菱形的判定和性质
菱形的性质及判定知识点及典型例题
菱形的性质及判定1.菱形的定义:有一组邻边相等的平行四边形叫做菱形.2 .菱形的性质菱形是特殊的平行四边形,它具有平行四边形的所有性质,?还具有自己独特的性质:①边的性质:对边平行且四边相等.②角的性质:邻角互补,对角相等.③对角线性质:对角线互相垂直平分且每条对角线平分一组对角.④对称性:菱形是中心对称图形,也是轴对称图形.菱形的面积等于底乘以咼,等于对角线乘积的一半.点评:其实只要四边形的对角线互相垂直,其面积就等于对角线乘积的一半. 3.菱形的判定判定①:一组邻边相等的平行四边形是菱形.判定②:对角线互相垂直的平行四边形是菱形.判定③:四边相等的四边形是菱形.4 .三角形的中位线中位线:连结三角形两边的中点所得的线段叫做三角形的中位线.也可以过三角形一边的中点作平行于三角形另外一边交于第三边所得的线段也是中位线.以上是中位线的两种作法,第一种可以直接用中位线的性质,第二种需要说明理由为什么是中位线,再用中位线的性质.定理:三角形的中位线平行第三边且长度等于第三边的一半.重点是菱形的性质和判定定理。
菱形是在平行四边形的前提下定义的,首先她是平行四边形,但它是特殊的平行四边形,特殊之处就是有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法。
菱形的这些性质和判定定理即是平行四边形性质与判定的延续,又是以后要学习的正方形的基础。
难点是菱形性质的灵活应用。
由于菱形是特殊的平行四边形,所以它不但具有平行四边形的性质, 同时还具有自己独特的性质。
如果得到一个平行四边形是菱形,就可以得到许多关于边、角、对角线的条 件,在实际解题中,应该应用哪些条件,怎样应用这些条件,常常让许多学生手足无措, 教师在教学过程 中 应给予足够重视。
在平面上,一个菱形绕它的中心旋转,使它和原来的菱形重合,那么旋转的角度至少是板块一、菱形的性质【例1】 菱形的两条对角线将菱形分成全等三角形的对数为【例2】 【例3】 如图2,一活动菱形衣架中,菱形的边长均为 1 __________ 度.16cm 若墙上钉子间的距离 AB BC 16cm ,则【例4】 如图,在菱形 ABCD 中, A 60 , E 、 的边长是 __________________ •F 分别是AB 、AD 的中点,若 EF 2,则菱形ABCD【例5】 如图, 证明:E 是菱形ABCD 的边AD 的中点, AB 与EF 互相平分.EF AC 于H ,交CB 的延长线于 F ,交AB 于P ,【例6】 所示,菱形 ABCD 中,对角线 AC 、BD 相交于点O , H 为AD 边中点,菱形 ABCD 的周如图1 长为24,则OH 的长等于DAD图【例7】如图,已知菱形ABCD的对角线AC 8cm , BD 4cm , DE BC于点E,则DE的长为【例8】菱形周长为52cm,一条对角线长为10cm,则其面积为 __________________【例9】菱形的周长为20cm ,两邻角度数之比为2:1,则菱形较短的对角线的长度为__________________________【例11】如图3,在菱形ABCD中, A 110,E、F分别是边AB和BC的中点, EP CD于点P,则【例10】如图2,在菱形ABCD 中,AC 6, BD 8,则菱形的边长为()A . 5B . 10C . 6D . 8A __________________ DB 图2 CFPC ()C. 50D. 55PC 【例12】如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个锐角为60的菱形,剪口与折痕所成的角的度数应为()A.15 或30 B . 30 或45 C . 45 或60 D . 30 或60菱形ABCD 中,E 、F 分别是BC 、CD 的中点,且AE BC ,AF CD ,那么 EAF 等于已知菱形的一个内角为 60,一条对角线的长为 2 3,则另一条对角线的长为已知菱形ABCD 的两条对角线 AC,BD 的乘积等于菱形的一条边长的平方,则菱形的一个钝角的 大小是如图,菱形花坛 ABCD 的周长为20m , ABC 60 , ?沿着菱形的对角线修建了两条小路AC 和BD ,求两条小路的长和花坛的面积.如图,在菱形 ABCD 中,AB 4a ,E 在BC 上,BE 2a , BAD 120 ,P 点在BD 上,则PE PC的最小值为 ___________【例13】 【例14】【例15】如图,将一个长为10cm ,宽为8cm 的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚 线)剪下,再打开,得到的菱形的面积为( 2A. 10cm 2B. 20cm)2C. 40cm【例16】 【例17】 【例18】 D. 80cmAOC图2B如图,在 ABC 中,BD 平分 ABC , BD 的中垂线交 AB 于点E ,交BC 于点F ,求证:四边形BEDF 是菱形如图,在 ABC 中,AB AC , D 是BC 的中点,连结AD ,在AD 的延长线上取一点 E ,连结BE , CE •当AE 与AD满足什么数量关系时,四边形 ABEC 是菱形?并说明理由.【例19】 已知,菱形ABCD 中,E 、 【例20】 已知,菱形ABCD 中,E 、 CEF 的度数.板块二、 【例21】 菱形的判定如图,如果要使平行四边形是 ____________ .F 分别是BC 、CD 上的点,若 AE AF EF AB ,求 C 的度数.F 分别是BC 、CD 上的点,且 B EAF 60 , BAE 18 .求:ABCD 成为一个菱形,需要添加一个条件,那么你添加的条件【例22】 【例23】 DA【例24】已知:如图,平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别相交于E、F . 求证:四边形AFCE 是菱形•【例25】如图,在梯形纸片ABCD中,AD//BC,AD CD,将纸片沿过点D的直线折叠,使点C落在AD上的点C处,折痕DE交BC于点E,连结C E.求证:四边形CDC E是菱形.【例26】如图,E是菱形ABCD的边AD的中点,EF AC于H,交CB的延长线于F,交AB于P,证明:AB与EF互相平分【例27】已知:如图,在平行四边形ABCD中,AE是BC边上的高,将ABE沿BC方向平移,使点E与点C重合,得GFC •若 B 60,当AB与BC满足什么数量关系时,四边形ABFG是菱形?证明你的结论.【例28】如图,在ABC中,AB AC ,M是BC的中点.分别作MD AB于D , ME AC于E , DF AC 于F , EG AB于G .DF、EG相交于点P •求证:四边形DMEP是菱形.【例30】如图,M 是矩形ABCD 内的任意一点,将 MAB 沿AD 方向平移,使 AB 与DC 重合,点M 移动 到点M '的位置⑴画出平移后的三角形;⑵连结MD , MC , MM ',试说明四边形 MDM 'C 的对角线互相垂直,且长度分别等于 AB, AD 的长;⑶当M 在矩形内的什么位置时,在上述变换下,四边形 MDM 'C 是菱形?为什么?【例31】如图, ACD 、 ABE 、 BCF 均为直线BC 同侧的等边三角形•已知 AB AC .⑴顺次连结A 、D 、F 、E 四点所构成的图形有哪几类?直接写出构成图形的类型和相应 的条件. ⑵ 当 BAC 为 ___________ 度时,四边形 ADFE 为正方形.三、与菱形相关的几何综合题【例32】已知等腰△ ABC 中,AB AC , AD 平分 BAC 交BC 于D 点,在线段AD 上任取一点P ( A 点 除外),过 P 点作EF II AB ,分别交 AC 、BC 于E 、F 点,作PM II AC ,交AB 于M 点,连【例29】如图, 于F ,ABC 中, ACB 90 , AD 是 DE AB 于E ,求证:四边形BAC 的平分线,交BC 于D , CH 是AB 边上的高,交AD CDEF 是菱形.M'A结ME .⑴求证四边形AEPM 为菱形⑵当P 点在何处时,菱形 AEPM 的面积为四边形 EFBM 面积的一半?【例33】问题:如图1在菱形ABCD 和菱形BEFG 中,点A ,B ,E 在同一条直线上, P 是线段DF 的中点,连结PG ,PC •若 ABC BEF 60,探究PG 与PC 的位置关系及匹的值. PC小聪同学的思路是:延长 GP 交DC 于点H ,构造全等三角形,经过推理使问题得到解决. 请你参考小聪同学的思路,探究并解决下列问题: ⑴ 写出上面问题中线段 PG 与PC 的位置关系及 空的值;PC⑵ 将图1中的菱形BEFG 绕点B 顺时针旋转,使菱形BEFG 的对角线BF 恰好与菱形ABCD 的边 AB 在同一条直线上,原问题中的其他条件不变(如图 2).你在⑴中得到的两个结论是否发生变化?写出你的猜想并加以证明. ⑶若图1中 ABC BEF 20 90,将菱形BEFG 绕点B 顺时针旋转任意角度, 原问四、中位线与平行四边形【例34】顺次连结面积为 20的矩形四边中点得到一个四边形,再顺次连结新四边形四边中点得到一 个 ,其面积为 .【例35】如图,在四边形 ABCD 中,AB CD , E 、F 、G 、H 分别是 AB 、BD 、CD 、AC 的中点,要使四边形EFGH 是菱形,四边形 ABCD 还满足的一个条件是 ___________________________________ ,并说明理由.题中的其他条件不变,求匹的值(用含的式子表示)PCFD【例36】在四边形ABCD中,AB CD , P , Q分别是AD、BC的中点,M , N分别是对角线AC , BD 中点,证明:PQ与MN互相垂直.【例37】四边形ABCD中,R、P分别是BC、CD上的点,E、F分别是AP、RP的中点,当点P在CD 上从C向D移动而点R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减小C.线段EF的长不变D.线段EF的长与点P的位置有关【例38】如图,ABC中,AD是BAC的平分线,CE AD于E , M为BC的中点,AB 14cm ,AC 10cm,贝U ME的长为 ________________ .【例39】如图,四边形ABCD中,AB CD , E, F分别是BC, AD的中点,连结EF并延长,分别交BA, CD 的延长线于点G, H,求证:BGE CHEH【例40】如图,已知BE 、CF 分别为 ABC 中 B 、 证:MN // BC .【例41】如图,四边形ABCD 中,E ,F 分别是边 AB , CD 的中点,贝U AD , BC 和EF 的关系是()A. AD BC 2EF B . AD BC > 2EF C. AD BC 2EFD. AD BC < 2EFF C.【例42】已知如图所示,行四边形.E 、F 、G 、H 分别是四边形 ABCD 的四边的中点,求证:四边形 EFGH 是平DC 厶FAEB【例43】如图,在四边形 ABCD 中,E 为AB 上一点, ADE 和 BCE 都是等边三角形, AB 、BC 、CD 、DA 的中点分别为P 、Q 、M 、N ,证明四边形PQMN 为平行四边形且 PQ PN .C 的平分线,AMBE 于 M , AN CF 于 N ,求AD【例44】如图,四边形 ABCD 中,AB CD ,E ,F ,G ,H 分别是 AD , BC , BD , AC 的中点,求证:EF , GH相互垂直平分1【例46】在平行四边形ABCD 的对角线BD 上取一点E ,使BE -DE ,连接AE 并延长与DC 的延长线交3于 F ,贝V CF 2AB .【例45】 ABC 的三条中线分别为AD II EH .AD 、BE 、CF , H 为BC 边外一点,且 BHCF 为平行四边形,求证:CQC图D【例47】如图,ABC中,E、F分别是AB、BC的中点,G、H是AC的三等分点,连结并延长EG、ADFH 交于点D •求证:四边形 ABCD 是平行四边形.【例49】如图,线段AB, CD 相交于点0,且AB CD ,连结AD , BC , E , F 分别是AD , BC 的中点,EF分别交AB ,CD 于M ,N ,求证:OM ON如图,梯形ABCD 中,AD // BC, AB CD ,对角线AC , BD 相交于点 分别是OA,OB, CD 的中点,求证: EFG是等边三角形【例51】如图,求证:四边形两组对边中点连线与两对角线中点连结这三条线共点.【例48】如图,在四边形ABCD 中,M 、N 分别为AD 、BC 的中点,BD AC , BD 和AC 相交于点0 ,MN 分别与AC 、BD 相交于E 、F ,求证:OE OF .【例50】BCBL D【例52】如图,0是平行四边形ABCD内任意一点,E, F, G, H分别是OA, OB, OC, OD的中点.若DE , CF 交于P , DG , AF 交于 Q , AH , BG 交于R, BE , CH 交于S,求证:PQ SR.AENO FH。
菱形的性质与判定
符号语言
∵在□ABCD中
AB=AD ∴四边形ABCD是菱形
判定 对角线互相垂直
法二
的平行四边形是 菱形
判定
四边相等的四边 形是菱形
法三
A
D
O
BC
A
D
B
C
∵在□ABCD中
AC⊥BD ∴四边形ABCD是菱形
∵AB=BC=CD=DA
∴四边形ABCD是菱形
方法总结: 四边形
一组邻边相等
平行四边形
菱形
对角线互相垂直
D
A
O
C
B
4、菱形ABCD两条对角线BD、AC长分
别是6cm和8cm,求菱形的周长和面积。
分析: S菱形ABCD 4SAOB
D
4 1 OA • OB A
O
C
2
4 1 1 AC • 1 BD B
22
2
S菱形ABCD
1 2
AC • BD
你有什么发现?
