(完整word版)二值图像分析

合集下载

(完整word版)【matlab代做】基于MATLAB的GMM和KDE核估计得目标跟踪仿真

(完整word版)【matlab代做】基于MATLAB的GMM和KDE核估计得目标跟踪仿真

第一章课题背景和研究意义近年来,视频监控系统在各行业得到了广泛应用,生活中有小区、超市等的安全监控,银行系统有柜台监控,交通方面有违章监控等。

这些监控系统是由一个或多个摄像机以及与之相连的一套电视监视器组成的,它们的用途主要是对场景的记录和保存,当异常情况,比如盗窃行为发生后,保安人员才通过记录的结果察看发生的事情,但往往为时已晚。

视觉监视是指在一个繁忙环境中对人和车辆等进行实时的观察,并给出对它们行为和动作的描述。

这一技术包括了运动目标的检测、跟踪、目标分类和行为理解等方面,涉及到计算机视觉、模式识别和人工智能领域的许多核心课题,是一个具有挑战性的困难问题。

近年来随着集成电路和计算机技术的迅猛发展,视觉监视系统所要求的硬件设备成本大大降低,因此它获得了日益广泛的研究与应用。

许多关于视觉监视的大规模研究项目已经在美国、欧洲和日本展开,同时它也成为许多国际学术会议关注的重要主题。

运动目标检测与跟踪处于整个视觉监视系统的最底层,是各种后续高级处理如目标分类、行为理解等的基础。

运动目标检测系指从视频流中实时提取目标,一般是确定目标所在区域和颜色特征等。

目标检测的结果是一种“静态”目标——前景目标,由一些静态特征所描述。

运动目标跟踪则指对目标进行连续的跟踪以确定其运动轨迹。

我们通过为静止背景建模来检测前景点。

具体的背景模型以 Stauffer 等提出的自适应混合高斯模型为蓝本,并对其作了部分改进以更好地处理实际背景发生变化的情形。

算法中采用一种可靠的连通区域检测算法完成前景目标的分割。

目标跟踪时则通过匹配目标的位置、大小、形状和颜色等特征,建立运动目标与前景目标间的对应关系。

算法中考虑了跟踪中多个目标相互遮挡的问题,分析了几种可能结果并分别加以处理。

我们还为运动目标引入了可靠性度量以使目标跟踪过程更加稳定和可靠。

在实际应用中,不包括运动物体的纯背景图像通常无法得到。

而且,由于场景光照变化、摄像机抖动等因素,背景不可能完全静止。

(完整word版)VISION中文的使用说明

(完整word版)VISION中文的使用说明

NI Vision 控件模板Vision控件模板位于LabVIEW控件模板的最顶层,由一下元素组成:IMAQ Image.ctl—该控件是一个类型定义,用于声明图象类型的数据。

在V I的前面板中使用该控件代表图象类型数据。

例如,使用该控件作为一个子程序的输入或输出,使调用成成可以将一幅图像传送给子程序。

图像显示(Image Display)—该控件用于在LabVIEW 中直接显示图像。

也可以利用该控件创建关注区域 (ROIs)。

图像显示控件提供标准和3D版两种外观。

IMAQ 视觉控件(IMAQ Vision controls)—这里的控件用于将NI Vision的程序控件直接加入入用户自己的程序中获得相应的功能。

机器视觉控件(Machine Vision controls)—这里的控件用于将NI Vision 的机器视觉控件直接加入到用户自己的程序中以获得相应的功能。

NI Vision 函数模板NI Vision for LabVIEW 由三个主要的函数模板组成:常用视觉程序(Vision Utilities), 图像处理(Image Processing), 和机器视觉(Machine Vision)。

本节介绍这些模板以及它们的子模板。

常用视觉程序(Vision Utilities)常用视觉函数用于在NI Vision中处理和显示图像。

Image Management—管理图像程序组。

利用这些程序可以建立和释放图像,设置和读取图像的属性例如尺寸和偏移量,复制图象。

也可以使用一些高级的V is来定义图像的边框区域以及访问图像数据的指针。

Files—一组使用不同格式读、写图像文件,并从文件中获得所包含的图像的信息的程序模块。

External Display—用于在外部窗口显示图像的程序模块组。

使用这些程序模块可以完成以下任务:读取和设置窗口属性,如尺寸、位置、缩放系数为图像窗口设置调色板建立及使用图像浏览器在图像窗口上为选中的关注区域建立和使用不同的交互式绘图工具。

第3章二值图像分析

第3章二值图像分析

1=L
1=N
L=N *=L,N中小标号
39
*
例子
1 1 1 0 4 0 6 6
1 1 1 0 4 0 6 6
第3章 二值图像分析 Chapter 3 Binary Image Analysis
3.1 二值图像
(1)二值图像(binary image)与灰度图像或亮度 图像(intensity image);
2
二值图像
3
(2)二值图像的特点
假定二值图像大小为MxN,其中物体像素值为1, 背景像素值为0; 二值图像处理的算法简单,易于理解和实现,计 算速度快; 二值视觉所需的内存小,对计算设备要求低; 二值视觉系统技术可用于灰度图像视觉系统 。
29
5.连通成分(connected component):图像中
彼此连通的最大像素子集
一个像素集合,如果集合内的每一个像素与 集合内其它像素连通,则称该集合为一个连通 成份。
30
6.背景:`S(S的补集)中包含图像边界点的所有 连通成份的集合。 洞:`S中所有非背景其它元。

