高中数学答题纸
高中数学基础训练测试及参考答案1-10
高中数学基础训练测试题(1)集合的概念,集合间的基本关系一、填空题(共12题,每题5分)1、集合中元素的特征: , , .2、集合的表示法: , , .3、已知集合A ={1,2,3,4},那么A 的真子集的个数是 .4、设集合I={1,2,3},A ⊆I,若把集合M ∪A=I 的集合M 叫做集合A 的配集. 则A={1,2}的配集有 个 .5、设集合P ={m |-1<m ≤0},Q ={m ∈R |mx 2+4mx -4<0对任意实数x 恒成立},则下列关系中成立的是 . (1).P Q (2).Q P (3).P =Q (4).P ∩Q =Q6、满足条件∅≠⊂M ≠⊂{0,1,2}的集合共有 个.7、 若集合a B A a a a B a a A 则且},1{},43|,2|,12{},1,1,{22-=+--=-+= = .8、 满足{1,2}{1,2,3,4,5}M ⊂⊆≠集合M 有_____个.9、集合{|10}A x ax =-=,{}2|320B x x x =-+=,且AB B =,则实数a =______、10、已知集合{}{}A x x x RB x x a a R =≤∈=-≤∈||||||43,,,,若A B ⊇,则a 的取值范围是_______ .11、 若2{|30}A x x x a =++=,求集合A 中所有元素之和 .12、任意两正整数m 、n 之间定义某种运算⊕,m ⊕n=⎝⎛+异奇偶)与同奇偶)与n m mn n m n m ((,则集合M={(a,b)|a ⊕b=36,a 、b ∈N +}中元素的个数是___________.高三数学基础训练测试题(1)答题纸班级 姓名 分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、 5、 6 7、 8、 9 、 10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、、已知集合A =}2432{2++a a ,,,B=}24270{2-+-a a a ,,,,A ∩B={3,7},求B A a ⋃的值及集合.高中数学基础训练测试题(2)集合的基本运算一、填空题(共12题,每题5分)1、已知集合{}12S x x =∈+R ≥,{}21012T =--,,,,,则S T =.2、 如果{}|9U x x =是小于的正整数{}1234A =,,,,{}3456B =,,,, 那么U UA B =痧 .3、若22{228}{log 1}xA xB x x -=∈<=∈>Z R ≤,,则()AB R ð的元素个数为.4、已知集合{}11M =-,,11242x N x x +⎧⎫=<<∈⎨⎬⎩⎭Z ,,则M N = .5、已知集合M ={x |x <3},N ={x |log 2x >1},则M ∩N = .6、设集合{}22,A x x x R =-≤∈,{}2|,12B y y x x ==--≤≤,则()R C AB 等于.7、已知集合M ={直线的倾斜角},集合N ={两条异面直线所成的角},集合P={直线与平面所成的角},则(M ∩N)∪P= .8、设全集}5,4,3,2,1{=U ,若}2{=B A ,}4{)(=B A C U ,}5,1{)()(=B C A C U U ,则A =_____,B =___、9、设集合{|M x y =,集合N ={}2|,y y x x M =∈,则MN =___10、设集合{}{}22|21,|25M y y x x N x y x x ==++==-+,则N M ⋂等于.11、设集合}0|{≥+=m x x M ,}082|{2<--=x x x N ,若U =R ,且∅=N M U,则实数m 的取值范围是 .12、设a 是实数, {}22|,210,M x x R x ax a =∈-+-≤{}22|,11,N x x R a x a =∈-≤≤+若M 是N 的真子集,则a 的取值范围是 、高三数学基础训练测试题(2)答题纸班级姓名分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、5、 6 7、 8、9 、10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、求实数m的范围,使关于x的方程x2+2(m-1)x+2m+6=0(1)有两个实根;(2)有两个实根,且一个比0大,一个比0小;(3)有两个实根,且都比1大;高中数学基础训练测试题(3)命题及其关系一、填空题(共12题,每题5分)1、设集合""""},3{},2{P M x P x M x x x P x x M ∈∈∈<=>=是或那么的.2、 πα≠“”3是α≠1“cos ”2的 .3、“a =1”是“函数y =cos 2ax -sin 2ax 的最小正周期为π”的.4、已知p 是r 的充分条件而不是必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件,现有下列命题: .①s 是q 的充要条件;②p 是q 的充分条件而不是必要条件;③r 是q 的必要条件而不是充分条件;④p ⌝是s ⌝的必要条件而不是充分条件; ⑤r 是s 的充分条件而不是必要条件. 则正确命题的序号是 5、设p :25x x >≤-或;q :502x x+<-,则非q 是p 的 .6、设集合U={(x,y)|x ∈R,y ∈R},A ={(x,y)|x+y >m},B= {(x,y)|22x y n +≤},那么点(1,2)∈()U C A B ⋂的充要条件是 .7、下列四个命题:①在空间,存在无数个点到三角形各边的距离相等; ②在空间,存在无数个点到长方形各边的距离相等; ③在空间,既存在到长方体各顶点距离相等的点,又存在到它的各个面距离相等的点; ④在空间,既存在到四面体各顶点距离相等的点,又存在到它的各个面距离相等的点、 其中真命题的序号是 、(写出所有真命题的序号) 8、设命题p :|43|1x -≤;命题q:0)1()12(2≤+++-a a x a x .若┐p 是┐q 的必要而不充分的条件,则实数a 的取值范围是 .9、对于[0,1]x ∈的一切值,20a b +>是使0ax b +>恒成立的.10、设a 1,b 1,c 1,a 2,b 2,c 2均为非零实数,不等式a 1x 2+b 1x+c 1>0和a 2x 2+b 2x+c 2>0的解集分别为集合M 和N ,那么“212121c c b b a a ==”是“M=N ”的_______条件. 11、 、设P 、Q 为两个非空实数集合,定义集合P+Q={|,}a b a P b Q +∈∈,若{0,2,5}P =,}6,2,1{=Q ,则P+Q 中元素的有________个.12、给出下列命题:①实数0=a 是直线12=-y ax 与322=-y ax 平行的充要条件;②若0,,=∈ab R b a 是b a b a +=+成立的充要条件;③已知R y x ∈,,“若0=xy ,则0=x 或0=y ”的逆否命题是“若0≠x 或0≠y 则0≠xy ”;④“若a 和b 都是偶数,则b a +是偶数”的否命题是假命题 .其中正确命题的序号是_____ .高三数学基础训练测试题(3)答题纸班级 姓名 分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、 5、 6 7、 8、 9 、 10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、已知集合()3,12y A x y x ⎧-⎫==⎨⎬-⎩⎭,()(){},115B x y a x y =++=,试问当a 取何实数时,A B =∅.高中数学基础训练测试题(4)逻辑联接词一、填空题(共12题,每题5分) 1、下列语句①“一个自然数不是合数是就是质数”②“求证若x ∈R ,方程x 2+x +1=0无实根” ③“垂直于同一直线的两条直线平行吗?” ④“难道等边三角形各角不都相等吗?” ⑤“x +y 是有理数,则x 、y 也都是有理数” 其中有________个是命题,________个真命题2、命题“方程x 2-1=0的解是x=±1”中使用逻辑联结词的情况是________.3、下列四个命题p :有两个内角互补的四边形是梯形或是圆内接四边形或是平行四边形q :π不是有理数;r :等边三角形是中心对称图形;s :12是3与4的公倍数 其中简单命题只有________.4、如果命题“p 或q ”是真命题,那么下列叙述正确的为________.(1).命题p 与命题q 都是真命题 (2).命题p 与命题q 的真值是相同的,即同真同假 (3).命题p 与命题q 中只有一个是真命题 (4).命题p 与命题q 中至少有一个是真命题5、下列说法正确的有________个.①a ≥0是指a >0且a =0;②x 2≠1是指x ≠1且x ≠-1 ③x 2≤0是指x=0;④x ·y ≠0是指x ,y 不都是0⑤>是指=或<a b a b a b / 6、复合命题s 具有p 或q 的形式,已知p 且r 是真命题,那么s 是________. 7、命题“对任意的3210x x x ∈-+R ,≤”的否定是8、分别用“p 或q ”、“p 且q ”、“非p ”填空:(1)命题“非空集A ∩B 中的元素既是A 中的元素,也是B 中的元素”是________的形式.(2)命题“非空集A ∪B 中的元素是A 中的元素或B 中的元素”是________的形式. (3)命题“C I A 中的元素是I 中的元素但不是A 中的元素”是________的形式.(4)x y =1x y =1x =1y =0x =0y =1221122命题“方程组++的整数解是,”是⎧⎨⎩⎧⎨⎩⎧⎨⎩_______的形式. 9、P: 菱形的对角线互相垂直,q :菱形的对角线互相平分,p 或q 形式的复合命题是________10、有四个命题:(1)空集是任何集合的真子集;(2)若x∈R,则|x|≥x(3)单元素集不是空集;(4)自然数集就是正整数集其中真命题是________(填命题的序号)11、指出命题的结构及构成它的简单命题:24 4x x +-有意义时,2x≠±12、已知命题p、q,写出“p或q”、“p且q”、“非p”并判断真假.(1)p:2是偶数q:2是质数________;(2)p:0的倒数还是0 q:0的相反数还是0________高三数学基础训练测试题(4)题纸班级姓名分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、5、 6 7、 8、9 、10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、分别指出下列复合命题的形式及构成它的简单命题,并判断此复合命题的真假.(1)A A B/⊆∪(2)方程x2+2x+3=0没有实根(3)3≥3高中数学基础训练测试题(5)综合运用一、填空题(共12题,每题5分)1、 设集合P={3,4,5},Q={4,5,6,7},定义P ★Q={(},|),Q b P a b a ∈∈则P ★Q 中元素的个数为 .2、设集合{()||2|0}A x y y x x =-,≥,≥,{()|}B x y y x b =-+,≤,A B =∅,b的取值范围是 .3、设集合{()||2|0}A x y y x x =-,≥,≥,{()|}B x y y x b =-+,≤,若()x y A B ∈,,且2x y +的最大值为9,则b 的值是 .4、1到200这200个数中既不是2的倍数,又不是3的倍数,也不是5的倍数的自然数共有_______个5、定义符号函数⎪⎩⎪⎨⎧-=101sgn x 000<=>x x x ,则不等式:x x x sgn )12(2->+的解集是 .6、满足条件M ∪{1}={1,2,3}的集合M 的个数是 .7、若不等式的值等于则实数的解集为a x a x x ],5,4[4|8|2-≤+-8、设集合}0|{≥+=m x x M ,}082|{2>--=x x x N ,若U =R ,且∅=)(N M U,则实数m 的取值范围是 .9、设[]x 表示不超过x 的最大整数(例[5、5]=5,[-5、5]=-6),则不等式2[]5[]6x x -+≤0的解集为10、 记关于x 的不等式01x ax -<+的解集为P ,不等式11x -≤的解集为Q . 若Q P ⊆,正数a 的取值范围是11、 已知集合A ={x ||x |≤2,x ∈R },B ={x |x ≥a },且A B ,则实数a 的取值范围是____ _ 12、{25},{121},A x x B x p x p =-<<=+<<-若A B A ⋃=,则实数p 的取值范围是 .高三数学基础训练测试题(5)题纸班级 姓名 分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、 5、 6 7、 8、 9 、 10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、设命题:p 函数()2lg y ax x a =-+的定义域为R .命题:q 函数()2lg 1y x ax =-+的值域为R .如果命题“p 或q ”为真命题,命题“p 且q ”为假命题,求实数a 的范围.高中数学基础训练测试题(6)函数及其表示方法一、 填空题(共12题,每题5分)1、若f (x -1)=2x +5,则f (x 2) = .2、已知在x 克%a 的盐水中,加入y 克%b 的盐水,浓度变为%c ,将y 表示成x 的函数关系式 .3、已知⎪⎩⎪⎨⎧<=>+=0,00,0,1)(x x x x x f π,则f {f [f (-1)]}= .4、已知函数f (x ) = ⎩⎨⎧2x 2+1,x ≤0,-2x , x >0,当f (x ) = 33时,x = .5、设函数x xxf =+-)11(,则)(x f 的表达式为 .6、已知x x x f 2)12(2-=+,则)3(f = .7、已知f 满足f (ab )=f (a )+ f (b),且f (2)=p ,q f =)3(那么)72(f 等于 .8、设f (x )是一次函数,且f [f (x )]=4x +3,则f (x )= .9、集合A 中含有2个元素,集合A 到集合A 可构成 个不同的映射.10、若记号“*”表示的是2*ba b a +=,则用两边含有“*”和“+”的运算对于任意三个实数“a ,b ,c ”成立一个恒等式 .11、从盛满20升纯酒精的容器里倒出1升,然后用水加满,再倒出1升混合溶液,再用水加满、 这样继续下去,建立所倒次数x 和酒精残留量y 之间的函数关系式 .12、若f (x )满足f (x )+2f (x1)=x ,则f (x )= .高三数学基础训练测试题(6)答题纸班级姓名分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、5、 6 7、 8、9 、10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、动点P从边长为1的正方形ABCD的顶点出发顺次经过B、C、D再回到A;设x表示P点的行程,y表示PA的长,求y关于x的函数解析式、高中数学基础训练测试题(7)函数的解析式和定义域一、 填空题(共12题,每题5分)1、下列各组函数中,表示同一函数的是 .①xxy y ==,1 ②1,112-=+⨯-=x y x x y③33,x y x y == ④2)(|,|x y x y ==2、函数y =的定义域为 .3、函数1()1f x n x=的定义域为 .4、函数1)y a =<<的定义域是 .5、已知)(x f 的定义域为)2,1[-,则|)(|x f 的定义域为 .6、下列函数:①y =2x +5;②y = xx 2+1 ;③y = |x |-x ;④y = ⎩⎨⎧2x , x <0,x +4,x ≥0.其中定义域为R 的函数共有m 个,则m 的值为 .7、若f[g (x )] = 9x +3,且g (x ) = 3x +1,则f (x )的解析式为 .8、已知g (x )=1-2x ,f [g (x )]= 1-x 2x 2 (x ≠0),则f (0.5)= .9、若函数f(x )的定义域为[a ,b ],且b >-a >0,则函数g (x )=f(x )-f (-x )的定义域是 .10、若f (2x +3)的定义域是[-4,5),则函数f (2x -3)的定义域是 .11、函数xx x x x x f +-++-=02)1(65)(的定义域为 .12、 若函数 y =lg(x 2+ax +1)的定义域为R ,实数a 的取值范围为 .高三数学基础训练测试题(7)答题纸班级姓名分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、5、 6 7、 8、9 、10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、已知f(x)是定义在R上的函数,且f(1)=1,对任意x∈R都有下列两式成立:(1)f(x+5)≥f(x)+5;(2)f(x+1)≤f(x)+1.若g(x)=f(x)+1-x,求g(6)的值.高中数学基础训练测试题(8)函数的值域与最值一、 填空题:(共12题,每题5分)1、函数y = - x 2 + x , x ∈ [1 ,3 ]的值域为 . 2、函数y =2312+-x x 的值域是 .3、函数y=2-x x 42+-的最大值是 .4、函数y x =的值域是 .5、函数y =的最小值是 .6、已知函数2323(0),2y x x x =-+≤≤则函数的最大值与最小值的积是 .7、若函数y=x 2-3x -4的定义域为[0,m],值域为[-425,-4],则m 的取值范围是 .8、已知函数 y =lg(x 2+ax +1)的值域为R ,则a 的取值范围是 .9、若指数函数xa y =在[-1,1]上的最大值与最小值的差是1,则底数a 是 .10、函数y = 3122+---x x x x 的值域为 .11、已知x ∈[0,1],则函数y =的值域是 .12、已知函数y =的最大值为M ,最小值为m ,则mM的值为 .高三数学基础训练测试题(8)答题纸班级姓名分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、5、 6 7、 8、9 、10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、已知函数f(x) =xax+b(a,b为常数,且a≠0)满足f(2)=1,f(x)=x只有惟一实数解,试求函数y=f(x)的解析式及f[f(-3)]的值.高中数学基础训练测试题(9)函数的单调性与奇偶性一、 填空题:(共12题,每题5分)1、函数b x k y ++=)12(在实数集上是增函数,则k 的范围是 .2、函数c bx x y ++=2))1,((-∞∈x 是单调函数时,b 的取值范围 .3、函数)(x f 在区间]3,2[-是增函数,则)5(+=x f y 的递增区间是 .4、定义在R 上的函数)(x s (已知)可用)(),(x g x f 的和来表示,且)(x f 为奇函数,)(x g 为偶函数,则)(x f = .5、函数)(x f 在R 上为奇函数,且0,1)(>+=x x x f ,则当0<x ,=)(x f .6、函数||2x x y +-=,单调递减区间为 .7、定义在R 上的偶函数)(x f ,满足)()1(x f x f -=+,且在区间]0,1[-上为递增,则)2(f 、)2(f 、)3(f 的大小关系为 .8、构造一个满足下面三个条件的函数实例,①函数在)1,(--∞上递减;②函数具有奇偶性;③函数有最小值为0 所构造的函数为 .9、已知]3,1[,)2()(2-∈-=x x x f ,则函数)1(+x f 的单调递减区间为 .10、下面说法正确的选项为 .①函数的单调区间可以是函数的定义域②函数的多个单调增区间的并集也是其单调增区间 ③具有奇偶性的函数的定义域一定关于原点对称 ④关于原点对称的图象一定是奇函数的图象11、下列函数具有奇偶性的是 . ①xx y 13+=; ②x x y 2112-+-=; ③x x y +=4; ④⎪⎩⎪⎨⎧<--=>+=)0(2)0(0)0(222x x x x x y .12、已知8)(32009--+=xbax x x f ,10)2(=-f ,则(2)f = .高三数学基础训练测试题(9)答题纸班级 姓名 分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、 5、 6 7、 8、 9 、 10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、已知函数1)(2+=x x f ,且)]([)(x f f x g =,)()()(x f x g x G λ-=,试问,是否存在实数λ,使得)(x G 在]1,(--∞上为减函数,并且在)0,1(-上为增函数、高中数学基础训练测试题(10)函数的图像一、 填空题:(共12题,每题5分)1、函数34x y =的图象是 .① ② ③ ④ 2、下列函数图象正确的是 .① ② ③ ④3、若)(x f y =为偶函数,则下列点的坐标在函数图像上的是 . ①(,())a f a - ②))(,(a f a - ③))(,(a f a - ④))(,(a f a ---4、将函数x y 2=的图象向左平移一个单位,得到图象C 1,再将C 1向上平移一个单位得到图象C 2,则C 2的解析式为 .5、当a ≠0时,函数y ax b =+和y b ax=的图象只可能是 .6、函数x xx y +=的图象是 .7、已知()x f 是偶函数,且图象与x 轴有4个交点,则方程()0=x f 的所有实根的和是 . 8、下列四个命题,其中正确的命题个数是 .(1)f(x)=x x -+-12有意义;(2)函数是其定义域到值域的映射;(3)函数y=2x(x N ∈)的图象是一直线;(4)函数y=⎪⎩⎪⎨⎧<-≥0,0,22x x x x 的图象是抛物线. 9、当a >0且a ≠1时,函数f (x )=a x -2-3必过定点 .10、已知函数f(x)是R 上的增函数,A(0,-1)、B((3,1)是其图象上的两点,那么|f(x+1)| <1的解集的补集为 . 11、下列命题中正确的是 .①当0=α时函数αx y =的图象是一条直线 ②幂函数的图象都经过(0,0)和(1,1)点③若幂函数αx y =是奇函数,则αx y =是定义域上的增函数④幂函数的图象不可能出现在第四象限12、定义在区间(-∞,+∞)上的奇函数)(x f 为增函数,偶函数)(x g 在[0,+∞)上图像与)(x f 的图像重合、设a>b>0,给出下列不等式:①)()()()(b g a g a f b f -->-- ②)()()()(b g a g a f b f --<--③)()()()(a g b g b f a f -->-- ④)()()()(a g b g b f a f --<--其中成立的是 .高三数学基础训练测试题(10)答题纸班级 姓名 分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、 5、 6 7、 8、 9 、 10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、 如图,已知底角为450的等腰梯形ABCD,底边BC 的长为7,腰长为 22 ,当一条平行于AB 的直线L 从左至右移动时,直线L 把梯形分成两部分,令BF=x,试写出左边部分的面积y 与x 的函数解析式,并画出大致图象、C1、 集合的概念,集合间的基本关系1.确定性 , 互异性 , 无序性 .2. 列举法 , 描述法 , 韦恩图 . 3. 15. 4. 4 5. (3) 6. 6 个7.0提示:2a-1 =-1,a=0;此类问题要注意验证集合中元素的互异性.8、7提示:满足{1,2}{1,2,3,4,5}M ⊂⊆-集合M 有32=8个.去除M={1,2},满足{1,2}{1,2,3,4,5}M ⊂⊆≠集合M 有7个. 9、 10,1,2a =提示:A B B =A B ⊆=,{}2|320B x x x =-+== {}1,2,x=1时,a=1;x=2时,a=12、而a=0时,A=φ,满足A B B =. 10、1a ≤提示:{}{}|||4|44A x x x R B x x =≤∈=-≤≤,=, a<0时,{}||3|B x x a a R =-≤∈,= φ,满足A B ⊇a ≥0时,{}||3|B x x a a R =-≤∈,={}|33x x a x a -≤≤+,A B ⊇ 4334aa -≤-⎧⎨+≥⎩ 1a ≤;11、 32-提示:注意到0∆=时集合中只有一个元素,此时集合A 中所有元素之和为-3;0∆≠时,集合A 中所有元素之和为32-.12、41提示: a 、b 同奇偶时,有35个;a 、b 异奇偶时,有(1,36)、(3,12)、(4,9)、(9,4)、(12,3)、(36,1)6个,共计41个.填41.13、解:∵ A ∩B={3,7} ∴ 7∈A ∴ 7242=++a a ,即 15=-=a a 或当 5-=a 时,B={0,7,7,3} (舍去)当 1=a 时,B={0,7,1,3} ∴ B={0,7,1,3}2.集合的基本运算1、 {}1,2 ;2、{}7,8 ;3、2;4.{}1- ; 5、{x |2<x <3}; 6、{},0x x R x ∈≠; 7、 0,2π⎡⎤⎢⎥⎣⎦提示: M ={直线的倾斜角}=[]0,π, N ={两条异面直线所成的角}=0,2π⎛⎤⎥⎝⎦, P ={直线与平面所成的角}=0,2π⎡⎤⎢⎥⎣⎦,则(M ∩N)∪P=0,2π⎡⎤⎢⎥⎣⎦8、提示:利用韦恩图和()()()U U U C A C B C A B =⋃易求{2,3}A =,{2,4}B =9、 [4,)+∞ 提示:[){| 2.M x y ===+∞,N ={}[)2|,4,y y x x M =∈=+∞,则MN = [4,)+∞10、 [)+∞,0提示:{}[){}22|210,,|25M y y x x N x y x x R ==++=+∞==-+= 所以N M ⋂=[)+∞,0;11、 m ≥2提示: {|0}M x x m =+≥,2{|280}(2,4)N x x x =--<=-,U M =(,m -∞-),所以-m ≤-2, 、m ≥2;12、 1,a >或2a ≤-提示:2221011x ax a a x a -+-≤⇔-≤≤+,M N ⊆时2211,11a a a a -≥-+≤+但对边缘值1,-2进行检验知1不合;13、 解:(1)方程有两个实根时,得2[2(m-1)]4(2m+6)0∆=-⨯≥解得m -1m 5≤≥或(2)令2f()=+2(m-1)+2m+6x x x 由题意得(0)0f <,解得3m <-(3)令2f()=+2(m-1)+2m+6x x x 由题意得 2(1)12(1)2602(1)112[2(m-1)]4(2m+6)0f m m m m =+-++>--=->∆=-⨯≥ 解得5-14m <≤-3、命题及其关系1、必要不充分条件2、必要不充分条件3、充分不必要条件4、①②④5、必要不充分条件6、35m n ≥≥且7、 提示: ②在空间,不存在点到长方形各边的距离相等; ③在空间,存在到长方体各顶点距离相等的点,但不存在到它的各个面距离相等的点;真命题的序号是①④8、 a 1[0,]2∈提示:┐p 是┐q 的必要而不充分的条件,所以q 是p 的必要而不充分的条件, 所以p q ⊆,P:|43|1x -≤ 所以112x ≤≤,q:0)1()12(2≤+++-a a x a x 所以a ≤x ≤a+1,1211a a ⎧≤⎪⎪⎨+≥⎪⎪⎩a 1[0,]2∈; 9必要不充分条件提示:对于[0,1]x ∈的一切值0axb +>恒成立 00a b b +>⎧⎨>⎩所以20a b +>;10、 既不必要不充分条件提示:2x 2+x+1>0和2x 2+x+1>0的解集为R, M=N,111222a b c a b c ==不成立;若212121c c b b a a ==,- x 2+2x-1>0和x 2-2x+1>0,此时 M ≠N11、 8、个.12、 提示:②ab>0时b a b a +=+成立.