24
D
S菱形ABCD AB • DE
AC⊥BD,
∴ ABCD是菱形。
命题:有四条边相等的四边形是菱形。
已知:在四边形ABCD
中,AB=BC=CD=DA.
求证证明::四边形ABCD是菱形 D
C
∵AB=CD,AD=BC
∴四边形ABCD是平行四边形
又∵AB=AD,
A
B
∴四边形ABCD是菱形
符号语言: ∵AB=BC=CD=DA ∴四边形ABCD是菱形。
E是AB上一点,且AE=AC,EF∥BC,
EF交AD于点F.
A
求证:四边形CDEF是菱形。
E
F
B
DC
菱形的性质与判定 (第2课时菱形的判定)
B
小刚:分别以 A、C 为圆心,以大于 AC
A
C
D
的长为半径作弧,两条弧分别相交于点
B , D,依次连接 A、B、C、D 四点.
想一想:根据小刚的作法你有什么猜想?你能验证小刚的
作法对吗?
猜想:四条边都相等的四边形是菱形.
证明猜想
已知:如图,四边形ABCD中,AB=BC=CD=AD.
1 菱形的性质与判定
第2课时 菱形的判定
学习目标
1.理解并掌握菱形的三个判定方法.(重点)
2.会用菱形的判定方法进行有关的证明和计算.(难点)
知识回顾
菱形的定义是什么?性质有哪些?
一组邻边相等的平行四边形叫做菱形.
平行四边形
菱
形
的
性
质
边
角
一组邻边相等
菱形
两组对边平行
四条边相等
两组对角分别相等
邻角互补
∴四边形 ABCD是菱形.
A
D
总结:
判断一个四边形是菱形的方法
菱形
四边相等
四边形
一组邻边相等
平行四边形
对角线互相垂直
随堂训练
1 . 下 列 条 件 中 ,不 能判 定四 边形 ABCD 为菱 形的 是 (
)
C
A . AC ⊥ BD , AC 与 B D互 相平 分
B. A B= BC =CD=DA
A
M D
O
E
N
B
C
证明:∵MN是AC的垂直平分线,
∴AE=CE,AD=CD,OA=OC,∠AOD=∠EOC=90°.
∵CE∥AB,
∴∠DAO=∠ECO,
∴△ADO≌△CEO(ASA).
专题16 菱形的判定与性质(含答案)
专题16 菱形的判定与性质知识解读菱形是一个特殊的平行四边形,理解菱形的定义,可从菱形的共性和特性两个方面来理解.共性:菱形是一个特殊的平行四边形,它具有平行四边形的一切性质,如对边平行且相等,对角相等,邻角互补,对角线互相平分等。
菱形的特性主要体现在两个方面:①邻边相等;②对角线互相垂直判断一个四边形是菱形有三种方法方法1:有一组邻边相等的平行四边形是菱形方法2:对角线互相垂直的平行四边形是菱形方法3:四条边相等的四边形是菱形。
如果把一组邻边相等和对角线互相垂直看作菱形的特征,前两种判断方法可以理解为“平行四边形+菱形特征=菱形”,也就是说,要证明一个四边形是菱形,可先证明这个四边形是一个平行四边形,然后再添加一个菱形的特征。
培优学案典例示范一、菱形四边相等为全等提供了可能例1如图4-16-1①,在菱形ABCD中,点E,F分别为AB,AD的中点,连接CE,CF.(1)求证:CE=CF;(2)如图4-16-1②,若H为AB上一点,连接CH,使∠CHB=2∠ECB,求证:CH=AH+AB.BA EBAEHCFFCDD①②图4-16-1【提示】(1)由菱形ABCD中,点E,F分别为AB,AD的中点,易证得△BCE2A△DCF(SAS),则可得CE=CF;(2)延长BA与CF,交于点G,由平行线的性质,可得AG=AB,∠G=∠FCD,由全等三角形的对应角相等,可得∠BCE=∠DCF,然后由∠CHB=2∠ECB,易证得∠G=∠HCG,则可得CH=GH,则可证的结果。
【解答】【技巧点评】菱形的四条边相等、对角相等,这就为全等三角形提供了条件,因此菱形问题常常与全等三角形联系在一起.【跟踪训练】1.如图4-16-2,在菱形ABCD中,AB=BD,点E,F分别在AB,AD上,且AE=DF.连接BF与DE相交于点G,连接CG与BD相交于点H.下列结论:①△AED≌△DFB;②S四边形BCDG=34CG2;③若AF=2DF,则BG=6GF.其中正确的结论()A.只有①②B.只有①③C.只有②③D.①②③二、菱形被两条对角线分成四个直角三角形例2已知一个菱形的周长是20cm,两条对角线的比是4:3,则这个菱形的面积是()A.12cm2B.24cm2C.48cm2D.96cm2【提示】菱形的周长是20cm,故边长为5cm,又两条对角线的比是4:3,不妨设两条对角线长为4k,3k,因菱形的对角线互相垂直平分,同勾股定理可得(4k)2+(3k)=100,可求出k的值,即可求出菱形的两条对角线的长,代入菱形的面积公式,可求出菱形的面积.【技巧点评】菱形的一边和两条对角线的一半构成直角三角形,在直角三角形中,应用勾股定理,是解决这个问题的基本思路,本题在计算菱形的面积的时候,应用了菱形的面积等于对角线之积的一半.【跟踪训练】1.如图4-16-3,菱形ABCD的周长为40cm,AC,BD相交于O,且BD:AC=3:4.求AC,BD的长及菱形ABCD的面积.【解答】三、含60°角的菱形常与等边三角形结合在一起例3如图4-16-4,菱形ABCD的边长为2,BD=2,E,F分别是边AD,CD上的两个动点,且满足AE+CF=2.(1)求证:△BDE≌△BCF;(2)判断△BEF的形状,并说明理由;【提示】(1)由于菱形ABCD的边长为2,BD=2,所以△ABD和△BCD是等边三角形,则∠BDE=∠BCF=60°,BC=BD,又由于AE+CF=2,AE+ED=2可得DE=CF,即可证明△BDE≌△BCF;(2)由△BDE≌△BCF可证BE=BF,∠DBE=∠CBF,由于∠CBF+∠DBF=60°,即可证明∠FBE=60°,根据有一个角是60°的等腰三角形是等边三角形证得△DEF是等边三角形.【解答】【技巧点评】如果一个菱形有一个内角等于60°,那么这个菱形较短的对角线会把菱形分成两个等边三角形,此时常需要用等边三角形知识解决问题.【跟踪训练】3.如图4-16-5,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,则△AEF的面积是.四、菱形的判定思路,平行四边形+菱形特性=菱形由于菱形是一个特殊的平行四边形,因此判定一个四边形是菱形时,可考虑先证明这个四边形是平行四边形,然后再证明这个平行四边形具有菱形特征(如邻边相等或对角线互相垂直).当然如果能直接证明四条边相等,就不需要先证明它是平行四边形.例4如图4-16-6,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D.交AB于E,F在DE上,且AF=CE=AE.(1)说明四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形?并说明理由.【提示】(1)用两组对边平行且相等,可以证明四边形ACEF是平行四边形.(2)通过探究得出当∠B=30°时,四边形ACEF是菱形,可以用一组对边相等的平行四边形来证明.【解答】【技巧点评】要证明一个四边形是菱形,应尽可能先证明这个四边形是平行四边形,然后再证明一组邻边相等或者证明对角线互相垂直.【跟踪训练】4.如图4-16-7,在□ABCD中,对角线AC,BD相交于点O,过点O作直线EF⊥BD,分别交AD,BC 于点E 和点F ,求证:四边形BEDF 是菱形.【解答】例5 如图4-16-8,在四边形ABCD 中,AD ∥BC ,AB =CD ,点E ,F ,G ,H 分别是AD ,BD ,BC ,AC 的中点.试说明:四边形EFGH 是菱形.【提示】由于“点E ,F ,G ,H 分别是AD ,BD ,BC ,AC 的中点”,我们可联想到三角形中位线定理,EH ,HG ,GF ,FE 分别是△ACD ,△ABC ,△BCD ,△ABD 的中位线,EH ,HG ,GF ,FE 分别等于12CD ,12AB ,12CD ,12A B .由于AB =CD ,所以EH =HG =GF =FE ,根据“四条边相等的四边形是菱形”可得四边形EFGH 是菱形.【解答】【技巧点评】当题目不容易证明两直线平行时,我们可考虑通过证明四条边相等来证明这个四边形是菱形. 【跟踪训练】5.如图4-16-9,在四边形ABCD中,E为AB上一点,△ADE和△BCE都是等边三角形,AB,BC,CD,DA的中点分别为P,Q,M,N,试判断四边形PQMN为怎样的四边形,并证明你的结论.【解答】五、从对称的角度考虑菱形问题,可以为解决问题提供帮助例6如图4-16-10,在菱形ABCD中,对角线AC=6,BD=8,点E,F分别是边AB,BC的中点,点P在AC上运动,在运动过程中,存在PE+PF的最小值,则这个最小值是()A.3B.4C.5D.6【提示】找到点F关于AC的对称点(即CD的中点),连接CD的中点与点E交AC于点B P,则点P为AC 与BD的交点,此时PE+PF的和最短,即等于AD的长,由于菱形的对角线互相垂直,由勾股定理可得AD =5,所以PE+PF的长为5.【技巧点评】本题是把轴对称变换与菱形的轴对称性结合在一起的综合题,解决问题的方法是作出F点的对称点F',线段EF'的长就是PE+PF的最小值,同样道理,也可以作E点的对称点E’.菱形既是中心对称图形,又是轴对称图形,许多题目正是从对称的角度展开对问题的讨论,因此从对称的角度思考问题,常常会给解决问题带来便利.【跟踪训练】6.如图4-16-11,在平行四边形ABCD中,AB⊥AC,AB=1,BC=.对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F.