`S 前景和背景都使用6-连通。
31
7. 边界
S的边界是S中与S有4连通关系的像素集合S '
8. 内部
S 中不属于它的边界的像素集合 . S 的内部等于
S-S '
9. 包围 如果从S中任意一点到图像边界的4路径必须与区域 T相交,则区域T包围区域 S(或S在T内)
S
`S
边界
内部 包围
图像 边界
32
3.5.2 连通成分标记
视觉中常见的运算是找连通成分。
1 如果 T1 I [i, j ] T2 B[i, j ] 0 其它

数字图像 12.二值图像处理与形状分析2

数字图像   12.二值图像处理与形状分析2

建立一种基本元素循环的方式来描述上述结构。 设S和A是变量,S是起始符号,a和b是基本元素的 常数,则可建立一种描述语法,或说可确定如下重 写(替换)规则:
(l)S->aA (起始符号可用元素a和变量A来替换); (2)A->bs (变量A可以用元素b和起始符号S来替换); (3)A+b (变量A可以用单个元素b来替换)。 由规则2知,如用b和S替换A则可回到规则1,整个过程可 以重复。 根据规则3,如果用b替换A则整个过程结束,因为表达式 中不再有变量。注意这些规则强制在每个a后面跟一个b,所 以a和b间的关系保持不变。
p( j ) f (i, j )
n
j
固定i0,得到图像f(i,j)的过i0而平行于j轴的截口f(i0 ,j) 固定j0,得到图像f(i,j)的过j0而平行于i轴的截口f(i, j0)
二值图像f(i,j)的截口长度为:
s (i 0 ) f (i0 , j ) s ( j 0 ) f (i, j0 )
2)结构分析法
利用二值图像的四叉树表示边界,可以提取
如欧拉数、区域面积、矩、形心、周长等区域的
形状特征。
2.区域外形变换法 区域外形变换是指对区域的边界作各种变 换,包括区域边界的付立叶描述算子、Hough变
换和广义Hough变换、区域边界和骨架的多项式
逼近等。这样将区域的边界或骨架转换成向量
或数量,并把它们作为区域的形状特征。
个结点与其相连通结点的信息,可用一组指向这些结点的 指针来记录。
树结构的两类信息中,一类确定了图象描述中的基本模
式元,第二类确定了各基本模式元之间的物理连接关系。下
图给出一个用树结构描述关系的例子,左图的是一个组合区 域,它可以用右图所示的树借助“在„之中”关系进行描述。 其中根结点R表示整幅图;a和c是在R之中的两个区域所对 应的两个子树的根结点,其余结点是它们的子结点。由图B所 示的树可知,e在d中,d和f在c中,b在a中;a和c在R中。

05二值图像分析

05二值图像分析
1)提取的目标中存在伪目标物; 2)多个目标物中,存在粘连或者断裂; 3)多个目标物存在形态的不同。
二值图像及其意义
图像定义
一副数字图像是一个二维阵列,阵列元素值称为灰度值 或亮度值。
二值图像定义
只有黑、白两级灰度的图像。分别用1和0表示。
二值图像优点
去掉无关信息的干扰 几何与拓扑特性的表示与分析 节省资源
L = bwlabel(BW,4) [r, c] = find(L==2); rc = [r c]
区域边界—边界跟踪算法
参考“预处理”部分
距离测量
参考"基础"一章对应内容
描述二值图像的特征
• 基于边界的特征
– 链码、边界长度、边界标记、边界形状数
• 基于区域的特征
– 四叉树、围绕区域、骨架、面积、质心、密度、区域 形状数、不变矩、拓扑特征
第五章 二值图像分析 Chapter 5 Binary Image Analysis
Ref. Book
• 二值图像分析基本过程 预处理-->二值化-->图像描述(特征提取)-->分析识别
(预处理和二值化过程参考前面章节)
二值图像分析的意义
经过图像分割之后,获得了目标物与非目标物两 种不同的对象。但是提取出的目标物存在以下的 问题:
L=N *=L,N中小标号
连通成分标记 — 序贯算法
• [L, num] = bwlabel(BW, n)
BW = logical (... [1 1 1 0 1 1 0 0; 1 1 1 0 1 1 0 0; 1 1 1 0 1 0 0 0; 1 1 1 0 0 0 1 0; 1 0 1 0 0 0 1 0; 1 0 1 0 0 1 1 0; 1 1 1 0 0 1 0 0; 1 1 1 0 0 0 0 1]);

4 二值图像分析

4 二值图像分析

d 4
e
可以描述图形的密集程度,1≤ d ≤ 0 。
3 体态比
区域的最小外接矩形的长与宽之比特性: 1)正方形和圆的体态比等于1 2)细长形物体的体态比大于1 下图是几种形状的外接矩形:
4.3 投影
4.3 投影
• 投影能表现图像的某种特征信息 • 给定一条直线,用垂直该直线的一簇等间距直线将一幅二值图像分割成若干
周长 2 e 面积
emin
周长2 面积
对于圆
2 (2 R) =4 2 R
当图形的形状接近于圆时,e 趋近于最小值(4π),反过来,图形的 形状变得越复杂,e的取值变得越大。
区域的密集度:
C
面积 周长2
根据此标准,圆是最密集的图形。 密集度的另一意义:周长在给定后,密集度越高、所围面积越大。 因此,比值
确定为阈值参数 tp 。
2. 状态法
(直方图分析法-峰谷法)
当给定图像的灰度直方 图(与对象图形和背景相对应)
呈双峰型分布时,只需把
这两个峰间的谷底上的灰 度值作为阈值 t 即可。
t
双峰分布示意图
一幅灰度图像和使用不同阈值到的二值图像结果
1) 原始灰度图像
2) 阈值 T=100
3) T=128(反色) 4) T1=100|T2=128
图像中的物体、背景各具有一灰度值( N ),图像被零均值高斯噪声污 染,灰度分布曲线是由两个正态分布函数叠加而成.图像直方图将会出现 两个分离的峰值,阈值选取波谷最佳。 具有不同灰度均值的多物体图像中.背景和物体灰度值正态分布参数 为:
练习:请用不等 式依次排出 4 个 方差的顺序。
2. 迭代式阈值选择
经试验比较,对于直方图双峰明显,谷底较深的图