③若0=xy ,则0=x 或0=y ”的逆否命题是“若0≠x 且0≠y 则0≠xy ”; 正确命题的序号是①④.13、 解:联立关于,x y 的方程组:()3121150y x a x y -⎧=⎪-⎨⎪+++=⎩.消去y 得到关于x 的方程:()214a x += (*) 由题意,关于x 的方程(*)无解或者解为2x =. 若(*)无解,则20a +=,解得2a =-.若(*)的解为2x =,则()2214a +=,解得5a =. 综上所述,2a =-或者5a =.4、逻辑联接词1.三个是命题,一个真命题;2.使用了逻辑联结词“或”;3.r ;4.(4)5.3个.6.真命题.7.提示:3210x x ∃∈-+>R ,.8.提示:(1)p 且q (2)p 或q (3)非p (4)p 或q ;9.提示:(1)菱形的对角线互相垂直或互相平分. 10.②③提示: 11.P 且q;p:244x x +-有意义时,2x ≠;244x x +-有意义时,2x ≠-; 12、提示:1.(1)p 或q :2是偶数或质数,真命题 p 且q :2是偶数且是质数,真命题 非p :2不是偶数,假命题.(2)p 或q :0的倒数还是0或0的相反数还是0,真命题. p 且q :0的倒数还是0且0的相反数还是0,假命题. 非p :0的倒数不是0,真命题.13.解:3(1)p p A A B .非形式的复合命题::∪,此复合命题为假.⊆(2)非P 形式的复合命题:p :方程x 2+2x +3=0有实数根.此复合命题为真.(3)p 或q 形式的复合命题:p :3>3为假,q :3=3为真.此复合命题为真5、综合运用1、 12 ; 2. b<2 ; 3、 92;4、54 ;5、3x ⎧⎫⎪⎪<<⎨⎬⎪⎪⎩⎭; 6、 2 ;7、 16提示:等价于(4)(5)0x x --≤;8、 2;m ≥提示:M N R ⋂= ;9、提示:2[]5[]6x x -+≤0 ∴ 2[]3x ≤≤ ∴ 24x ≤<∴不等式2[]5[]6x x -+≤0的解集为{}24x x ≤<10、 a>2 提示:a>-1时,解集为P =(-1,a )因为Q P ⊆,a>2; a<-1时,解集为P =(a ,-1)因为Q P ⊆,舍; a=-1时,解集为P = φ因为Q P ⊆,舍∴a>211、 a ≤-2提示:A ={x ||x |≤2,x ∈R }=[-2,2],B ={x |x ≥a },且A B ,∴ a ≤-212.3≤p 提示: A B A ⋃= ∴ B A ⊆ ∴3≤p13、解:若p 真,则()22140a a >⎧⎪⎨--<⎪⎩,解得12a >. 若q 真,则()240a --≥,解得2a ≤-或者2a ≥. 因为命题“p 或q ”为真命题,命题“p 且q ”为假命题, 所以命题p 和q 有且仅有一个为真.所以实数a 范围为:2a ≤-或122a <<.6、函数及其表示方法1.2x 2+7 ; 2.x c b a c y --=; 3.π+1 ; 4. - 4 ; 5.xx+-11 ; 6.-1;7.提示:327223,(72)32f p q =⨯∴=+ 8.提示:设f (x )=ax +b (a ≠0),则f [f (x )]=af (x )+b =a (ax +b )+b =a 2x +ab +b ,∴ ⎩⎨⎧==⇒⎩⎨⎧=+=12342b a b ab a 或⎩⎨⎧-=-=32b a , ∴ f (x )=2x +1或f (x )= -2x -3. 9. 4 ; 10.c b a c b a *+=+)()*(; 11.*,)2019(20N x y x ∈⨯= ; 12.提示:在f (x )+2f (x 1)=x ①中,用x1代换x 得 f (x 1)+2 ;f (x )= x 1 ②,联立①、②解得 )0(32)(2≠-=x xx x f . 13.显然当P 在AB 上时,PA=x ;当P 在BC 上时,PA=2)1(1-+x ;当P 在CD 上时, PA=2)3(1x -+;当P 在DA 上时,PA=x -4,再写成分段函数的形式.7、函数的解析式和定义域一.填空题:1.③ 2.{}|1x x ≥ 3.[4,0)(0,1]-⋃ 4. (2,3] 5.)2,2(-;6.4 7.f (x )=3x 8.15 9.[a ,-a ] 10. {x |-1≤x <8} 11.),3[]2,1()1,0(+∞ 提示:由函数解析式有意义,得⇒⎪⎩⎪⎨⎧>+≠-≥+-010652x x x x x ⎩⎪⎨⎪⎧x ≥3,或x ≤2x ≠1,x >0.⇒0<x <1或1<x ≤2,或x ≥3.故函数的定义域是),3[]2,1()1,0(+∞ .12.()2,2-提示: 因函数 y =lg(x 2+ax +1)的定义域为R ,故x 2+ax +1>0对x ∈R 恒成立,而f (x )= x 2+ax +1是开口向上的抛物线,从而△<0,即a 2-4<0,解得 -2<a <2.13:反复利用条件(2),有f (x +5) ≤f (x +4)+1≤f (x +3)+2≤f (x +2)+3≤f (x +1)+4≤f (x )+5,(★)结合条件(1)得 f (x +5)=f (x )+5.于是,由(★),可得 f (x +1) = f (x )+1. 故 g (6)=f (6)+1-6= [f (1)+5 ]-5=1.8、函数的值域与最值一.填空题:1. {y|164y -≤≤} ;2.(-∞, 23)∪(23,+ ∞) ; 3.2 ;4.(,1]-∞ ;5. ;6.6 ; 7.[23 ,3] ; 8.利用△≥0⇒ a ≥2或a ≤-2. 9.215± 10..1115|⎭⎬⎫⎩⎨⎧<≤-y y 提示:将函数整理为:0)13)(1(4)1(,1,013)1()1(22≥+---=∆≠=++---y y y y y x y x y 由可见,得.1115|,1115⎭⎬⎫⎩⎨⎧<≤-∴≤≤-y y y 函数的值域为 11.[3,12-]提示:注意到函数y =在[0,1]上是单调递增的,故函数的值域是 [3,12-] ;12.2提示:22+(x+3)=4,14sin ,x+34cos ,[0,]2x πθθθ∴-==∈(1-x )令于是2sin 2cos sin()4y πθθθ==+=+2,2m M ∴===、13、 f (x ) =x 只有惟一实数解,即xax+b= x (*)只有惟一实数解, 当ax 2+(b -1)x =0有相等的实数根x 0, 且a x 0+b≠0时,解得f(x)=2x x +2, f [f (-3)] = 32, 当ax 2+(b -1)x =0有不相等的实数根,且其中之一为方程(*)的增根时,解得f(x)= 1, f [f (-3)] =1.9、函数的单调性与奇偶性一.填空题:1.21->k 2.2b ≤- 3.]2,7[-- 4.2)()(x s x s -- 5.1---=x y 6.]0,21[-和),21[+∞ 7.)2()2()3(f f f << 8.R x x y ∈=,2 提示:本题答案不唯一.9.]1,2[-提示:函数12)1(]2)1[()1(222+-=-=-+=+x x x x x f ,]2,2[-∈x ,故函数的单调递减区间为]1,2[-、10.①③ 11.①④提示:①定义域),0()0,(+∞⋃-∞关于原点对称,且)()(x f x f -=-,奇函数、 ②定义域为}21{不关于原点对称.该函数不具有奇偶性、 ③定义域为R ,关于原点对称,且x x x x x f +≠-=-44)(,)()(44x x x x x f +-≠-=-,故其不具有奇偶性、 ④定义域为R ,关于原点对称, 当0>x 时,)()2(2)()(22x f x x x f -=+-=---=-;当0<x 时,)()2(2)()(22x f x x x f -=---=+-=-;当0=x 时,0)0(=f ;故该函数为奇函数、 故填①④12.-26提示: 已知)(x f 中xb ax x -+32005为奇函数,即)(x g =xb ax x -+32005中)()(x g x g -=-,也即)2()2(g g -=-,108)2(8)2()2(=--=--=-g g f ,得18)2(-=g ,268)2()2(-=-=g f 、二.解答题: 221)1()1()]([)(24222++=++=+==x x x x f x f f x g 、)()()(x f x g x G λ-=λλ--++=22422x x x )2()2(24λλ-+-+=x x)()(21x G x G -)]2()2([2141λλ-+-+=x x )]2()2([2242λλ-+-+-x x)]2()[)((22212121λ-++-+=x x x x x x由题设当121-<<x x 时,0))((2121>-+x x x x ,λλλ-=-++>-++4211)2(2221x x ,则4,04≤≥-λλ 当0121<<<-x x 时,0))((2121>-+x x x x ,λλλ-=-++<-++4211)2(2221x x ,则4,04≥≥-λλ 故4=λ、10、函数的图像1.① 2.② 3. ① ③ 4.121x y +=+ 5.① 6.④7.0提示:()x f 是偶函数,图象与x 轴有4个交点关于一y 轴对称,其横坐标互为相反数,故()0=x f 的所有实根的和是0、 8.1 ,提示:(2)是对的. 9.(2,-2);提示:f (x )=a x 过定点(0,1),故f (x )=a x -2-3过定点(2,—2). 10.(-∞,-1]∪[2,+ ∞)提示:由于函数f(x)是R 上的增函数,且过点A(0,-1)、B((3,1), |f(x+1)| <1的解集为(—1,2),故其补集为(-∞,-1]∪[2,+ ∞) 11.④提示:0y x =不过点(0,1);当α<0时,αx y =不过(0,0);1y x -=在定义域上不是增函数,只有④是对的. 12.①③提示:采用特殊值法.根据题意,可设x x g x x f ==)(,)( ,又设1,2==b a ,易验证①与③成立. 13.(1)()⎪⎩⎪⎨⎧≤<--≤<=73,4710,30,22x x x x y(2)图形如右。
上海市松江二中2023-2024学年高一下学期期末考试 数学试卷【含答案】
松江二中2023学年第二学期期末考试高一数学考生注意:1.试卷满分150分,考试时间120分钟.2.本考试分设试卷和答题纸.试卷包括三部分,第一部分为填空题,第二部分为选择题,第三部分为解答题.3.答题前,务必在答题纸上填写考号、姓名、班级.作答必须涂或写在答题纸上,在试卷上作答一律不得分.一、填空题(本大题共有12题,第1-6题每题4分,第7-12题每题5分,共54分)考生应在答题纸的相应位置直接填写结果.1.已知两条相交直线a ,b ,且a//平面α,则b 与α的位置关系是.2.复数z 满足()3i 5i z -=(i 为虚数单位),则z =.3.设平面向量()sin ,1a θ= ,(cos b θ= ,若a ,b不能组成平面上的一个基底,则tan θ=.4.如图,O A B '''△是水平放置的OAB 的斜二测直观图,若3O A ''=,4OB '=,则OAB 的面积为.5.若正数x ,y 满足24xy y +=,则x y的最大值为.6.已知10π,sin cos 2ααα<<+=,则cos sin αα-的值为.7.如图,某体育公园广场放置着一块高为3米的大屏幕滚动播放各项体育赛事,大屏幕下端离地面高度3.5米,若小明同学的眼睛离地面高度1.5米,则为了获得最佳视野(最佳视野指看到大屏幕的上下夹角最大),小明应在距离大屏幕所在的平面米处观看?(精确到0.1米).8.空间给定不共面的A 、B 、C 、D 四个点,如果这四个点到平面α的距离都相等,那么这样的平面α的个数是.9.已知二面角l αβ--的大小为60°,点P ,Q 分别在α,β上且PQ l ⊥,若点P 到β的距3Q 到α3PQ 两点之间的距离为.10.设定义在R 上的函数()f x 满足()()21f x f x =+,且当[)1,0x ∈-时,()()1f x x x =-+.若对任意[),x λ∈+∞,不等式()34f x ≤恒成立,则实数λ的最小值是.11.关于x 的实系数方程2450x x -+=和220x mx m ++=有四个不同的根,若这四个根在复平面上对应的点共圆,则m 的取值范围是.12.已知单位向量,a b 夹角为锐角,对t R ∈,a t b -⋅ 的取值范围是3[)2+∞,若向量c 满足(2)()0c a c b -⋅-=,则c r 的最小值为.二、选择题(本大题共有4题,第13、14题每题4分,第15、16题每题5分,共18分)每题有且只有一个正确答案,考生应在答题纸的相应位置上,将所选答案的代号涂黑.13.在下列判断两个平面α与β平行的四个命题中,其中假命题的是()A .α,β都垂直于直线l ,那么αβ∥B .α,β都平行于平面γ,那么αβ∥C .α,β都垂直于平面γ,那么αβ∥D .如果l ,m 是两条异面直线,且l α∥,m α ,l β ,m β ,那么αβ∥14.已知a ,b 是平面内两个非零向量,那么“a ∥b”是“存在0λ≠,使得a b a b λλ+=+ ”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件15.如图所示,在正方体1111ABCD A B C D -中,M 是棱1AA 上一点,若平面1MBD 与棱1CC 交于点N ,则下列说法中正确的是()A .存在平面1MBND 与直线1BB 垂直B .四边形1MBND 可能是正方形C .不存在平面1MBND 与直线11A C 平行D .任意平面1MBND 与平面1ACB 垂直16.已知函数()()5sin 2θf x x =-,πθ0,2⎛⎤∈ ⎥⎝⎦,[]0,5πx ∈,若函数()()3F x f x =-的所有零点依次记为123,,,,n x x x x ⋅⋅⋅,且1231n n x x x x x -<<<⋅⋅⋅<<,*n ∈N 若12321832222π2n n n x x x x x x --+++⋅⋅⋅+++=,则θ=()A .π9B .π6C .π4D .π12三、解答题(本大题共有5题,满分78分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.在正方体1111ABCD A B C D -中,E 是11B C 的中点.(1)求异面直线AE 与1BC 所成的角的大小;(2)求直线AC 与平面11ABC D 所成的角的大小.18.已知向量()()()()()3,1,1,1,,4,,,,OA OB OC m OD x y m x y =-=-==∈R.(1)若,,A B C 三点共线,求m 的值;(2)若四边形ABCD 为矩形,求2x y +的值.19.在ABC 中,内角,,A B C 的对边分别为,,,tan tana b c b A b B +=(1)求角B ;(2)茬D 是边AC 上的点,且33,AD DC A ABD ∠∠θ====,求sin θ的值.20.如图,已知四面体ABCD 中,AB ⊥平面BCD ,BC CD ⊥.(1)求证:AC CD ⊥;(2)若在此四面体中任取两条棱作为一组((),a b 和(),b a 视为同一组),则它们互相垂直的组数记为1a ;任取两个面作为一组((),αβ和(),βα视为同一组),则它们互相垂直的组数记为2a ;任取一个面和不在此面上的一条棱作为一组((),a α和(),a α视为同一组),则它们互相垂直的组数记为3a ,试求123a a a ++的值;(3)《九章算术》中将四个面都是直角三角形的四面体称为“鳖臑”.若此“鳖臑”中,1CD =,1AB BC ==,有一根彩带经过平面ABC 与平面ACD ,且彩带的两个端点分别固定在点B和点D 处,求彩带的最小长度.21.对于分别定义在1D ,2D 上的函数()f x ,()g x 以及实数k ,若存在11x D ∈,22x D ∈使得()()12f x g x k -=,则称函数()f x 与()g x 具有关系()M k .(1)若()cos f x x =,[]0,πx ∈;()sin g x x =,[]0,πx ∈,判断()f x 与()g x 是否具有关系()2M -,并说明理由;(2)若()2sin f x x =与()22cos sin 1g x x x =+-具有关系()M k ,求k 的取值范围;(3)已知0a >,()h x 为定义在R 上的奇函数,且满足:①在[]0,2a 上,当且仅当2ax =时,()h x 取得最大值1;②对任意x ∈R ,有()()h a x h a x +=--.判断()()sin 2πf x x h x =+与()()cos 2πg x h x x =-是否具有关系()4M ,并说明理由.1.b//平面α或b 与平面α相交【分析】画出图形不难看出直线b 与平面α的位置关系,平行或相交.【详解】由题意画出图形,当,a b 所在平面与平面α平行时,b 与平面α平行,当,a b 所在平面与平面α相交时,b 与平面α相交.故答案为:b//平面a 或b 与平面α相交.【点睛】本题考查空间中直线与平面之间的位置关系,考查空间想象能力,是基础题.2.102【分析】直接利用复数代数形式的乘除运算化简,然后利用复数模的公式计算即可.【详解】因为复数z 满足()3i 5i z -=,所以()()()5i 3i 5i 515i 13i 3i 3i 3i 1022z +-+====-+--+,所以2z =,故答案为:1023.3【分析】利用基底的定义可得//a b,再利用共线向量的坐标表示求解即得.【详解】由a ,b不能组成平面上的一个基底,得//a b ,而()sin ,1a θ= ,(cos b θ= ,cos θθ=,所以sin tan cos 3θθθ==.4.12【分析】根据斜二测画法,将直观图还原可知原三角形为直角三角形,求出两直角边的长度,即可得出答案.【详解】如图,根据斜二测画法,将直观图还原后,得到的AOB 为直角三角形,且两条直角边4OB O B ''==,26OA O A ''==,所以,OAB 的面积为1S 46122=⨯⨯=.故答案为:12.5.2【分析】根据24xy y +=得出240x y =->,得出102y <<,242x y y y -=,根据y 的范围求出x y的范围即可.【详解】24xy y +=,24x y ∴+=,240x y =->,所以12y >,即102y <<,222421212211x y y y y y y ⎡⎤⎛⎫⎛⎫-==--=---⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,根据二次函数的性质可知1y =时,上式取得最大值2.故答案为:2.6.72【分析】根据同角关系中的平方关系进行解答,注意2sin cos 0αα<涉及的函数值正负与角终边所在象限联系,结合0πα<<,进一步缩小角的范围,进而在开方运算时得出正确的符号.【详解】由已知得()21sin cos 4αα+=,即32sin cos 4αα=-,∴()2cos sin 12sin cos αααα-=-74=,由2sin cos 0αα<,且0πα<<,∴π2απ<<,∴cos sin 0αα-<,∴7cos sin αα-=故答案为:77.3.2【分析】作CD AB ⊥于D ,设CD t =,根据两角差的正切公式,结合不等式求tan ACB ∠的最大值,并确定对应的t 即可.【详解】如图:作CD AB ⊥于D ,设()0CD t t =>,则5tan ACD t∠=,2tan BCD t ∠=.所以()tan tan ACB ACD BCD ∠=∠-∠tan tan 1tan tan ACD BCD ACD BCD ∠-∠=+∠⋅∠52521t t t t -=+⋅2310t t =+310t t=+≤=t “=”)3.16≈,故 3.2t ≈(米),故答案为:3.28.7【分析】分平面α的两边分别有1个点,3个点和两边各有2个点讨论即可.【详解】因为,,,A B C D 四点不共面,所以,,,A B C D 可以看作是四面体的顶点,取四面体ABCD 各棱的中点为,,,,,E F G H M N .如图:当,,,A B C D 四个点在平面α的一侧有1个点,另一侧有3个点,且它们到平面α的距离相等,这样的平面有平面EFN ,平面EMH ,平面FMG ,平面NGH ,共4个;当,,,A B C D 四个点分别在平面α的两侧各有两个点,且它们到平面α的距离相等,这样的平面有平面EMGN ,平面EHGF ,平面MFNH ,共3个.所以满足条件的平面α共7个.故答案为:79【分析】作PD l ⊥于D ,连接QD ,则l ⊥平面PQD ,所以PDQ ∠即为二面角l αβ--的平面角,作PM β⊥于M ,则M 在QD 上,作QN α⊥于N ,则N 在PD 上,在PQD △内求PQ 即可.【详解】如图:作PD l ⊥于D ,连接QD ,又因为PQ l ⊥,,PQ PD ⊂平面PQD ,PQ PD P ⋂=,所以l ⊥平面PQD .所以PDQ ∠即为二面角l αβ--的平面角,故60PDQ ∠=︒.作PM β⊥于M ,则M 在QD 上,作QN α⊥于N ,则N 在PD 上.在R t PMD 中,PM =PM QD ⊥,60PDQ ∠=︒,所以2PD =;在R t QND 中,2QN =,QN PD ⊥,60PDQ ∠=︒,所以1QD =.由余弦定理:2222cos 60PQ DQ DP DP DQ =+-⋅⋅︒11421232=+-⨯⨯⨯=,所以PQ =.10.94-## 2.25-【分析】由题意,根据给定的函数解析式,结合等式关系,拓展其他区间的函数解析式,利用二次函数的性质,可得答案.【详解】()()21f x f x =+ ,且当[)1,0x ∈-时,()()2111324144f x x x x ⎛⎫=-++≤≤ ⎪⎝⎭=-+恒成立,∴()()()1112f x f x f x =-≤-,易知当0x >时,则()1324f x f ⎛⎫<-≤ ⎪⎝⎭恒成立,当[)2,1x ∈--,即[)11,0x +∈-时,()()()()2311321*********f x f x x x x ⎛⎫=+=-+++=-++≤≤⎡⎤ ⎪⎣⎦⎝⎭恒成立,当[)3,2x ∈--,即[)21,0x +∈-时,()()()()()25214242214112f x f x f x x x x ⎛⎫=+=+=-+++=-++≤⎡⎤ ⎪⎣⎦⎝⎭,不满足()34f x ≤恒成立,解不等式2534124x ⎛⎫-++≤ ⎪⎝⎭,251216x ⎛⎫+≥ ⎪⎝⎭,在[)3,2x ∈--上的解集为1193,,244⎡⎤⎡⎫----⎪⎢⎥⎢⎣⎦⎣⎭ ,综上所述,当9,4x ⎡⎫∈-+∞⎪⎢⎣⎭时,()34f x ≤恒成立,∴实数λ的最小值为94-.故答案为:94-.11.(01){1}⋃-,【分析】解出方程2450x x -+=,可得其对应的点,A B ,对于方程220x mx m ++=,讨论其∆,进一步分析计算即可.【详解】因为2450x x -+=的解为2i x ==±,设所对应的两点分别为,A B ,则(2),1A ,(21,)B -,设220x mx m ++=的解所对应的两点分别为C ,D ,记为(1C x ,12)(y D x ,,2)y ,当Δ0<,即01m <<时,因为,A B 关于x 轴对称,且C ,D ,关于x 轴对称,显然四点共圆;当0∆>,即1m >或0m <时,此时(1C x ,20),(D x ,0),且122x x m +=-,故此圆的圆心为(,0)m -,半径12||2x x r -==又圆心1O 到A 的距离1O A r ==,解得1m =-,综上:()0,1{1}m ∈⋃-,故答案为:()0,1{1}⋃-.12.2【分析】根据a t b -⋅ 的最小值可求出,a b 的夹角为60θ=︒,然后根据已知设(1,0)a = ,1(2b = ,(,)c x y = ,条件(2)()0c a c b -⋅-= 可转化为点(,)C x y 在一个圆上,而结论就是求这个圆的点到原点距离的最小值.【详解】向量,a b 夹角为θ,由题意2a tb - 的取值范围是3[,)4+∞,因为a t b -⋅≥ 222324a ta b t b -⋅+≥ ,即2312cos 4t t θ+-≥,得212cos 04t t θ-+≥,因为212cos 4t t θ-+的最小值为0,所以24cos 10θ∆=-=,解得1cos 2θ=±,因为θ为锐角,所以1cos 2θ=,所以60θ=︒,不妨设(1,0)a = ,13(,)22b = ,(,)c x y = ,1313(2)()(2,)(,)(2)()()02222c a c b x y x y x x y y -⋅-=-⋅--=--+-= ,整理得2253()()444x y -+=,因此点(,)C x y 在以5(4M它到原点距离的最小值为OM .即c r的最小值为732.故答案为:2【点睛】关键点点睛:本题考查平面向量数量积的应用,它把向量的数量积与平面上点与圆的位置关系联系在一起,是一道难题.解题的关键是首先对已知条件进行转化,如条件对t R ∈,a t b -⋅ 的取值范围是[,)2+∞,可转化为1cos 2θ=,这样向量,a b 的关系就确定了,下面为了已知(2)()0c a c b -⋅-=的明确化,设出向量坐标,从而由已知条件可得c 的坐标的关系,进而可求得答案,考查数学转化思想13.C【分析】根据线面垂直的性质判断A ;根据面面平行的概念判断B ;根据特例判断C ;根据线面平行,判断面面平行判断D.【详解】根据垂直于同一条直线的两个平面互相平行,可知A 正确;根据平行于同一个平面的两个平面互相平行,可知B 正确;根据墙角模型可知,垂直于同一个平面的两个平面未必平行,故C 错误;作l l '∥,且,l m '相交,则,l m '可确定平面γ,因为l l αα⇒' ,m α ,所以γα∥,同理γβ∥,故αβ∥,故D 正确.故选:C 14.C【分析】根据向量的模长关系以及共线,即可结合必要不充分条件进行判断.【详解】若a ∥b ,则则存在唯一的实数μ≠0,使得a b μ=,故a b b b b λμλμλ+=+=+,而()a b b b b λμλλμ+=+=+ ,存在λ使得λμλμ+=+成立,所以“a ∥b”是“存在0λ≠,使得a b a b λλ+=+ ”的充分条件,若0λ≠且a b a b λλ+=+ ,则a 与b λ 方向相同,故此时a ∥b,所以“a ∥b”是“存在0λ≠,使得”a b a b λλ+=+ 的必要条件,故a ∥b”是“存在0λ≠,使得|”a b a b λλ+=+ 的充分必要条件,故选:C 15.D【分析】根据正方体的性质判断A ,根据面面平行的性质得到四边形1MBND 是平行四边形,再由11A D BM ⊥,即可判断B ,当M 为1AA 的中点时N 为1CC 的中点,即可判断C ,建立空间直角坐标系,利用向量法说明D.