(1)证明:当旋转角为90°时,四边形ABEF是平行四边形;(2)试说明在旋转过程中,线段AF与EC总保持相等;(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC绕点O顺时针旋转的度数.【解答】【拓展延伸】例7如图4-16-12,在Rt△ABC中,∠B=90°,BC=5,∠C=30o.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.(3)当t为何值时,△DEF为直角三角形?请说明理由.【提示】(1)在△DFC中,∠DFC=90°,∠C=30°,由已知条件求证;(2)求得四边形AEFD为平行四边形,若使口AEFD为菱形则还需要满足一组邻边相等;(3)①∠EDF=90°时,四边形EBFD为矩形.在直角三角形AED中利用AD=2AE即求得.②∠DEF=90°时,由(2)知EF//AD,则得∠ADE=∠DEF=90°,求得AD=AE·cos60°列式得.③∠EFD=90°时,此种情况不存在.【解答】【跟踪训练】7.如图4-16-13,菱形ABCD的边长为24厘米,∠A=60°,质点P从点A出发沿着AB-BD-DA作匀速运动,质点Q从点D同时出发沿着线路DC-CB-BD作匀速运动.(1)求BD的长;(2)已知质点P,Q运动的速度分别为4cm/s、5cm/s,经过12秒后,P,Q分别到达M,N两点,若按角的大小进行分类,请问△AMN是哪一类三角形?并说明理由.【解答】【竞赛连接】例8(希望杯全国数学邀请赛试题)若某一个内角为30°的菱形中有一个点到四边的距离分别为1、2、3、4,则这个菱形的面积等于.【提示】菱形内的点到对边的距离之和为菱形的高线,故菱形的高为1+4=2+3=5,根据直角三角形中30°角的特殊性可以证明AB=2AE,根据边长和高即可求菱形ABCD的面积.【跟踪练习】8.(湖北初中数学竞赛试题)如图4-16-14,在菱形ABCD中,∠A=110°,E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC=()A.35°B.45°C.50°D.55°培优训练1.如图4-16-15,菱形ABCD的对角线AC,BD相交于O,△AOB的周长为3+,∠ABC=60°,则菱形ABCD的面积为.2.如图4-16-16,在菱形ABCD中,∠BCD=120°,点F是BD上一点,EF⊥CF,AE⊥EF,AE=3,EF=4,求AB长.3.如图4-16-17,在△ABC 中,∠BAC =90°,AD ⊥BC 于D ,CE 平分∠ACB ,交AD 于G ,交AB 于E ,EF ⊥BC 于F . 求证:四边形AEFG 是菱形.G DFECB A图4-16-174.如图4-16-18,在△ABC 中,∠BAC =90°,AD ⊥BC 于点D ,BE 平分∠ABC ,交AD 于点M ,AN 平分∠DAC ,交BC 于点N . 求证:四边形AMNE 是菱形.OENMD ACB图4-16-185.如图4-16-19,在菱形ABCD 中,E ,F 分别为BC ,CD 上的点,且CE =CF .试说明:AE =AF .F DABC图4-16-196.如图4-16-20,在△ABC 中,AD 是BC 边上的中线,E 是AD 的中点,过点A 作BC 的平行线交BE 的延长线于点F ,连接CF . (1)求证:AF =DC ;(2)若AB ⊥AC ,试判断四边形ADCF 的形状,并证明你的结论.FED图4-16-207.如图4-16-21,在平行四边形ABCD 中,E 为BC 边上的一点,连接AE ,BD 且AE =AB . (1)求证:∠ABE =∠EAD ;(2)若∠AEB =2∠ADB , 求证:四边形ABCD 是菱形.ECBA图4-16-218.如图4-16-22,在四边形ABCD 中,AB =AC =AD ,BC =CD ,锐角∠BAC 的角平分线AE 交BC 于点E ,AF 是CD 边上的中线,且PC ⊥CD 与AE 交于点P ,QC ⊥BC 与AF 交于点Q . 求证:四边形APCQ 是菱形.QPEFACB图4-16-229.如图4-16-23,在△ABC 中,∠ABC =90°,BD 为AC 边的中线,过点C 作CE ⊥BD 于点E ,过点A 作BD 的平行线,交CE 的延长线于点F ,在AF 的延长线上截取FG =BD ,连接BG 、DF .若AG =13,CF =6,求四边形BDFG 的周长.EFDBC图4-16-2310.如图4-16-24,点D 是等腰Rt △ABC 的直角边BC 上一点,AD 的垂直平分线EF 分别交AC ,AD ,AB 于E ,O ,F ,且BC =2. (1)当CD =2时,求AE ;(2)当CD =2(21) 时,试证明四边形AEDF 是菱形.FE OACD图4-16-24直击中考11.★★(2017·湖北十堰)如图4-16-25,在菱形ABCD 中,AC 交BD 于点O ,DE ⊥BC 于点E ,连接OE ,若∠ABC =140°,则∠OED =________.O EDCABE D ABCP ADBC图4-16-25图4-16-26图4-16-2712.★★(2017·山东东营)如图4-16-26,已知菱形ABCD 的周长为16,面积为83,E 为AB 的中点,若P 为对角线BD 上一动点,则EP +AP 的最小值为________.13.★★★★(2017·湖南怀化)如图4-16-27,在菱形ABCD 中,∠ABC =120°,AB =10cm ,点P 是这个菱形内部或边上的一点。
菱形的性质及判定
菱形的性质及判定知识点 A 要求B 要求C要求菱形会识别菱形 掌握菱形的概念、性质和判定;会用菱形的性质和判定解决简单问题 会用菱形的知识解决有关问题1.菱形的定义:有一组邻边相等的平行四边形叫做菱形.2.菱形的性质菱形是特殊的平行四边形;它具有平行四边形的所有性质;•还具有自己独特的性质: ① 边的性质:对边平行且四边相等. ② 角的性质:邻角互补;对角相等.③ 对角线性质:对角线互相垂直平分且每条对角线平分一组对角. ④ 对称性:菱形是中心对称图形;也是轴对称图形.菱形的面积等于底乘以高;等于对角线乘积的一半.点评:其实只要四边形的对角线互相垂直;其面积就等于对角线乘积的一半. 3.菱形的判定判定①:一组邻边相等的平行四边形是菱形. 判定②:对角线互相垂直的平行四边形是菱形. 判定③:四边相等的四边形是菱形.重点是菱形的性质和判定定理..菱形是在平行四边形的前提下定义的;首先她是平行四边形;但它是特殊的平行四边形;特殊之处就是“有一组邻边相等”;因而就增加了一些特殊的性质和不同于平行四边形的判定方法..菱形的这些性质和判定定理即是平行四边形性质与判定的延续;又是以后要学习的正方形的基重、难点知识点睛中考要求础..难点是菱形性质的灵活应用..由于菱形是特殊的平行四边形;所以它不但具有平行四边形的性质;同时还具有自己独特的性质..如果得到一个平行四边形是菱形;就可以得到许多关于边、角、对角线的条件;在实际解题中;应该应用哪些条件;怎样应用这些条件;常常让许多学生手足无措;教师在教学过程 中应给予足够重视..板块一、菱形的性质【例1】 ☆ ⑴菱形的两条对角线将菱形分成全等三角形的对数为⑵在平面上;一个菱形绕它的中心旋转;使它和原来的菱形重合;那么旋转的角度至少是【例2】 ⑴如图2;一活动菱形衣架中;菱形的边长均为16cm 若墙上钉子间的距离16cm AB BC ==;则1∠= 度.图21CBA⑵如图;在菱形ABCD 中;60A ∠=︒;E 、F 分别是AB 、AD 的中点;若2EF =;则菱形ABCD 的边长是______.【例3】 如图;E 是菱形ABCD 的边AD 的中点;EF AC ⊥于H ;交CB 的延长线于F ;交AB 于P ;证明:AB 与EF 互相平分.P HFE DCBA【例4】 ☆ 如图1所示;菱形ABCD 中;对角线AC 、BD相交于点O ;H 为AD 边中点;菱形ABCD 的周长为24;则OH 的长等于 .E F DBC A例题精讲图1HO DC B【巩固】 ☆如图;已知菱形ABCD 的对角线8cm 4cm AC BD DE BC ==⊥,,于点E ;则DE 的长为【例5】 ☆ 菱形的周长为20cm ;两邻角度数之比为2:1;则菱形较短的对角线的长度为【巩固】 如图2;在菱形ABCD 中;6AC =;8BD =;则菱形的边长为A .5B .10C .6D .8图2DCBA【巩固】 如图3;在菱形ABCD 中;110A ∠=︒;E 、F 分别是边AB 和BC 的中点;EP CD ⊥于点P ;则FPC ∠=A .35︒B .45︒C .50︒D .55︒图3E DP CF BA【例6】 ☆如图;把一个长方形的纸片对折两次;然后剪下一个角;为了得到一个锐角为60︒的菱形;剪口与折痕所成的角α的度数应为A .15︒或30︒B .30︒或45︒C .45︒或60︒D .30︒或60︒【巩固】 菱形ABCD 中;E 、F 分别是BC 、CD 的中点;且AE BC ⊥;AF CD ⊥;那么EAF ∠等于 .【巩固】 如图;将一个长为10cm ;宽为8cm 的矩形纸片对折两次后;沿所得矩形两邻边中点的连线虚线剪下;再打开;得到的菱形的面积为A .210cmB .220cmC .240cmD .280cm图1DCBA的大小是【例8】 如图;菱形花坛ABCD 的周长为20m ;60ABC ∠=︒;•沿着菱形的对角线修建了两条小路AC 和BD;求两条小路的长和花坛的面积.