(完整word版)二次函数的图像分析与解答题

(完整word版)二次函数的图像分析与解答题

1y P函数典型问题练习 图像分析与解答题一 图像分析1、已知一次函数y=kx+b 的图象如图所示,则k,b 的符号是( )(A) k>0,b>0 (B ) k>0,b 〈0 (C ) k<0,b 〉0 (D ) k 〈0,b 〈0 2、下图中表示一次函数y =mx+n 与正比例函数y =m nx(m ,n 是常数,且mn 〈0)图像的是( ).3、函数y=(m+1)x-(4m-3)的图象在第一、二、四象限,则m 的取值范围是( ) A m <3/4 B -1<m <3/4 C m <-1 D m >-1 4。

下列各曲线中不能表示y 是x 的函数是( )。

5。

已知一次函数y =(m +2)x +(1-m ),若y 随x 的增大而减小,且此函数图象与y 轴的交点在x 轴的上方,则m 的取值范围是( )A. m >-2B 。

m <1C 。

m 〈-2D 。

m 〈1且m ≠-26.如下图所示,利用函数图象回答下列问题:(1)方程组3,2x y y x+=⎧⎨=⎩ 的解为__________;(2)不等式2x 〉-x +3的解集为___________; 7.如图1所示,直线y kx b =+与x 轴的交点为()4,0-,则0y >时,x 的取值范围是( )A .4x >-B .4x <-C .0x >D .0x < -4y-1y=nxy=mx+b0yxOxyOxyOxyOxy(第6题)8.直线1:l y mx b =+与直线y nx =在同一平面直角坐标系中的图象如图3所示,则关于x 的不等式mx b nx +>的解为( )A .1x >-B .1x <-C .2x <-D .2x >-9.如图,某个反比例函数的图象经过点P,则它的解析式为( )A.y=1x (x 〉0); B 。

y=—1x (x>0)C 。

二值图象分析BinaryImageAnalysis

二值图象分析BinaryImageAnalysis

06
二值图像的应用实例
文字识别
总结词
文字识别是二值图像分析的一个重要应用,通过将文字转换为二值图像,可以方便地进行文字提取、识别和分类。
详细描述
在文字识别中,首先将文字图像进行预处理,包括去噪、二值化、归一化等操作,然后利用特征提取和分类器进 行文字识别。常见的文字识别方法有基于模板匹配、基于深度学习的OCR等。
基于神经网络的分类方法
总结词
基于神经网络的分类方法是一种深度学习方法,通过训练神经网络来识别和分类二值图 像中的对象。
详细描述
基于神经网络的分类方法的基本思想是,利用神经网络学习大量的训练样本,通过训练 得到一个能够自动识别和分类二值图像中的对象的模型。常用的神经网络模型有卷积神
经网络(CNN)、循环神经网络(RNN)等。
基于聚类的分类方法
总结词
基于聚类的分类方法是一种无监督学习方法,通过将像素点聚类成不同的组,将每个组视为一个类别 。
详细描述
基于聚类的分类方法的基本思想是,利用聚类算法将像素点聚类成若干个组,每个组内的像素点具有 相似的灰度值或特征,然后根据聚类结果将像素点分类。常用的聚类算法有K-means、DBSCAN等。
指纹识别
总结词
指纹识别是利用二值图像分析技术对指 纹进行提取、匹配和分类的过程,是身 份识别的一种重要手段。
VS
详细描述
在指纹识别中,首先对指纹图像进行预处 理,包括增强、二值化、细化等操作,然 后提取指纹的特征点,如脊线方向、脊线 间距等,最后进行匹配和分类。常见的指 纹识别算法有基于细节点匹配和基于图像 特征的匹配等。
连通区域标记通常使用深度优先搜索(DFS)或广度 优先搜索(BFS)算法实现,标记后的每个连通区域都 有一个唯一的标识符。

(完整word版)数字图像处理课设

(完整word版)数字图像处理课设

(完整word版)数字图像处理课设专业综合实验报告—-—-数字图像处理专业: 电子信息工程班级:学生姓名:学号:指导教师:年月日设计题目:图像去雾处理一、设计目的由于大气的散射作用,照相机接收到景物反射过来的光线经过了衰减.雾天的大气退化图像具有对比度低、景物不清晰的特点,给交通系统及户外视觉系统的应用带来严重的影响。

鉴于图像处理和计算机视觉中有关图像理解、目标识别、目标跟踪、智能导航等领域的很多算法都是假设输入的图像或视频是在理想天气条件下拍摄的,因此有雾图像清晰化就显得格外重要,是目前人们研究的热点问题之一,但由于成像系统聚焦模糊、拍摄场景存在相对运动以及雾天等不利环境,使得最终获取的图像往往无法使用。

有雾天气条件下获取的图像对比度低、图像内容模糊不清而且颜色整体偏向灰白色,图像去雾的目的就是恢复有雾图像的对比度和真实色彩,重现在理想天气条件下拍摄的清晰图像。

二、设计内容和要求1、采用直方图均衡化方法增强雾天模糊图像,并比较增强前后的图像和直方图;2、查阅文献,分析雾天图像退化因素,设计一种图像复原方法,对比该复原图像与原始图像以及直方图均衡化后的图像;三、设计思路由于图像中存在噪声等干扰,使得图像模糊不清。