【详解】对于A :在正方体1111ABCD A B C D -中1BB ⊥平面1111D C B A ,显然平面1MBND 与平面1111D C B A 不平行,故直线1BB 不可能垂直平面1MBND ,故A 错误;对于B :在正方体1111ABCD A B C D -中,M 是棱1AA 上一点,平面1MBD 与棱1CC 交于点N ,由平面11//BCC B 平面11ADD A ,并且1,,,B M N D 四点共面,平面11BCC B 平面1BND M BN =,平面11ADD A 平面11BND M MD =,∴1//MD BN ,同理可证1//ND MB ,故四边形1MBND 是平行四边形,在正方体1111ABCD A B C D -中,由几何知识得,11A D ⊥平面11ABB A ,∵BM ⊂平面11ABB A ,∴11A D BM ⊥,若1MBND 是正方形,有1MD BM ⊥,此时M 与1A 重合时,但显然四边形11A BCD 不是正方形,故B 错误;对于C :当M 为1AA 的中点时,N 为1CC 的中点,所以11//A M C N 且11=A M C N ,所以11A MNC 为平行四边形,所以11//A C NM ,11A C ⊄平面1MBND ,MN ⊂平面1MBND ,所以11//A C 平面1MBND ,故C 错误;对于D :设正方体边长为2,建立空间直角坐标系如下图所示,由几何知识得,()()()()()112,0,0,2,2,0,0,2,0,2,2,2,0,0,2A B C B D ,∴()()()112,2,2,2,2,0,0,2,2D B AC AB =-=-=,∵1110D B AC D B AB ⋅=⋅=,∴111,D B AC D B AB ⊥⊥,∵1AC AB A ⋂=,AC ⊂平面1ACB ,1AB ⊂平面1ACB ,∴1D B ⊥平面1ACB ,∵1D B ⊂平面1MBND ,∴任意平面1MBND 与平面1ACB 垂直,故D 正确.故选:D 16.A【分析】先明确函数在[]0,5π上对称轴的条数,再根据1239,,,,x x x x L 的对称性,和1238983π2222x x x x x +++++=,可求θ的值.【详解】由π2θπ2x k -=+⇒ππθ,Z 422k x k =++∈,为函数()f x 的对称轴.又函数()f x 的最小正周期为2ππ2T ==,且πθ0,2⎛⎤∈ ⎥⎝⎦,[]0,5πx ∈,所以当0k =时,可得函数()f x 的第一条对称轴为πθ42x =+,当9k =时,π9πθ19πθ5π42242x =++=+≤.所以函数()f x 在[]0,5π有9条对称轴.根据正弦函数的图象和性质可知,函数()()5sin 2θf x x =-与3y =的交点有9个,其横坐标分别为:1239,,,,x x x x L ,且1239x x x x <<<< ,且12,x x 关于πθ42x =+对称,所以12x x +=πθ242⎛⎫+ ⎪⎝⎭;23,x x 关于3πθ42x =+对称,所以23+=x x 3πθ242⎛⎫+ ⎪⎝⎭;……89,x x 关于17πθ42x =+对称,所以89x x +=17πθ242⎛⎫+⎪⎝⎭.所以12389222x x x x x +++++ 81π9θ2=+83π2=⇒πθ9=.故选:A【点睛】关键点点睛:本题的关键点就是方程()3f x =的根与对称轴的对称关系,利用对称关系和对称轴方程,表示出12389222x x x x x +++++ 即可求解.17.(1)4π(2)6π【分析】(1)由11//AD BC 得出1,AE BC 所成的角为1D AE ∠,利用余弦定理得出异面直线AE 与1BC 所成的角;(2)先证明1B C ⊥平面11ABC D ,从而得出CAO ∠为直线AC 与平面11ABC D 所成的角,再由直角三角形边角关系得出所求角.【详解】(1)11//AD BC ,1,AE BC ∴所成的角为1D AE∠连接1D E ,设2AB =,则2212222AD =+=,2221223AE =++=221215D E =+=,18952cos 22223D AE +-∠==⨯⨯ 异面直线夹角的范围为0,2π⎛⎤⎥⎝⎦,14D AE π∴∠=即异面直线AE 与1BC 所成的角为4π(2)连接1B C 交1BC 于点O ,连接AO四边形11BCC B 为正方形,11BC B C∴⊥又AB ⊥平面11BCC B ,1B C ⊂平面11BCC B 1BC AB ∴⊥1AB BC B =Q I 1B C ∴⊥平面11ABC D 即CAO ∠为直线AC 与平面11ABC D 所成的角设2AB =,则222222222,1216AC AO =+==++=63cos 222CAO ∴∠==又直线与平面所成角的范围为0,2π⎡⎤⎢⎥⎣⎦,6CAO π∴∠=即直线AC 与平面11ABC D 所成的角为6π18.(1)9m =-(2)25x y +=【分析】(1)由()()()3,1,1,1,,4OA OB OC m =-=-=,由,,A B C 三点共线,可得9m =-.(2)由()()()()4,2,,41,11,5,AB BC OC OB m m =-=-=--=-,()()(),,4,4CD OD OC x y m x m y =-=-=-- ,若四边形ABCD 为矩形,求解1,62x y =-=.即可得到结果.【详解】(1)因为()()()3,1,1,1,,4OA OB OC m =-=-=,所以()()()1,13,14,2AB OB OA =-=---=- ,()()(),43,13,3AC OC OA m m =-=--=+.又,,A B C 三点共线,所以ABAC ,所以()()43230m ⨯--+=,解得9m =-.(2)由()()()()4,2,,41,11,5,AB BC OC OB m m =-=-=--=-()()(),,4,4CD OD OC x y m x m y =-=-=--,若四边形ABCD 为矩形,则AB BC ⊥.即()41100AB BC m ⋅=--= ,解得72m =.由AB CD =- ,得74,242,x m x y ⎧-=-=-⎪⎨⎪-=⎩解得1,62x y =-=.所以25x y +=.19.(1)π6B =;【分析】(1)把给定等式切化弦,利用正弦定理边化角,再利用三角恒等变换求解作答.(2)根据给定条件,求出BD ,在ABC 和BDC 中分别利用正弦定理、余弦定理列式,求解作答.【详解】(1)在ABC中,由tan tan b A b B +=sin sin cos cos A B A B +=,由正弦定理得:sin()cos cos A B A B +=,而sin()sin(π)sin A B C C +=-=,即有sin cos cos C A B =,又()0,πC ∈,即sin 0C ≠,cos B B =,有tan B =,又(0,π)B ∈,所以π6B =.(2)因为D 是AC 边上的点,且33,AD DC A ABD ∠∠θ====,于是2,3,1,4BDC AD BD DC AC ∠θ=====,如图,在ABC 中,由正弦定理得:sin sin BC ACABCθ∠=,即4sin 8sin πsin 6BC θθ==,在BDC 中,由余弦定理得:2222cos2106cos2BC BD CD BD CD θθ=+-⋅=-,则有2264sin 106(12sin )θθ=--,整理得252sin 4θ=,解得:21sin 13θ=,而π(0,)2θ∈,所以13sin 13θ=.20.(1)证明见解析(2)1022+【分析】(1)由线面垂直得到AB CD ⊥,结合BC CD ⊥得到线面垂直,进而证明出线线垂直;(2)根据线线垂直、线面垂直以及面面垂直分析求解即可;(3)将平面ABC 与平面ACD 沿AC 展开成平面图形,则BD 即为所求,从而利用余弦定理求出答案即可.【详解】(1)因为AB ⊥平面BCD ,,,BC BD CD ⊂平面BCD ,则,,AB BC AB BD AB CD ⊥⊥⊥,又BC CD ⊥,AB BC B ⋂=,,AB BC ⊂平面ABC ,所以CD ⊥平面ABC ,因为AC ⊂平面ABC ,所以AC CD ⊥.(2)由(1)可知:,,AB BC AB BD AB CD ⊥⊥⊥,AC CD ⊥,且CD ⊥平面ABC ,BC ⊂平面ABC ,则CD BC ⊥,且其余各棱均不垂直,可得15a =;由AB ⊥平面BCD ,且AB ⊂平面ABC ,AB ⊂平面ABD ,可得平面ABC ⊥平面BCD ,平面ABD ⊥平面BCD ,同理:由CD ⊥平面ABC 可得:平面ACD ⊥平面ABC ,且其余各面均不垂直,可得23a =;由AB ⊥平面BCD ,CD ⊥平面ABC ,且其余各线面均不垂直,可得32a =;综上所述:12310a a a ++=.(3)将平面ABC 与平面ACD 沿AC 展开成如图2所示的平面图形,连接BD ,所以彩带的最小长度为图2平面图中BD 的长,.由(1)知=90ACD ∠︒,在图1中,因为AB ⊥平面BCD ,BC ⊂平面BCD ,所以AB BC ⊥,又因为1AB BC CD ===,所以45ACB ∠=︒,故在图2中,135BCD ∠=︒,所以在图2中,在BCD △中,由余弦定理得BD ===21.(1)()f x 与()g x 具有关系()2M -,理由见解析(2)25,48k ⎡⎤∈-⎢⎥⎣⎦;(3)不具有关系()4M ,理由见解析【分析】(1)根据三角函数的性质可得()ππ22f g ⎛⎫-=- ⎪⎝⎭,结合新定义即可下结论;(2)根据三角函数与二次函数的性质可得()[]2,2f x ∈-、()92,8g x ⎡⎤∈-⎢⎥⎣⎦,则()()1225,48f x g x ⎡⎤-∈-⎡⎤⎣⎦⎢⎥⎣⎦,结合新定义即可求解;(3)根据函数的对称性和周期性求出()h x 、sin 2πx 、cos 2πx 的值域.当()11h x =、1sin 2π1x =时,有()()111sin 2π2f x x h x =+=;当()21h x =-、2cos 2π1x =时,有()()222cos 2π2g x h x x =-=-,进而()()1122sin 2πcos 2π4x h x x h x ++-<,结合新定义即可下结论.【详解】(1)()f x 与()g x 具有关系()2M -,理由如下:当[]0,πx ∈时,()[]cos 1,1f x x =∈-,()[]sin 0,1g x x =∈,当1πx =,()()π1f x f ==-,当2π2x =时,()π12g x g ⎛⎫== ⎪⎝⎭,此时()ππ22f g ⎛⎫-=- ⎪⎝⎭,则()f x 与()g x 具有关系()2M -;(2)()[]2sin 2,2f x x =∈-,()222192cos sin 1cos 2sin 12sin sin 2sin 48g x x x x x x x x ⎛⎫=+-=+=-+=--+ ⎪⎝⎭,因为[]sin 1,1x ∈-,则当sin 1x =-时,21921248⎛⎫---+=- ⎪⎝⎭,则()92,8g x ⎡⎤∈-⎢⎣⎦,所以()()1225,48f x g x ⎡⎤-∈-⎡⎤⎣⎦⎢⎥⎣⎦,则25,48k ⎡⎤∈-⎢⎥⎣⎦;(3)不具有()4M 关系,理由如下:因为在[]0,2a 上,当且仅当2ax =时,()h x 取得最大值1;又()f x 为定义在R 上的奇函数,故在[]2,0a -上,当且仅当2ax =-时,()f x 取得最小值-1,由对任意x ∈R ,有()()0h a x h a x ++-=,所以()y f x =关于点(),0a 对称,又()()()h a x h a x h x a +-==--,所以()h x 的周期为2a ,故()h x 的值域为[]1,1-,[]sin 2π1,1x ∈-,[]cos 2π1,1x ∈-,当()11h x =时,122a x n =+,Z n ∈;1sin 2π1x =时,114x k =+,Z k ∈,若1224a na k +=+,则4182k a n +=+,,Z k n ∈,此时有()()111sin 2π2f x x h x =+=;当()21h x =-时,222a x ma =-+,m ∈Z ;2cos 2π1x =时,2x t =,Z t ∈,若22a ma t -+=,则241t a m =-,,Z t m ∈时,有()()222cos 2π2g x h x x =-=-;由于4128241k t a n m +=≠+-,所以()()1122sin 2πcos 2π4x h x x h x ++-<,故不存在1R x ∈,2R x ∈,使得()()1222sin 2πcos 2π4x f x x f x ++-=,所以()()sin 2πf x x h x =+与()()cos 2πg x h x x =-不具有关系()4M .【点睛】方法点睛:学生在理解相关新概念、新法则(公式)之后,运用学过的知识,结合已掌握的技能,通过推理、运算等解决问题.在新环境下研究“旧”性质.主要是将新性质应用在“旧”性质上,创造性地证明更新的性质,落脚点仍然是三角函数的图象与性质.。
2023年7月浙江省普通高中学业水平考试数学试题含答案
2023年7月浙江省普通高中学业水平考试数学(答案在最后)本试题卷分选择题和非选择题两部分,共4页,满分100分,考试时间80分钟.考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上.2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效.3.非选择题的答案必须使用黑色字迹的签字笔或钢笔写在答题纸上相应区域内,作图时可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑.选择题部分(共52分)一、单项选择题(本大题共12小题,每小题3分,共36分.每小题列出的四个备选项中,只有一个是符合题目要求的,不选、多选、错选均不得分)1.已知集合{}1,0,1,2A =-,{}|0B x x =>,则下列结论不正确的是()A.1A B ∈ B.A B∅⊆ C.{}2A B ⊆ D.{}|0x x A B>= 【答案】D 【解析】【分析】根据交集、并集的定义求出A B ⋂,A B ⋃,再根据元素与集合的关系、集合与集合的关系判断即可.【详解】因为{}1,0,1,2A =-,{}0B x x =,所以{}1,2⋂=A B ,{}{}|01A B x x ⋃=≥⋃-,所以1A B ∈ ,A B ∅⊆ ,{}2A B ⊆⋂,故A 、B 、C 正确,D 错误;故选:D 2.函数的定义域是()A.1-2⎛⎫∞ ⎪⎝⎭, B.1-2⎛⎤∞ ⎥⎝⎦,C.12⎛⎫+∞ ⎪⎝⎭,D.12⎡⎫+∞⎪⎢⎣⎭,【答案】C 【解析】【分析】根据偶次方根的被开方数为非负数、分式的分母不为零列不等式,由此求得函数的定义域.【详解】依题意210x ->,解得12x >,所以()f x 的定义域为12⎛⎫+∞ ⎪⎝⎭,.故选:C【点睛】本小题主要考查函数定义域的求法,属于基础题.3.复数()i 2i z =+在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B 【解析】【分析】根据复数乘法运算化简,即可求解.【详解】()1i i 22i z =-+=+,故对应的点为()1,2-,位于第二象限,故选:B4.已知平面向量()1,1a =- ,()2,b λ= ,若a b ⊥,则实数λ=()A.2B.2- C.1D.1-【答案】A 【解析】【分析】依题意可得0a b ⋅=,根据数量积坐标表示计算可得.【详解】因为()1,1a =- ,()2,b λ= 且a b ⊥,所以()1210a b λ⋅=⨯+-⨯=,解得2λ=.故选:A 5.已知πsin cos 6θθ⎛⎫+= ⎪⎝⎭,则tan2θ=()A.3B.C.3D.【答案】B【解析】【分析】利用给定条件得到tan 3θ=,再利用二倍角公式求解即可.【详解】若πsin cos 6θθ⎛⎫+= ⎪⎝⎭,可得1sin cos cos 22θθθ+=,化简得31sin cos 022θθ-=,解得3tan 3θ=,由二倍角公式得232322tan 33tan221tan 3θθθ⨯===-,故B 正确.故选:B6.上、下底面圆的半径分别为r 、2r ,高为3r 的圆台的体积为()A.37πrB.321πrC.(35πr+D.(35πr+【答案】A 【解析】【分析】根据圆台的体积公式计算可得.【详解】因为圆台的上、下底面圆的半径分别为r 、2r ,高为3r ,所以()23221π227π33V r r r r r ⎡⎤=++⨯=⎣⎦.故选:A7.从集合{}1,2,3,4,5中任取两个数,则这两个数的和不小于5的概率是()A.35B.710C.45 D.910【答案】C 【解析】【分析】列出所有可能结果,再由古典概型的概率公式计算可得.【详解】从集合{}1,2,3,4,5中任取两个数所有可能结果有()1,2、()1,3、()1,4、()1,5、()2,3、()2,4、()2,5、()3,4、()3,5、()4,5共10个,其中满足两个数的和不小于5的有()1,4、()1,5、()2,3、()2,4、()2,5、()3,4、()3,5、()4,5共8个,所以这两个数的和不小于5的概率84105P ==.故选:C8.大西洋鲑鱼每年都要逆游而上,游回产地产卵.研究鲑鱼的科学家发现鲑鱼的游速v (单位:m /s )可以表示为3log 100Ov k =,其中O 表示鲑鱼的耗氧量的单位数.若一条鲑鱼游速为2m /s 时耗氧量的单位数为8100,则游速为1m /s 的鲑鱼耗氧量是静止状态下鲑鱼耗氧量的()A.3倍 B.6倍C.9倍D.12倍【答案】C 【解析】【分析】利用给定条件得到31log 2100O v =,再算出不同情况的消耗氧气的数量,再作比值求倍数即可.【详解】由题意得381002log 100k =,解得12k =,故31log 2100O v =,当1v =时,有311log 2100O=,解得900O =,当0v =时,有310log 2100O=,解得100O =,故得9009100=倍,故C 正确.故选:C9.不等式()()e e 10xx --<(其中e 为自然对数的底数)的解集是()A.{01}xx <<∣ B.{|0e}x x << C.{0x x <∣或1}x > D.{0xx <∣或e}x >【答案】B 【解析】【分析】写出不等式的等价不等式组,解得即可.【详解】不等式()()e e 10xx --<等价于e 0e 10x x -<⎧⎨->⎩或e 0e 10x x ->⎧⎨-<⎩,解得0e x <<或x ∈∅,所以不等式的解集为{|0e}x x <<.故选:B10.已知a 为实数,则“0x ∀>,12ax x+≥”是“1a ≥”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C 【解析】【分析】利用分离参数法求出a 的取值范围判断充分性,利用基本不等式反推必要性成立即可.【详解】若10,2,x ax x ∀>+≥则22121(1)1,a x x x≥-+=--+当1x =时,不等式的右边取得最大值1,故1,a ≥充分性成立;若1,a ≥则0x >时,12,ax x+≥≥当且仅当1x a ==时取等,即12ax x +≥恒成立,因此,由 1 a ≥可以推出0,x ">1 2ax x+≥,故必要性成立.综上所述,10,2x ax x∀>+≥是 1 a ≥的充要条件.故选:C.11.若函数()()πsin 06f x x ωω⎛⎫=+> ⎪⎝⎭在区间ππ,126⎡⎤-⎢⎥⎣⎦上单调递增,则ω的取值范围是()A.(]0,2 B.(]0,4 C.(]0,6 D.(]0,8【答案】A 【解析】【分析】利用给定的区间,求出π6x ω+的范围,然后写出正弦函数的单调递增区间,转化为子集问题处理即可.【详解】当ππ[,]126x ∈-时,πππππ[,+]661266x ωωω+∈-,若函数π()sin(0)6f x x ωω=+>在区间ππ[,]126-上单调递增,则πππ2π662πππ2π2612k k ωω⎧+≤+⎪⎪⎨⎪-+≤-⎪⎩,Z k ∈,解得212,824,Z k k k ωω≤+≤-∈,又0ω>,当0k =时,可得02ω<≤.故选:A.12.在正三棱台111ABC A B C -中,2AB =,11AB A B >,侧棱1AA 与底面ABC所成角的余弦值为3.若此三棱台存在内切球(球与棱台各面均相切),则此棱台的表面积是()A.2B.2C.4D.4【答案】A 【解析】【分析】取BC 和11B C 的中点分别为P ,Q ,上、下底面的中心分别为1O ,2O ,设11A B x =,内切球半径为r ,根据题意求出侧棱长以及2O P ,1O Q ,再根据切线的性质及等腰梯形11BB C C 和梯形1AA QP 的几何特点列方程组求出半径,再根据面积计算公式即可.【详解】如图,取BC 和11B C 的中点分别为P ,Q ,上、下底面的中心分别为1O ,2O ,设11A B x =,内切球半径为r ,因为123cos 3A AO ∠=,棱台的高为2r ,所以126sin 3A AO ∠=,111122sin 63r AA BB CC A AO =====∠,211333323O P AP AB ==⨯=,同理136O Q x =.因为内切球与平面11BCC B 相切,切点在PQ 上,所以()21326PQ O P O Q x =+=+①,在等腰梯形11BB C C中,)22222x PQ -⎛⎫=- ⎪⎝⎭②,由①②得()222226212x x r +-⎛⎫-=⎪⎝⎭.在梯形1AA QP 中,()22233236PQ r x ⎛⎫=+- ⎪ ⎪⎝⎭③,由②③得2x -=,代入得1x =,则棱台的高23h r ==,所以()2133262PQ O P O Q x =+=+=,所以1sin 2ABC S AB AC A =⋅=△111111111sin 24A B C S A B A C A =⋅= ,()1111124BCB C S BC B C PQ =+=正三棱台三个侧面都是面积相等的等腰梯形,故侧面积为4,所以此棱台的表面积是442S =++=.故选:A二、多项选择题(本大题共4小题,每小题4分,共16分.每小题列出的四个备选项中,有多个是符合题目要求的,全部选对得4分,部分选对且没有错选得2分,不选、错选得0分)13.下列不等式正确的是()A.4> B.4< C.24log 3log 5> D.24log 3log 5<【答案】BC 【解析】【分析】根据指数幂的运算及指数函数的性质判断A 、B ,根据对数的运算性质及对于函数的性质判断C 、D.【详解】414142222224⨯==⎭==⎛⎫< ⎪⎝A 错误,B 正确;2421log 5log 5log log 32==<,故C 正确,D 错误.故选:BC14.如图,在正方体1111ABCD A B C D -中,下列结论正确的是()A.11//BC A DB.1//BC 平面11A ADDC.111BC B D ⊥D.1BC ⊥平面11A B CD【答案】BD 【解析】【分析】连接1AD ,1A D ,11B D ,1AB ,1B C ,根据正方体的性质得到11//BC AD ,即可判断A 、B 、C ,证明11BC B C ⊥、1CD BC ⊥,即可判断D.【详解】连接1AD ,1A D ,11B D ,1AB ,1B C ,对于A :在正方体中11//AB D C 且11AB D C =,所以四边形11ABC D 为平行四边形,所以11//BC AD ,又11A D AD ⊥,所以11BC A D ⊥,所以A 错误;对于B ,因为11//BC AD ,1AD ⊂平面11A ADD ,1BC ⊄平面11A ADD ,所以1//BC 平面11A ADD ,所以B 正确;对于C :因为11AB D 为等边三角形,所以1160AD B ∠=︒,又11//BC AD ,所以11AD B ∠为异面直线1BC 与11B D 所成的角,即直线1BC 与11B D 所成的角为60︒,则1BC 与11B D 不垂直,所以C 错误;对于D :在正方体中,11BC B C ⊥,CD ⊥平面11BCC B ,1BC ⊂平面11BCC B ,所以1CD BC ⊥,又1CD B C C ⋂=,1,CD B C ⊂平面11A B CD ,所以1BC ⊥平面11A B CD ,所以D 正确.故选:BD .15.已知函数()2sin cos2f x x x =+,则()A.()f x 的最小值是3-B.()f x 5C.()f x 在区间π,06⎛⎫- ⎪⎝⎭内存在零点 D.()f x 在区间π,π2⎛⎫⎪⎝⎭内不存在零点【答案】ACD 【解析】【分析】利用三角恒等变换将函数化为二次函数,求解最值判断A ,B ,利用换元法求解零点,再判断范围求解C ,D 即可.【详解】易得2213()2sin cos 22sin 12sin 2(sin )22f x x x x x x =+=+-=--+,故函数()f x 在1sin 2x =时,取得的最大值为32,当sin 1x =-时,函数取得的最小值为3-,故A 正确,B 错误,令[]sin 1,1x t =∈-,故2()212f t t t =+-,令()0f t =,解得11322t =+或21322t =-,当113122t =+>时,排除,无法解出x ,当21322t =-时,可得13sin 22x =-,而sin y x =在π(,0)6-上单调递增,故当π(,0)6x ∈-,1sin ,02x ⎛⎫∈- ⎪⎝⎭,且1130222-<-<,则()f x 在区间π,06⎛⎫-⎪⎝⎭内存在零点,故C 正确,而当π,π2x ⎛⎫∈⎪⎝⎭时,sin 0y x =>,1022y =-<,显然sin y x =和122y =-无交点,则()f x 在区间π,π2⎛⎫⎪⎝⎭内不存在零点,故D 正确.故选:ACD.16.在ABC 中,3AB =,1AC =,π3BAC ∠=,点D ,M 分别满足3AB AD = ,2BC MC = ,AM 与CD 相交于点F ,则()A.1233CD AB AC=- B.12AF AM=C.132AM =D.13cos 13DFM ∠=【答案】BCD 【解析】【分析】根据平面向量线性运算法则判断A ,设AF AM λ=,用AD 、AC 表示AF ,根据共线定理的推论得到方程求出λ,即可判断B ,由1122AM AB AC =+及数量积的运算判断C ,求出cos ,CD AM ,即可判断D.【详解】对于A ,13CD AD AC AB AC =-=-,故A 错误;对于B ,设AF AM λ=,又1122AM AB AC =+ ,∴1132222AF AB AC AD AC λλλλ=+=+,又F ,D ,C 三点共线,∴3122λλ+=,12λ∴=,∴12AF AM = ,故B 正确;对于C ,1122AM AB AC =+,∴()()222211244AM AB ACAB AB AC AC =+=+⋅+111391231424⎛⎫=⨯++⨯⨯⨯= ⎪⎝⎭,2AM ∴= ,故C 正确;对于D , 111322CD AM AB AC AB AC ⎛⎫⎛⎫⋅=-⋅+ ⎪ ⎪⎝⎭⎝⎭222211111111331163263222AB AB AC AC =-⋅-=⨯-⨯⨯⨯-⨯= ,又222211212191311393932CD AB AC AB AB AC AC ⎛⎫=-=-⋅+=⨯+-⨯⨯⨯= ⎪⎝⎭,∴1CD =,又2AM =,12cos cos ,13132CD AM DFM CD AM CD AM⋅∴∠===⋅ ,故D 正确.故选:BCD.非选择题部分(共48分)三、填空题(本大题共4小题,每空3分,共15分)17.已知A ,B 是相互独立事件,()23P A =,()12P B =,则()P AB =_____________.【答案】13【解析】【分析】根据相互独立事件的概率公式计算即可.【详解】因为A ,B 是相互独立事件,所以()()()211323P AB P A P B ==⨯=.故答案为:1318.函数2()log f x x =的反函数为_______.【答案】2xy =【解析】【分析】设2log y x =,由指对数式的互化得到2y x =,再将,x y 位置互换即可得出答案.【详解】解:设2log y x =,则2y x =,所以函数2()log f x x =的反函数为2x y =.故答案为:2x y =.19.