图2【例9】 已知;菱形ABCD 中;E 、F 分别是BC 、CD 上的点;若AE AF EF AB ===;求C ∠的度数.FEDCBA板块二、菱形的判定【例10】 如图;如果要使平行四边形ABCD 成为一个菱形;需要添加一个条件;那么你添加的条件是 .DCAB【例11】 ☆如图;在ABC ∆中;BD 平分ABC ∠;BD 的中垂线交AB 于点E ;交BC 于点F ;求证:四边形BEDF 是菱形FEDCBA【巩固】 已知:如图;平行四边形ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别相交于E 、F .求证:四边形AFCE 是菱形.ODEFCAB【例12】 如图;在梯形纸片ABCD 中;//AD BC ;AD CD >;将纸片沿过点D 的直线折叠;使点C 落在AD 上的点C 处;折痕DE 交BC 于点E ;连结C E '.求证:四边形CDC E '是菱形.C'DCB A E【例13】 ☆如图;E 是菱形ABCD 的边AD 的中点;EF AC ⊥于H ;交CB 的延长线于F ;交AB 于P ;证明:AB 与EF 互相平分AB CDEF P PF EDC B A【巩固】 ☆已知:如图;在平行四边形ABCD 中;AE 是BC 边上的高;将ABE ∆沿BC 方向平移;使点E 与点C重合;得GFC ∆.若60B ∠=︒;当AB 与BC 满足什么数量关系时;四边形ABFG 是菱形 证明你的结论.GF E DCBA【例14】 如图;在ABC ∆中;AB AC =;M 是BC 的中点.分别作MD AB ⊥于D ;ME AC ⊥于E ;DF AC ⊥于F ;EG AB ⊥于G .DF EG 、相交于点P .求证:四边形DMEP 是菱形.PMF E DG CBA【例15】 如图;ABC ∆中;90ACB ∠=︒;AD 是BAC ∠的平分线;交BC 于D ;CH 是AB 边上的高;交AD 于F ;DE AB ⊥于E ;求证:四边形CDEF 是菱形.HF DECBA【巩固】 ☆如图;M 是矩形ABCD 内的任意一点;将MAB ∆沿AD 方向平移;使AB 与DC 重合;点M 移动到点'M 的位置⑴画出平移后的三角形; ⑵连结'MD MC MM ,,;试说明四边形'MDM C 的对角线互相垂直;且长度分别等于AB AD ,的长;⑶当M 在矩形内的什么位置时;在上述变换下;四边形'MDM C 是菱形 为什么M'MDC BA三、与菱形相关的几何综合题【例16】 已知等腰ABC △中;AB AC =;AD 平分BAC ∠交BC 于D 点;在线段AD 上任取一点P A 点除外;过P 点作EF AB ∥;分别交AC 、BC 于E 、F 点;作PM AC ∥;交AB 于M 点;连结ME . ⑴求证四边形AEPM 为菱形⑵当P 点在何处时;菱形AEPM 的面积为四边形EFBM 面积的一半MPFABCDE1. 菱形周长为52cm ;一条对角线长为10cm ;则其面积为 .2.如图;在菱形ABCD 中;4AB a E =,在BC 上;2120BE a BAD P =∠=︒,,点在BD 上;则PE PC +的最小值为EPDCBA3. 已知菱形的一个内角为60︒;一条对角线的长为23;则另一条对角线的长为________.4.已知;菱形ABCD 中;E 、F 分别是BC 、CD 上的点;且60B EAF ∠=∠=︒;18BAE ∠=︒.求:CEF ∠的度数.FEDCBA5.如图;在ABC ∆中;AB AC =;D 是BC 的中点;连结AD ;在AD 的延长线上取一点E ;连结BE ;CE .当AE 与AD 满足什么数量关系时;四边形ABEC 是菱形 并说明理由.课后练习EDCB A6.如图;ACD ∆、ABE ∆、BCF ∆均为直线BC 同侧的等边三角形.已知AB AC =.⑴ 顺次连结A 、D 、F 、E 四点所构成的图形有哪几类 直接写出构成图形的类型和相应的条件.⑵ 当BAC ∠为 度时;四边形ADFE 为正方形.FEDCB A7.如图;已知BE 、CF 分别为ABC ∆中B ∠、C ∠的平分线;AM BE ⊥于M ;AN CF ⊥于N ;求证:MN BC ∥.NMEFCBA。
1.菱形的性质与判定第2课时 菱形的判定PPT课件(北师大版)
第2课时 菱形的判定
新知导航
变式训练 1.如图,CE是△ABC外角∠ACD的平分线,AF∥CD 交CE于点F,FG∥AC交CD于点G. 求证:四边形ACGF是菱形. 证明:∵AF∥CD,FG∥AC, ∴四边形ACGF是平行四边形,∠2=∠3, ∵CE平分∠ACD,∴∠1=∠2, ∴∠1=∠3,∴AC=AF, ∴四边形ACGF是菱形.
,
∠EOD=∠FOB
∴△DOE≌△BOF(ASA);∴OE=OF,又∵OB=OD,
∴四边形EBFD是平行四边形, ∵EF⊥BD,∴四边形BFDE为菱形.
第2课时 菱形的判定
新知导航
3.将Rt△ACB沿直角边AC所在直线翻折180°,得到Rt△ACE
(如图所示),点D与点F分别是斜边AB,AE的中点,连接
第2课时 菱形的判定
轻松过招
6.如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°,DE 垂直平分BC,垂足为D,交AB于点E. 点F在DE的延长线上,且AF=CE. 求证:四边形ACEF是菱形. 证明:∵AC⊥BC,DE垂直平分BC, ∴DE∥AC∴点E是BA中点,∴在Rt△ACB中,CE=AE 又∵∠BAC=60°,∴△ACE是等边三角形 ∴AC=CE=AE,又∵AF=CE,∴AF=AE 又∵DF∥AC,∴∠FEA=∠CAE=60° ∴△AEF为等边三角形,∴EF=AF. ∴CE=AC=AF=EF,∴四边形ACEF是菱形
第2课时 菱形的判定
轻松件是( B )
A. AC=AD B.BA=BC C.∠ABC=90° D.AC=BD
第2课时 菱形的判定
轻松过招
2.(202X·宁夏)如1题图,四边形ABCD的两条对
角线相交于点O,且互相平分.添加下列条件,仍不
初中数学 菱形的性质判定
菱形,菱形的性质,菱形的判定
•菱形的定义:
在一个平面内,有一组邻边相等的平行四边形是菱形。
•菱形的性质:
①菱形具有平行四边形的一切性质;
②菱形的对角线互相垂直且平分,并且每一条对角线平分一组对角;
③菱形的四条边都相等;
④菱形既是轴对称图形(两条对称轴分别是其两条对角线所在的直线),也是中心
对称图形(对称中心是其重心,即两对角线的交点);
⑤在有一个角是60°角的菱形中,较短的对角线等于边长,较长的对角线是较短的
对角线的根号3倍。
•菱形的判定:
在同一平面内,
(1)定义:有一组邻边相等的平行四边形是菱形
(2)定理1:四边都相等的四边形是菱形
(3)定理2:对角线互相垂直的平行四边形是菱形
菱形是在平行四边形的前提下定义的,首先它是平行四边形,而且是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而增加了一些特殊的性质和判定方法。
菱形的面积:S菱形=底边长×高=两条对角线乘积的一半。
第1页共1页。
菱形的判定和性质
菱形的判定和性质
一个菱形是一种四边形,判定一个图形是菱形首先要看它是否是四边形,如果是,再看其形状是否是对称的,即四条边是否是相等,如果都相等,则这个图形就是一个菱形。
菱形性质:菱形的外切圆的半径向内均等地分割菱形,菱形的四个角,每两条边相交形成的两个角都是相等的,所以菱形是一种正三角形;另外,菱形的对角线是一对平行线,并且对角线长度是菱形的四条边长度之和。
菱形所有边都相等,但是菱形是一种非凸多边形(concave polygon),也就是说,菱形边缘凹陷,两个邻接边之间角度大于180度,这是菱形与正多边形、凸多边形最大的区别。
还有一些性质:如果对菱形的对角线进行划分,那么菱形的四边形就会被划分为两个结构一致的三角形;菱形中外切圆的圆心在对角线的中点处,菱形最大内切圆以及最大外接圆的圆心也在对角线的中点处。
菱形具有很多有趣的性质,并且应用在许多方面。
比如,在绘画上,菱形用于定义简洁的对称元素,在棋盘游戏中使用菱形来实现多边形布局,也用于体育项目中的一些比赛线、标识圈范围等。
菱形的判定及知识点归纳
菱形的判定及知识点归纳菱形是几何学中一种特殊的四边形,它具有特殊的性质和判定方法。
在本文中,我们将介绍菱形的定义、性质以及判定方法,并对相关知识点进行归纳总结。
一、菱形的定义菱形是一种四边形,它的四条边相等且相互垂直。
换句话说,四条边长度相等并且对角线相互垂直。
二、菱形的性质1. 对角线互相垂直:菱形的两条对角线相互垂直,即对角线之间的夹角为90度。
2. 对角线相等:菱形的两条对角线相等,即对角线长度相等。
3. 边相等:菱形的四条边都相等,即四边长度均相等。
4. 对角线平分角:菱形的两条对角线平分菱形的内角,即每条对角线平分相应的两个内角。
5. 对角线角平分线:菱形的每条对角线都是相应内角的角平分线。
6. 内角和:菱形的内角和为360度,即四个内角的和等于360度。
三、菱形的判定方法1. 判定菱形的方法一:判定四边形的四条边长度相等,即任意两条边长相等。
2. 判定菱形的方法二:判定四边形的对角线相等并且垂直,即对角线长度相等且对角线之间的夹角为90度。
四、菱形的相关知识点归纳1. 正方形是一种特殊的菱形:正方形是一种四边形,也是一种菱形,其四条边相等且相互垂直。
2. 菱形的对角线长度关系:菱形的对角线长度相等,即对角线AB= 对角线CD。
3. 菱形的边长关系:菱形的四条边相等,即AB = BC = CD = DA。
4. 菱形的内角关系:菱形的每个内角为90度,四个内角的和为360度。