可以采用图像增强的方法对原图像处理,使图像变得清晰.而直方图均衡化是一种常用的图像增强的方法。

图像模糊,其图像的像素分布不均匀,采用直方图均衡化的方法使其图像像素分布均匀,从而达到均衡像素分布增强图像的目的。

设计方案在晴朗的天气条件下,洁净的空气一般是由氦气、氧气等气体分子、水蒸汽、微量的固体悬浮颗粒物等成分构成。

在这种大气条件下,从物体表面反射的光线在到达成像设备的过程中,基本不会受大气中各种成分的影响发生散射、吸收、发射等现象,而是直接到达成像设备。

相对在有雾天气条件下获得的图像,在这种理想天气条件获得的图像,我们称之为清晰无雾图像。

而在有雾天气条件下获得的图像模糊不清,图像对比度下降,图像的颜色发生漂移,偏向灰白色。

(完整word版)地图数学模型原理与分析-课程作业

(完整word版)地图数学模型原理与分析-课程作业

地图数学模型原理与分析课程作业院系:资源与环境科学学院专业:学生姓名:学号:指导教师一、在空间数据库中,把大比例尺图形数据缩编成小比例尺,图形数据是按要素分层的,各要素应采用什么模型确定选取指标?答:按要素分层的GIS 图形数据主要包括:居民地、河流、道路网、独立地物、岛屿(湖泊)等。

大比例尺缩编成小比例尺时,应根据不同的要素的特点采用不同的数学模型确定指标。

1.居民地选取指标模型确定居民地选取指标的模型较多,有一元回归模型、多元回归模型、图解计算法、开方根规律模型等。

实施地图制图综合时,以多元回归模型为例进行说明。

在地图制图综合中,影响居民地选取指标的因素很多,诸如居民地密度,人口密度,地形,水系,交通等。

宜采取多元回归模型,并采用居民地密度,人口密度和居民地选取程度三个变量之间的相关,进行多元回归分析,建立选取模型。

1)建立确定居民地选取指标的多元回归模型的基本原理 根据分析,确定居民地选取指标的多元回归模型为21210b b x x b y =。

(1-1)式中,y 为居民地选取程度,1x 为居民地密度,2x 为人口密度,0b 、1b 、2b 为待定参数。

设y 1为单位面积内居民地选取的个数,则有11x y y =(1-2) 把(1-2)式代入(1-1)式有2121101bb x x b y += (1-3) 下面对参数的性质进行讨论①参数0b :决定总的选取水平0b =0时y=0;所以:0b ≥0 ②参数1b :决定不同居民地密度的选取程度如果1b >0,居民地密度越大,选取程度越大,这是违背地图制图综合原理的如果1b <-1,居民地密度越大,选取数量反而少,这是违背地图制图综合原理的,所以:-1≤1b ≤0③参数2b :如果2b <0,人口密度越大的区域,居民地选取程度反而小,这也是违背地图制图综合原理的所以:2b ≥0.2)各种比例尺地形图上选取指标模型对各种比例尺的量测数据进行整理,由实地居民地密度1x (个/100km2),人口密度2x (人/km2)和相应比例尺的居民地选取程度y ,得各种比例尺居民地选取模型1:10万 0468.023792.019336.2x x y -=1:20万 0697.026865.017870.2x x y -=1:100万 1719.028962.013588.0x x y -=1:150万 1843.029657.012363.0x x y -= 1:200万2187.020038.110753.0x x y -= 1:250万2216.020275.110478.0x x y -=3)通用居民地选取模型从以实地居民地密度建立的系列比例尺的居民地选取程度模型中,可以看出 b 0、b 1、b 2随比例尺变化而变化,它们同地图比例尺分母M 有相关关系。

第6章 二值图像

第6章 二值图像

E = ∫ ∫ r 2 f ( x, y )dx dy
式中, 是点 是点( 式中,r是点(x , y)到直线的垂直距离。 )到直线的垂直距离。
周长 6.3.2 周长
周长是围绕所有像素的外边界的长度。常用简便方法如下: 周长是围绕所有像素的外边界的长度。常用简便方法如下: 把图像中的像素看作单位面积小方块, (1) 把图像中的像素看作单位面积小方块,图像中的区 域和背景均由小方块组成。区域的周长为区域和背景缝隙的 域和背景均由小方块组成。 长度和,此时边界用隙码表示。求周长就是计算隙码的长度。 长度和,此时边界用隙码表示。求周长就是计算隙码的长度。 周长为24 周长为24
A
B
A
B
(a)
(b)
4.平移和反射 设A是一幅数字图像,b是一个点。 是一幅数字图像, 是一个点。 定义: 定义:A被b平移后的结果为A+b={a+b| a∈A}, A的反射是A中的每个点取反AV={a| -a∈A}。 的反射是A
y 5 4 3 2 1 0 1 2 (a) 3 4 x 3 2 1 0 b 1 2 (b) 3 4 x y 5 4 3 2 1 0 1 2 (c) 3 4 x (d) y y x 4 3 2 1 0 1 2 3 4
b a A (a) (b) B A
交集、 并集和补集 2. 交集、 并集和补集
A ∪B
A∩B
AC
A A B
B A
B
3.击中(Hit)与击不中(Miss) 击中(Hit)与击不中(Miss) 设两幅图像A和B, A∩B≠ A∩B≠φ ,称B击中A,记为B↑A,
A∩B=, 称B击不中A。 φ
平移
反射
目标和结构元素 5. 目标和结构元素 被处理的图像称为目标图像 。 被处理的图像称为 目标图像。 为了确定目标图像的结 目标图像 必须逐个考察与检验图像各部分之间的关系, 构,必须逐个考察与检验图像各部分之间的关系, 最后得 到一个各部分之间关系的集合。 到一个各部分之间关系的集合。 在考察目标图像各部分之间的关系时,需要设计一种 在考察目标图像各部分之间的关系时, 结构元素” 在图像中不断移动结构元素, “结构元素”。在图像中不断移动结构元素, 就可以考察 图像之间各部分的关系。 图像之间各部分的关系。