已知()f x 是定义域为R 的偶函数,且()()24f x f x +-=,则()2023f =_____________.【答案】2【解析】【分析】利用给定条件,得到函数的周期性,将所求函数值化为已知函数值,代入求解即可.【详解】由题意得()f x 是定义域为R 的偶函数,且()()24f x f x +-=,故()()()224f x f x f x -=-=-,可得()()442()f x f x f x -=--=,故得函数的周期4T =,而令1x =,可得()214f =,解得()12f =,则()()()()()2023450533211f f f f f =⨯+==-==.故答案为:220.已知,,a b c 是同一平面上的3个向量,满足3a =,b = ,6a b ⋅=- ,则向量a 与b 的夹角为_____________,若向量c a - 与c b - 的夹角为π4,则c r 的最大值为_____________.【答案】①.3π4##135︒②.【解析】【分析】由cos ,a b a b a b⋅=⋅ 求出向量a 与b 的夹角,设OA a = ,OB b = ,OC c = ,即可得到,,,O A B C 四点共圆,利用正弦定理求出AOB 外接圆的直径,即可求出c的最大值.【详解】因为3a =,b = ,6a b ⋅=- ,所以cos ,2a b a b a b ⋅===-⋅ ,又[],0,πa b ∈ ,所以3π,4a b = ,因为3a =,b = ,3π,4a b = ,如图,设OA a = ,OB b = ,OC c = ,则c a OC OA AC -=-= ,c b OC OB BC -=-= ,又向量c a - 与c b - 的夹角为π4,则π4ACB ∠=,又3π4AOB ∠=,所以,,,O A B C 四点共圆,又AB b a =- ,所以AB == 设AOB 外接圆的半径为R ,由正弦定理23πsin 42AB R ===c故答案为:3π4四、解答题(本大题共3小题,共33分)21.人工智能发展迅猛,在各个行业都有应用.某地图软件接入了大语言模型后,可以为用户提供更个性化的服务,某用户提出:“请统计我早上开车从家到公司的红灯等待时间,并形成统计表.”地图软件就将他最近100次从家到公司的导航过程中的红灯等待时间详细统计出来,将数据分成了[)55,65,[)65,75,[)75,85,[)85,95,[]95,105(单位:秒)这5组,并整理得到频率分布直方图,如图所示.(1)求图中a 的值并且估计该用户红灯等待时间的第60百分位数(结果精确到0.1);(2)根据以上数据,估计该用户在接下来的10次早上从家到公司的出行中,红灯等待时间低于85秒的次数.【答案】(1)0.035a =,估计该用户红灯等待时间的第60百分位数约为82.1(2)7次【解析】【分析】(1)根据频率之和为1以及直方图数据即可求解,先确认频率分布直方图中频率为0.6的位置,再结合百分位数定义求解即可.(2)根据频率分布直方图求出红灯等待时间低于85秒的频率即可求解.【小问1详解】因为各组频率之和为1,组距为10,所以()100.010.0250.020.011a ⨯++++=,解得0.035a =.因为()100.010.0250.350.6⨯+=<,()100.010.0250.0350.70.6⨯++=>,所以中位数位于第三组[)75,85中,设中位数为x ,则()0.10.250.035750.6x ++-=,解得0.257582.10.035x =+≈,所以该用户红灯等待时间的中位数的估计值为82.1.【小问2详解】由题红灯等待时间低于85秒的频率为0.10.250.350.7++=,故估计该用户在接下来的10次中红灯等待时间低于85秒的次数为100.77⨯=次.22.如图,在三棱锥-P ABC 中,PA ⊥平面ABC ,AC BC ⊥,1PA AC ==,BC =(1)求三棱锥-P ABC 的体积;(2)求证:平面PAC ⊥平面PBC ;(3)设点D 在棱PB 上,AD CD =,求二面角D AC B --的正弦值.【答案】(1)6(2)证明见解析(3)3【解析】【分析】(1)先求出底面积,再利用体积公式求解体积即可.(2)先利用线面垂直判定定理得到BC ⊥平面PAC ,再利用面面垂直定理判定面面垂直即可.(3)合理作图,找到二面角的平面角,利用三角函数的定义求解即可.【小问1详解】因为,1,AC BC AC BC ⊥==,所以111222ABC S AC BC =⋅=⨯= ,因为PA ⊥平面ABC ,所以三棱锥-P ABC 的体积11326V =⨯⨯=.【小问2详解】因为PA ⊥平面ABC ,BC ⊂平面PBC ,所以PA BC ⊥,又,,AC BC PA AC A ⊥⋂=,PA AC ⊂平面PAC ,所以BC ⊥平面PAC ,因为BC ⊂平面PBC ,所以平面PAC ⊥平面PBC .【小问3详解】过点D 作DE AB ⊥于E ,取AC 的中点F ,连接,EF 因为PA ⊥平面,ABC PA ⊂平面,PAB 所以平面PAB ⊥平面ABC ,又平面PAB ⋂平面,ABC AB DE =⊂平面,PAB 所以DE ⊥平面,ABC DE ∥PA ,因为,AD CD =且F 是AC 的中点,所以,,,DF AC AC DE DF DE D AC ⊥⊥⋂=⊥平面DEF ,,EF AC ⊥所以DFE ∠是二面角——D AC B 的平面角,因为,,EF AC AC BC F ⊥⊥是AC 的中点,所以E 是AB 的中点,又DE //PA ,所以D 是PB 的中点,在Rt DEF △中,32DF ===,所以12sin 332DE DFE DF ∠==即二面角——D AC B的正弦值为3.23.已知函数()2π2sin 2f x x x a x ⎛⎫=-- ⎪⎝⎭,R a ∈.(1)若1a =,求()f x 在区间[]0,1上的最大值;(2)若关于x 的方程()10f x a ++=有且只有三个实数根1x ,2x ,3x ,且123x x x <<.证明:(ⅰ)1322x x x +=;(ⅱ)()()311217818f x f x x +-+≤.【答案】(1)0(2)(ⅰ)证明见解析.(ⅱ)证明见解析【解析】【分析】(1)利用分析法得到函数的单调性,再求解最值即可.(2)(ⅰ)合理构造新函数,求出一个零点,再结合对称性求解即可.(ⅱ)将目标式合理表示为函数,利用不等式的性质证明即可.【小问1详解】由已知得1a =,则2π()(1)sin()12f x x x =---,易知2(1)y x =-,πsin()2y x =-在区间[0,1]上单调递减,所以()f x 在区间[0,1]上单调递减,所以max ()(0)0.f x f ==【小问2详解】(ⅰ)若2π()(1)sin()1,2f x x a x =---且()10,f x a ++=即2π(1)(sin()1)02x a x ---=有且只有三个实数根,所以0,a <令2π()(1)(sin()1),2g x x a x =---且(1)0g =,则()g x 的图象关于直线1x =对称,所以1322 2.x x x +==(ⅱ)由题意可知,令3πsin 2t x =,则有1()10,f x a ++=()310f x a ++=()()()()2311333217841cos π8271f x f x x x a x x a +-+=--+-++()()233342cos π1571x x a x a =--+++2233ππ4(sin 1)722(12sin )(242)1822a x a a a a x a t t =--++--=+++,因为0,a <所以2(242)1818a t t +++≤,即311(21)7()818f x f x x +-+≤得证.【点睛】关键点点睛:本题考查导数,解题关键是合理表示出目标式,然后结合不等式的性质,得到所要求的不等关系即可.。
2024届山东省实验中学高三上学期第三次诊断考试数学及答案
山东省实验中学2024届高三第三次诊断考试数学试题注意事项:1.答卷前,先将自己的考生号等信息填写在试卷和答题纸上,并在答题纸规定位置贴条形2.本试卷满分150分,分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷为第1页至第3页,第Ⅱ卷为第3页至第4页.3.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.4.非选择题的作答:用0.m 加黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.第Ⅰ卷(共60分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}220M x x x =--<,{210}N x x =∈+>Z ,则M N ⋂=()A. 13,22⎛⎤-⎥⎝⎦ B. 1,12⎛⎤-⎥⎝⎦C. {0,1,2}D. {0,1}2. 已知复数z 满足()12i 32i z +=-,则复数z 的实部为( )A.85B. 85-C.15D. 15-3. 数列{}n a 满足21n n a a +=,*n ∈N ,则“12a =”是“{}n a 为单调递增数列”( )A 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4. 把一个正方体各面上均涂上颜色,并将各棱三等分,然后沿等分线把正方体切开.若从所得小正方体中任取一个,恰好抽到2个面有颜色的小正方体的概率为( )A.29B.827C.49D.125. 如图在正方体1111ABCD A B C D -中,点O 为线段BD 的中点. 设点P 在线段1CC 上,直线OP 与平面1A BD 所成的角为α,则sin α的取值范围是的.的A.B.C.D. 6. 如图,1F 、2F 是双曲线C :()222210,0x y a b a b-=>>的左、右焦点,过2F 的直线与双曲线C 交于A 、B 两点.若A 是2BF 中点且12BF BF ⊥则该双曲线的渐近线方程为( )A. y =±B. y =±C. y =D. y =7. 已知函数()()3222,1131122,1326ax x f x x ax a x x -≤⎧⎪=⎨-++->⎪⎩,若对任意12x x <都有()()121222f x f x x x -<-,则实数a 的取值范围是( )A. (),2-∞- B. [)1,+∞ C. 12,2⎛⎤- ⎥⎝⎦D.3,4⎛⎤-∞-⎥⎝⎦8. 棱长为2的正四面体内切一球,然后在正四面体和该球形成的空隙处各放入一个小球,则这些小球的最大半径为()A.B.C.D.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 一组数据1220231232023(),,,a a a a a a a ⋯<<<⋯<,记其中位数为k ,均值为m ,标准差为1s ,由其得到新数据123202321,21,21,,21a a a a +++⋯+的标准差为2s ,下列结论正确的是( )A. 1012k a = B. 10111012a m a << C. m k≥ D. 212s s =10. 已知函数()()12πsin 0,,,2f x x x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭为()f x 的两个极值点,且12x x -的最小值为π2,直线π3x =为()f x 图象的一条对称轴,将()f x 的图象向右平移π12个单位长度后得到函数()g x 的图象,下列结论正确的是( )A 4ω= B.π6ϕ=-C. ()f x 在间π,06⎡⎤-⎢⎥⎣⎦上单调递增D. ()g x 图象关于点π,06⎛⎫⎪⎝⎭对称11. 已知函数()()2sin π,0212,22x x f x f x x ≤≤⎧⎪=⎨->⎪⎩,下列说正确的是( )A. 当[]()*2,22x n n n ∈+∈N 时,()()1sin π22nf x x n =-B. 函数()f x 在()*12,22n n n ⎡⎤+∈⎢⎥⎣⎦N 上单调递增C. 方程()()lg 2f x x =+有4个相异实根D. 若关于x 的不等式()()2f x k x ≤-在[]2,4恒成立,则1k ≥12. 圆柱1OO 高为1,下底面圆O 的直径AB 长为2,1BB 是圆柱1OO 的一条母线,点,P Q 分别在上、下底面内(包含边界),下列说法正确的有( ).A. 若+=PA PB 3,则P 点的轨迹为圆B. 若直线OP 与直线1OB 成45︒,则P 的轨迹是抛物线的一部分C. 存在唯一一组点,P Q ,使得AP PQ⊥.的D. 1AP PQ QB ++的取值范围是第Ⅱ卷(共90分)三、填空题:本题共4小题,每小题5分,共20分.13. 已知点()1,1A -,()3,B y ,向量()1,2a = ,若AB 与a成锐角,则y 的取值范围为________.14. 如果圆台的上底面半径为5,下底面半径为R ,中截面(与上、下底面平行且等距的平面)把圆台分为上、下两个部分,其侧面积的比为1:2,则R =_______.15. 若关于x 的不等式()221e xx ax ≥+在()0,∞+恒成立,则实数a 的取值范围是______.16. 已知椭圆()2222:10x y C a b a b+=>>,过C 中心的直线交C 于M ,N 两点,点P 在x 轴上其横坐标是点M 横坐标的3倍,直线NP 交C 于点Q ,若直线QM 恰好是以MN 为直径的圆的切线,则C 的离心率为_________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知()()()sin sin sin sin C B c b a A B +-=-.(1)求角C 的大小(2)若ACB ∠的平分线交AB 于点D ,且2CD =,2AD DB =,求ABC 的面积.18. 如图,三棱锥–S ABC 的底面ABC 和侧面SBC 都是等边三角形,且平面SBC ⊥平面ABC ,点P 在侧棱SA 上.(1)当P 为侧棱SA 的中点时,求证:SA ⊥平面PBC ;(2)若二面角P BC A ––的大小为60°,求PASA的值.19. 已知在数列{}n a 中,()()*11211,n n n a a a n n++==⋅∈N (1)求数列{}n a 的通项公式;(2)若数列{}n b 的通项公式nn a b n=在k b 和1k b +之间插入k 个数,使这2k +个数组成等差数列,将插入的k 个数之和记为k c ,其中1k =,2,…,n ,求数列{}n c 的前n 项和.20. 某中学有A ,B 两个餐厅为老师与学生们提供午餐与晚餐服务,王同学、张老师两人每天午餐和晚餐都在学校就餐,近一个月(30天)选择餐厅就餐情况统计如下:选择餐厅情况(午餐,晚餐)(),A A (),A B (),B A (),B B 王同学9天6天12天3天张老师6天6天6天12天假设王同学、张老师选择餐厅相互独立,用频率估计概率.(1)估计一天中王同学午餐和晚餐选择不同餐厅就餐的概率;(2)记X 为王同学、张老师在一天中就餐餐厅的个数,求X 的分布列和数学期望()E X ;(3)假设M 表示事件“A 餐厅推出优惠套餐”,N 表示事件“某学生去A 餐厅就餐”,()0P M >,已知推出优惠套餐的情况下学生去该餐厅就餐的概率会比不推出优惠套餐的情况下去该餐厅就餐的概率要大,证明.()()РP M N M N >.21. 已知函数()ln f x x =,()xg x e =.(1)若函数()()11x x f x x ϕ+=--,求函数()x ϕ的单调区间;(2)设直线l 为函数()f x 的图象上一点()()00,A x f x 处的切线.证明:在区间()1,+∞上存在唯一的0x ,使得直线l 与曲线()y g x =相切.22. 已知动圆过点(0,1)F ,且与直线:1l y =-相切,设动圆圆心D 的轨迹为曲线C .(1)求曲线C 的方程;(2)过l 上一点P 作曲线C 的两条切线,PA PB ,,A B 为切点,,PA PB 与x 轴分别交于M ,N 两点.记AFM △,PMN ,BFN 的面积分别为1S 、2S 、3S .(ⅰ)证明:四边形FNPM 为平行四边形;(ⅱ)求2213S S S 的值.山东省实验中学2024届高三第三次诊断考试数学试题注意事项:1.答卷前,先将自己的考生号等信息填写在试卷和答题纸上,并在答题纸规定位置贴条形2.本试卷满分150分,分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷为第1页至第3页,第Ⅱ卷为第3页至第4页.3.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.4.非选择题的作答:用0.m 加黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.第Ⅰ卷(共60分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}220M x x x =--<,{210}N x x =∈+>Z ,则M N ⋂=()A. 13,22⎛⎤-⎥⎝⎦ B. 1,12⎛⎤-⎥⎝⎦C. {0,1,2}D. {0,1}【答案】D 【解析】【分析】化简集合M,N ,根据交集运算得解.【详解】因为{}220{12}M x x x x x =--<=-<<,12N x x ⎧⎫=∈>-⎨⎬⎩⎭Z ,所以{0,1}M N ⋂=.故选:D .2. 已知复数z 满足()12i 32i z +=-,则复数z 的实部为( )A.85B. 85-C.15D. 15-【答案】D 【解析】【分析】根据复数的除法运算求出复数z ,即可得答案.【详解】由()12i 32i z +=-可得()32i (12i)32i 18i 18i 12i 5555z -----====--+,故复数z 的实部为15-,故选:D3. 数列{}n a 满足21n n a a +=,*n ∈N ,则“12a =”是“{}n a 为单调递增数列”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A 【解析】【分析】利用充分条件和必要条件的定义判断.【详解】解:由()2110n n n n n n a a a a a a +-=-=->,解得0n a <或1n a >,所以“12a =”是“{}n a 为单调递增数列”的充分不必要条件,故选:A4. 把一个正方体各面上均涂上颜色,并将各棱三等分,然后沿等分线把正方体切开.若从所得的小正方体中任取一个,恰好抽到2个面有颜色的小正方体的概率为( )A.29B.827C.49D.12【答案】C 【解析】【分析】根据古典概型概率计算公式求得正确答案.【详解】一共有33327⨯⨯=个小正方体,其中2个面有颜色的小正方体有12个,(每条棱上有1个)所以恰好抽到2个面有颜色小正方体的概率为124279=.故选:C5. 如图在正方体1111ABCD A B C D -中,点O 为线段BD 的中点. 设点P 在线段1CC 上,直线OP 与平面1A BD 所成的角为α,则sin α的取值范围是的A.B.C.D.【答案】B 【解析】【详解】设正方体的棱长为1,则11111AC AC AO OC OC======所以11111cos,sin3A OC A OC∠==∠=11cos A OC A OC∠==∠=又直线与平面所成的角小于等于90 ,而1A OC∠为钝角,所以sinα的范围为,选B.【考点定位】空间直线与平面所成的角.6. 如图,1F、2F是双曲线C:()222210,0x ya ba b-=>>的左、右焦点,过2F的直线与双曲线C交于A、B两点.若A是2BF中点且12BF BF⊥则该双曲线的渐近线方程为()A. y=±B. y=±C. y =D. y =【答案】A 【解析】【分析】设2AB AF m ==,利用双曲线的定义得121222,222AF AF a m a BF BF a m a =+=+=-=-,再利用勾股定理建立方程组,消去m ,得到2213a c =,进而得到b a的值,由by x a =±得到双曲线的渐近线方程.【详解】设21212,22,222AB AF m AF AF a m a BF BF a m a ===+=+=-=-, 222222111212,BF BA AF BF BF F F +=+=,()()222222m a m m a -+=+①,()2222244m a m c -+=②,由①可得3,m a =代入②式化简得:2213a c =,∴2212a b =,∴ba=,所以双曲线的渐近线方程为by x a=±=±.故选:A【点睛】本题考查双曲线的定义、渐近线方程,解题时要注意如果题干出现焦半径,一般会用到双曲线的定义.7. 已知函数()()3222,1131122,1326ax x f x x ax a x x -≤⎧⎪=⎨-++->⎪⎩,若对任意12x x <都有()()121222f x f x x x -<-,则实数a 的取值范围是( )A. (),2-∞-B. [)1,+∞ C. 12,2⎛⎤- ⎥⎝⎦D.3,4⎛⎤-∞-⎥⎝⎦【答案】A 【解析】【分析】转化为任意12x x <都有()()112222f x x f x x -<-,令 ()()2g x f x x =-,得到 ()g x 在R 上递增求解.【详解】解:因为若对任意12x x <都有()()121222f x f x x x -<-,所以对任意12x x <都有()()112222f x x f x x -<-,令 ()()2g x f x x =-,则 ()g x 在R 上递增,当1x ≤时, ()()22g x a x =-+,则20a +<,即 2a <-成立;当1x >时, ()322213112326g x x ax a x =-+-,则 ()2232g x x ax a '=-+,当312a ≤,即23a ≤时,()211320g a a '=-+≥,解得 12a ≤;当312a >,即23a >时, 231024a g a ⎛⎫'=-≥ ⎪⎝⎭,无解;又()21311222326a a a -+≤-+-,即2430a a --≥,解得34a ≤-或1a ≥,综上:2a <-,故选:A.8. 棱长为2的正四面体内切一球,然后在正四面体和该球形成的空隙处各放入一个小球,则这些小球的最大半径为( )A.B.C.D.【答案】C 【解析】【分析】先求出正四面体的体积及表面积,利用A BCD O BCD O ABC O ACD O ABD V V V V V -----=+++求出内切球的半径,再通过11AO O HAO OF=求出空隙处球的最大半径即可.【详解】由题,当球和正四面体A BCD -的三个侧面以及内切球都相切时半径最大,设内切球的球心为O ,半径为R ,空隙处最大球的球心为1O ,半径为r ,G 为BCD △的中心,得AG ⊥平面BCD ,E 为CD 中点,球O 和球1O 分别和平面ACD 相切于F ,H ,在底面正三角形BCD 中,易求BE =,23BG BE ==AG∴===,又4ABC ABD ACD BCDS S S S=====,由A BCD O BCD O ABC O ACD O ABDV V V V V-----=+++,即得3A BCDBCD ABC ABD ACDVRS S S S-=+++,又13A BCDV-==,R∴==,AO AG GO=-==,12AO AG R r r r=--=-=-,又1AHO AFO,可得11AO O HAO OF=即r=.故选:C.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 一组数据1220231232023(),,,a a a a a a a⋯<<<⋯<,记其中位数为k,均值为m,标准差为1s,由其得到新数据123202321,21,21,,21a a a a+++⋯+的标准差为2s,下列结论正确的是()A. 1012k a= B.10111012a m a<< C. m k≥ D. 212s s=【答案】AD【解析】【分析】利用中位数的定义可判断A选项;举反例可判断B选项C;利用均值和方差公式可判断D选项.【详解】对于A选项,因1232023a a a a<<<<,样本数据最中间项为1012a ,由中位数的定义可知,1012k a =,A 正确;对于B ,不妨令n a n =()820231,2,,2022,100n a =⋯=,则81012122022100122023101220232023m a +++++++=>== ,B 错误;对于C ,不妨令n a n =()20231,2,,2022,12022.n a =⋯=,则10121220222022.11220222023101220232023m k a ++++++===<= ,C 错误;对于D ,数据123202421,21,21,,21a a a a ++++ 的均值为:()202420241121212120242024iii i a a m ==+=+=+∑∑,其方差为122s s ===,D 对.故选:AD 10. 已知函数()()12πsin 0,,,2f x x x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭为()f x 的两个极值点,且12x x -的最小值为π2,直线π3x =为()f x 图象的一条对称轴,将()f x 的图象向右平移π12个单位长度后得到函数()g x 的图象,下列结论正确的是( )A. 4ω= B.π6ϕ=-C. ()f x 在间π,06⎡⎤-⎢⎥⎣⎦上单调递增 D. ()g x 图象关于点π,06⎛⎫⎪⎝⎭对称【答案】BCD 【解析】【分析】由题意可得π22T =,即可求出ω,再根据正弦函数的对称性即可求出ϕ,根据正弦函数的单调性和对称性即可判断CD .【详解】因为12,x x 为()f x 的两个极值点,且12x x -的最小值为π2,的所以π2π222T ω==,所以2ω=,故A 错误;则()()sin 2f x x ϕ=+,又直线π3x =为()f x 图象的一条对称轴,所以2πππ32k ϕ+=+,所以ππ,Z 6k k ϕ=-+∈,又π2ϕ<,所以π6ϕ=-,故B 正确;所以()πsin 26f x x ⎛⎫=-⎪⎝⎭,由π,06x ⎡⎤∈-⎢⎥⎣⎦,得πππ2,626x ⎡⎤-∈--⎢⎥⎣⎦,所以()f x 在间π,06⎡⎤-⎢⎥⎣⎦上单调递增,故C 正确;将()f x 的图象向右平移π12个单位长度后得到函数()g x 的图象,则()πππsin 2sin 21263g x x x ⎡⎤⎛⎫⎛⎫=--=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,因为πππsin 0633g ⎛⎫⎛⎫=-=⎪ ⎪⎝⎭⎝⎭,所以()g x 图象关于点π,06⎛⎫⎪⎝⎭对称,故D 正确.故选:BCD .11. 已知函数()()2sin π,0212,22x x f x f x x ≤≤⎧⎪=⎨->⎪⎩,下列说正确的是( )A. 当[]()*2,22x n n n ∈+∈N 时,()()1sin π22nf x x n =-B. 函数()f x 在()*12,22n n n ⎡⎤+∈⎢⎥⎣⎦N 上单调递增C. 方程()()lg 2f x x =+有4个相异实根D. 若关于x 的不等式()()2f x k x ≤-在[]2,4恒成立,则1k ≥【答案】BC【解析】【分析】A 、B 项利用函数的周期性和单调性求解;C 项,利用函数图象交点解决方程根的问题;D 项,利用切线性质解决不等式问题.