5. 菱形的内角平分线关系:菱形的每条对角线都是相应内角的角平分线。
总结:菱形是一种四边形,具有四条边相等、对角线相等且相互垂直的性质。
菱形的判定方法主要包括四边形边长相等和对角线相等且垂直两种情况。
菱形还有一些特殊的性质和定理,如对角线长度关系、边长关系、内角关系以及内角平分线关系等。
熟练掌握菱形的定义、性质和判定方法,对于几何学的学习和问题解决具有重要意义。
第七讲、菱形的性质和判定
第七讲:菱形的性质和判定1.菱形的定义:有一组邻边相等的平行四边形叫做菱形。
几何语言表示为: 口ABCD且AB=AD(任一组邻边相等)口ABCD是菱形2.菱形的性质:(1)四边都相等;(2)两组对角相等;(3)对角线互相垂直,并且每一条对角线平分一组对角;(4)菱形是轴对称图形,它有两条对称轴,分别为它的两条对角线所在的直线。
例1:在如图菱形ABCD中,对角线AC、BD相交于O,E、F分别是AB、BC的中点.求证:OE=OF.例2:如图,在菱形ABCD中,E是AB的中点,且DE⊥AB,AB=10(1)求∠ABC的度数;(2)求对角线AC的长;(3)求菱形ABCD的面积.3.菱形的判定方法(1)用定义判定:一组邻边相等的平行四边形是菱形;(2)对角线互相垂直的平行四边形是菱形;(3)四条边都相等的四边形是菱形。
例3:如图所示,在△ABC中,∠ACB=90°,AD平分∠BAC交BC于D,CG⊥AB于 G,交AD 于F,DE⊥AB于E,求证:四边形CDEF是菱形。
例4:已知:如图,过平行四边形ABCD的对角线交点O作互相垂直的两条直线EG、FH与平行四边形ABCD各边分别相交于点E、F、G、H.求证:四边形EFGH是菱形例5:如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°,DE垂直平分BC,垂足为D,交AB于点E.又点F在DE的延长线上,且AF=CE.求证:四边形ACEF是菱形.例6:如图所示,在矩形ABCD中,AB=4cm,BC=8cm、点P从点D出发向点A运动,同时点Q从点B出发向点C运动,点P、Q的速度都是1cm/s.(1)在运动过程中,四边形AQCP可能是菱形吗?如果可能,那么经过多少秒后,四边形AQCP是菱形?(2)分别求出菱形AQCP的周长、面积.例7(真题2014-2015期中):如图,在菱形ABCD中,AB=4cm,∠ADC=120∘,点E. F同时由A. C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,求t的值例8(真题2014-2015期中)准备一张矩形纸片,按如图操作:将△ABE沿BE翻折,使点A落在对角线BD上的M点,将△CDF沿DF翻折,使点C落在对角线BD上的N点。
第1讲 菱形的性质与判定(解析版)
第1讲 菱形的性质与判定 1.理解掌握菱形的概念性质及判定定理2.会用菱形的有关知识进行证明,会计算菱形的面积 知识点01 菱形的性质(1)菱形的定义:有一组邻边相等的平行四边形叫做菱形.(2)菱形的性质①菱形具有平行四边形的一切性质;②菱形的四条边都相等;③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.(3)菱形的面积计算①利用平行四边形的面积公式. ②菱形面积12ab .(a 、b 是两条对角线的长度) 【知识拓展1】菱形的两条对角线长的比是32,面积是cm 12,则它的对角线的长分别是 cm , cm . (★)解答方法:∵ 设菱形的两条对角线的长分别为厘米厘米x x 3,2,∴ 122132=⋅⋅=x x S 菱形,∴ 解得舍去)(2,221-==x x , ∴ 对角线的长分别为cm cm 6,4。
答案:cm cm 6,4。
【总结方法】菱形的面积等于对角线乘积的一半。
【即学即练】两对角线分别是6cm 和8cm 的菱形面积是 _________ cm 2,周长是 _________ cm . (★) 解答方法:菱形面积是224286cm =÷⨯;∵菱形的对角线互相垂直平分,根据勾股定理可得,边长为5cm ,则周长是20cm . 知识精讲目标导航故答案为24,20.解答:24,20【知识拓展2】菱形的周长是它的高的8倍,则菱形较小的一个角为()(★★) A.60°B.45°C.30°D.15°解答方法:菱形的周长为边长的4倍,又∵菱形周长为高的8倍,∴AB=2AE,∵△ABE为直角三角形,∴∠ABC=30°.故选 C.答案:C【总结方法】本题考查了菱形各边长相等的性质,考查了直角三角形中的特殊角,本题中根据特殊角求得∠ABC=30°是解题的关键.【即学即练1】菱形的一条对角线与边长相等,则菱形中较小的内角是()(★★) A.60°B.15°C.30°D.90°解答方法:因为菱形的一条对角线与边长相等,所以该对角线和菱形的两边组成的是等边三角形,可得该菱形较小内角的度数是60°.解答:A【即学即练2】如果菱形的周长等于一条对角线长的4倍,那么这个菱形较小的一个内角等于度.(★★)解答方法:∵菱形的周长等于一条对角线长的4倍,∴AB=BD=AD,∴△ABD是等边三角形,∴∠A=60°.即这个菱形较小的一个内角等于60°.解答:60【知识拓展3】已知:如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E.求证:∠AFD=∠CBE. (★★)答案:证明:∵ 四边形ABCD 是菱形,∴ BCD CA CD CB ∠=平分,.∴ CE CE DCE BCE =∠=∠又.,∴ △BCE ≌△COB (SAS ).∴ ∠CBE=∠CDE .∵ 在菱形ABCD 中,AB ∥CD , ∴∠AFD=∠FDC∴ ∠AFD=∠CBE .【总结方法】通过菱形的基本性质可以得到三角形全等,进而推出对应角相等,然后利用平行内错角相等进行转化即可得到要证明的结论。
菱形的性质与判定
菱形的性质与判定目标:掌握菱形的定义,了解菱形与平行四边形的关系;掌握菱形的性质与判定;能运用菱形性质与判定解决相关问题;通过实际应用提高学生用数学的意识。
重点:菱形的性质及判定难点:区别菱形的性质与判定并正确运用其解决相关问题。
知识要点:1、菱形的定义:有一组邻边相等的平行四边形叫菱形。
2、菱形的性质:性质1菱形的四条边相等。
性质2菱形的对角线互相垂直并且每一条对角线平分一组对角。
已知:菱形ABCD中,对角线AC和BD相交于点O(如图1)求证:AC⊥BD,AC平分∠BAD和∠BCD,BD平分∠ABC和∠ADC。
证明:∵四边形ABCD是菱形∴AB=AD(菱形的四条边相等)在等腰△ABD中,∵BO=OD,∴AC⊥BD,AC平分∠BAD。
同理:AC平分∠BCD;BD平分∠ABC和∠ADC。
图13、菱形面积计算方法:(1) S=底×高(2) S=对角线1×对角线2=ab例已知菱形ABCD的边长为2cm ,∠BAD=120°,对角线AC、BD相交于点O(如下图),求这个菱形的对角线长和面积。
解:∵四边形ABCD是菱形∴AC⊥BD,∠BAO==×120°=60°(菱形的对角线互相垂直,并且每一条对角线平分一组对角)在Rt△AOB中,∵∠ABO=90°-∠BAO=30°∴AO==×2=1(cm)BO=(cm)∵AO=,BO=∴AC=2AO=2(cm),BD=2BO=2(cm)=AC×BD=2(cm2)∴S菱形ABCD4、菱形的判定:判定定理1四边都相等的四边形是菱形。
判定定理2对角线互相垂直的平行四边形是菱形。
本周典型例题分析:1.已知:如图,□ABCD中,AB=2BC,E、F是直线BC上的点,BE=BC=CF,求证:AF⊥ED分析:若连结MN,欲证DE⊥AF,只要证四边形AMND是菱形。
证明:连结MN∵四边形ABCD是平行四边形∴AD BC,AB DC在△ABF中,∵BC=CF,AB∥CN∴AN=NF又∵AD∥BF,∴DN=NC同理可证:AM=MB又∵AB=2BC∴AM DN,∴四边形AMND是平行四边形而AD=DN,∴四边形AMND是菱形∴AN⊥MD,即AF⊥ED换个思路想一想,如果利用“如果一个三角形的一边上的中线等于这边的一半,那么这条边所对的角是直角。
初中菱形知识点总结
初中菱形知识点总结一、菱形的定义菱形是指四条边长度相等的四边形,在数学中常用字母表示。
如图1所示,四边形ABCD 是一个菱形,其中AB=BC=CD=DA。
菱形的性质1. 对角线互相垂直平分:菱形的两条对角线互相垂直且平分对方。
如下图所示,对角线AC和BD相交于点O,且AO=OC=BO=OD。
2. 对角线相等:菱形的两条对角线相等。
在菱形ABCD中,AC=BD。
3. 对角线的交点到顶点的距离相等:菱形的对角线的交点到顶点的距离相等。
即AO=OC=OB=OD。
4. 内角性质:菱形的内角相等,且为90°。
即角A=角B=角C=角D=90°。
5. 边长性质:菱形的四条边长度相等。
二、菱形的周长和面积1. 周长:菱形的周长等于其四条边的长度之和。
即周长=AB+BC+CD+DA=4×边长。
2. 面积:菱形的面积等于对角线之积的一半。
即面积=½×对角线1×对角线2。
三、菱形的解题技巧1. 判断菱形的判定条件:判断一个四边形是否为菱形,可利用其对角线是否相等和垂直平分来判断。
若两条对角线相等且互相垂直平分,即可确定这个四边形为菱形。
2. 计算菱形的周长和面积:计算周长时,直接将四条边的长度相加即可。
计算面积时,可利用对角线之积的一半来求解。
四、菱形的应用菱形在日常生活和数学教学中都有广泛的应用。
在建筑、绘画、工艺制作等方面,均能看到菱形的身影。