CV02-二值图像分析

CV02-二值图像分析

等价表(equivalent table)
定义:如果图像的邻点有两种不同的标记,用等价表来记录所 有的等价标记。
用途:1)第一次扫描,所有属于同一连通成分的标记被视为等 价。2)第二次扫描,从等价表中选择一个标记并分配给连通成 分中所有像素点,通常将最小的标记分配给一个连通成分。
1=L
1=N
பைடு நூலகம்
L=N *=L,N中小标号
其中的参数(二阶矩)
n 1 m 1 i 0 j 0
a ( xij x ) 2 B[i, j ] b 2 ( xij x )( y ij y ) B[i, j ]
i 0 j 0 n 1 m 1
c ( y ij y ) 2 B[i, j ]
1 1 1 0 4 0 6 6
1 1 1 0 4 0 6 6
0 0 1 0 4 0 0 0
2 2 1 0 4 4 4 4
2 0 0 0 0 0 0 0
2 2 0 0 5 5 0 7 1 0
0 0 0 0 0 0 0 7 2 1
3 3 3 3 3 3 3 3 3 0 4 0
5 0
连通成分标记

— 序贯算法

算法优点
以空间换时间
区域边界—边界跟踪算法

定义
连通成份S的边界是那些属于S且与S邻接的点集

算法策略
边界跟踪算法先选择一起始点 s S 然后沿顺时针或逆时 针利用连通性跟踪边界直到回到起始点.

连通成分
连通成分&背景
一个像素集合,如果集合内的每一个像素与集合内其它像素连 通,则称该集合为一个连通成份(connected component).

(完整word版)数据分析报告格式

(完整word版)数据分析报告格式

数据分析报告格式导读:本文数据分析报告格式,仅供参考,如果觉得很不错,欢迎点评和分享。

数据分析报告格式分析报告的输出是是你整个分析过程的成果,是评定一个产品、一个运营事件的定性结论,很可能是产品决策的参考依据,既然这么重要那当然要写好它了。

我认为一份好的分析报告,有以下一些要点:首先,要有一个好的框架,跟盖房子一样,好的分析肯定是有基础有层次,有基础坚实,并且层次明了才能让阅读者一目了然,架构清晰、主次分明才能让别人容易读懂,这样才让人有读下去的欲望;第二,每个分析都有结论,而且结论一定要明确,如果没有明确的结论那分析就不叫分析了,也失去了他本身的意义,因为你本来就是要去寻找或者印证一个结论才会去做分析的,所以千万不要忘本舍果;第三,分析结论不要太多要精,如果可以的话一个分析一个最重要的结论就好了,很多时候分析就是发现问题,如果一个一个分析能发现一个重大问题,就达到目的了,不要事事求多,宁要仙桃一口,不要烂杏一筐,精简的结论也容易让阅者接受,减少重要阅者(通常是事务繁多的领导,没有太多时间看那么多)的阅读心理门槛,如果别人看到问题太多,结论太繁,不读下去,一百个结论也等于0;第四、分析结论一定要基于紧密严禁的数据分析推导过程,不要有猜测性的结论,太主观的东西会没有说服力,如果一个结论连你自己都没有肯定的把握就不要拿出来误导别人了;第五,好的分析要有很强的可读性,这里是指易读度,每个人都有自己的阅读习惯和思维方式,写东西你总会按照自己的思维逻辑来写,你自己觉得很明白,那是因为整个分析过程是你做的,别人不一定如此了解,要知道阅者往往只会花10分钟以内的时间来阅读,所以要考虑你的分析阅读者是谁?他们最关心什么?你必须站在读者的角度去写分析邮件;第六,数据分析报告尽量图表化,这其实是第四点的补充,用图表代替大量堆砌的数字会有助于人们更形象更直观地看清楚问题和结论,当然,图表也不要太多,过多的图表一样会让人无所适从;第七、好的分析报告一定要有逻辑性,通常要遵照:1、发现问题-—2、总结问题原因——3、解决问题,这样一个流程,逻辑性强的分析报告也容易让人接受;第八、好的分析一定是出自于了解产品的基础上的,做数据分析的产品经理本身一定要非常了解你所分析的产品的,如果你连分析的对象基本特性都不了解,分析出来的结论肯定是空中楼阁了,无根之木如何叫人信服?!第九、好的分析一定要基于可靠的数据源,其实很多时候收集数据会占据更多的时间,包括规划定义数据、协调数据上报、让开发人员提取正确的数据或者建立良好的数据体系平台,最后才在收集的正确数据基础上做分析,既然一切都是为了找到正确的结论,那么就要保证收集到的数据的正确性,否则一切都将变成为了误导别人的努力;第十、好的分析报告一定要有解决方案和建议方案,你既然很努力地去了解了产品并在了解的基础上做了深入的分析,那么这个过程就决定了你可能比别人都更清楚第发现了问题及问题产生的原因,那么在这个基础之上基于你的知识和了解,做出的建议和结论想必也会更有意义,而且你的老板也肯定不希望你只是个会发现问题的人,请你的那份工资更多的是为了让你解决问题的;十一、不要害怕或回避“不良结论”,分析就是为了发现问题,并为解决问题提供决策依据的,发现产品问题也是你的价值所在,相信你的老板请你来,不是光让你来唱赞歌的,他要的也不是一个粉饰太平的工具,发现产品问题,在产品缺陷和问题造成重大失误前解决它就是你的分析的价值所在了;十二、不要创造太多难懂的名词,如果你的老板在看你的分析花10分钟要叫你三次过去来解释名词,那么你写出来的价值又在哪里呢,还不如你直接过去说算了,当然如果无可避免地要写一些名词,最好要有让人易懂的“名词解释”;十三、最后,要感谢那些为你的这份分析报告付出努力做出贡献的人,包括那些为你上报或提取数据的人,那些为产品作出支持和帮助的人(如果分析的是你自己负责的产品),肯定和尊重伙伴们的工作才会赢得更多的支持和帮助,而且我想你也不是只做一锤子买卖,懂得感谢和分享成果的人才能成为一个有素养和受人尊敬的产品经理.数据分析报告(一)一、营业收入1、酒店财务部提供数据要求简单、清晰,每个分析不能超过三个小点,特殊的可以另行报告)A、节能降耗采取哪些措施:B、能耗超标原因分析:C、与去年同期相比(含同期及年累计)上升及下降原因分析:D、下一步节能降耗采取哪些措施(以下将作为下个月分析重点):E、尚需要酒店管理公司及集团其他部门配合的工作:数据分析报告(二)一、公司情况简介郑州百文股份有限公司,是一家大型的商业批发企业。