【详解】A 项,()()2sin π,0212,22x x f x f x x ≤≤⎧⎪=⎨->⎪⎩,表示当[]0,2x ∈时,()f x 向右平移2个单位长度时,y 值变为原来的12倍,所以当[]()*2,22x n n n ∈+∈N ,()()11sin π22n f x x n -=-,A 项错误;B 项,当[]0,2x ∈时,()2sin πf x x =,增区间为10,2⎡⎤⎢⎥⎣⎦和3,22⎡⎤⎢⎥⎣⎦,当[]2,4x ∈时,增区间为52,2⎡⎤⎢⎥⎣⎦和7,42⎡⎤⎢⎥⎣⎦,同理可得,所以()f x 在()*12,22n n n ⎡⎤+∈⎢⎥⎣⎦N 上单调递增,B 项正确;C 项,如图所示,()y f x =与()()lg 2g x x =+的图象,满足5522f g ⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭,9922f g ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,两图象共有4个交点,所以方程()()lg 2f x x =+有4个相异实根,C 项正确;D 项,当[]2,4x ∈时,()()sin π2f x x =-,所以()()()()2sin π22f x k x x k x ≤--≤-⇒,当两函数相切时,k 有最小值,()()πcos π2f x x '=-,所以()2πf '=,所以πk ≥,D 项错误.故选:BC.12. 圆柱1OO 高为1,下底面圆O 的直径AB 长为2,1BB 是圆柱1OO 的一条母线,点,P Q 分别在上、下底面内(包含边界),下列说法正确的有( ).A. 若+=PA PB 3,则P 点的轨迹为圆B. 若直线OP 与直线1OB 成45︒,则P 的轨迹是抛物线的一部分C. 存在唯一的一组点,P Q ,使得AP PQ ⊥D. 1AP PQ QB ++的取值范围是【答案】BC 【解析】【分析】建立空间直角坐标系,利用两点间距离公式以及向量夹角公式列式计算可得点P 的轨迹方程判断选项A 和选项B ,假设AP PQ ⊥,根据勾股定理列式结合均值不等式计算最值,即可判断选项C ,计算1AP PQ QB ++的最大值3AP 判断选项D.【详解】对B ,如图,不妨以O 为原点,以AB 的垂直平分线,1,OA OO 分别为,,x y z 轴建立空间直角坐标系,则()0,0,0,(0,1,0),(0,1,0)OA B -,()10,1,1B -,设(),,1P x y ,则()()10,1,1,,,1OB OP x y =-=,=212y x =-,由于P 点在上底面内,所以P 的轨迹是抛物线的一部分,故B 正确;对A , 3PA PB +=+=,化简得22119420x y +=,即P 点的轨迹为椭圆,故A 错误;对C ,设点P 在下平面投影为1P ,若AP PQ ⊥,则222AP PQ AQ +=,则222221111AP PQ AQ +++=,当1P 在线段AQ 上时,2211AP PQ +可取最小值,由均值不等式,222211242AQ AQ AP PQ +≥⨯=,当且仅当112AQAP PQ ==时等号成立,所以2222112()2AQ AQ AP PQ =-+≤,即24AQ ≥,而点Q 只有在与点B 重合时,2A Q 才能取到4,此时点B 与点Q 重合,点P 与点1O 重合,故C 正确;对D ,当点P 与点1B ,点A 与点Q 重合,1AP PQ QB ++的值为3AP ==>,故D 错误.故选:BC【点睛】判断本题选项B 时,利用定义法计算线线所成的角不好计算时,可通过建立空间直角坐标系,利用向量夹角的计算公式列式计算.第Ⅱ卷(共90分)三、填空题:本题共4小题,每小题5分,共20分.13. 已知点()1,1A -,()3,B y ,向量()1,2a = ,若AB 与a成锐角,则y 的取值范围为________.【答案】(1,9)(9,)-+∞ 【解析】【分析】根据向量夹角为锐角利用数量积求解.【详解】因为(4,1)AB y =- ,()1,2a = ,AB 与a成锐角,的所以422220AB a y y ⋅=+-=+>,解得1y >-,当AB 与a同向时,(4,1)(1,2)(0)y λλ-=>,即412y λλ=⎧⎨-=⎩,解得9y =,此时满足0AB a ⋅> ,但AB 与a所成角为0,不满足题意,综上,AB 与a成锐角时,y 的取值范围为(1,9)(9,)-+∞ .故答案为:(1,9)(9,)-+∞ 14. 如果圆台的上底面半径为5,下底面半径为R ,中截面(与上、下底面平行且等距的平面)把圆台分为上、下两个部分,其侧面积的比为1:2,则R =_______.【答案】25【解析】【分析】中截面把圆台分为上、下两个圆台,则两个圆台的侧高相等,且中截面半径等于两底面半径和的一半,根据中截面把圆台分为上、下两个圆台的侧面积的比为1:2,我们易构造出关于R 的方程,解方程即可求出R 的值.【详解】设中截面的半径为r ,则52R r +=①,记中截面把圆台分为上、下两个圆台的侧面积分别为1S 、2S ,母线长均为l ,1 2 π(),π()S r l S R r l =+=+5,又 1 2 ::S S =12 ,(5):()1:2r R r ∴++=②,将①代入②整理得:25R =.故答案为:2515. 若关于x 的不等式()221e xx ax ≥+在()0,∞+恒成立,则实数a 的取值范围是______.【答案】(],2e -∞【解析】【分析】利用分离参数法,通过构造函数以及利用导数来求得a 的取值范围.【详解】依题意,不等式()221e xx ax ≥+()0,∞+恒成立,在即()221e x x a x+≤在()0,∞+恒成立,设()()()221e 0x x f x x x+=>,()()()23333312211e e ex x x x x x x x x x f x x x x -+++--+==='-,其中232e 0xx x x++>,所以()f x 在区间()0,1上,()()0,f x f x '<单调递减;在区间()1,+∞上,()()0,f x f x '>单调递增,所以()()12e f x f ≥=,所以2e a ≤,所以a 的取值范围是(],2e -∞. 故答案为:(],2e -∞16. 已知椭圆()2222:10x y C a b a b+=>>,过C 中心的直线交C 于M ,N 两点,点P 在x 轴上其横坐标是点M 横坐标的3倍,直线NP 交C 于点Q ,若直线QM 恰好是以MN 为直径的圆的切线,则C 的离心率为_________.【解析】【分析】利用三条直线的斜率关系,结合点差法可得.【详解】设()11,M x y ,()22,Q x y ,则()11,N x y --,()13,0P x ,设1k 、2k 、3k ,分别为直线MN 、QM 、NP 的斜率,则111y k x =,21221y y k x x -=-,()113111101344y y k k x x x +===--,因直线QM 是以MN 为直径的圆的切线所以QM MN ⊥,121k k =-,所以2314k k =-,又Q 在直线NP 上,所以21321y y k x x +=+,因M 、Q 在()222210x ya b a b+=>>上,所以2211221x y a b +=,2222221x y a b+=,两式相减得22221212220x x y y a b--+=,整理得2212122121y y y y b x x x x a+-⋅=-+-,故223214b k k a =-=-,即2214b a =,222131144b e a =-=-=,故e =四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知()()()sin sin sin sin C B c b a A B +-=-.(1)求角C 的大小(2)若ACB ∠的平分线交AB 于点D ,且2CD =,2AD DB =,求ABC 的面积.【答案】(1)π3C =(2【解析】【分析】(1)由(sin sin )()(sin sin )C B c b a A B +-=-,利用正弦定理转化为222a b c ab +-=,再利用余弦定理求解;(2)方法一 根据CD 平分ACB ∠,且2AD DB =,利用角平分线定理得到2b a =,23AD c =,13BD c =,再由1cos 2C =,cos ACD ∠=,求得边长,再利用三角形面积公式求解. 方法二根据CD 平分ACB ∠,且2AD DB =,得到2b a =,然后由+= ACD BCD ABC S S S ,求得边a ,再利用三角形面积公式求解.【小问1详解】解:由(sin sin )()(sin sin )C B c b a A B +-=-及正弦定理,得()()()c b c b a a b +-=-,即222a b c ab +-=,所以2221cos 22a b c C ab +-==.因为(0,π)C ∈,所以π3C =.【小问2详解】方法一 因为CD 平分ACB ∠,且2AD DB =,所以由角平分线定理,得2CA ADCB DB==,则有2b a =,23AD c =,13BD c =.由222214cos 24a a c C a +-==,得c =.又224449cos 8a c ACD a+-∠==,将c =代入,可得a =a =当a =时,32c =,则122DB CB +=+<,故舍去,所以a =所以11sin 22ABC S ab C ===△方法二 因为CD 平分ACB ∠,且2AD DB =,所以2CA ADCB DB==,则有2b a =.因为+= ACD BCD ABC S S S ,所以1π1π1π2sin 2sin sin 262623b a ab ⨯⨯⨯+⨯⨯⨯=,则有232a =,所以a =所以21πsin 23ABC S ab ===△18. 如图,三棱锥–S ABC 的底面ABC 和侧面SBC 都是等边三角形,且平面SBC ⊥平面ABC ,点P 在侧棱SA 上.(1)当P 为侧棱SA 的中点时,求证:SA ⊥平面PBC ;(2)若二面角P BC A ––的大小为60°,求PA SA的值.【答案】(1)证明见解析;(2)PA SA =.【解析】【分析】(1)通过证明SA BP ⊥和SA CP ⊥即可得证;(2)取BC 的中点O ,连接SO ,AO ,以点O 为坐标原点,OB ,AO ,OS 所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,利用向量法建立关系可求解.【详解】(1)证明:因为ABC 为等边三角形,所以AB AC BC ==.因为SBC △为等边三角形,所以SB SC BC ==,所以AB SB =,AC SC =.在等腰BAS △和等腰CAS △中,因为P 为SA 的中点,所以SA BP ⊥,SA CP ⊥.又因为BP CP P = ,BP ,CP ⊂平面PBC ,所以SA ⊥平面PBC .(2)如图,取BC 的中点O ,连接SO ,AO ,则在等边ABC 和等边SBC △中,有BC AO ⊥,BC SO ⊥,所以AOS ∠为二面角S BC A --的平面角.因为平面SBC ⊥平面ABC ,所以90AOS ∠=︒,即AO SO ⊥.所以OA ,OB ,OS 两两垂直.以点O 为坐标原点,OB ,AO ,OS 所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系.设AB a =,则0,,0A ⎛⎫ ⎪ ⎪⎝⎭,1,0,02B a ⎛⎫ ⎪⎝⎭,1,0,02C a ⎛⎫- ⎪⎝⎭,S ⎛⎫ ⎪ ⎪⎝⎭.因为P 在SA 上,设AP AS λ=()01λ<<,()0,,P y z ,则0,,AP y z ⎛⎫=+ ⎪ ⎪⎝⎭,AS ⎛⎫= ⎪ ⎪⎝⎭,解得)1y a λ=-,z a =,即)1P a a λ⎛⎫- ⎪ ⎪⎝⎭.显然平面ABC 的一个法向量(0,0,1)n = .设平面PBC 的一个法向量为()111,,m x y z = ,因为)112BP a a a λ⎛⎫=-- ⎪ ⎪⎝⎭ ,(),0,0CB a = .所以00m BP m CB ⎧⋅=⎨⋅=⎩ ,即()111010x y z λλ=⎧⎨-+=⎩,令1y λ=,则11z λ=-,所以()0,,1m λλ=- .因为二面角P BC A --的大小为60°,所以cos ,cos 60m n m n m n ⋅〈〉===︒,所以22630λλ-+=.又01λ<<,解得λ=,即PA SA =【点睛】本题考查线面垂直的证明,考查向量法求空间中线段比例,属于中档题.19. 已知在数列{}n a 中,()()*11211,n n n a a a n n ++==⋅∈N (1)求数列{}n a 的通项公式;(2)若数列{}n b 的通项公式n n a b n=在k b 和1k b +之间插入k 个数,使这2k +个数组成等差数列,将插入的k 个数之和记为k c ,其中1k =,2,…,n ,求数列{}n c 的前n 项和.【答案】(1)()1*2n na n n -=⋅∈N (2)()31212n n T n ⎡⎤=-⋅+⎣⎦【解析】【分析】(1)方法1:根据递推关系式,先变形;再采用累积法求数列通项公式;方法2:根据递推关系式,先构造出等比数列,再求数列通项公式.(2)先求出数列{}n c 的通项公式,再根据通项公式的特点利用错位相减法求前n 项和.【小问1详解】方法1:()()*121n n n a a n n++=⋅∈N ,∴()121n n n a a n ++=,∴当2n ≥时,132112112232121n n n n n n n a a a a a a a n a ---⨯⋅⨯⨯⨯==-=⋅⋅⋅ ∴12,2n n a n n -=⋅≥又 1n =也适合上式,∴()1*2n na n n -=⋅∈N ;方法2:∵()()*121n n n a a n n ++=⋅∈N ,∴121n n a a n n +=+,又111a =,故0n a n≠,∴n a n ⎧⎫⎨⎬⎩⎭为公比为2,首项为1的等比数列.∴12n n a n -=,∴()1*2n n a n n -=⋅∈N .【小问2详解】 ()1*2n n a n n -=⋅∈N ,n n a b n =,∴12n n b -=.由题知,()()1112232222k k k k k k k b b k c k -+-++===⋅设数列{}n c 的前n 项和为n T ﹐则()012213333312223212222222n n n T n n --=⨯⨯+⨯⨯+⨯⨯++-⋅+⋅ ()123133333212223212222222n nn T n n -=⨯⨯+⨯⨯+⨯⨯++-⋅+⋅ 所以012213333331222222222222n n nn T n ---=⨯⨯+⨯+⨯++⨯+⨯-⋅ ()021********n n n -=⋅-⋅-()31122n n ⎡⎤=-+-⋅⎣⎦,故()31212n n T n ⎡⎤=-⋅+⎣⎦.20. 某中学有A ,B 两个餐厅为老师与学生们提供午餐与晚餐服务,王同学、张老师两人每天午餐和晚餐都在学校就餐,近一个月(30天)选择餐厅就餐情况统计如下:选择餐厅情况(午餐,晚餐)(),A A (),A B (),B A (),B B 王同学9天6天12天3天张老师6天6天6天12天假设王同学、张老师选择餐厅相互独立,用频率估计概率.(1)估计一天中王同学午餐和晚餐选择不同餐厅就餐的概率;(2)记X 为王同学、张老师在一天中就餐餐厅的个数,求X 的分布列和数学期望()E X ;(3)假设M 表示事件“A 餐厅推出优惠套餐”,N 表示事件“某学生去A 餐厅就餐”,()0P M >,已知推出优惠套餐的情况下学生去该餐厅就餐的概率会比不推出优惠套餐的情况下去该餐厅就餐的概率要大,证明.()()РP M N M N >.【答案】(1)0.6 (2)分布列见解析,1.9(3)证明见解析【解析】【分析】(1)由频率估计概率,按古典概型进行求解;(2)先确定随机变量的可能取值,再求出各值所对应的概率,列出分布列,根据期望的定义求期望;(3)用条件概率公式进行推理证明.【详解】(1)设事件C 为“一天中王同学午餐和晚餐选择不同餐厅就餐”,因为30天中王同学午餐和晚餐选择不同餐厅就餐的天数为61218+=,所以()180.630P C ==.(2)记X 为王同学、张老师在一天中就餐餐厅的个数,则X 的所有可能取值为1和2,所以()10.30.20.10.40.1P X ==⨯+⨯=,()()2110.9P X P X ==-==,所以X 的分布列为所以X 的数学期望()10.120.9 1.9E X =⨯+⨯=.(3)由题知()()|P N M P N M >,所以()()()()()()()1P NM P NM P N P NM P M P M P M ->=-所以()()()P NM P N P M >⋅,所以()()()()()()()P NM P N P NM P N P M P N P NM ->⋅-,即()()()()P NM P N P N P NM ⋅>⋅,所以()()()()P NM P NM P N P N >,即()()||P M N P M N >21. 已知函数()ln f x x =,()xg x e =.(1)若函数()()11x x f x x ϕ+=--,求函数()x ϕ的单调区间;(2)设直线l 为函数()f x 的图象上一点()()00,A x f x 处的切线.证明:在区间()1,+∞上存在唯一的0x ,使得直线l 与曲线()y g x =相切.【答案】(1)增区间()0,1和()1,+∞;(2)证明见解析.【解析】【分析】(1)求得函数()y x ϕ=定义域和导数,分析导数的符号变化,即可得出函数()y x ϕ=的单调递增区间和递减区间;(2)求得直线l 的方程为001ln 1y x x x =+-,设直线l 与函数()y g x =相切于点()(),t g t ,可得出0ln t x =-,进而可将直线l 的方程表示为0001ln 1x y x x x +=+,可得0001ln 1x x x +=-,然后利用(1)中的函数()1ln 1x x x x ϕ+=--在区间()1,+∞上的单调性结合零点存在定理可证得结论成立.【详解】(1)()()11ln 11x x x f x x x x ϕ++=-=---,定义域为()()0,11,+∞ ,()()()222121011x x x x x x ϕ+'=+=>--,所以,函数()y x ϕ=的单调递增区间为()0,1,()1,+∞;(2)()ln f x x =Q ,()001f x x '∴=,所以,直线l 的方程为()0001ln y x x x x -=-,即001ln 1y x x x =+-,()x g x e = ,则()x g x e '=,设直线l 与函数()y g x =相切于点()(),t g t ,则()01t g t e x '==,得0ln t x =-,则切点坐标为001ln ,x x ⎛⎫- ⎪⎝⎭,所以,直线l 的方程可表示为()00011ln y x x x x -=+,即0001ln 1x y x x x +=+,由题意可得000ln 1ln 1x x x +-=,则0001ln 1x x x +=-,下面证明:存在唯一的()01,x ∈+∞使得0001ln 1x x x +=-.由(1)知,函数()1ln 1x x x x ϕ+=--在区间()1,+∞上单调递增,()2ln 230ϕ=-< ,()22222132011e e e e e ϕ+-=-=>--,的由零点存在定理可知,存在唯一的()202,x e ∈,使得()00x ϕ=,即0001ln 1x x x +=-.所以,存在唯一的()01,x ∈+∞使得0001ln 1x x x +=-.因此,在区间()1,+∞上存在唯一的0x ,使得直线l 与与曲线()y g x =相切.【点睛】本题考查利用导数求解函数的单调区间,同时也考查了利用导数证明直线与曲线相切,考查了零点存在定理的应用,考查推理能力与计算能力,属于难题.22. 已知动圆过点(0,1)F ,且与直线:1l y =-相切,设动圆圆心D 的轨迹为曲线C .(1)求曲线C 的方程;(2)过l 上一点P 作曲线C 的两条切线,PA PB ,,A B 为切点,,PA PB 与x 轴分别交于M ,N 两点.记AFM △,PMN ,BFN 的面积分别为1S 、2S 、3S .(ⅰ)证明:四边形FNPM 为平行四边形;(ⅱ)求2213S S S 的值.【答案】(1)24x y =(2)(ⅰ)证明见解析(ⅱ)1【解析】【分析】(1)设出圆心(,)D x y ,利用条件建立方程,再化简即可得出结果;(2)(ⅰ)设出两条切线方程,从而求出,,M N P 的坐标,再利用向量的加法法则即可得出证明;(ⅱ)利用(ⅰ)中条件,找出边角间的关系,再利用面积公式即可求出结果.【小问1详解】设圆心(,)D x y|1|y =+,化简整理得:24x y =,所以曲线C 的方程为:24x y =.【小问2详解】(ⅰ)设()11,A x y ,()22,B x y ,因为24x y =,所以2x y '=,∴直线PA 的方程为:()1112x y x x y =-+,即2111124y x x x =-,令0y =,得到12x x =,同理可得直线PB 的方程为:2221124y x x x =-,令0y =,得到22x x =,∴1,02x M ⎛⎫ ⎪⎝⎭,2,02x N ⎛⎫ ⎪⎝⎭,联立21122211241124y x x x y x x x ⎧=-⎪⎪⎨⎪=-⎪⎩,消y 解得122x x x +=,所以12,12x x P +⎛⎫- ⎪⎝⎭, 又(0,1)F ,∴1212,1,1,2222x x x x FM FN FP +⎛⎫⎛⎫⎛⎫+=-+-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以四边形FNPM 为平行四边形;(ⅱ)由(ⅰ)知直线PA 的方程为2111124y x x x =-,又2114x y =,所以11102x x y y --=,即11220x x y y --=,同理可知直线PB 的方程为22220x x y y --=,又因为P 在直线PA ,PB 上,设()0,1P x -,则有101202220220x x y x x y -+=⎧⎨-+=⎩,所以直线AB 的方程为:0220x x y -+=,故直线AB 过点(0,1)F ,∵四边形FNPM 为平行四边形,∴//FM BP ,//FN AP ,∴AMF MPN BNF ∠=∠=∠,FN PM =,PN MF =,BN BF MP NP FA MA ==,∴MP NP MA BN ⋅=⋅, ∵11sin 2S MA MF AMF =∠,21sin 2S PM PN MPN =∠,31||sin 2S NB NF BNF =∠‖,∴2222131sin (||||)||||2111||||||||||||sin ||sin 22PM PN MPN S PM PN PM PN S S MA MF NB NF MA NB MA MF AMF NB NF BNF ⎛⎫∠ ⎪⋅⋅⎝⎭====⋅⋅⋅⋅⎛⎫⎛⎫∠⋅∠ ⎪ ⎪⎝⎭⎝⎭‖.【点睛】关键点点睛:(2)中的第(ⅰ)问,关键在于利用向量来证明,从而将问题转化成求出点的坐标,将几何问题代数化;第(ⅰⅰ)问的关键在于求出直线AB恒过定点,再利用几何关系,求出相似比.。
高中数学易错8套卷及答案
一、填空题(共12题,每题5分)1、若f (x )=lg(x 2-2ax +1+a )在区间(-∞,1)上递减,则a 的取值范围是 .2、已知平面向量a ,b ,c 两两所成角相等,且|a |=1,|b |=2,|c |=3,则|a +b +c |的值的集合为 . 3、若函数()f x 是定义在(0,)+∞上的增函数,且对一切0,0x y >>满足()()()f xy f x f y =+,则不等式(6)()2(4)f x f x f ++<的解集为 .4、光线从点A (1,1)出发,经y 轴反射到圆C 4)7()5(22=-+-y x ,上的最短路程为 .5、实系数方程220x ax b ++=的两根为12,x x ,且12012x x <<<<,则21b a --的取值范围是 .6、 已知2()2a i i -=,其中i 是虚数单位,那么实数a = .7、已知椭圆22143x y +=内的一点(1,1)P -,F 为椭圆的右焦点,在椭圆上有一点M ,使 MP MF +取得最小值为 .8、三棱锥P ABC -中,PA ⊥平面ABC ,AB BC ⊥,1PA AB ==,BC =,若三棱锥P ABC -的四个顶点在同一球面上,则这个球的表面积为 .9、已知条件{}2:|10p A x x ax =++≤,条件{}2:|320q B x x x =-+≤,若p 是q 的充分不必要条件,则实数a 的取值范围是 .10、若钝角三角形三个内角的度数成等差数列,且最大边与最小边长度的比为m ,则m 的取值范围是 .11、定义一种运算""*对于正整数满足以下运算性质:(1)220061*=(2) (22)20063[(2)2006],n n +*=⋅*则的20082006*值是 .12、函数()f x =的值域为 .班级姓名分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、5、 6 7、 8、9 、10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、已知表中的对数值有且只有两个是错误的.假设上表中lg3=2a-b与lg5=a+c都是正确的,试判断lg6=1+a-b-c是否正确?给出判断过程.Read xIf x >0 Then1y x ←+Else1y x ←-End If Print y一、填空题(共12题,每题5分)1、已知2lg(2)y x x a =+-的值域为R ,那么a 的取值范围是 .2、方程()0x y y +-=表示的曲线是 . 3、一元二次不等式a 2x +bx+c>0的解集为(α,β))0(>α,则不等式c 2x +bx+a>0的解集为4、已知函数2()f x x kx =-在x N *∈上是单调增函数,则实数k 的取值范围是 . 5、若直线l 经过点P (2,3)且与两坐标轴围成一个等腰三角形,则直线l 的方程为.6、已知动点P (x ,y )满足x 2+y 2-|x |-|y |=0,O 为坐标原点, 则PO 的取值范围是 .7、在平行四边形ABCD 中,,E F 分别是,BC CD 的中点,DE 交AF 于H ,记,AB BC 分别为,a b ,则AH = .(用含,a b的式子表示).8、已知椭圆E 的离心率为e ,两焦点为12,F F ,抛物线C 以1F 为顶点,2F 为焦点,P 为两曲线的一个交点,若12PF e PF =,则e 的值为 . 9、如果直线y =kx +1与圆x 2+y 2+kx +my -4=0交于M ,N 两点,且M ,N 关于直线x -y =0对称,动点P (a ,b )在不等式组20,0,0kx y kx my y -+⎧⎪-⎨⎪⎩≥≤≥表示的平面区域内部及边界上运动,则ω=b -2a -1的取值范围是 .10、右边是根据所输入的x 值计算y 值的一个算法程序, 若x 依次取数列1100n ⎧⎫-⎨⎬⎩⎭()n N +∈中的前200项, 则所得y 值中的最小值为 .11、 在正三棱锥S -ABC 中,SA =1,∠ASB =30°,过点A 作三棱锥的截面AMN ,则截面AMN 的周长的最小值为 .12、 已知函数f (x )=log 3x +2,x ∈[1,9],则函数y =[f (x )]2+f (x 2)的最大值是 .班级姓名分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、5、 6 7、 8、9 、10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、为了研究某高校大学新生学生的视力情况,随机地抽查了该校100名进校学生的视力情况,得到频率分布直方图,如图.