而在数学教学中,菱形常被用来练习计算周长、面积,或者用来解决各类几何问题。
结语菱形是初中几何学中重要的概念之一,理解和掌握菱形的性质及计算方法对于学生的数学学习至关重要。
除了记住菱形的定义和性质外,还要学会运用菱形解决与菱形相关的数学问题。
希望通过本文的总结,读者能够对菱形有更深入的了解,从而更好地掌握和运用菱形知识。
第01讲 菱形的性质与判定(知识解读+真题演练+课后巩固)(原卷版)
第1讲 菱形的性质与判定1. 理解菱形的概念;2. 探索并证明菱形的性质定理和判定定理,并能运用它们进行证明和计算;3. 通过经历菱形的性质定理和判定定理的探索过程,丰富学生的数学活动经验和体验,进一步培养和发展学生的合情推理能力;4. 通过菱形的性质定理和判定定理以及相关问题的证明和计算,进一步培养和发展学生的演绎推理能力。
知识点 1:菱形的性质菱形的定义:一组邻边相等的平行四边形叫做菱形。
※菱形的性质:(1)具有平行四边形的性质(2)且四条边都相等(3)两条对角线互相垂直平分,每一条对角线平分一组对角。
注意:菱形是轴对称图形,每条对角线所在的直线都是对称轴。
知识点2:菱形的面积菱形的面积等于两条对角线长的乘积的一半BD AC BD AC S S AOB Rt ABCD •=••⨯==∆2121212144菱形知识点3:菱形的判定※菱形的判别方法:一组邻边相等的平行四边形是菱形。
对角线互相垂直的平行四边形是菱形。
四条边都相等的四边形是菱形。
【题型1菱形的概念和性质】【典例1】如图,在菱形ABCD中,对角线AC,BD相交于点O,已知AC=10cm,BD=24cm,则△ABD的周长为()A.30cm B.36cm C.50cm D.52cm【变式1-1】如图,在菱形ABCD中,∠ABD=30°,则∠A的度数为()A.150°B.140°C.130°D.120°【变式1-2】在菱形ABCD中,对角线AC,BD相交于点O,下列结论中不一定正确的是()A.AB=AD B.AC⊥BD C.∠DAC=∠BAC D.AC=BD 【变式1-3】如图,菱形ABCO中的顶点O,A的坐标分别为(0,0),,点C在x轴的正半轴上,则点B的坐标为()A.B.C.D.【典例2】(2022秋•绥化期末)下列不属于菱形性质的是()A.四条边都相等B.两条对角线相等C.两条对角线互相垂直D.每一条对角线平分一组对角【变式2-1】(2022秋•舞钢市期中)下列说法不正确的是()A.菱形的四条边都相等B.菱形的对角线相等C.菱形是轴对称图形D.菱形的对角线互相垂直【变式2-2】(2022春•兰陵县期末)如图,四边形ABCD是菱形,对角线AC、BD相交于点O,DH⊥AB于点H,连接OH,∠CAD=25°,则∠DHO的度数是()A.25°B.30°C.35°D.40°【变式2-3】(2022•赫章县模拟)如图,在平面直角坐标系中,四边形ABCD 为菱形,A,B两点的坐标分别是(4,0),(0,3),点C,D在坐标轴上,则菱形ABCD的周长等于()A.16B.20C.24D.26【典例3-1】(2021秋•榆林期末)如图,在菱形ABCD中,若AB=5,AC=8,则菱形ABCD的面积为()A.24B.20C.16D.12【典例3-2】(2022•文山州模拟)如图,在菱形ABCD中,对角线AC、BD相交于点O,AC=6,DB=8,则点A到BC的距离为()A.B.6C.8D.(2021秋•深圳期末)已知菱形的两条对角线的长分别为6cm和8cm,【变式3-1】则这个菱形的面积是()A.20cm2B.24cm2C.48cm2D.100cm2【变式3-2】(2021秋•毕节市期末)如图,在菱形ABCD中,对角线AC与BD 相交于点O,且AC=6,DB=8,AE⊥BC于点E,则AE=()A.6B.8C.D.【题型2:菱形的判定】【典例4】依据所标识的数据,下列平行四边形一定为菱形的是()A.B.C.D.【变式4-1】在下列条件中,能够判定▱ABCD为菱形的是()A.AB=AC B.AC⊥BD C.AC⊥BC D.AC=BD【变式4-2】如图,在四边形ABCD中,对角线AC,BD相交于点O,AO=CO,BO=DO.添加下列条件,能判定四边形ABCD是菱形的是()A.AB=AD B.AC=BD C.∠ABC=90°D.AO=BO【变式4-3】要检验一张四边形的纸片是否为菱形,下列方案中可行的是()A.度量四个内角是否相等B.测量两条对角线是否相等C.测量两条对角线的交点到四个顶点的距离是否相等D.将这纸片分别沿两条对角线对折,看对角线两侧的部分是否每次都完全重合【典例5】(2022春•苍溪县期末)如图,在△AFC中,∠F AC=90°,B、E分别是FC、AB的中点,过点A作AD∥FC交FE的延长线于点D.(1)求证:BF=AD;(2)求证:四边形ABCD是菱形.【变式5-1】(2022秋•章丘区校级月考)已知:如图,在Rt△ABC中,∠B=90°,∠BAC的平分线交BC于点F,E是AC的中点,过点A作AD∥BC,交FE的延长线于点D.(1)求证:四边形AFCD是平行四边形;(2)给△ABC添加一个条件,使得四边形AFCD是菱形.请证明你的结论.【变式5-2】(2022•天宁区校级一模)如图,在四边形ABCD中,AC与BD相交于点O.且AO=CO,点E在BD上,满足∠EAO=∠DCO.(1)求证:△AOE≌△COD;(2)若AB=BC,求证:四边形AECD是菱形.【题型3:菱形的性质与判定综合】【典例6】(2022•冷水滩区校级开学)如图,在△ABC中,∠BAC=90°,线段AC的垂直平分线交AC于点D,交BC于点E,过点A作BC的平行线交ED于点F,连接AE,AF.(1)求证:四边形AECF是菱形;(2)若AB=10,∠ACB=30°,求菱形AECF的面积.【变式6-1】(2022秋•龙岗区期末)如图,在四边形ABCD中,AB∥CD,AD ∥BC,AC平分∠DAB,连接BD交AC于点O,过点C作CE⊥AB交AB延长线于点E.(1)求证:四边形ABCD为菱形;(2)若OA=4,OB=3,求CE的长.【变式6-2】(2022•新市区校级一模)如图,已知△ABC中,D是AC的中点,过点D作DE⊥AC交BC于点E,过点A作AF∥BC交DE于点F,连接AE、CF.(1)求证:四边形AECF是菱形;(2)若,∠F AC=30°,∠B=45°,求AB的长.【变式6-3】(2022春•张家港市校级月考)如图,▱ABCD对角线AC,BD相交于点O,过点D作DE∥AC且DE=OC,连接CE,OE,OE=CD.(1)求证:▱ABCD是菱形;(2)若AB=4,∠ABC=60°,求AE的长.1.(2022•河南)如图,在菱形ABCD中,对角线AC,BD相交于点O,点E 为CD的中点.若OE=3,则菱形ABCD的周长为()A.6B.12C.24D.48 2.(2022•湘西州)如图,菱形ABCD的对角线AC、BD相交于点O,过点D 作DH⊥AB于点H,连接OH,OH=4,若菱形ABCD的面积为32,则CD的长为()A.4B.4C.8D.8 3.(2022•淄博)如图,在边长为4的菱形ABCD中,E为AD边的中点,连接CE交对角线BD于点F.若∠DEF=∠DFE,则这个菱形的面积为()A.16B.6C.12D.30 4.(2022•甘肃)如图,菱形ABCD中,对角线AC与BD相交于点O,若AB =2cm,AC=4cm,则BD的长为cm.5.(2022•北京)如图,在▱ABCD中,AC,BD交于点O,点E,F在AC上,AE=CF.(1)求证:四边形EBFD是平行四边形;(2)若∠BAC=∠DAC,求证:四边形EBFD是菱形.6.(2022•岳阳)如图,点E,F分别在▱ABCD的边AB,BC上,AE=CF,连接DE,DF.请从以下三个条件:①∠1=∠2;②DE=DF;③∠3=∠4中,选择一个合适的作为已知条件,使▱ABCD为菱形.(1)你添加的条件是(填序号);(2)添加了条件后,请证明▱ABCD为菱形.7.(2022•大连)如图,四边形ABCD是菱形,点E,F分别在AB,AD上,AE =AF.求证:CE=CF.8.(2022•广元)如图,在四边形ABCD中,AB∥CD,AC平分∠DAB,AB=2CD,E为AB中点,连结CE.(1)求证:四边形AECD为菱形;(2)若∠D=120°,DC=2,求△ABC的面积.9.(2022•凉山州)在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD 的中点,过点A作AF∥BC交CE的延长线于点F.(1)求证:四边形ADBF是菱形;(2)若AB=8,菱形ADBF的面积为40.求AC的长.1.(2022•齐齐哈尔)如图,在四边形ABCD中,AC⊥BD,垂足为O,AB∥CD,要使四边形ABCD为菱形,应添加的条件是.(只需写出一个条件即可)2.(2021春•龙马潭区期末)如图,在菱形ABCD中,对角线AC,BD相交于点O,E是AB的中点,连结EO.若EO=2,则CD的长为()A.2B.3C.4D.5 3.(2022秋•丰城市校级期末)如图,菱形ABCD中对角线相交于点O,AB=AC,则∠ADB的度数是()A.30°B.40°C.50°D.60°4.(2022秋•南海区期中)如图,在菱形ABCD中,AC=6cm,BD=8cm,则菱形ABCD的周长是()A.14cm B.16cm C.18cm D.20cm 5.(2021秋•建平县期末)如图,在菱形ABCD中,对角线AC,BD相交于点O,E为AB的中点,且OE=2,则菱形ABCD的周长为()A.6B.8C.12D.16 6.