(完整word版)数值分析报告-二分法和牛顿法方程求根(word文档良心出品)

(完整word版)数值分析报告-二分法和牛顿法方程求根(word文档良心出品)

《数值分析》实验报告一**: **学号: PB********实验一一、实验名称方程求根二、实验目的与要求:通过对二分法和牛顿法作编程练习和上机运算,进一步体会它们在方程求根中的不同特点;比较二者的计算速度和计算精度。

三、实验内容:通过对二分法和牛顿迭代法作编程练习和上机运算,进一步体会它们在方程求根中的不同特点 。

(一)二分法算法:给定区间[a,b],并设f (a )与f (b )符号相反,取δ为根的容许误差,ε为值的容许误差。

(1)令c=(a+b)/2(2)如果(c-a)< δ或)(c f <ε,则输出c ,结束;否则执行(3)(3)如果f(a)f(c)<0,则令)()(,c f b f c b ←←;否则,则令)()(,c f a f c a ←←,重复(1),(2),(3)。

(二)牛顿迭代法:给定初值0x ,ε为根的容许误差,η为)(x f 的容许误差,N 为迭代次数的容许值。

(1)如果)(x f <η或迭代次数大于N ,则算法结束;否则执行(2)。

(2)计算)('/)(0001x f x f x x -=(3)若 < 或 < ,则输出 ,程序结束;否则执行(4)。

(4)令 = ,转向(1)。

四、实验题目与程序设计1、二分法3.1.1、用二分法求方程a. f(x)= x x tan 1--在区间[0,π/2]上的根,c. f(x)=6cos 22-++-x e x x 在区间[1,3]上的根。

源程序:3.1.1.a#include<stdio.h>#include<math.h>void main(){float a,b;double c,y,z;printf("plese input two number a and b:\n");scanf("%f%f",&a,&b);c=(a+b)/2;y=1/c-tan(c);printf("a=%f,b=%f,b-a=%f,c=%f,f(c)=%f\n",a,b,b-a,c,y);while(fabs(b-a)>0.00001|| fabs(y)>0.00001){z=1/a-tan(a);if(z*y<0)b=c;elsea=c;c=(a+b)/2;y=1/c-tan(c);printf("a=%f,b=%f,b-a=%f,c=%f,f(c)=%f\n",a,b,b-a,c,y);}x x 01-ε)(1x f ηx 1x 0x 1}输入0 1.5707563( /2~1.5705563)得到下表:由上表可以看出刚开始时f(c)取值幅度很大,但是经过一段历程之后,幅度变得平缓甚至基本接近与零,我们认为,x=0.8603是方程的根,结果与实际想要得到的值相当接近。

(完整word版)阈值确定方法

(完整word版)阈值确定方法

一、问题重述图形(或图像)在计算机里主要有两种存储和表示方法。

矢量图是使用点、直线或多边形等基于数学方程的几何对象来描述图形,位图则使用像素来描述图像。

一般来说,照片等相对杂乱的图像使用位图格式较为合适,矢量图则多用于工程制图、标志、字体等场合。

矢量图可以任意放缩,图形不会有任何改变。

而位图一旦放大后会产生较为明显的模糊,线条也会出现锯齿边缘等现象。

矢量图从本质上只是使用曲线方程对图形进行的精确描述,在以像素为基本显示单元的显示器或打印机上是无法直接表现的。

将矢量图转换成以像素点阵来表示的信息,再加以显示或打印,这个过程称之为栅格化(Rasterization),见图1。

栅格化的逆过程相对比较困难。

假设有一个形状较为简单的图标,保存成一定分辨率的位图文件。

我们希望将其矢量化,请你建立合理的数学模型,尽量准确地提取出图案的边界线条,并将其用方程表示出来。

二、问题分析本题的要求是完成位图的矢量化,通过建立合理的数学模型,将一个有一定分辨率的位图文件尽量准确地提取出图案的边界线条,最终将位图用方程的形式表示出来。

解决本问题的流程图见下图。

首先,通过MATLAB读取位图的各个像素的像素值(0-1),得到位图各个点的灰度值,通过最大类间方差法和最大熵法确定阈值,完成灰度的二值化,使各个像素点的灰度值全部由0或1表示。

