Ⅱm r←)〓 1, ⒒m/″←)=0,求 证: Ⅱm/′Cjr)〓 0。
⒓)试 构造一个函数/【jr),使 得 lim/←)〓 1,但 Ⅱm/′←)不 存在。
第 1页 共 2页
笫 2页 共 2页
南开大学 zO14年硕士研究生入学考试试题
学 院:012数 学科学学院、011陈 省身数学研究所、010组合中心 考试科 目:701数 学分析 专 业:数 学学科下除数理经济外的各专业、统计学学科下各专业
豳 R谑膨 馅 箨 鸵 咖
止,筝创 龆 叻 脚
一、 (1① 分 )求极 限:Ⅱ里(蛎 -1)sh″ h刀 。
二、(10分 )求证: /(苈 ,`)〓
十三’
是二二维王 上自勺j连续函数。
{e^〃 ∶
∶[∶
Fl面
=、 (20分 )设 0(3(臼 c)0。 求点(0,0,c)到 曲面子=丢 +若:的 最/l、 距离。
四、(zO分
)设
曰,D,c)0,∑
是单位球面
`+/+'〓
1,取 外侧。求曲面积分:

五、(20分 )计 算: 晷 黠

南开大学2019年数学分析试题真题

南开大学2019年数学分析试题真题
2 2 2 S
(√
) √ 2 2 ,− ,0 , 动点 P 在曲面 x2 +2y 2 +3z 2 = 1, 2 2
求方向导数
∂f |(P ) 的最大值. ∂l
∞ ∑ xn √ 五.(20 分) 求幂级数 的收敛区间. n n! n=1
六.(15 分) 证明广义积分

0
+∞
sin x dx 2x + 3 sin x
பைடு நூலகம்
满分: 150 分
二.(15 分) 若 a > 0, 求 x2 + y 2 = a(z − 1)2 与平面 z = 0 所围成图形的立体体积. ∫∫ 三.(20 分) 求曲面积分 y 2 z dxdy + xz dy dz + x2 y dxdz , 其中 S 是由曲面 z = x2 + y 2 与曲面 x2 + y 2 = 1 以及三坐标面在第一象限所围立体的外侧. 四.(20 分) 设函数 f (x, y, z ) = 2x +2xy +2y −3z ,l =
0 1
f (x) dx = 0,证明: ∫
0 1

0
1
∫ |f (x)| dx ·
0
1
|f ′ (x)|dx < 2
f 2 (x)dx
第 1 页 (共 1 页)
南开大学 2019 年数学分析试题真题
(考试时间:2018 年 12 月 23 日上午 8:30-11:30) (16 数学 − 胡八一) 微信公众号:数学的情怀 & 数专考研小 K 真题 考试形式: 闭卷
一.(15 分) 求极限
n→∞
考试时间: 180 分钟

[VIP专享]南开大学数学分析

[VIP专享]南开大学数学分析

88.8918÷1.2990÷.1=4214÷3922=.0034=1÷15251371=8535.78.208÷023.2173c00÷1*m=29030.3922c=.1÷20m3=2÷120252.=3535=42314c)*523m240341*31.252=31*.1.535.*031342.*9205221.04.455=+213*05*2022.02.854850.3150.*+58c12*5m1*202+.050+0.014*85.20*051000+0+03/8T.+0÷+=55+1*011+010+91÷01454050*0010200+5+0+080+400*+4**1*1510.3910%*C%-*6+÷M(=*M=5÷50)*30*31(÷3110*5+**÷4*1m243.%71e=78%n0)8=8s.5=77.93c.6c0mmc.4*m1*31,0w199o.k2.m4c-cem.5mn2csp26m659*.0.34-50.60c5*pm.3c85m9,c05g.m.05i0rp-l.s.85p6/c50bcm0.om7py.c.6spm5c+mc;0m..7.cmk ; 1+1k+12+1+k2234=1c+m1++4+4+2
0
7.设 0 x , 0 y 时 f (x, y) 连续且有界,证明
f (x)dt 0
明 lim 1
x x 0
6.设 f (x) 于0, 有定义,对任意实数 A a, f (x) 于0, A可积,且 lim f (x) 0 ,证 n
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学分析考研真题南开
数学分析考研真题南开
南开大学是我国一所历史悠久、声誉卓著的高等学府。

其数学分析考研真题一
直备受考生关注。

今天,我们就来探讨一下南开大学数学分析考研真题的特点
和备考技巧。

首先,南开大学数学分析考研真题在难度上相对较高。

这是因为南开大学一直
以来在数学研究领域有着卓越的贡献,其数学分析课程也一直以严谨著称。

因此,南开大学数学分析考研真题的难度相对较高,涉及的知识点也较为广泛。

考生在备考过程中,需要充分理解和掌握数学分析的基本概念和原理,扎实掌
握各类定理和推导过程,以应对考试中的各种题型。

其次,南开大学数学分析考研真题注重对考生的综合能力的考察。

在南开大学
数学分析考研真题中,不仅仅考察考生对基本概念和定理的理解和应用,还会
涉及到对数学分析知识的推广和拓展。

考生需要具备较强的分析和解决问题的
能力,能够独立思考和解决复杂的数学问题。

因此,在备考过程中,考生需要
注重培养自己的逻辑思维和分析问题的能力,通过大量的练习和思考,提高自
己的解题能力和应试水平。

此外,南开大学数学分析考研真题还注重对考生的应用能力的考察。

在考试中,不仅会出现理论性的问题,还会涉及到对数学知识的应用。

考生需要能够将数
学理论与实际问题相结合,灵活运用所学知识解决实际问题。

因此,在备考过
程中,考生需要注重对数学知识的应用训练,通过解决实际问题的练习,提高
自己的应用能力和解题思路。

在备考南开大学数学分析考研真题时,考生需要注意以下几点。

首先,要做好
知识的系统复习。

数学分析是一个系统的学科,各个知识点之间有着内在的联系和逻辑关系。

考生需要将各个知识点串联起来,形成一个完整的知识体系。

其次,要注重对解题方法和技巧的总结和归纳。

在解题过程中,有一些常用的方法和技巧可以帮助考生更快更准确地解决问题。

考生需要总结和归纳这些方法和技巧,以备考试时使用。

最后,要进行大量的练习和模拟考试。

通过大量的练习,考生可以加深对知识点的理解和记忆,提高解题能力和应试水平。

同时,通过模拟考试,考生可以熟悉考试的形式和要求,提前适应考试的紧张氛围。

综上所述,南开大学数学分析考研真题在难度和考察内容上有其独特的特点。

考生在备考过程中,需要注重对基本概念和原理的理解和掌握,培养自己的分析和解决问题的能力,注重对数学知识的应用训练,同时进行大量的练习和模拟考试。

通过科学合理的备考方法和努力,相信考生一定能够在南开大学数学分析考研中取得优异的成绩。

相关文档
最新文档