(2022秋•碑林区校级期中)如图,已知菱形的两条对角线AC与BD长分别是12和16,则这个菱形的面积是()A.192B.48C.96D.40 7.(2022秋•三明期中)如图,在菱形ABCD中,AC交BD于点O,DE⊥BC 于点E,连接OE,若∠BCD=50°,则∠OED的度数是()A.25°B.30°C.35°D.20°9.(2022秋•浑南区期中)在下列条件中,能够判定四边形是菱形的是()A.两条对角线相等B.两条对角线互相垂直平分C.两条对角线互相垂直D.两条对角线相等且互相垂直10.(2022秋•二七区校级月考)如图▱ABCD的对角线AC和BD相交于点O,下列说法正确的是()A.若OB=OD,则▱ABCD是菱形B.若AC=BD,则▱ABCD是菱形C.若OA=OD,则▱ABCD是菱形D.若AC⊥BD,则▱ABCD是菱形11.(2022春•铁西区期末)已知:如图,在Rt△ABC中,∠ACB=90°,∠BAC =60°,BC的垂直平分线分别交BC和AB于点D和点E,点F在DE的延长线上,且AF=CE.(1)∠BCE的度数为°.(2)求证:四边形ACEF是菱形.12.(2022春•长乐区期中)如图,▱ABCD的对角线AC,BD相交于点O,且AB=13,AO=12,BO=5.求证:▱ABCD是菱形.13.(2022秋•海淀区期中)如图,在△ABC中,∠ABC=90°,BD为△ABC的中线.BE∥DC,BE=DC,连接CE.(1)求证:四边形BDCE为菱形;(2)连接DE,若∠ACB=60°,BC=4,求DE的长.。
菱形的性质与判定
B
C
D
O
证明(1)∵四边形ABCD是菱形
∴DA=DC(菱形的定义)
∵DA=BC,AB=DC
∴AB=BC=DC=DA
(2)在△DAC中,又∵AO=CO
∴DB⊥AC, DB平分∠ADC(三线合一)
同理: DB平分∠ABC; AC平分∠DAB和∠DCB
(1)AB=BC=CD=DA
(2)AC⊥BD
A
B
C
D
E
F
你敢挑战吗?
交流反思
1.菱形概念
2.菱形特征
3.菱形与平行四边形的关系
①具有平行四边形的一切性质; ②菱形的四条边都相等; ③菱形的对角线互相垂直平分; ④菱形的对角线分别平分两组对角; ⑤菱形既是轴对称图形,又是中心对称图形。
有一组邻边相等的平行四边形叫做菱形
4.菱形的面积
方法总结:
01
02
03
单击此处添加正文。
平行四边形
菱形
四边形
单击此处添加正文。
对角线互相垂直
一组邻边相等 菱形 有四条边相等
判断下列说法是否正确?为什么? (1)对角线互相垂直的四边形是菱形; ( ) (2)对角线互相垂直平分的四边形是菱形;( ) (3)对角线互相垂直,且有一组邻边相等 的四边形是菱形; ( ) (4)两条邻边相等,且一条对角线平分一 组对角的四边形是菱形. ( )
E
O
D
C
B
A
如图,矩形ABCD的对角线相交于点O,DE∥AC,AE∥DB,AE交DE于E。 求证:四边形AODE是菱形。
D
C
B
A
M
N
2、将两张宽度相等的矩形纸片叠放在一起得到如图所示的四边形ABCD. 求证:四边形ABCD是菱形。
菱形的定义和判定
菱形的定义和判定菱形是一种几何图形,它有四条边和四个角,每个角都是直角。
与矩形不同的是,菱形的对边长度相等,但并不一定是直角。
在这篇文章中,我们将讨论菱形的定义和判定方法。
一、菱形的定义菱形是一种四边形,它有四条边和四个角,每个角都是直角。
与矩形不同的是,菱形的对边长度相等,但并不一定是直角。
菱形的定义可以用数学公式来表示。
设ABCD是一个菱形,那么它满足以下条件:1. AB=BC=CD=DA2. ∠A=∠B=∠C=∠D=90°这意味着菱形的对边长度相等,但并不一定是直角。
如果对边长度相等且是直角,那么这个四边形就是矩形。
因此,菱形是矩形的一种特殊情况。
二、菱形的判定在实际应用中,我们需要判断一个四边形是否为菱形。
以下是几种常见的判定方法。
1. 判断对边长度是否相等菱形的对边长度相等,因此我们可以通过测量对边长度来判断一个四边形是否为菱形。
如果对边长度相等,那么这个四边形就是菱形。
否则,它不是菱形。
2. 判断对角线是否相等菱形的对角线长度相等,因此我们可以通过测量对角线长度来判断一个四边形是否为菱形。
如果对角线长度相等,那么这个四边形就是菱形。
否则,它不是菱形。
3. 判断是否满足菱形的定义菱形的定义包括两个条件:对边长度相等,每个角都是直角。
因此,我们可以通过检查这两个条件来判断一个四边形是否为菱形。
如果这个四边形的对边长度相等且每个角都是直角,那么它就是菱形。
否则,它不是菱形。
4. 判断是否为矩形的特殊情况矩形是一种四边形,它有四条边和四个角,每个角都是直角,且对边长度相等。
因此,如果一个四边形满足这些条件,那么它是矩形。
如果它不是矩形,但仍满足对边长度相等和每个角都是直角的条件,那么它就是菱形。
三、菱形的性质菱形具有许多有趣的性质,以下是其中一些常见的性质。
1. 菱形的对边平行菱形的对边长度相等且相邻两边夹角为直角,因此它的对边一定平行。
2. 菱形的对角线相交于垂直平分线菱形的对角线相交于垂直平分线,这意味着对角线的交点是菱形的中心点。
菱形的判定与性质
菱形的判定与性质知识准备:一.菱形的定义:一组邻边相等的平行四边形是菱形。
二菱形的性质:1、边的性质: ;2、角的性质: ;3、对角线的性质:;三.菱形的判定:1、 ;2、 ;3、 ;4、 。
四..菱形的面积1.菱形的面积=底×高2菱形的面积=两条对角线乘积的一半ODCBA类别性质判定对称性平行四边形①两组对边分别平行②两组对边分别相等③两组对角分别相等邻角互补④两条对角线互相平分①两组对边分别平行的四边形是平行四边形。
(平行四边形的定义)②两组对边分别相等的四边形是平行四边形。
③一组对边平行且相等的四边形是平行四边形。
④两组对角分别相等的四边形是平行四边形。
⑤对角线互相平分的四边形是平行四边形。
中心对称一.选择题1.如图所示,在平面直角坐标系中,菱形MNPO 的顶点P 的坐标是(3,4),则顶点M 、N 的坐标分别是( ) A .M (5,0),N (8,4) B .M (4,0),N (8,4) C .M (5,0),N (7,4) D .M (4,0),N (7,4)2.菱形的周长为4,一个内角为60°,则较短的对角线长为( )A .2B .C .1D .3.菱形的周长为8cm ,高为1cm ,则该菱形两邻角度数比为( ) A .3:1 B .4:1 C .5:1 D .6:1 4.如图,菱形ABCD 中,AB=15,∠ADC=120°,则B 、D 两点之间的距离为( )A .15B .C .7.5D .二.填空题5.已知菱形的两条对角线长分别为2cm ,3cm ,则它的面积是 _________ cm 2.6.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,且AC=8,BD=6,过点O 作OH 丄AB ,垂足为H ,则点0到边AB 的距离OH= _________ .7.如图,菱形ABCD 的边长是2cm ,E 是AB 的中点,且DE 丄AB ,则菱形ABCD 的面积为 cm 2.矩形中心对称轴对称菱形中心对称轴对称8.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,AB=13,AC=10,过点D 作DE ∥AC 交BC 的延长线于点E ,则△BDE 的周长为 _________ .9.顺次连接矩形ABCD 各边的中点,得到四边形EFGH ,求证:四边形EFGH 是菱形。
证明菱形的判定
证明菱形的判定菱形形状具有四条边长度相等、四个角度均为直角、对角线互相垂直的特点。
因此,我们可以通过这些特点来证明一个四边形是否是菱形。
以下是对菱形的判定的证明,包括菱形的定义、性质和证明。
定义菱形是一个四边形,其四条边长度相等,相邻两边之间的角度均为直角,对角线相互垂直且长度相等。
性质1. 菱形的四条边长度相等。
设菱形的四个顶点分别为A、B、C、D,连接AC和BD两条对角线,假设AC = x,BD = y。
由于菱形的两条对角线相互垂直,则根据勾股定理得到:$AB^2+BC^2=AC^2,AB^2+CD^2=BD^2$因为AB = BC,CD = BC,带入上式得到:$2AB^2 = x^2, 2CD^2 = y^2$由此可得:$AB = \frac{x}{\sqrt{2}}, CD = \frac{y}{\sqrt{2}}$又因为AB = BC = CD = DA,则:$AB = BC = CD = DA = \frac{x}{\sqrt{2}} = \frac{y}{\sqrt{2}}$ 即四边形的四条边长度相等。
2. 菱形的四个角度均为直角。
我们可以将菱形ABCD分成两个直角三角形,即ABD和BCD。
由于ABD和BCD共用一条边BD,且纵坐标相同,则角ABD和角BCD的角度相等。
由于对角线BD垂直于AC,则角ABD和角CBD的角度之和为90度。
因此,角度ABD、BCD和ACD均为90度,即菱形的四个角度均为直角。
3. 菱形的对角线互相垂直且长度相等。
假设对角线AC = x,对角线BD = y。
由于AB = BC = CD = DA,因此四边形ABCD是一个平行四边形。
又因为平行四边形的对角线互相平分,且对角线互相垂直,则对角线BD平分AC。
因此,$\triangle ABD$和$\triangle BCD$共有三边相等,因而两个三角形是合同的,即BD = AC。
由此可得,菱形的对角线互相垂直且长度相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