其次,将位图的轮廓通过合适的算法提取出来,根据特征值对轮廓进行拟合。

最后,根据拟合的函数完成位图的矢量图,完成其矢量化过程,并通过对比矢量图和原始位图对应的。

三、问题假设及符号说明3.1问题假设3.2符号说明四、模型建立4.1模型准备本题要求将一个形状较为简单的图标,保存成一定分辨率的位图文件,即将位图矢量化。

阈值:指释放一个行为反应所需要的最小刺激强度,本文指像素点灰度值二值化的临界值。

4.2阈值的确定方法 4.2.1最大类间方差法最大类间方差法的基本思想是将待分割图像看作是由两类组成的整体,一类是背景,一类是目标[6]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 二值图像分析一幅数字图像是一个二维阵列,阵列元素值称为灰度值或强度值.实际上,图像在量化成数字图像前是一个连续强度函数的集合,场景信息就包含在这些强度值中.图像强度通常被量化成256个不同灰度级,对某些应用来说,也常有32、64、128或512个灰度级的情况,在医疗领域里甚至使用高达4096(12bits)个灰度级.很明显,灰度级越高,图像质量越好,但所需的内存也越大.在机器视觉研究的早期,由于内存和计算能力非常有限,而且十分昂贵,因此视觉研究人员把精力主要集中在研究输入图像仅包含两个灰度值的二值视觉系统上.人们注意到,人类视觉在理解仅由两个灰度级组成的线条、轮廓影像或其它图像时没有任何困难,而且应用场合很多,这一点对研究二值视觉系统的研究人员是一个极大的鼓舞.随着计算机计算能力的不断增强和计算成本的不断下降,人们普遍开始研究基于灰度图像、彩色图像和深度图像的视觉系统.尽管如此,二值视觉系统还是十分有用的,其原因如下:⑴ 计算二值图像特性的算法非常简单,容易理解和实现,并且计算速度很快.⑵ 二值视觉所需的内存小,对计算设备要求低.工作在256个灰度级的视觉系统所需内存是工作在相同大小二值图像视觉系统所需内存的八倍.如若利用游程长度编码等技术(见3.4节)还可使所需内存进一步减少.由于二值图像中的许多运算是逻辑运算而不是算术运算,所以所需的处理时间很短.(3)许多二值视觉系统技术也可以用于灰度图像视觉系统上.在灰度或彩色图像中,表示一个目标或物体的一种简易方法就是使用物体模板(mask),物体模板就是一幅二值图像,其中1表示目标上的点,0表示其它点.在物体从背景中分离出来后,为了进行决策,还需要求取物体的几何和拓扑特性,这些特性可以从它的二值图像计算出来.因此,尽管我们是在二值图像上讨论这些方法,但它们的应用并不限于二值图像.一般来说,当物体轮廓足以用来识别物体且周围环境可以适当地控制时,二值视觉系统是非常有用的.当使用特殊的照明技术和背景并且场景中只有少数物体时,物体可以很容易地从背景中分离出来,并可得到较好的轮廓,比如,许多工业场合都属于这种情况.二值视觉系统的输入一般是灰度图像,通常使用阈值法首先将图像变成二值图像,以便把物体从背景中分离出来,其中的阈值取决于照明条件和物体的反射特性.二值图像可用来计算特定任务中物体的几何和拓扑特性,在许多应用中,这种特性对识别物体来说是足够的.二值视觉系统已经在光学字符识别、染色体分析和工业零件的识别中得到了广泛应用.在下面的讨论中,假定二值图像大小为n m ⨯,其中物体像素值为1,背景像素值为0.3.1 阈值视觉系统中的一个重要问题是从图像中识别代表物体的区域(或子图像),这种对人来说是件非常容易的事,对计算机来说却是令人吃惊的困难.为了将物体区域同图像其它区域分离出来,需要首先对图像进行分割.把图像划分成区域的过程称为分割,即把图像],[j i F 划分成区域k p p p ,,,21⋅⋅⋅,使得每一个区域对应一个候选的物体.下面给出分割的严格定义.定义 分割是把像素聚合成区域的过程,使得:● ==i k i P 1 整幅图像 (}{i P 是一个完备分割 ). ● j i P P j i ≠∅=, ,(}{i P 是一个完备分割).● 每个区域i P 满足一个谓词,即区域内的所有点有某种共同的性质.● 不同区域的图像,不满足这一谓词.正如上面所表明的,分割满足一个谓词,这一谓词可能是简单的,如分割灰度图像时用的均匀灰度分布、相同纹理等谓词,但在大多数应用场合,谓词十分复杂.在图像理解过程中,分割是一个非常重要的步骤. 二值图像可以通过适当地分割灰度图像得到.如果物体的灰度值落在某一区间内,并且背景的灰度值在这一区间之外,则可以通过阈值运算得到物体的二值图像,即把区间内的点置成1,区间外的点置成0.对于二值视觉,分割和阈值化是同义的.阈值化可以通过软件来实现,也可以通过硬件直接完成.通过阈值运算是否可以有效地进行图像分割,取决于物体和背景之间是否有足够的对比度.设一幅灰度图像],[j i F 中物体的灰度分布在区间],[21T T 内,经过阈值运算后的图像为二值图像],[j i F T ,即:⎩⎨⎧≤≤=其它如果0],[ 1],[21T j i F T j i F T (3.1) 如果物体灰度值分布在几个不相邻区间内时,阈值化方案可表示为: ⎩⎨⎧∈=其它如果0],[ 1],[Z j i F j i F T (3.2) 其中Z 是组成物体各部分灰度值的集合.图3.1是对一幅灰度图像使用不同阈值得到的二值图像输出结果. 阈值算法与应用领域密切相关.事实上,某一阈值运算常常是为某一应用专门设计的,在其它应用领域可能无法工作.阈值选择常常是基于在某一应用领域获取的先验知识,因此在某些场合下,前几轮运算通常采用交互式方式来分析图像,以便确定合适的阈值.但是,在机器视觉系统中,由于视觉系统的自主性能(autonomy )要求,必须进行自动阈值选择.