已知前4组的频数从左到右依次是等比数列{}n a的前四项,后6组的频数从左到右依次是等差数列{}n b的前六项.(Ⅰ)求等比数列{}n a的通项公式;(Ⅱ)求等差数列{}n b的通项公式;(Ⅲ)若规定视力低于5.0的学生属于近视学生,试估计该校新生的近视率μ的大小.一、填空题(共12题,每题5分)1、在算式"4130"⨯+⨯= 的两个 中,分别填入两个自然数,使它们的倒数之和最小,则这两个数应分别为 和 .2、平面区域22:12()P x y x y ++≤+的面积为 .3、已知223sin 2sin 2sin 0αβα+-=,则22cos cos αβ+的取值范围是 .4、有两个等差数列{}{},n n a b ,若1212723n n a a a n b b b n ++++=++++ ,则77ab = . 5、(08山东高考)若不等式|3x -b |<4的解集中的整数有且仅有1,2,3,则b 的取值范围为________.6、在ABC ∆中,角A 、B 、C 所对的边分别为a,b,c 且43b a ==cosA cosB ,则ABC ∆的形状.二进制即是“逢二进一”,如2(1101)表示二进制数,将它转换成十进制形式是3211212021213⨯+⨯+⨯+⨯=,那么将二进制数()2161111转换成十进制形式是 .8、已知函数()22x x f x -=-,若函数()y h x =与函数(2)y f x =-的图像关于直线1y =对称,则函数()y h x =的解析式为 .9、设,m n 是两条不同的直线,,αβ是两个不同的平面,下面给出四个命题: ⑴若//,//m n αβ且//αβ,则//m n ⑵若,m n αβ⊥⊥且αβ⊥,则m n ⊥ ⑶若,//m n αβ⊥且//αβ,则m n ⊥ ⑷若,m βααβ⊥= 且m n ⊥,则n β⊥ 其中真命题的序号是 .10、从直线30x y -+=上的点向圆22(2)(2)1x y +++=引切线,则切线长的最小值是 . 11、 若数列{}na 的通项公式为2()156n na n N n *=∈+,则{}na 的最大项为第 .项.12、 A 、B 是双曲线x 24-y 25=1右支上的两点,若弦AB 的中点到y 轴距离为4,则AB 的最大值是 .班级 姓名 分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、 5、 6 7、 8、 9 、 10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、如图,已知圆心坐标为)1,3(M 的圆M 与x 轴及直线x y 3=均相切,切点分别 为A 、B ,另一圆N 与圆M 、x 轴及直线x y 3=均相切,切点分别为C 、D .求圆M 和圆N 的方程..一、填空题(共12题,每题5分)1、已知椭圆221102x y m m +=--,长轴在y 轴上. 若焦距为4,则m 等于 . 2、定义在R 上的函数f(x),给出下列四个命题:(1)若f(x)是偶函数,则f(x+3)的图像关于直线x=-3对称; (2)若f(x+3)=-f(3-x),则f(x)的图像关于点(3,0)对称; (3)若f(x+3) 是偶函数,则f(x)的图像关于直线x=3对称; (4)函数y=f(x+3)与y= f(3-x)的图像关于直线x=3对称. 其中正确命题的序号为 .(填写正确的序号即可)3、已知a 是实数,函数223f x x x a =+--(),如果函数y f x =()在区间[]1,1- 上有零点,则a 的取值范围是 .4、设2()2f x x =-,若a<b<0,且f a f b =()(),则ab 的取值范围是 .5、方程1sin 4x x π=的解的个数是 . 6、在ABC ∆中,若45sin cos 513A B ==,,则cos C = . 7、锐角三角形ABC 中,a,b,c 分别为A ,B ,C 的对边,设B=2A ,则ba的取值范围为 .8、已知集合{}20A x x a =-≤,{}40B x x b =->,N b a ∈,,且{}()2,3A B N ⋂⋂=,由整数对()b a ,组成的集合记为M,则集合M 中元素的个数为________.9、已知函数2f x x =(),[]22x ∈-,和函数1f x a x =-(),[]22x ∈-,,若对于任意[]122x ∈-,,总存在[]022x ∈-,,使得01g x f x =()()成立 ,则实数a 的取值范围为 .10、在下表中,每格填上一个数字后,使每一横行成等差数列,每一纵列成等比数列,则a b c ++的值为 .11、已知关于x 的方程2(1lg )10(0,1)x xa m a a a +++=>≠有解,则m 的取值范围是 .12、在圆225x y x +=内,过点53,22⎛⎫ ⎪⎝⎭有n 条弦的长度成等差数列,最小弦长1a 为数列的首项,最大弦长为n a ,若公差11,63d ⎡⎤∈⎢⎥⎣⎦,那么n 的取值集合为 .班级 姓名 分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、 5、 6 7、 8、 9 、 10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13 、设函数()11sin 24f x x x x =--. (1)试判定函数()f x 的单调性,并说明理由.(2)已知函数()f x 的图象在点()()00,A x f x 处的切线斜率为12,求20002sin sin 21tan x x x ++的值.一、填空题(共12题,每题5分)1、设集合{}{}2/60,/10A x x x B x mx =+-==+=,若B A ⊆,则实数m 的取值集合为 . 2、正方体1111ABCD A BC D -中,M,N 分别是11AA BB ,的中点,G 为BC 上一点,若1C N MG ⊥,则1D NG ∠= .3、 已知直线y=ax+1与双曲线2231x y -=相交M ,N 与两点,若以MN 为直径的圆恰好过原点,则实数a 的值等干 .4、设函数f (x )=sin θ+)(0θπ<<),如果f (x )+1()f x 为偶函数,则θ= .5、若函数f (x )=241xx +在区间(m ,2m+1)上是单调增函数,则实数m 的取值范围是 . 6、已知拋物线的焦点在x 上,直线y=2x+1,则此拋物线的标准方程为 .7、(08浙江高考)已知t 为常数,函数t x x y --=22在区间[0,3]上的最大值为2,则t=__________.8、已知集合{(,)1}A x y x y =+=,映射f:A →B 在作用下,点(x,y)的象为(2,2)x y ,则集合B 为 .9、将杨辉三角中的奇数换成1,偶数换成0,得到如图1所示的0-1三角数表.从上往下数,第1次全行的数都为1的是第1行,第2次全行的数都为1的是第3行,…,第n 次全行的数都为1的是第 行.第61行中1的个数是 . 第1行 1 1 第2行 1 0 1 第3行 1 1 1 1 第4行 1 0 0 0 1 第5行 1 1 0 0 1 110、已知函数2sin f x x =(),若对任意x R ∈,都有1f x f x ≤≤2()(x )f (),则12x x -的最小值为 .11、一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上,已知正三棱柱的底面边长为2,则该三角形的斜边长为 . 12、若数列{}n a 的通项公式为221225()4()()55n n n a n N --+=⨯-∈,的最大值为M ,最小值为N ,则M N += .班级 姓名 分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、 5、 6 7、 8、 9 、 10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、如图,以长方体ABCD-A 1B 1C 1D 1的顶点A 、C 及另两个顶点为顶点构造四面体. (1)若该四面体的四个面都是直角三角形,试写出一个这样的四面体(不要求证明). (2)我们将四面体中两条无公共端点的棱叫做对棱,若该四面体的任一对对棱垂直,试写出一个这样的四面体(不要求证明).(3)若该四面体的任一对对棱相等,试写出一个这样的四面体(不要求证明),并计算它的体积与长方体的体积的比.A B CD D 1A 1C 1B 1高中数学 易错题6一、填空题(共12题,每题5分)1、(08湖北高考)过点A (11,2)作圆22241640x y x y ++--=的弦,其中弦长为整数的共有 .2、有一个公用电话亭,在某一时刻t ,有n 个人正使用电话或等待使用电话的概率为()P n ,且()P n 与时刻t 无关,统计得到1()(0),15,()20,6.nP n P n n ⎧⋅≤≤⎪=⎨⎪≥⎩那么在某一时刻,这个公用电话亭里一个人也没有正使用电话或等待使用电话的概率为(0)P 的值是 . 3、以椭圆22221(0)x y a b a b+=>>的右焦点F 为圆心,a 为半径的圆与椭圆的右准线交于不同的两点,则该椭圆的离心率的取值范围是 .4、双曲线22221(0,0)x y a b a b-=>>的焦距为c ,直线与双曲线的一个交点的横坐标恰为c ,则该双曲线的离心率为 .5、数列{}n a 的构成法则如下:11a =,如果2n a -为自然数且之前未出现过,则用递推公式12n n a a +=-.否则用递推公式13n n a a +=,则6a = .6、已知函数()f x =*()2()n n nf x a n N x -=∈,若12310x x x -≤<<<,则将123,,a a a 从小到大排列为 .7、函数()y f x =是圆心在原点的单位圆的两段圆弧,则不等式 函数()()f x f x x <-+的解集为 .8、设1,2,3x x x 依次是方程log 12x +2=x, log 22x+x=2的实根,则1,2,3x x x 的大小关系是 .9、 从盛满20升纯酒精的容器中倒出1升,然后用水填满,再倒1升混合溶液,又用水填满,这样继续进行,如果倒第k 次(k ≥1)时共倒出纯酒精x 升,倒第k +1次时共倒出纯酒精f (x ),则函数f (x )的表达式是 .10、已知函数y =log 12(235x ax -+)在)1,-+∞⎡⎣上是减函数,则实数a 的取值范围为.11、cos400)= .12、关于x 的不等式kx x x x ≥-++3922在]5,1[上恒成立,则实数a 的范围为 .高中数学 易错题6答题纸班级 姓名 分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、 5、 6 7、 8、 9 、 10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、△ABC中,2C π∠=,1,2AC BC ==,求()|2(1)|f CA CB λλλ=⋅+-⋅的最小值.DA /BAC高中数学 易错题7一、填空题(共12题,每题5分)1、设集合{|1M x =-≤x ≤7},{|1N x k =+≤x ≤21}k -,若M N =∅ ,则实数k的的取值范围是 . 2、若点P (m ,n )在直线2a cy x b b=--上移动,其中a ,b ,c 为某一直角三角形的三条边长,c 为斜边,则m 2+n 2的最小值为 .3、已知20a b =≠ ,且关于x 的方程20x a x a b ++⋅= 有相异实根,则a 与b 的夹角的取值范围是 .4、若圆222x y k +=至少覆盖函数()xf x kπ=的图像的一个最大值点与一个最小值点,则k 的取值范围是 .5、在长为12cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,其面积介于236cm 和281cm 之间的概率是 .6、.(08四川高考)已知正四棱柱的对角线的长为,则该正四棱柱的体积等于 . 7、设命题p :不等式1()43x +>m >22x x -对一切实数x 恒成立,命题q :函数()(72)x f x m =--是R 上的减函数.若p ,q 都是真命题,则实数m 的取值范围是 . 8、已知ABC ∆的外接圆圆心为O ,且3450OA OB OC ++=,则C ∠的度数为.9、【08山东理13】执行右边的程序框图, 若p =0.8,则输出的n = .10、已知()f x 是定义在R 上的偶函数,()g x 是定义在R 上的奇函数,且()(1)g x f x =-,则(2006)(2008)f f +的值为 .11、已知双曲线22221x y a b-=(a >0,b >0)离心率e ∈,令双曲线两条渐近线构成的角中,以虚轴..为角平分线的角为θ,则θ的取值范围是 . 12、若不等式(1)na -<1(1)2n n+-+对于任意的正整数n 恒成立,则实数a 的取值范围是 .高中数学 易错题7 答题纸班级 姓名 分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、 5、 6 7、 8、 9 、 10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)1. 13、已知F 1、F 2为椭圆的焦点,P 为椭圆上的任意一点,椭圆的离心率为31.以P 为圆心PF 2长为半径作圆P ,当圆P 与x 轴相切时,截y 轴所得弦长为95512. (Ⅰ)求圆P 方程和椭圆方程. (Ⅱ)求证:无论点P 在椭圆上如何运动,一定存在一个定圆与圆P 相切,试求出这个定圆方程.x高中数学 易错题8一、填空题(共12题,每题5分)1、 函数2()ln(1)f x x x=+-的零点所在的大致区间是(,1)k k +,k= . 2、化简:=---)()( .3、若双曲线22221x y a b-=-的离心率为54,则两条渐近线的方程为 .4、 △ABC 中,︒=∠==30,1,3B AC AB ,则△ABC 的面积等于_____ __.5、数列}{n a 满足121,12210,2{1<≤-<≤=+n n n n n a a a a a ,若761=a ,则2004a 的值为 __. 6、 (08上海高考)已知总体的各个体的值由小到大依次为2,3,3,7,a ,b ,12,13.7,18.3,20,且总体的中位数为10.5,若要使该总体的方差最小,则a 、b 的取值分别是 . 7、已知数列{}n a 为等差数列,且17134a a a π++=,则212tan()a a +=________. 8、二次函数()x f 满足()()22+-=+x f x f ,又()30=f ,()12=f ,若在[0,m ]上有最大值3,最小值1,则m 的取值范围是 .9、(08江西高考)已知1F 、2F 是椭圆的两个焦点,满足120MF MF ⋅=的点M 总在椭圆内部,则椭圆离心率的取值范围是 .10、函数)(x f 是定义在R 上的偶函数,当x <0时,0)(')(<+x xf x f ,且0)4(=-f ,则不等式0)(>x xf 的解集为 .11、一只蚂蚁在边长分别为都大于1的地方的概率为 . .12、 定义在),0(+∞上的函数)(x f 的导函数0)('<x f 恒成立,且1)4(=f ,若()1f x y +≤,则y x y x 2222+++的最小值是 . .0.01频率组距高中数学 易错题8 答题纸班级 姓名 分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、 5、 6 7、 8、 9 、 10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、某校从参加高一年级期末考试的学生中抽出60名学生,将其成绩(均为整数)分成六段[)50,40,[)60,50…[]100,90后(Ⅰ)求第四小组的频率,并补全这个画出如下部分频率分布直方图. (Ⅱ)频率分布直方图观察图形的信息,回答下列问题:. 估计这次考试的及格率(60分及以上为及格)和平均分.答案 易错题11.1≤a <2;2.{6,3};3.(0,2);4. 226-;5.1,14⎛⎫⎪⎝⎭;6.-1;7. 4-提示:1224MP MF MP a MF a +=+-≥= 8. 4π提示:P ABC -视作一个长方体中的部分. 9. [2,2)-提示:A 是B 的真子集,但仅有A 是空集或单元素集符合条,.10.2提示:最小角0(,),6πθ∈sin()132;sin 2m πθθ+==+>11. 10033提示:22006n a n =*是首项为1,公比为3的等比数列,10031004200820063;a *==12.[1,2]m n ==22312,0,0,m n m n +=≥≥2cos ,,0,,()2cos 4sin()26m n f x ππθθθθθθ⎡⎤==∈=+=+⎢⎥⎣⎦, 值域[1,2].13,解:由lg5=a +c ,得lg2=1-a -c . ∴lg6=lg2+lg3=1-a -c +2a -b =1+a -b -c , 满足表中数值,也就是lg6在假设下是正确的.易错题2答案:1.[1,)-+∞ 2.一条线段和一半圆 3. )1,1(αβ; 4. 3k < 5. x-y+1=0,x+y-5=06. 提示:图形关于x,y 轴对称,另有原点,[1,2]∪{0};7.提示可将问题特殊化,把,a b视作互相垂直的单位向量,易求出 2455a b + ;8. 提示:抛物线的准线与椭圆左准线重合,椭圆左焦点平分右焦点与左准线间线段; 9. (][),22,-∞-+∞ 提示:k=m=-1,作可行域,目标函数为斜率;10.1提示:100,12,100nn y x ≤=-=-时最小值为1;100,1,100n n y x >=+=时最小值为101,100因此最小值为1.11. 2提示:将侧面展开,利用AMN 三点共线时周长最小,.12.13提示:目标函数定义域是 [1,3],令log 3x=t ∈[0,1],换元后配方可得13.13.解:(I )由题意知:10.10.11001a =⨯⨯=,20.30.1100 3.a =⨯⨯= ∵数列{}n a 是等比数列,∴公比213,a q a ==∴1113n n n a a q --== . (II) ∵123a a a ++=13,∴126123100()87b b b a a a +++=-++= , ∵数列{}n b 是等差数列,∴设数列{}n b 公差为d ,则得1261615b b b b d +++=+ ,∴1615b d +=87, 2741==a b ,∴5-=d ,∴n b n 532-= (III)μ=12312340.91100a a ab b b b ++++++=, 答:估计该校新生近视率为91%.易错题31、5,102、4π3、14,29⎡⎤⎢⎥⎣⎦4、93165、提示:-4444,01,34,573333b b b b x b -+-+<<≤<<≤<<则; 6、直角 ;7.提示:21516122221+++⋅⋅⋅+=-;8. 提示:先求(2)f x -,然后将(x,2-y)代入即得22222x x a y -+=-+;9. (2),(3); 10.2提示:过圆心向直线作垂线,垂足为A,过A 作切线长最小2.11. 12,13提示:21156n n a n n n==≤++,1213a a =最大.12.8提示: A.B 到右准线距离分别为12128162433d d d d +=⨯-=、,,设右焦点F,由第二定义,12316()23AF BF e d d +=+=⨯=8,在△ABF 中AB AF BF ≤+=8,当AB 过焦点F 时取最大值8.13.由于⊙M 与∠BOA 的两边均相切,故M 到OA 及OB 的距离均为⊙M 的半径,则M 在∠BOA 的平分线上, 同理,N 也在∠BOA 的平分线上,即O ,M ,N 三点共线,且OMN 为∠BOA 的平分线,∵M 的坐标为)1,3(,∴M 到x 轴的距离为1,即⊙M 的半径为1,则⊙M 的方程为1)1()3(22=-+-y x , 设⊙N 的半径为r ,其与x 轴的的切点为C ,连接MA 、MC , 由Rt △OAM ∽Rt △OCN 可知,OM :ON=MA :NC , 即313=⇒=+r rr r ,则OC=33,则⊙N 的方程为9)3()33(22=-+-y x易错题41. 8.2.(1)(2)(3) 3. []4,0- 4. (0,2) 5. 7 6.33657. 8. 8对提示:20x a -≤2a x ⇒≤.40x b ->4b x ⇒>.要使{}2,3A B N ⋂⋂=,则124342b a ⎧≤<⎪⎪⎨⎪≤<⎪⎩,即4868b a ≤<⎧⎨≤<⎩.所以数对()b a ,共有248⨯=. 9. 5522a a ≥≤-,或提示:[][]1122,(),x f x ∈-∈,0,4,使[]0,g x ∃∈()0,4 0,21,210,a a ⎧⎪-⎨⎪--⎩a >≥4≤0,210,21,a a ⎧⎪-⎨⎪--⎩a <≤≥4成立.10.1提示:153,,21616a b c === . 11. 3010m -<≤提示:2(1lg )40,1lg 0m m ∆=+-≥+> 12. {}4,5,6,7提示:11114,5,(1)1,613na a n d==-=≤≤. 13解:(1)()1111cos sin 024262f x x x x π⎛⎫'=-=-+≥ ⎪⎝⎭,∴()f x 定义域内单调递增. (2)由()00111sin 2622f x x π⎛⎫'=-+= ⎪⎝⎭,得:0sin 06x π⎛⎫-= ⎪⎝⎭.()06x k k Z ππ∴-=∈,得()06x k k Z ππ=+∈,()20000000002sin cos sin cos 2sin sin 21tan cos sin x x x x x x x x x ++∴=++0sin 2sin 23x k ππ⎛⎫==+= ⎪⎝⎭.易错题51. 110,,23⎧⎫-⎨⎬⎩⎭. 2.2π.3. ±1 . 4. 6π. 5. [-1,0] . 6. 2y =12x 或2y =-4x .7. 1提示:由f (1)=f(3)=2,得t 取-3,1,2,5, 再验证知t 取 1 . 8. B=}{(,)2,0,0x y xy x y =>> 或22{(,)log log 1}B x y x y =+=,9.提示:逐个列举后进行归纳,21n -,32 . 10.π 提示:1f x f 2()、(x )分别为最小、最大值,因此12x x -的最小值为半周期π.11.提示:设直角边长x,由224),x +=(斜边;.12. 15提示: ]2212424545(),()(0,1,1,,5555n n a t t t t M N -=⨯-=--=∈==-M+N=15 .13、(1)如四面体A 1-ABC 或四面体C 1-ABC 或四面体A 1-ACD 或四面体C 1-ACD. (2)如四面体B 1-ABC 或四面体D 1-ACD. (3)如四面体A-B 1CD 1,设长方体的长、宽、高分别为,,a b c ,则14163abc abcabc -⨯= .易错题6:1.5 2.3263 3.⎫⎪⎪⎝⎭41 5.15 6.231,,a a a 7.|0,1x x x ⎧⎫⎪⎪<<<≤⎨⎬⎪⎪⎩⎭8.231x x x 9.f (x )=19120x +10.86a -≤- 11.1 12. 6k ≤.提示: 两边同除以x ,则39-++≤x x x k ,69≥+x x ,03≥-x ,当且仅当3=x ,两等式同时成立,所以3=x 时,右边取最小值6.解析二:可分3x 1≤≤和5x 3≤<讨论.求分段函数的最小值.13.解法一:延长CA至'A,使/2CA CA=,则//2(1)(1)CA CB CA CB CB BA λλλλλ⋅+-⋅=⋅+-⋅=+⋅ ,令/BA BD λ⋅= ,则()||f CD λ= ,当λ变化时,点D 在直线AB 上移动,可见,当/CD A B ⊥时,()||f CD λ=解法二:因为CA CB ⊥,所以2222222()4||(1)||44(1)f CA CB λλλλλ=⋅+-⋅=+-2218848()22λλλ=-+=-+,当12λ=时,()f λ易错题7:1.k <2或k >6 2.4 3.(,]3ππ 4.K ≤-2或k ≥2 5.146.2; 7.1<m <3提示:p:1<m ≤4,q:m<3,则1<m <3 ; 8.45提示:345,OA OB OC +=- 两边平方得0OA OB = 借图判定出. 9. 4提示: 10.0提示:()(1)()(1),(1)(1),(20071)(20071)0;g x f x g x f x f x f x f f -=--=-=--∴+=--∴++-=11.提示:11cos(),[,];22232e πθππθ⎡-=∈∈⎢⎣⎦ 12.3[2,)2-提示:n 分奇偶数分别讨论,然后取交集;13.解:(Ⅰ)∵31=e ,∴a =3c ,b =c 22,椭圆方程设为1892222=+cy c x ,当圆P 与x 轴相切时,PF 2⊥x 轴,故求得P (c ,c 38±),圆半径r =c 38,由295512222=-c r 得,c =2,∴椭圆方程设为1323622=+y x ,此时圆P 方程为9256)316()2(22=±+-y x . (Ⅱ)以F 1为圆心,作圆M ,使得圆P 内切于圆M ,公切点设为Q ,则点F 1、P 、Q 在一直线上,从而F 1Q =F 1P +PQ =F 1P +PF 2=2a =6,∴存在圆M :36)2(22=++y x 满足题设要求.易错题81. 1;2.;3.034=±y x ;4. 4323或;5.73;6. 10.5和10.5;7.提示2121137823a a a a a π+=+==;8. [2,4] 提示:画图象分析,对称轴x=2;9. 提示:垂足的轨迹为以焦距为直径的圆,则2222212c b c b a c e <⇒<=-⇒<;10. )4,0()4,(⋃--∞提示: ()0)(')()(<+='x xf x f x xf ,即),在(0)(∞-x xf 上是减函数,结合偶函数对称可得.;11提示:画示意图,在ABC ∆中用余弦定理得4cos 5B =, 则3sin 5B =,1356925ABC S ∆=⋅⋅⋅=,图中阴影部分的 面积为三角形ABC 的面积减去半径为1的半圆的面积即为92π-,则本题中蚂蚁恰在离三个顶点距离都大于1的地方的概率为921918P ππ-==-. 12.16提示:由)(x f 在),0(+∞0)('<x f 恒成立,得到)(x f 在),0(+∞单调递减,因为1)(≤+y x f ,1)4(=f ,则),4()(f y x f ≤+所以y x ,满足x+y ≥4且 x+y >0,又因为2)1()1(222222-+++=+++y x y x y x ,22)1()1(+++y x 可以看作是),(y x 到)1,1(--的距离的平方,所以由线性规划知识可得y x y x 2222+++的最小值是16.13解:(Ⅰ)因为各组的频率和等于1,故第四组的频率:41(0.0250.01520.010.005)100.3f =-+*++*= 直方图如右所示…(Ⅱ)依题意,60及以上的分数所在的第三、四、五、六组,频率和为 (0.0150.030.0250.005)100.75+++*=所以,抽样学生成绩的合格率是75%.. --利用组中值估算抽样学生的平均分 123456455565758595f f f f f f ⋅+⋅+⋅+⋅+⋅+⋅=450.1550.15650.15750.3850.25950.05⨯+⨯+⨯+⨯+⨯+⨯=71估计这次考试的平均分是71分 .。
高中数学必修二 北京市丰台区 — 学年度 高一下学期期末练习数学试题(含答案)
【答案】
【解析】
【分析】
先求解出分层抽样的抽样比,然后根据每一层入样的个体数等于该层个体数乘以抽样比,由此可计算出结果 .