BCADO菱形的判定和性质一、基础知识(一)菱形的概念一组邻边相等的平行四边形叫做菱形。
(二)菱形的性质:1、 具有平行四边形的一切性质;2、 菱形四条边都相等;3、 菱形的对角线互相垂直平分,每条对角线平分一组对角;4、 菱形是轴对称图形;边 角 对角线 对称性 菱形对边平行; 四边相等对角相等; 邻角互补互相垂直平分且平分对角轴对称(三)菱形的判定:1、 一组邻边相等的平行四边形是菱形;2、 对角线互相垂直的平行四边形是菱形;3、 四条边都相等的四边形是菱形; (四)菱形的面积1、可以用平行四边形的面积算(S=21底×高) 2、用对角线计算(面积的两对角线的积的一半 S=21ab)ABCDE二、例题讲解考点一 :菱形的判定例1:下列命题正确的是( )(A ) 一组对边相等,另一组对边平行的四边形一定是平行四边形 (B ) 对角线相等的四边形一定是矩形 (C ) 两条对角线互相垂直的四边形一定是菱形(D ) 两条对角线相等且互相垂直平分的四边形一定是正方形 练习1:菱形的对角线具有( ) A .互相平分且不垂直 B .互相平分且相等 C .互相平分且垂直 D .互相平分、垂直且相等练习2:如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,M 、N 分别是边AB 、AD 的中点,连接OM 、ON 、MN ,则下列叙述正确的是( ) A .△AOM 和△AON 都是等边三角形B .四边形AMON 与四边形ABCD 是位似图形C .四边形MBON 和四边形MODN 都是菱形D .四边形MBCO 和四边形NDCO 都是等腰梯形练习3:如图,在三角形ABC 中,AB >AC ,D 、E 分别是AB 、AC 上的点,△ADE 沿线段DE 翻折,使点A 落在边BC 上,记为A '.若四边形ADA E '是菱形,则下列说法正确的是( )A .DE 是△ABC 的中位线B .AA '是BC 边上的中线 C .AA '是BC 边上的高D .AA '是△ABC 的角平分线ABCDEA 'DBCA NM O练习4:如图,下列条件之一能使平行四边形ABCD 是菱形的为( ) ①AC BD ⊥ ②90BAD ∠= ③AB BC = ④AC BD = A .①③B .②③C .③④D .①②③例2 :已知AD 是△ABC 的平分线,DE ∥AC 交AB 于E ,DF ∥AB 交AC 于F ,则四边形AEDF 是什么四边形?请说明理由.变化:若D 是等腰三角形底边BC 的中点,DE ∥AC 交AB 于E ,DF ∥AB 交AC 于F ,则四边形AEDF 是什么四边形?请说明理由.练习1:如图,AD 是Rt △ABC 斜边上的高,BE 平分∠B 交AD 于G ,交AC 于E ,过E 作EF ⊥BC 于F ,试说明四边形AEFG 是菱形.练习2:如图,E 是菱形ABCD 边AD 的中点,EF ⊥AC 于点H ,交CB 延长线于点F ,交AB 于点G ,求证:AB 与EF 互相平分。
ABCDCAD BEFG GEDA ABC DFEABDCFE练习3:如图,在Rt △ABC 中,∠ACB =90°,∠BAC =60°,DE 垂直平分BC ,垂足为D ,交AB 于点E ,又点F 在DE 的延长线上,且AF =CE ,求证:四边形ACEF 是菱形。
考点二:菱形的性质例1:如图,四边形ABCD 中,∠ADC =90°,AC =CB ,E 、F 分别是AC 、AB 的中点,且∠DEA =∠ACB =45°,BG ⊥AE 于G ,求证:(1)四边形AFGD 是菱形;(2)若AC =BC =10,求菱形的面积。
练习1:如图,在菱形ABCD 中,E 是AB 中点,且DE ⊥AB ,AB =4, 求:(1)∠ABC 的度数; (2)菱形ABCD 的面积。
FE DCBAED CBAGFED CBA例2 :如图 5,ABCD 是菱形,对角线AC 与BD 相交于O ,306ACD BD ∠==°,. (1)求证:△ABD 是正三角形; (2)求 AC 的长(结果可保留根号).练习1:若菱形的边长为1cm ,其中一内角为60°,则它的面积为 ( ) A .23cm 2B .23cmC .22cmD .223cm 练习2:若菱形的周长为16cm ,两相邻角的度数之比是1:2,则菱形的面积是( )(A ) 4 3 cm (B )8 3 cm (C )16 3 cm (D )20 3 cm练习3:已知菱形的周长为96㎝,两个邻角的比是1︰2,这个菱形的较短对角线的长是( )A .21㎝B .22㎝C .23㎝D .24㎝O DCB A例3: 如图,将一个长为10cm ,宽为8cm 的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为( )A .210cmB .220cmC .240cmD .280cmA BCD练习1:菱形的两条对角线分别是12cm 、16cm ,则菱形的周长是( ) A .24cm B .32cm C .40 cm D .60cm练习2:若菱形ABCD 中,AE 垂直平分BC 于E ,AE =1cm ,则BC 的长是( ) (A )1cm (B )2cm (C )3cm (D )4cm练习3:若菱形周长为52cm ,一条对角线长为10cm ,则其面积为( )A .240 cm 2B .120 cm 2C .60 cm 2D .30 cm 2例4:如图,菱形ABCD ,E ,F 分别是BC ,CD 上的点,∠B =∠EAF =60°,∠BAE =18°求∠CEF 的度数。
练习1:如图,菱形ABCD 中,∠B =60°,AB =2,E 、F 分别是B C .CD 的中点,连接AE 、EF 、AF ,则△AEF 的周长为( )A . 32B . 33C . 34D . 3F D CB A EBCADOAD F CEB练习2:如图,在菱形ABCD 中,60A ∠=°,E 、F 分别是AB 、AD 的中点,若2EF =,则菱形ABCD 的边长是_____________.练习3:如图所示,已知菱形ABCD 中,E 、F 分别在BC 和CD 上,且∠B=∠EAF=60°,∠BAE=15°, 求∠CEF 的度数。
例5:如图,菱形ABCD 是边长为13cm ,其中对角线AC=10cm , 求(1)菱形ABCD 的面积;(2)作BC 边上的高AH ,求出AH 的长度BCADO练习1:如图,在菱形ABCD 中,∠ABC 与∠BAD 的度数比为1:2,周长是48cm . 求:(1)两条对角线的长度; (2)菱形的面积.例6: 已知:如图,在菱形ABCD 中,E 、F 分别是BC 、CD 上的点,且CE=CF 。
过点C 作CG ∥EA 交AF 于H ,交AD 于G ,若∠BAE=25°,∠BCD=130°,求∠AHC 的度数。
练习1: 如图所示,已知菱形ABCD 中E 在BC 上,且AB=AE ,∠BAE=21∠EAD ,AE 交BD 于M ,试说明BE=AM 。
HGF EDC B A练习2:如图,菱形ABCD 的边长为2,BD =2,E 、F 分别是边AD ,CD 上的两个动点,且满足AE +CF =2. (1) 求证:△BDE ≌△BCF ;(2) 判断△BEF 的形状,并说明理由;(3) 设△BEF 的面积为S ,求S 的取值范围.考点三:综合例1:如图,菱形111AB C D 的边长为1,160B ∠=;作211AD B C ⊥于点2D ,以2AD 为一边,做第二个菱形222AB C D ,使260B ∠=;作322AD B C ⊥于点3D ,以3AD 为一边做第三个菱形333AB C D ,使360B ∠=;依此类推,这样做的第n 个菱形n n n AB C D 的边n AD 的长是 .例2:菱形ABCD 的对角线交于O ,AO=1,且∠ABC ∶∠BAD=1∶2,∠ABO=300则下列结论:①.∠ABC=600;②.AC=2;③.BD=4;④.SABCD=23;⑤菱形ABCD 的周长是8,其中正确的有( ) A .①②③④⑤ B .①②④⑤ C .②③④⑤ D .①②③例3:如图所示,在Rt ABC △中,90ABC =︒∠.将Rt ABC △绕点C 顺时针方向旋转60︒得到DEC △,点E 在AC 上,再将Rt ABC △沿着AB 所在直线翻转180︒得到ABF △.连接AD . (1)求证:四边形AFCD 是菱形;(2)连接BE 并延长交AD 于G ,连接CG ,请问:四边形ABCG 是什么特殊平行四边形?为什么?ADFCEGB1D B 3A C 2B 2C 3D 3 B 1D 2C 1ABCDO课后练习:1、若菱形的边长是它的高的2倍,则它的一个较小内角的度数是 。
2、如图1,在菱形ABCD 中,AB = 5,∠BCD = 120°,则对角线AC 等于( )A .20B .15C .10D .5 3、菱形ABCD 中,AE 垂直平分BC ,垂足为E ,AB =4cm .那么,菱形ABCD 的面积是 ,对角线BD 的长是 .4、如图,在菱形ABCD 中,∠A =110°,E ,F 分别是边AB 和BC 的中点,EP ⊥CD 于点P ,则∠FPC =( ) A .35° B .45° C .50° D .55°5、已知:如图,四边形ABCD 是菱形,过AB 的中点E 作AC 的垂线EF ,交AD 于点M ,交CD 的延长线于点F.(1)求证:AM=DM ;(2)若DF =2,求菱形ABCD 的周长.第21题图ABC D E F MAD CE BADEP CB FB AC D。