大学物理实验 常用的数据处理方法范文

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.7 常用的数据处理方法

实验数据及其处理方法是分析和讨论实验结果的依据。在物理实验中常用的数据处理方法有列表法、作图法、逐差法和最小二乘法(直线拟合)等。

1.7.1 列表法

在记录和处理数据时,常常将所得数据列成表。数据列表后,可以简单明确、形式紧凑地表示出有关物理量之间的对应关系;便于随时检查结果是否合理,及时发现问题,减少和避免错误;有助于找出有关物理量之间规律性的联系,进而求出经验公式等。

列表的要求是:

(1)要写出所列表的名称,列表要简单明了,便于看出有关量之间的关系,便于处理数据。

(2)列表要标明符号所代表物理量的意义(特别是自定的符号),并写明单位。单位及量值的数量级写在该符号的标题栏中,不要重复记在各个数值上。

(3)列表的形式不限,根据具体情况,决定列出哪些项目。有些个别的或与其他项目联系不大的数据可以不列入表内。列入表中的除原始数据外,计算过程中的一些中间结果和最后结果也可以列入表中。

(4)表中所列数据要正确反映测量结果的有效数字。

列表举例如表1-2所示。

表1-2铜丝电阻与温度关系

1.7.2 作图法

作图法是将两列数据之间的关系用图线表示出来。用作图法处理实验数据是数据处理的常用方法之一,它能直观地显示物理量之间的对应关系,揭示物理量之间的联系。

1.作图规则

为了使图线能够清楚地反映出物理现象的变化规律,并能比较准确地确定有关物理量的量值或求出有关常数,在作图时必须遵守以下规则。

(1)作图必须用坐标纸。当决定了作图的参量以后,根据情况选用直角坐标纸、极坐标纸或其他坐标纸。

(2)坐标纸的大小及坐标轴的比例,要根据测得值的有效数字和结果的需要来定。原则上讲,数据中的可靠数字在图中应为可靠的。我们常以坐标纸中小格对应可靠数字最后一位的一个单位,有时对应比例也适当放大些,但对应比例的选择要有利于标实验点和读数。最小坐标值不必都从零开始,以便做出的图线大体上能充满全图,使布局美观、合理。

(3)标明坐标轴。对于直角坐标系,要以自变量为横轴,以因变量为纵轴。用粗实线在坐标纸上描出坐标轴,标明其所代表的物理量(或符号)及单位,在轴上每隔一定间距标明

1章 测量误差与数据处理的基础知识

5

该物理量的数值。

(4)根据测量数据,实验点要用“+”“×”“☉”“Δ”等符号标出。

(5)把实验点连接成图线。由于每个实验数据都有一定的误差,所以图线不一定要通过每个实验点。应该按照实验点的总趋势,把实验点连成光滑的曲线(仪表的校正曲线不在此列),使大多数的实验点落在图线上,其他的点在图线两侧均匀分布,这相当于在数据处理中取平均值。对于个别偏离图线很远的点,要重新审核,进行分析后决定是否应剔除。

在确信两物理量之间的关系是线性的,或所有的实验点都在某一直线附近时,将实验点连成一直线。

(6)作完图后,在图的明显位置上标明图名、作者和作图日期,有时还要附上简单的说明,如实验条件等,使读者能一目了然,最后要将图粘贴在实验报告上。

图1-5为铜丝电阻与温度之间的关系曲线。

图1-5 铜丝的电阻与温度的关系曲线

2.用作图法求直线的斜率、截距和经验公式

若在直角坐标纸上得到的图线为直线,并设直线的方程为y kx b =+,可用如下步骤求直线的斜率、截距和经验公式。

(1)在直线上选两点A (x 1,y 1)和B (x 2,y 2)。为了减小误差,A 、B 两点应相隔远一些,但仍要在实验范围之内,并且A 、B 两点一般不选实验点。用与表示实验点不同的符号将A 、B 两点在直线上标出,并在旁边标明其坐标值。

(2)将A 、B 两点的坐标值分别代入直线方程y kx b =+,可解得斜率

2

1

21y y k x x -=- (1-27) (3)如果横坐标的起点为零,则直线的截距可从图中直接读出;如果横坐标的起点不为零,则可用下式计算直线的截距:

2112

21x y x y b x x -=- (1-28) (4)将求得的k 、b 的数值代入方程y kx b =+中,就得到经验公式。

大学物理实验

6 3.曲线的改直

在实际工作中,许多物理量之间的关系并不都是线性的,但仍可通过适当的变换而成为线性关系,即把曲线变换成直线,这种方法叫做曲线改直。作这样的变换不仅是由于直线容易描绘,更重要的是直线的斜率和截距所包含的物理内涵是我们所需要的,例如: (1)b y ax =,式中a ,b 为常量,可变换成lg lg lg lg lg y b x a y x =+,为的线性函数,斜率为b ,截距为lg a 。

(2)x y ab =,式中a ,b 为常量,可变换成()lg lg b x lg lg y a y x =+,为的线性函数,斜率为lg b ,截距为lg a 。

(3)PV=C ,式中C 为常量,可变换成P =C (1/V ),P 是1/V 的线性函数,斜率为C 。

(4)22y px =,式中p 为常量,可变换成1/21/2y y x =,为的线性函数,斜率为 (5)()/y x a bx =+,式中a ,b 为常量,可变换成()1/1/1/1/y a x b y x =+,

为的线性函数,斜率为a ,截距为b 。

(6)20/2s v t at =+,式中0v a ,为常量,可变换成()0//2/s t a t v s t t =+,为的线性函数,斜率为/2a ,截距为0v 。

1.7.3 逐差法

逐差法又称逐差计算法,一般用于等间隔线性变化测量中所得数据的处理。由误差理论可知,算术平均值是若干次重复测量的物理量的近似值。为了减少随机误差,在实验中一般都采用多次测量。但是在等间隔线性变化测量中,若仍用一般的平均值方法,我们将发现,只有第一次测量值和最后一次测量值起作用,所有的中间测量值全部抵消。因此,这种测量无法反映多次测量的特点。

以测量弹簧倔强系数的例子来说明逐差法处理数据的过程。如有一长为x 0的弹簧,逐次在其下端加挂质量为m 的砝码,共加7次,测出其对应的长度分别为1237x x x x ,,,从这组数据中,求出每加单位砝码弹簧的伸长量Δx 。

()()()()()102132767011

77x x x x x x x x x x x m m

⎡⎤∆=-+-+-+-=-⎣⎦ 这种处理仅用了首尾两个数据,中间值全部抵消,因而损失掉很多的信息,是不合理的。 若将以上数据按顺序分为0123x x x x ,,,和4567x x x x ,,,两组,并使其对应项相减,就有 ()()()()40516273144444x x x x x x x x x m m m m ⎡⎤

----∆=

+++⎢⎥⎣⎦

()()456701231

16x x x x x x x x m ⎡⎤=

+++-+++⎣

⎦ (1-29) 这种逐差法使用了全部的数据信息,因此,更能反映多次测量对减少误差的作用。

1.7.4 最小二乘法(线性回归)

作图法虽然在数据处理中是一个很便利的方法,但在图线的绘制上往往带有较大的任意性,所得的结果也常常因人而异,而且很难对它作进一步的误差分析。为了克服这些缺点,

相关文档
最新文档