【详解】因为分层抽样的抽样比为 ,
9.如图所示,在复平面内,复数 , 所对应的点分别为A,B,则 ()
A. B. C. D.
【答案】C
【解析】
【分析】
根据 并结合复数的几何意义得到 的表示.
【详解】因为 , 与 对应, 与 对应,
所以 ,
故选:C.
【点睛】本题考查复数的几何意义的简单运用,难度较易.复数 和复平面内的点 一一对应,同时复数 和平面向量 也一一对应.
丰台区2019~2020学年度第二学期期末练习
高一数学
注意事项:
1.答题前,考生务必先将答题卡上的学校、年级、班级、姓名、准考证号用黑色字迹签字笔填写清楚,并认真核对条形码上的准考证号、姓名,在答题卡的“条形码粘贴区”贴好条形码.
2.本次考试所有答题均在答题卡上完成.选择题必须使用2B铅笔以正确填涂方式将各小题对应选项涂黑,如需改动,用橡皮擦除干净后再选涂其它选项.非选择题必须使用标准黑色字迹签字笔书写,要求字体工整、字迹清楚.
【答案】D
【解析】
【分析】
根据球与正方体位置关系,分析出球 半径,由此球的体积可求.
【详解】因为球内切于正方体,所以球的半径等于正方体棱长的 ,
所以球的半径为 ,所以球的体积为 ,
故选:D.
【点睛】本题考查根据正方体与球的相切关系求球的体积,难度较易.当球内切于正方体时,球的半径为正方体棱长的 ;当球外接于正方体时,球的半径为正方体棱长的 .
高中数学如何高效利用草稿本和错题本
高中数学如何高效利用草稿本和错题本草稿本和错题本是高中数学的两大学习工具,是容易被同学们忽视的重要元素,草稿本能够让我们清晰的知道运算过程、错题本能够让我们知道错误原因,那么,如何利用好高中数学的草稿本和错题本呢?下面就来一起学习。
如何利用高中数学的草稿本?一、打草稿的重要性打草稿,它能尽可能地保证计算过程和结果的正确性。
尤其是涉及大量计算的题型,打草稿就显得特别重要了,比如小学五年级后,做数学题如果仅仅依赖于口算就很容易算错。
很多同学不喜欢打草稿的原因主要有两个:其一是没有意识到打草稿的重要性,从而没有养成习惯;其二是觉得打草稿浪费时间,想把打草稿的时间留出来去做更多的题。
这样的结果就是,每次都会犯错,而且很多做错了的题并不难,不是不会,而是算错了。
所以,打草稿很重要,当然,如果考试时间确实来不及了,打不打草稿也可以灵活处理。
二、打草稿出现的毛病虽然绝大多数同学都会打草稿,但却不会正确地打草稿。
打草稿这件事,对与很多同学而言,无非就是推导、演算、出结果,并抄到试卷上就OK了,但是很少有孩子会规范使用草稿本。
草稿本乱七八糟不说,还经常因为一些书写不规范,抄答案都抄错了!三、典型的两种草稿第一种草稿无论切换到哪个角度都能找到草稿的痕迹,说不好听点,就是乱七八糟,回看的时候找不到方向、看不出重点,等到誊抄答案、检查结果时很容易出错,重新算一遍又浪费了时间。
也正是因为如此,有非常多的学生在数理化科目考试的时候,本来在草稿上演算时是有些思路的,但东一个步骤,西一个结果,回过头在试卷上做题的时候却反而混乱了,原因就是草稿太乱,没有形成很清晰的逻辑和思路。
另一种草稿,既书写规范,又步骤清晰,还有题号,这种做法在誊抄解题过程和最后检验的时候一般不会出错,一旦计算有纰漏也很容易发现问题出在哪里,并及时补救。
那些成绩优秀的同学,平时就很注重规范草稿演算,这有助于他们理顺自己的思路,减少不必要的失误。
相应的,他们在学习的其他方面也比其他同学要更有条理一些,这就是学习成绩好的细节所在!四、好的草稿应该是什么样的1、书写要规范有顺序。
数学试卷模板
(1)关于试卷纸张选择及页面设置关于纸张,常用的有 A4 和 8K(B4) 两种。
如果你用 8K 的试卷,建议把纸张设置为B5,因为用 8K 要分栏,给插图和选择题的排版带来一点点障碍。
用 B5 打印出来然后拼成 8K的试卷再制版印刷。
好了,开始写代码了,关于纸张的写上\documentclass[10pt,a4paper]{ctexart}上面的 10pt 是全篇正文的字号大小,只有 10, 11, 12 三种选择,个人建议使用 10。
好了,下面看页边距,一般设为 2cm,只要写上\usepackage[margin=2cm]{geometry}这样,上下左右的边距都是 2cm,也可以分开指定right, top, ... ,也可以在此处用 paperwidth 和 paperheight 指定纸张大小等。
(2)试卷标题的设计可以自己写,也可以借用论文模板的标题。
此处直接借用吧。
\begin{document}\title{2012年某某中学高三数学测试题}\author{总分:150分and 时间120分钟}\date{命题人: 某某某}\maketitle大家可以仿照这个自己修改,或者自己重新排版一个标题也行,应该说难度也不大的。
(3)大题、小题题号的排版高中数学试卷一般有三道大题、21道左右的小题。
我开始排版大题的时候,就自己写了一个计数器。
后来发现,模式都是固定的,没有变化,可以直接写一、二、三就行了。
\begin{enumerate}\item[一、] 选择题请把......\item 等下写选择题小题内容\item 等下写选择题小题内容\item 等下写选择题小题内容\item 等下写选择题小题内容\item 等下写选择题小题内容\item 等下写选择题小题内容\item 等下写选择题小题内容\item 等下写选择题小题内容\item 等下写选择题小题内容\item 等下写选择题小题内容\item[二、] 填空题 ......\item 等下写填空题小题内容\item 等下写填空题小题内容\item 等下写填空题小题内容\item 等下写填空题小题内容\item 等下写填空题小题内容\item[三、] 解答题 ......\item 等下写解答题小题内容\item 等下写解答题小题内容\item 等下写解答题小题内容\item 等下写解答题小题内容\item 等下写解答题小题内容\item 等下写解答题小题内容\end{enumerate}\end{document}现在,整个试卷的框架基本出来了。
2023-2024学年北京十三中高一(上)期中数学试卷和答案
2023北京十三中高一(上)期中数学2023年11月本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1页至第2页;第Ⅱ卷第3页至第5页,答题纸第1页至第3页.共150分,考试时间120分钟.请在答题纸规定处书写班级、姓名、准考证号.考试结束后,将本试卷的答题纸按页码顺序一并交回.一、选择题1.设U =R ,{}|0A x x =>,{}|1B x x =≤,则()U A B = ð()A.{}|01x x ≤<B.{}|01x x <≤C.{}|0x x <D.{}|1x x >2.若a b >,则一定有()A.11a b< B.|a |>|b |C.> D.33a b >3.函数()23f x x x=-零点所在的一个区间是()A.()2,1-- B.()0,1 C.()1,2 D.()2,+∞4.已知0x >,则12x x+的最小值为()A.2B.C.1D.25.下列函数中,既是偶函数又在区间()0,∞+上单调递增的是()A.()2f x x =+B.()x f x -=3C.()f x =D.()21f x x =-+6.命题1:11p x >-,:213q x -<,则p 是q 的______条件A.充分不必要 B.必要不充分C.充要D.既不充分也不必要7.已知命题“R x ∃∈,使得2230ax ax -+≤”是假命题,则实数a 的取值范围是()A.03a ≤≤B.0<<3aC.03a <≤ D.03a ≤<8.设集合{}1A x x a =-=,{}1,3,B b =-,若A ⊆B ,则对应的实数对(,)a b 有A.1对B.2对C.3对D.4对9.设常数a ∈R ,集合A={x|(x ﹣1)(x ﹣a )≥0},B={x|x≥a ﹣1},若A ∪B=R ,则a 的取值范围为()A.(﹣∞,2)B.(﹣∞,2]C.(2,+∞)D.[2,+∞)10.如图为某商铺A 、B 两种商品在2022年前3个月的销售情况统计图,已知A 商品卖出一件盈利20元,B 商品卖出一件盈利10元.图中点1A 、2A 、3A 的纵坐标分别表示A 商品2022年前3个月的销售量,点1B 、2B 、3B 的纵坐标分别表示B 商品2022年前3个月的销售量.根据图中信息,下列四个结论中正确的是()①2月A 、B 两种商品的总销售量最多;②3月A 、B 两种商品的总销售量最多;③1月A 、B 两种商品的总利润最多;④2月A 、B 两种商品的总利润最多.A.①③B.①④C.②③D.②④二、填空题11.函数()f x =的定义域是______.12.方程组202x y x x +=⎧⎨+=⎩的解集是______.13.已知2(1)f x x +=,则(3)f =_______.14.已知不等式250ax x b -+>的解集为{}32x x -<<,则不等式250bx x a -+>的解集为___________.15.已知奇函数()f x 在(),0∞-上是减函数,若()20f -=,则()0f x <的解集为______.16.设关于x 的不等式220ax x a -+≤的解集为S .(1)若S 中有且只有一个元素,则a 的值为___________;(2)若0S ∈且1S -∉,则a 的取值范围是___________.17.已知函数()2,2,{ 1,3.x x x c f x c x x +-≤≤=<≤若0c =,则()f x 的值域是____;若()f x 的值域是1,24⎡⎤-⎢⎥⎣⎦,则实数c 的取值范围是____.18.某厂商为推销自己品牌的可乐,承诺在促销期内,可以用3个该品牌的可乐空罐换1罐可乐.对于此促销活动,有以下三个说法:①如果购买10罐可乐,那么实际最多可以饮13罐可乐;②欲饮用100罐可乐,至少需要购买67罐可乐:③如果购买*()n n ∈N 罐可乐,那么实际最多可饮用可乐的罐数1()2n f n n -⎡⎤=+⎢⎣⎦.(其中[]x 表示不大于x 的最大整数)则所有正确说法的序号是__________.三、解答题19.已知a ,R b ∈,试比较33a b -与22ab a b -的大小,并证明.20.已知函数2()1xf x x =-.(Ⅰ)证明:()f x 是奇函数;(Ⅱ)判断函数()f x 在区间()1,1-上的单调性,并用函数单调性的定义加以证明.21.已知函数()2f x ax x =+定义在区间[]0,2上,其中[]2,0a ∈-.(1)若1a =-,求()f x 的最小值;(2)求()f x 的最大值.22.已知函数()223f x ax ax =--.(1)若1a =,求不等式()0f x ≥的解集;(2)己知0a >,且()0f x ≥在[)3,+∞上恒成立,求a 的取值范围;(3)若关于x 的方程()0f x =有两个不相等的正实数根1x ,2x ,求2212x x +的取值范围.23.经销商经销某种农产品,在一个销售季度内,每售出1吨该产品获利润500元,未售出的产品,每1吨亏损300元.经销商为下一个销售季度购进了130吨该农产品.以x (单位:吨,100150x ≤≤)表示下一个销售季度内的市场需求量,y (单位:元)表示下一个销售季度内销售该农产品的利润.(I )将y 表示为x 的函数:(II )求出下一个销售季度利润y 不少于57000元时,市场需求量x 的范围.24.已知集合P 的元素个数为()3n n N*∈且元素均为正整数,若能够将集合P 分成元素个数相同且两两没有公共元素的三个集合A 、B 、C ,即P A B C =⋃⋃,A B ⋂=∅,A C ⋂=∅,B C =∅ ,其中{}12,,,n A a a a = ,{}12,,,n B b b b = ,{}12,,,n C c c c =L ,且满足12n c c c <<< ,k k k a b c +=,1k =、2、L 、n ,则称集合P 为“完美集合”.(1)若集合{}1,2,3P =,{}1,2,3,4,5,6Q =,判断集合P 和集合Q 是否为“完美集合”?并说明理由;(2)已知集合{}1,,3,4,5,6P x =为“完美集合”,求正整数x 的值;(3)设集合{}13,P x x n n N*=≤≤∈,证明:集合P 为“完美集合”的一个必要条件是4n k =或()41n k k N *=+∈.参考答案一、选择题1.【答案】D【分析】根据题意结合集合间的运算求解.【详解】因为{}|1B x x =≤,则{}|1U B x x =>ð,所以(){}|1UA B x x =>I ð.故选:D.2.【答案】D 【分析】利用不等式的性质或反例逐项检验后可得正确的选项.【详解】取1,1a b ==-,则11a b>,||||a b ==A 、B 、C 均错误,由不等式的性质可得33a b >,故D 正确.故选:D.3.【答案】C【分析】利用零点存在性定理判断零点所在区间即可.【详解】由解析式知:()f x 在(,0)-∞上恒负,故不存在零点,在(0,)+∞上递减,而()2312011f =-=>,()23520222f =-=-<,()0,1内x 趋向于0时,()f x 趋向正无穷,而x 趋向于正无穷时,()f x 趋向负无穷.综上,零点所在的一个区间是()1,2.故选:C 4.【答案】B【分析】利用基本不等式即可求解.【详解】因为0x >,20x >,由基本不等式,12x x +≥=,当且仅当12x x =,即22x =时,等号成立.故选:B.5.【答案】A【分析】由偶函数、增函数的定义对选项一一判断即可得出答案.【详解】对于A ,()2f x x =+的定义域为R ,关于原点对称,()()22f x x x f x -=-+=+=,所以()f x 为偶函数,当0x >时,()2f x x =+,所以()f x 在区间()0,∞+上单调递增,故A 正确;对于B ,()xf x -=3的定义域为R ,关于原点对称,()()3x f x f x -=≠,所以()f x 不是偶函数,故B 错误;对于C ,()f x ={}0x x ≥,不关于原点对称,所以()f x 不是偶函数,故C 错误;对于D ,()21f x x =-+的定义域为R ,关于原点对称,()()21f x x f x -=-+=,所以()f x 为偶函数,又()f x 在区间()0,∞+上单调递减,故D 错误.故选:A .6.【答案】A【分析】解分式不等式和绝对值不等式,进而求出p 是q 的充分不必要条件.【详解】1121100111x x x x ->⇒->⇒>---,解得12x <<,213x -<,即3213x -<-<,解得12x -<<,因为1212x x <<⇒-<<,但12x -<<⇒12x <<,故p 是q 的充分不必要条件.故选:A 7.【答案】D【分析】由题设R x ∀∈,使得2230ax ax -+>为真,结合一元二次不等式在实数集上恒成立列不等式组求参数范围,注意讨论0a =的情况.【详解】由题设,R x ∀∈,使得2230ax ax -+>为真,所以203Δ4120a a a a >⎧⇒<<⎨=-<⎩.又0a =时22330ax ax -+=>恒成立,综上,03a ≤<.故选:D 8.【答案】D 【分析】先解出A ,再讨论包含关系(注意集合元素互异性),解出数对.【详解】解:因为集合{|||1}A x x a =-=,所以{1A a =-,1}a +,因为{1B =,3-,}b ,A B ⊆,所以11a -=,或13a -=-,或1a b -=,①当11a -=时,即2a =,{1A =,3},此时可知{1B =,3-,3},成立,即2a =,3b =;②当13a -=-时,即2a =-,{3A =-,1}-,此时可知{1B =,3-,1}-,成立,即2a =-,1b =-;③当1a b -=时,则11a +=或3:-当11a +=时,即0a =,{1A =-,1},此时可知{1B =,3-,1}-,成立,即0a =,1b =-;当13a +=-时,即4a =-,{5A =-,3}-,此时可知{1B =,3-,5}-,成立,即4a =-,=5b -;综上所述:2a =,3b =,或2a =-,1b =-,或0a =,1b =-,或4a =-,=5b -,共4对.故选:D .【点睛】本题考查集合关系,综合集合元素互异性,属于基础题.9.【答案】B【详解】试题分析:当时,,此时成立,当时,,当时,,即,当时,,当时,恒成立,所以a 的取值范围为,故选B.考点:集合的关系10.【答案】C【分析】对①②,根据统计图的相关点纵坐标高低判断即可;对③④,根据A 利润是B 的两倍,根据卖得更多的商品判断利润高低即可【详解】对①②,根据统计图可得,3B ,3A 的纵坐标之和显然最大,故3月A 、B 两种商品的总销售量最多;故②正确;对③④,因为A 商品卖出一件盈利20元,B 商品卖出一件盈利10元,根据统计图,若用对应的点表示对应点的纵坐标,则易得131232210100201020A B B B A A +>+>+,故③正确综上②③正确故选:C.二、填空题11.【答案】(],0-∞【分析】根据二次根式的意义和指数函数的性质即可求解.【详解】由题意知,0120212x x -≥⇒≤=,又函数2x y =在R 上单调递增,所以0x ≤,即函数()f x 的定义域为(],0-∞.故答案为:(],0-∞.12.【答案】{(2,2),(1,1)}--【分析】解方程求方程组的解,进而写出解集.【详解】由22(2)(1)0x x x x +-=+-=,可得2x =-或1x =,当2x =-时,20x y y +=-+=,即2y =;当1x =时,10x y y +=+=,即1y =-;所以原方程的解集为{(2,2),(1,1)}--.故答案为:{(2,2),(1,1)}--13.【答案】4【分析】应用换元法求()f x 的解析式,再求(3)f 即可.【详解】令1t x =+,则1x t =-,∴2()(1)f t t =-,即2()(1)f x x =-.∴2(3)(31)4f =-=.故答案为:414.【答案】121,,3⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭【分析】由题意可知,3-和2是方程250ax x b -+=的两根,再结合韦达定理以及十字相乘法,即可得解.【详解】解:由题意可知,3-和2是方程250ax x b -+=的两根,且a<0,532a ∴-+=,(3)2ba-⨯=,5a ∴=-,30b =,∴不等式250bx x a -+>为230550x x -->,即5(31)(21)0x x +->,解得12x >或13x <-.即不等式的解集为121,,3⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭ 故答案为:121,,3⎛⎫⎛⎫-∞-+∞ ⎪⎪⎝⎭⎝⎭.15.【答案】{20x x -<<或2}x >【分析】根据函数的奇偶性和单调性,结合图形,即可求解.【详解】由题意知,奇函数()f x 在(,0)-∞单调递减,(2)0f -=,所以函数()f x 在(0,)+∞单调递减,且(2)0f =,如图,由图可知,()0f x <的解集为{20x x -<<或2}x >.故答案为:{20x x -<<或2}x >.16.【答案】①.1②.10a -<≤【分析】(1)由题意,不等式220ax x a -+≤的解集只有一个元素,利用开口方向和判别式控制,列出不等关系,即得解;(2)由0S ∈且1S -∉,列出不等关系20,(1)2(1)0a a a ≤⨯--⨯-+>,求解即可【详解】(1)由题意,不等式220ax x a -+≤的解集只有一个元素故220,(2)40a a >∆=--=,解得1a =(2)由题意,0S ∈且1S-∉故20,(1)2(1)0a a a ≤⨯--⨯-+>,解得10a -<≤故答案为:1,10a -<≤17.【答案】①.1,4⎡⎫-+∞⎪⎢⎣⎭②.1,12⎡⎤⎢⎥⎣⎦【详解】若0c =,由二次函数的性质,可得2111,2,,43x x x ⎡⎤⎡⎫+∈-∈+∞⎪⎢⎥⎢⎣⎦⎣⎭,()f x \的值域为1,4⎡⎫-+∞⎪⎢⎣⎭,若()f x 值域为1,24⎡⎤-⎢⎥⎣⎦,2x =- 时,22x x +=且12x =-时,214x x +=-,要使()f x 的值域为1,24⎡⎤-⎢⎥⎣⎦,则20{2 12c c c c>+≤≤,得122c ≤≤,实数c 的取值范围是1,12⎡⎤⎢⎥⎣⎦,故答案为1,12⎡⎤⎢⎥⎣⎦.18.【答案】②③.【分析】①10罐可乐有10个可乐空罐,第一次可换3罐可乐还剩1个空罐,第二次可换1罐可乐还剩2个空罐,由此算出最多可饮用的可乐罐数;②:先分析购买66罐可乐的情况,再分析购买67罐可乐的情况,由此确定出至少需要购买的可乐罐数;③:先分析购买1到9罐可乐分别可饮用多少罐可乐以及剩余空罐数,然后得到规律,再分奇偶罐数对所得到的规律进行整理,由此计算出()f n 的结果.【详解】①:购买10罐可乐时,第一次可换3罐还剩1个空罐,第二次可换1罐还剩2个空罐,所以最多可饮用103114++=罐可乐,故错误;②:购买66罐时,第一次可换22罐可乐,第二次可换7罐可乐还剩1个空罐,第三次可换2罐可乐还剩2个空罐,第四次可换1罐可乐还剩2个空罐,所以一共可饮用662272198++++=罐;购买67罐时,第一次可换22罐可乐还剩1个空罐,第二次可换7瓶可乐还剩2个空罐,第三次可换3罐可乐,第四次可换1罐可乐还剩1个空罐,所以一共可饮用6722731100++++=罐;所以至少需要购买67罐可乐,故正确;③:购买1到9罐可乐分别可饮用可乐罐数以及剩余空罐数如下表所示:购买数饮用数剩余空罐数111222341452571682710181129131由表可知如下规律:(1)当购买的可乐罐数为奇数时,此时剩余空罐数为1,当购买的可乐罐数为偶数时,此时剩余的空罐数为2;(2)实际饮用数不是3的倍数;(3)每多买2罐可乐,可多饮用3罐可乐,(4)实际饮用的可乐罐数要比购买的可乐罐数的1.5倍少0.5或1;设购买了n 罐可乐,实际可饮用的可乐罐数为()f n ,所以()()()**3221,312,m n m m N f n m n m m N⎧-=-∈⎪=⎨-=∈⎪⎩,即()()()**3121,2322,2n n m m N f n n n m m N -⎧=-∈⎪⎪=⎨-⎪=∈⎪⎩,即()()()**121,222,2n n n m m N f n n n n m m N -⎧+=-∈⎪⎪=⎨-⎪+=∈⎪⎩,又因为12,22n n --可看作12n -⎡⎤⎢⎥⎣⎦,即不大于12n -的最大整数,所以1()2n f n n -⎡⎤=+⎢⎥⎣⎦成立,故正确;故答案为:②③.【点睛】关键点点睛:解答本题时,一方面需要通过具体购买的可乐罐数去分析实际饮用的可乐罐数,另一方面需要对实际的购买情况进行归纳,由此得到购买的可乐罐数与实际饮用的可乐罐数的关系,从而解决问题.三、解答题19.【答案】答案及证明见解析【分析】利用作差法比较代数式的大小,注意分类讨论.【详解】当a b ≥时3322a b ab a b -≥-;当a b <时3322a b ab a b -≤-,证明如下:3322332222()()()a b ab a b a b ab a b a a b b a b ---=--+=+-+222()()()()a b a b a b a b =-+=-+,当a b ≥时,0a b -≥,2()0a b +≥,故3322a b ab a b -≥-;当a b <时,0a b -<,2()0a b +≥,故3322a b ab a b -≤-;20.【答案】(Ⅰ)证明见解析;(Ⅱ)函数2()1xf x x =-在区间()1,1-上是减函数,证明见解析.【分析】(Ⅰ)先求定义域,再用奇函数的定义()()f x f x -=-,证明()f x 为奇函数;(Ⅱ)按照①取值,②作差,③变形,④判号,⑤下结论,这5个步骤证明.【详解】(Ⅰ)函数()f x 的定义域为{}1D x x =≠±,对于任意x D ∈,因为2()()()1xf x f x x --==---,所以()f x 是奇函数.(Ⅱ)函数2()1xf x x =-在区间()1,1-上是减函数.证明:在()1,1-上任取1x ,2x ,且12x x <,则()()()()()()122112122222121211111x x x x x x f x f x x x x x +--=-=----.由1211x x -<<<,得1210x x +>,210x x ->,2110x -<,2210x -<,所以()()120f x f x ->,即()()12f x f x >.所以函数2()1xf x x =-在区间()1,1-上是减函数.21.【答案】(1)2-;(2)详见解析【分析】(1)()2f x x x =-+,首先判断函数在定义域上的单调性,再判断函数的最小值;(2)当0a =时,()f x x =,单调递增求函数的最大值,当20a -≤<时,分情况讨论函数的对称轴和定义域的关系,求函数的最大值.【详解】(1)当1a =-时,()221124f x x x x ⎛⎫=-+=--+ ⎪⎝⎭.所以()f x 在区间10,2⎛⎫ ⎪⎝⎭上单调递增,在1,22⎛⎫ ⎪⎝⎭上()f x 单调递减.因为()00f =,()22f =-,所以()f x 的最小值为2-.(2)①当0a =时,()f x x =.所以()f x 在区间[]0,2上单调递增,所以()f x 的最大值为()22f =.当20a -≤<时,函数()2f x ax x =+图象的对称轴方程是12x a =-.②当1022a <-≤,即124a -≤≤-时,()f x 的最大值为1124f a a ⎛⎫-=- ⎪⎝⎭,③当104a -<<时,()f x 在区间[]0,2上单调递增,所以()f x 的最大值为()242f a =+.综上,当124a -≤≤-时,()f x 的最大值为1124f a a ⎛⎫-=- ⎪⎝⎭;当104a -<≤时,()f x 的最大值为42a +.【点睛】本题考查二次函数求最值,意在考查分类讨论的思想和计算能力,属于基础题型.22.【答案】(1){1x x ≤-或3}x ≥(2)[)1,+∞(3)()2,4【分析】(1)由题意得2230x x --≥,求解即可得出答案;(2)函数22()23(1)3(0)f x ax ax a x a a =--=--->,可得二次函数()f x 图象的开口向上,且对称轴为1x =,题意转化为min ()0f x ≥,利用二次函数的图象与性质,即可得出答案;(3)利用一元二次方程的根的判别式和韦达定理,即可得出答案.