现在已经研究出许多利用图像灰度分布和有关的物体知识来自动选择适当阈值的技术.其中的一些方法将在3.2节介绍.图3.1 一幅灰度图像和使用不同阈值得到的二值图像结果.上左:原始灰度图像,上右:阈值T=100;左下:T=128.右下:T1=100|T2=128. 3.2 几何特性通过阈值化方法从图像中检测出物体后,下一步就要对物体进行识别和定位.在大多数工业应用中,摄像机的位置和环境是已知的,因此通过简单的几何知识就可以从物体的二维图像确定出物体的三维位置.在大多数应用中,物体的数量不是很多,如果物体的尺寸和形状完全不同,则可以利用尺度和形状特征来识别这些物体.实际上在许多工业应用中,经常使用区域的一些简单特征,如大小、位置和方向,来确定物体的位置并识别它们.3.2.1 尺寸和位置一幅二值图像区域的面积(或零阶矩)由下式给出:∑∑-=-==1010],[n i m j j i B A (3.3)在许多应用中,物体的位置起着十分重要的作用.工业应用中,物体通常出现在已知表面(如工作台面)上,而且摄像机相对台面的位置也是已知的.在这种情况下,图像中的物体位置决定了它的空间位置.确定物体位置的方法有许多,比如用物体的外接矩形、物体矩心(区域中心)等来表示物体的位置.区域中心是通过对图像进行“全局”运算得到的一个点,因此它对图像中的噪声相对来说是不敏感的.对于二值图像,物体的中心位置与物体的质心相同,因此可以使用下式求物体的中心位置:∑∑∑∑∑∑∑∑-=-=-=-=-=-=-=-=-==1010101010101010],[],[],[],[n i n i m j m j n i m j n i m j j i iB j i B y j i jB j i B x (3.4)其中x 和y 是区域相对于左上角图像的中心坐标.物体的位置为:Aj i iB y A j i jB x n i m j n i m j ∑∑∑∑-=-=-=-=-==10101010],[],[ (3.5)这些是一阶矩.注意,由于约定y 轴向上,因此方程3.4和3.5的第二个式子的等号右边加了负号.3.2.2 方向计算物体的方向比计算它的位置稍微复杂一点.某些形状(如圆)的方向不是唯一的,为了定义唯一的方向,一般假定物体是长形的,其长轴方向被定义为物体的方向.通常,二维平面上与最小惯量轴同方向的最小二阶矩轴被定为长轴.图像中物体的二阶矩轴是这样一条线,物体上的全部点到该线的距离平方和最小.给出一幅二值图像],[j i B ,计算物体点到直线的最小二乘方拟合,使所有物体点到直线的距离平方和最小:χ220101==-=-∑∑r B i j ij j m i n [,] (3.6)其中r ij 是物体点],[j i 到直线的距离.为了避免直线处于近似垂直时所出现的数值病态问题,人们一般把直线表示成极坐标形式:θθρsin cos y x += (3.7)如图3.2所示,θ是直线的法线与x 轴的夹角,ρ是直线到原点的距离.把点),(j i 坐标代入直线的极坐标方程得出距离r :22)sin cos (ρθθ-+=y x r (3.8)图3.2 直线的极坐标表示将方程3.8代入方程3.6并求极小化问题,可以确定参数ρ和θ:∑∑-=-=-+=101022],[)sin cos (n i m j ij ij j i B y x ρθθχ (3.9) 令2χ对ρ的导数等于零求解ρ得:)sin cos (θθρy x += (3.10) 它说明回归直线通过物体中心),(y x .用这一ρ值代入上面的2χ,则极小化问题变为:θθθθχ222sin cos sin cos c b a ++= (3.11)其中的参数:],[)(],[))((2],[)(10210101010102j i B y y c j i B y y x x b j i B x x a n i m j ij n i m j ij ij n i m j ij ∑∑∑∑∑∑-=-=-=-=-=-=-=--=-= (3.12)是二阶矩.表达式2χ可重写为:θθχ2sin 212cos )(21)(212b c a c a +-++=(3.13) 对2χ微分,并置微分结果为零,求解 值:ca b -=θ2tan (3.14) 因此,惯性轴的方向由下式给出: 2222)(2cos )(2sin c a b ca c ab b -+-±=-+±=θθ (3.15) 所以由2χ的最小值可以确定方向轴.注意,如果c a b ==,0,那么物体就不会只有唯一的方向轴.物体的伸长率E 是2χ的最大值与最小值之比:m inm ax χχ=E (3.16) 3.2.3 密集度和体态比区域的密集度(compact )可用下面的式子来度量:2pA C = (3.17) 其中,p 和A 分别为图形的周长和面积.根据这一衡量标准,圆是最密集的图形,其密集密度为最大值π4/1,其它一些图形的比值要小一些.让我们来看一下圆,当圆后仰时,形状成了一椭圆,面积减小了而周长却不象面积减小的那么快,因此密集度降低了.在后仰到极限角时,椭圆被压缩成了一条无限长直线,椭圆的周长为无穷大,故密集度变成了零.对于数字图像, 2p A 是指物体尺寸(像素点数量)除以边界长度的平方.这是一种很好的散布性或密集性度量方法.这一比值在许多应用中被用作为区域的一个特征.密集度的另一层意义是:在给定周长的条件下,密集度越高,围成的面积就越大.注意在等周长的情况下,正方形密集度大于长方形密集度.体态比定义为区域的最小外接矩形的长与宽之比,正方形和圆的体态比等于1,细长形物体的体态比大于1.图3.3所示的是几种形状的外接矩形.图3。

相关文档
最新文档