【小问1详解】当1a =时,2()23f x x x =--,()0f x ≥,即2230x x --≥,解得1x ≤-或3x ≥,∴不等式的解集为{1x x ≤-或3}x ≥;【小问2详解】22()23(1)3(0)f x ax ax a x a a =--=--->,[3,)x ∈+∞则二次函数()f x 图象的开口向上,且对称轴为1x =,∴()f x 在[3,)+∞上单调递增,min ()(3)33f x f a ∴==-,()0f x ≥在[3,)+∞上恒成立,转化为min ()0f x ≥,∴330a -≥,解得1a ≥,故实数a 的取值范围为[1,)+∞;【小问3详解】关于x 的方程()0f x =有两个不相等的正实数根12,x x ,∵2()23f x ax ax =--,120x x +>,120x x >,∴0a ≠且21212Δ41202030a a x x x x a ⎧⎪=+>⎪+=>⎨⎪⎪⋅=->⎩,解得3a <-,()222121212624x x x x x x a∴+=+-=+,令6()4g a a=+(3a <-),()g a 在(,3)-∞-上单调递减,6(2,0)a∴∈-,()(2,4)g a ∴∈,故2212x x +的取值范围为(2,4).23.【答案】(I )80039000,10013065000,130150x x y x -≤<⎧=⎨≤≤⎩;(II )[]120150,.【分析】(I )分情况考虑:100130,130150x x ≤<≤≤,分别求解出每一种情况下y 的表示,由此可得到y 关于x 的分段函数;(II )根据条件分段列出不等式,求解出每一个不等式的解集,由此求解出市场需求量x 的范围.【详解】(I )当100130x ≤<时,此时130吨的该农产品售出x 吨,未售出()130x -吨,所以()500300130y x x =--,即80039000y x =-;当130150x ≤≤时,此时130吨的该农产品全部售出,所以500130y =⨯,即65000y =,综上可知:80039000,10013065000,130150x x y x -≤<⎧=⎨≤≤⎩;(II )当100130x ≤<时,令8003900057000x -≥,解得120130x ≤<,当130150x ≤≤,此时6500057000>符合,所以市场需求量x 的范围是[]120150,.24.【答案】(1)P 是完美集合,Q 不是完美集合;(2)可能值为:7、9、11中任一个;(3)证明见解析.【分析】(1)根据完美集合的定义,将P 分为集合{}1、{}2、{}3符合条件,将Q 分成3个,每个中有两个元素,根据完美集合的定义进一步判断即可;(2)根据完美集合的概念直接求出集合C ,从而得到x 的值;(3)P 中所有元素之和为()()12133122n n n n c c c c -+=++++ ,根据()121914n n n c c c --=+++ ,等号右边为正整数,可得等式左边()91-n n 可以被4整除,从而证明结论.【详解】(1)将P 分为{}1、{}2、{}3满足条件,则P 是完美集合.将Q 分成3个,每个中有两个元素,则111a b c +=,222+=a b c ,Q 中所有元素之和为21,1221210.5c c ÷==+,而12c c +为整数,不符合要求,故Q 不是“完美集合”;(2)若集合{}1,4A =,{}3,5B =,根据完美集合的概念知集合{}6,7C =;若集合{}1,5A =,{}3,6B =,根据完美集合的概念知集合{}4,11C =;若集合{}1,3A =,{}4,6B =,根据完美集合的概念知集合{}5,9C =.故x 的可能值为7、9、11中任一个;(3)证明:P 中所有元素之和为()3311232n n n ++++= ()1112221111212n n n n n n n n a b c a b c a b c a b c c c c c ----=++++++++++++=++++ ,因为3=n c n ,所以,()12133134n n n c c c n -+=++++ ,所以,()()12133191344n n n n n c c c n -+-+++=-= ,因为121n c c c -+++ 为正整数,则()91-n n 可以被4整除,所以,4n k =或()14n k k N *-=∈,即4n k =或()41n k k N *=+∈.故集合P 为“完美集合”的一个必要条件是4n k =或()41n k k N *=+∈.【点睛】关键点点睛:解决集合中新定义问题的关键是准确理解新定义的实质,紧扣新定义进行推理论证,把其转化为我们熟知的基本运算,解本题的关键在于理解“完美集合”的定义,弄清集合A 、B 中的元素与集合C 中元素之间的关系,采取逻辑推证、列举法等方法求解.。
2024学年辽宁省铁岭高中高三下期末测试数学试题
2024学年辽宁省铁岭高中高三下期末测试数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,3C π=,若()m c a b =-,(,n a b c =-,且//m n ,则ABC ∆的面积为( )A .3B .2C .2D .2.将函数f (x )=sin 3x 3x +1的图象向左平移6π个单位长度,得到函数g (x )的图象,给出下列关于g (x )的结论: ①它的图象关于直线x =59π对称; ②它的最小正周期为23π; ③它的图象关于点(1118π,1)对称; ④它在[51939ππ,]上单调递增. 其中所有正确结论的编号是( )A .①②B .②③C .①②④D .②③④3.已知函数()f x 满足()()11f x f x -=+,当1x ≥时,()2f x x x =-,则()}{21x f x +>=( ) A .{3x x <-或}0x >B .{0x x <或}2x >C .{2x x <-或}0x >D .{2x x <或}4x > 4.已知,m n 为两条不重合直线,,αβ为两个不重合平面,下列条件中,αβ⊥的充分条件是( ) A .m ∥n m n ,,αβ⊂⊂B .m ∥n m n ,,αβ⊥⊥C .m n m ,⊥∥,n α∥βD .m n m ,⊥n ,αβ⊥⊥5.如图所示,三国时代数学家在《周脾算经》中利用弦图,给出了勾股定理的绝妙证明.图中包含四个全等的直角三角形及一个小正方形(阴影),设直角三角形有一个内角为30,若向弦图内随机抛掷200颗米粒(大小忽略不计,取1.732),则落在小正方形(阴影)内的米粒数大约为( )A .20B .27C .54D .646.已知全集U =R ,集合{}{}237,7100A x x B x x x =≤<=-+<,则()U A B ⋂=( ) A .()(),35,-∞+∞ B .(](),35,-∞+∞ C .(][),35,-∞+∞ D .()[),35,-∞+∞7.如图,在直三棱柱111ABC A B C -中,1AB AC ==,12BC AA ==,点,E O 分别是线段1,C C BC 的中点,1113A F A A =,分别记二面角1F OB E --,1F OE B --,1F EB O --的平面角为,,αβγ,则下列结论正确的是( )A .γβα>>B .αβγ>>C .αγβ>>D .γαβ>>8.如图,圆O 是边长为23的等边三角形ABC 的内切圆,其与BC 边相切于点D ,点M 为圆上任意一点,BM xBA yBD =+(,)x y ∈R ,则2x y +的最大值为( )A 2B 3C .2D .229.已知13ω>,函数()sin 23f x x πω⎛⎫=- ⎪⎝⎭在区间(,2)ππ内没有最值,给出下列四个结论: ①()f x 在(,2)ππ上单调递增;②511,1224ω⎡⎤∈⎢⎥⎣⎦ ③()f x 在[0,]π上没有零点;④()f x 在[0,]π上只有一个零点.其中所有正确结论的编号是( )A .②④B .①③C .②③D .①②④10.某几何体的三视图如图所示(单位:cm),则该几何体的体积等于( )cm 3A .243π+B .342π+C .263π+D .362π+ 11.已知椭圆E :22221x y a b+=(0)a b >>的左、右焦点分别为1F ,2F ,过2F 的直线240x y +-=与y 轴交于点A ,线段2AF 与E 交于点B .若1||AB BF =,则E 的方程为( )A .2214036x y += B .2212016x y += C .221106x y += D .2215x y += 12.在平面直角坐标系xOy 中,将点()1,2A 绕原点O 逆时针旋转90︒到点B ,设直线OB 与x 轴正半轴所成的最小正角为α,则cos α等于( ) A .25 B .5- C 5D .25- 二、填空题:本题共4小题,每小题5分,共20分。
陕西省西安铁一中学年高二数学上学期第一次月考
西安铁一中2021 学年高二上学期第一次月考数学试题真!心答!一、〔每小 5 分 , 共 55 分 . 将每小唯一正确答案前的代填入答卡的相位置,、不、多均得零分〕1、一数据20、 30、40、 50、60、60、70,数据的众数、中位数、平均数的大小关系〔〕A.中位数 > 平均数 > 众数B.众数 > 中位数 > 平均数C.众数 > 平均数 > 中位数D.平均数 > 众数 > 中位数2. 357 与 459 的最大公数是〔〕A.3B. 7 C . 17D.513.用折半插入排序法,数据列3,7,8,10,12,15的“中位置〞的数据是指〔〕4.要从已号〔 1— 50〕的 50 件品中随机抽取 5 件行,用系抽方法确定所取的 5 件品的号可能是〔〕A.5,10,15,20,25B. 2,4,8,16,22C.1,2,3,4,5D. 3,13,23,33,435.某程序框如 1 所示,程序运行后出的k 的是( )A.4 B .5 C .6 D .76. 以下两个量之的关系哪个不是函数关系〔〕1A、角度和它的正弦B、人的右手一柞和身高C、正方体的棱和外表 D 、真空中自由落体运物体的下落距离和下落7. 2 是判断年的流程,以下年份是年的〔〕A. 1995年年年年S=1i=1For j =1 To 10S=2*Si=i+1Next输出 S238. 3 描述的程序是用来( )A. 算 2× 10 的B. 算 29的C. 算 210的D. 算 1× 2× 3×⋯× 10 的9.从 2021 名学生中取50 名学生参加某活,假设采用下面的方法取:先用随机抽样从 2021 人中剔除8 人,剩下的 2000 人再按系统抽样的方法抽取50 人,那么在2021人中,每人入选的概率〔〕A.不全相等B.均不相等C.都相等,且为25D.都相等,且为1 10044010.〔理科题〕一个均匀的正方体,把其中相对的面分别涂上红色、黄色、蓝色,随机向上抛出,正方体落地时“向上面为红色〞的概率是〔〕A . 1/6〔文科题〕?新课程标准?规定,那些希望在人文、社会科学等方面开展的学生,除了修完必修内容和选修系列一的全部内容外,根本要求是还要在系列三的 6 个专题中选修 2 个专题,高中阶段共获得16 个学分。
高中数学考试答题卡(A4版可修改)
普通高等学校招生全国统一考试 数学试题答题卡
姓 名 ________________________
准考证号
考生禁填: 缺考考生由监考员填涂右边的缺考标记. 填 涂 样 例 注意事项 1.答题前,考生先将自己的姓名、准考证号填写清楚,并认真检查监考员所粘贴的条形码; 2.选择题必须用2B 铅笔填涂,解答题必须用0.5毫米黑色签字笔书写,字体工整,笔迹清楚; 3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠、不要弄破。
正确填涂 错误填涂 √ × ○ ● 第Ⅰ卷 一、选择题(共60分) A B C D 1 A B C D 2 A B C D 3 A B C D 4 A B C D 5 A B C D 6 A C D B 7 A C D B 8 A C D B 9 A C D B 10 13、______ ___ __ ___ 14、_______ _______ 15、______ __ ______ 16、 第Ⅱ卷 二、填空题(共20分) 三、解答题(解答应写出文字说明,证明过程或演算步骤)(共70分) A C D B 11 A C D B 12 考 生 条 形 码 粘 贴 处 17.。
高中数学规范要求
高中数学规范要求总纲:慢审题,圈重点,注括号;快答题,清书写,三分二;条件全,顺序列,要点足;不会跳,先做易,步骤分。
先浏览,先涂卡,先一问;后答题,后大题,后二问。
一做题要求1:浏览试卷先看做选哪个,再看导数与解析几何难度确定答题速度以及答题顺序2:先做选择35-45分钟左右11.12做3分钟没思路跳过做完选择涂卡3:填空10-15分钟左右16题可以先跳做完写卡4:大题先做选做做完后做17 18 19 导数解析几何(先做简单的)可以先做完第一问后做第二问(根据浏览试题时确定的难度先后)没有思路可以做前边跳过的题二类型要求1.集合:注意空集注意交集,并集区分注意等号与补集关系可能用到韦恩图2.逻辑关系:注意否定否结果不否条件和特称命题与全称命题的转化(X与X0)3.函数:注意定义域(特别是根号化为圆锥曲线)4.立体几何(小):在演算纸上画一个较为表准的图(最好用铅笔)5.不等式(小):注意线性规划的应用与数形结合时图的规范性与几何意义(是距离还是距离的平方)6.导数:注意定义域注意极值与单调性逆用等号的检验注意第一问的条件7.立体几何(大):注意证明条件要写全建系要标准角的转换需要交代8.数列:注意n的范围注意放缩不等式的适用条件注意错位相减的最后一项与Sn 的系数移过来注意a1的是否符合注意分段是否能合并9.解三角形:注意卡角注意面积公式的应用注意初中知识的应用(角的转换)10.解析几何:注意焦点所在轴注意△的范围(恒成立也写)注意题中条件或所求量的转化(化为点坐标距离斜率方程向量)注意与坐标轴重合时的存在与否注意所设直线方程的类型(横截纵截截距点点斜点)计算需要写出必要过程不能一步得出结果11.极坐标参数方程:注意参数几何意义(直线方程t 系数平方和不唯一事需要变形)12.不等式(选修):注意等号取得时的条件必须写出13.概率(大题):注意设事件“A”“B”等注意用“答”期望与方差特殊求法的表述14.线性回归方程:建立新表格需要交代并画出代入公式需要过程15.独立性检验:注意得数的小数点位数注意答题的语言(在犯错误不超过…的情况下……)16.排列组合:注意顺序是否存在17.程序框图:注意运算框所处的位置以及内容最好列出来18.微积分:注意奇函数对称为0 注意与面积的转化三其他1.演算纸对折使用2.答题纸用三分之二3.画图用铅笔再用黑笔描4.尽量不要有涂改5.时间合理分配不会先跳6.用数学语言数学方法答题。
湖北省鄂州高中2023届高一数学第一学期期末调研模拟试题含解析
【解析】(1)(i)解方程 即得解;(ii)利用二次函数的图象和性质求解;
(2)对 分类讨论解不等式.
【小问1详解】
解:(i)由题得 ;
(ii) ,对称轴为 ,
所以当 时, .
.
所以f(x)在区间 上的值域为 .
【小问2详解】
解: ,
当 时, ;
当 时, ,
当 时,不等式 解集为 或 ;
∴f(2)f(3)<0.
根据函数零点的判定定理可得函数f(x)的零点所在的区间是(2,3),
故选C
【点睛】本题主要考查求函数的值,函数零点的判定定理,属于基础题
二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)
13、2
【解析】由扇形周长求得半径同,弧长,再由面积公式得结论
【详解】设半径为 ,则 , ,所以弧长为 ,
试题解析:
(1)令logax=t(t∈R),则x=at,
∴f(t)= (at-a-t)
∴f(x)= (ax-a-x)(x∈R)
∵f(-x)= (a-x-ax)=- (ax-a-x)=-f(x),∴f(x)为奇函数
当a>1时,y=ax为增函数,y=-a-x为增函数,且 >0,
∴f(x)为增函数
当0<a<1时,y=ax为减函数,y=-a-xБайду номын сангаас减函数,且 <0,
三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)
17、(1) ,函数 单调递增区间: , ;(2) .
【解析】(1)利用函数的周期求解 ,得到函数的解析式,然后求解函数的单调增区间;
(2)由题得 ,再利用三角函数的图象和性质求解.
高中数学考试答题卡(纸)
▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅请在各题目的答题区域内作答,超出黑色边框的答案无效第1页 共4页请在各题目的答题区域内作答,超出黑色边框的答案无效 第2页 共4页 高中二年级下学期期中教学质量检测数学(B )答题纸一、选择题:本大题共12个小题,每小题5分,共60分。
题号 答案1-5 6-1011-12二、填空题:本大题共4个小题,每小题4分,共16分。
13、 14、 15、 16、 17、(本小题满分12分)18、(本小题满分12分)19、(本小题满分12分)评卷人 得分评卷人 得分评卷人 得分评卷人 得分 密 封 线学校: 班级: 姓名: 考号:虚线 右侧不要答题座号 (考生填写)题号 得分 二 三17 18 1920 21 22 总分▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅ ▅请在各题目的答题区域内作答,超出黑色边框的答案无效第3页 共4页请在各题目的答题区域内作答,超出黑色边框的答案无效 第4页 共4页 20、(本小题满分12分)21、(本小题满分12分)22、(本小题满分14分)评卷人 得分评卷人 得分 请在各题目的答题区域内作答,超出黑色边框的答案无效。
广西柳州市融安县高级中学2024届高三4月“圆梦之旅”(九)数学试题
广西柳州市融安县高级中学2024届高三4月“圆梦之旅”(九)数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )为( )A .163B .6C .203D .2232.《九章算术》中记载,堑堵是底面为直角三角形的直三棱柱,阳马指底面为矩形,一侧棱垂直于底面的四棱锥.如图,在堑堵111ABC A B C -中,AC BC ⊥,12AA =,当阳马11B ACC A -体积的最大值为43时,堑堵111ABC A B C -的外接球的体积为( )A .4π3B .2π3C .32π3D 642 3.点,,A B C 是单位圆O 上不同的三点,线段OC 与线段AB 交于圆内一点M ,若,(0,0),2OC mOA nOB m n m n =+>>+=,则AOB ∠的最小值为( )A .6πB .3πC .2πD .23π 4.若函数()y f x =的定义域为M ={x|-2≤x≤2},值域为N ={y|0≤y≤2},则函数()y f x =的图像可能是( ) A . B . C .D .5.随着人民生活水平的提高,对城市空气质量的关注度也逐步增大,下图是某城市1月至8月的空气质量检测情况,图中一、二、三、四级是空气质量等级,一级空气质量最好,一级和二级都是质量合格天气,下面叙述不正确的是( )A .1月至8月空气合格天数超过20天的月份有5个B .第二季度与第一季度相比,空气达标天数的比重下降了C .8月是空气质量最好的一个月D .6月份的空气质量最差.6.函数1()ln ||1x f x x+=-的图象大致为A .B .C .D .7.设实数满足条件则的最大值为( ) A .1 B .2 C .3 D .48.将函数()sin(2)f x x ϕ=-的图象向右平移18个周期后,所得图象关于y 轴对称,则ϕ的最小正值是( ) A .8π B .34π C .2π D .4π 9.已知椭圆22221(0)x y a b a b+=>>的焦点分别为1F ,2F ,其中焦点2F 与抛物线22y px =的焦点重合,且椭圆与抛物线的两个交点连线正好过点2F ,则椭圆的离心率为( )A .22B .21-C .322-D .31-10.函数cos 1ln(),1,(),1x x x f x xex π⎧->⎪=⎨⎪≤⎩的图象大致是( ) A . B .C .D .11.已知,a R b R ∈∈,则“直线210ax y +-=与直线(1)210a x ay +-+=垂直”是“3a =”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 12.已知直线y =k (x +1)(k >0)与抛物线C 2:4y x =相交于A ,B 两点,F 为C 的焦点,若|FA |=2|FB |,则|FA | =( )A .1B .2C .3D .4二、填空题:本题共4小题,每小题5分,共20分。
陕西省咸阳市乾县第二中学2025届高三下学期联合考试数学试题含解析
陕西省咸阳市乾县第二中学2025届高三下学期联合考试数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.ABC 中,点D 在边AB 上,CD 平分ACB ∠,若CB a =,CA b =,2a =,1b =,则CD =( ) A .2133a b + B .1233a b +C .3455a b + D .4355a b + 2.执行如下的程序框图,则输出的S 是( )A .36B .45C .36-D .45-3.设复数z 满足2z iz i -=+(i 为虚数单位),则z 在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限4.在ABC ∆中,AB AC AB AC +=-,4AB =,3AC =,则BC 在CA 方向上的投影是( ) A .4B .3C .-4D .-35.设n S 是等差数列{}n a 的前n 项和,且443S a =+,则2a =( ) A .2-B .1-C .1D .26.已知椭圆22221(0)x y a b a b+=>>的焦点分别为1F ,2F ,其中焦点2F 与抛物线22y px =的焦点重合,且椭圆与抛物线的两个交点连线正好过点2F ,则椭圆的离心率为( )A .22B .21-C .322-D .31-7.已知集合{}|,A x x a a R =≤∈,{}|216xB x =<,若A B ,则实数a 的取值范围是( )A .∅B .RC .(],4-∞D .(),4-∞8.已知1F ,2F 是椭圆22221(0)x y C a b a b +=>>:的左、右焦点,过2F 的直线交椭圆于,P Q 两点.若2211||,||,||,||QF PF PF QF 依次构成等差数列,且1||PQ PF =,则椭圆C 的离心率为A .23B .34C .155D .105159.中,如果,则的形状是( )A .等边三角形B .直角三角形C .等腰三角形D .等腰直角三角形10.用1,2,3,4,5组成不含重复数字的五位数,要求数字4不出现在首位和末位,数字1,3,5中有且仅有两个数字相邻,则满足条件的不同五位数的个数是( ) A .48B .60C .72D .12011.已知数列 {}n a 是公比为 q 的等比数列,且 1a , 3a , 2a 成等差数列,则公比 q 的值为( )A .12-B .2-C .1- 或12D .1 或 12-12.1x <是12x x+<-的( )条件 A .充分不必要B .必要不充分C .充要D .既不充分也不必要二、填空题:本题共4小题,每小题5分,共20分。
成都实验中学2025届高考数学五模试卷含解析
成都实验中学2025届高考数学五模试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知点P 在椭圆τ:2222x y a b +=1(a>b >0)上,点P 在第一象限,点P 关于原点O 的对称点为A ,点P 关于x 轴的对称点为Q ,设34PD PQ =,直线AD 与椭圆τ的另一个交点为B ,若PA ⊥PB ,则椭圆τ的离心率e =( ) A .12 B .22 C .32 D .332.已知01a b <<<,则( )A .()()111b b a a ->-B .()()211b b a a ->-C .()()11a b a b +>+D .()()11a b a b ->-3.一场考试需要2小时,在这场考试中钟表的时针转过的弧度数为( )A .3πB .3π-C .23πD .23π- 4.某歌手大赛进行电视直播,比赛现场有6名特约嘉宾给每位参赛选手评分,场内外的观众可以通过网络平台给每位参赛选手评分.某选手参加比赛后,现场嘉宾的评分情况如下表,场内外共有数万名观众参与了评分,组织方将观众评分按照[)70,80,[)80,90,[]90,100分组,绘成频率分布直方图如下:嘉宾A B C D E F 评分 96 95 96 89 97 98嘉宾评分的平均数为1x ,场内外的观众评分的平均数为2x ,所有嘉宾与场内外的观众评分的平均数为x ,则下列选项正确的是( )A .122x x x +=B .122x x x +>C .122x x x +<D .12122x x x x x +>>> 5.已知a b ,满足23a =,3b =,6a b ⋅=-,则a 在b 上的投影为( )A .2-B .1-C .3-D .26.已知函数()2cos (0)3f x x πωω⎛⎫=-> ⎪⎝⎭在,32ππ⎡⎤-⎢⎥⎣⎦上单调递增,则ω的取值范围( ) A .2,23⎡⎤⎢⎥⎣⎦ B .20,3⎛⎤ ⎥⎝⎦ C .2,13⎡⎤⎢⎥⎣⎦ D .(0,2] 7.已知复数,则的共轭复数在复平面对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限8.执行如图所示的程序框图,若输出的结果为3,则可输入的实数x 值的个数为( )A .1B .2C .3D .4 9.若5(1)(1)ax x ++的展开式中23,x x 的系数之和为10-,则实数a 的值为( )A .3-B .2-C .1-D .110.已知i 为虚数单位,复数z 满足()1z i i ⋅-=,则复数z 在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限11.已知函数13()4sin 2,0,63f x x x π⎛⎫⎡⎤=-∈π ⎪⎢⎥⎝⎭⎣⎦,若函数()()3F x f x =-的所有零点依次记为123,,,...,n x x x x ,且123...n x x x x <<<<,则123122...2n n x x x x x -+++++=( )A .503πB .21πC .1003πD .42π12.如图,点E 是正方体ABCD -A 1B 1C 1D 1的棱DD 1的中点,点F ,M 分别在线段AC ,BD 1(不包含端点)上运动,则( )A .在点F 的运动过程中,存在EF //BC 1B .在点M 的运动过程中,不存在B 1M ⊥AEC .四面体EMAC 的体积为定值D .四面体FA 1C 1B 的体积不为定值二、填空题:本题共4小题,每小题5分,共20分。