高一数学寒假作业02 常用逻辑用语(教师版)
高一数学常用逻辑用语试题答案及解析
高一数学常用逻辑用语试题答案及解析1.给出以下命题①若则;②已知直线与函数,的图象分别交于两点,则的最大值为;③若是△的两内角,如果,则;④若是锐角△的两内角,则。
其中正确的有()个A.1B.2C.3D. 4【答案】D【解析】根据题意,对于①若则;可知角,因此成立。
对于②已知直线与函数,=-cosx的图象分别交于两点,则的最大值为;利用交点之间的距离可知为sinm+cosm,可知成立。
对于③若是△的两内角,如果,则;成立。
对于④若是锐角△的两内角,由于,则可知则,成立,故答案为D.【考点】命题的真假点评:主要是考查了命题的真假的判定,属于基础题。
2.“”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】由“”可以推出“”,但是由“”推不出“”,所以“”是“”的充分不必要条件.【考点】本小题主要考查不等式的性质和充分条件、必要条件的判断.点评:要判断充分条件、必要条件,需要分清谁是条件谁是结论,由谁能推出谁.3.已知a,b是实数,则“| a+b |=| a |+| b |”是“ab>0”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B【解析】由“| a+b |=| a |+| b |”可以得出a,b同号,但是a=b=0也可以,所以是必要不充分条件.【考点】本小题主要考查充分条件和必要条件的定义.点评:判断此类问题,要分清谁是条件,谁是结论,是由谁推出谁.4.下列五个命题:①方程y=kx+2可表示经过点(0,2)的所有直线;②经过点(x0, y)且与直线:Ax+By+C=0(A B0)垂直的直线方程为: B(x-x)-A(y-y)=0;③经过点(x0, y)且与直线:Ax+By+C=0(A B0)平行的直线方程为: A(x-x)+B(y-y)=0;④存在这样的直线,既不与坐标轴平行又不经过任何整点;⑤存在无穷多直线只经过一个整点.其中真命题是_____________(把你认为正确的命题序号都填上)【答案】②③④⑤【解析】①方程y=kx+2可表示经过点(0,2)的所有直线;不正确,不包括y轴。
高一数学集合与常用逻辑用语试题答案及解析
高一数学集合与常用逻辑用语试题答案及解析1.集合的元素个数是().A.59B.31C.30D.29【答案】C【解析】由2n-1<60,得n<,又∵n∈N*,∴满足不等式n<的正整数一共有30个.即集合M中一共有30个元素,可列为1,3,5,7,9,…,59,组成一个以a1=1,a30=59,n=30的等差数列.集合M中一共有30个元素。
【考点】集合问题2.已知集合A={1,3,5,6},集合B={2,3,4,5},那么A∩B=()A.{3,5}B.{1,2,3,4,5,6}C.{1,3,5}D.{3,5,6}【答案】A【解析】所求是两个集合的公共元素组成的集合,所以.【考点】集合的运算3.(本题满分12分)计算:(1)集合集合求和(2)【答案】(1);(2)【解析】(1)由集合的运算性质可得;(2)利用对数与指数的运算性质,以及公式化简可得试题解析:(1)(2)【考点】1.集合的运算性质;2.对数与指数的运算性质4.(本题满分12分)已知全集,,,(1)求;(2)若,求实数的取值范围.【答案】(1),(2)【解析】(1)首先求解集合A中函数的定义域得到集合A,A,B两集合的交集是由两集合的相同元素构成的集合,A,B并集是由两集合的所有元素构成的集合;(2)由已知得两集合的子集关系,从而得到两集合边界值的大小关系,解不等式求解的取值范围.试题解析:(1)(2)∵∴∴得∴实数的取值范围为【考点】1.集合的交并集运算;2.集合的子集关系5.含有三个实数的集合既可表示成,又可表示成,.【答案】-1【解析】由两集合相等可得【考点】集合相等与集合元素特征6.满足的集合A的个数是_______个.【答案】7【解析】符合条件的集合A可以为,,,,,,,共7个.【考点】集合间的关系.7.设全集集合则.【答案】【解析】集合M表示的是直线除去点(2,3)的所有点;集合P表示的是不在直线上的所有点,显然表示的是平面内除去点(2,3)的所有点,故.【考点】集合运算.8.(本小题满分14分)已知集合,.(1)求:,;(2)已知,若,求实数的取值集合【答案】(1);(2).【解析】(1)画数轴先求,再求.(2)画数轴分析可得关于关于的不等式,从而可求得的范围.试题解析:解:(1)(2)【考点】集合的运算.9.在①;②;③;④上述四个关系中,错误的个数是()A.1个B.2个C.3个D.4个【答案】B【解析】,所以①错;,所以②错;③④正确.【考点】1.元素与集合的关系;2.集合与集合的关系.10.已知集合,,则A.或B.C.D.【答案】B【解析】由交集的定义可知,,故选B.【考点】集合的运算及表示.【易错点睛】本题主要考查集合的运算与集合的表示方法,属容易题.集合A中的代表元素用的字母为,集合B中的代表元素用的字母为,学生会误认为是两个不同类型的集合,选D,即对两个集合均为数集的含义不清楚导致错误.11.设全集是实数集.,.(1)当时,求和;(2)若,求实数的取值范围.【答案】(1);(2)【解析】(1)由题意,求出集合,然后将代入就交集和并集即可;(2)若分和求出的取值范围,周求并集即可试题解析:(1)根据题意,由于,当时,,而,所以,,(2),若,则,若,则,,综上,【考点】集合的运算,子集12.(10分)已知,。
高考数学讲义常用逻辑用语.板块三.逻辑连接词与量词.教师版1
题型一:逻辑连接词 【例1】 写出下列命题的“p ⌝”命题:(1)正方形的四边相等;(2)平方和为0的两个实数都为0;(3)若ABC ∆是锐角三角形, 则ABC ∆的任何一个内角是锐角;(4)若0abc =,则,,a b c 中至少有一个为0;(5)若(1)(2)0x x --≠,则1x ≠且2x ≠.【考点】逻辑连接词 【难度】1星【题型】解答【关键词】无【解析】 【答案】(1)存在一个正方形的四边不相等.(2)平方和为0的两个实数不都为0.(3)若ABC ∆是锐角三角形, 则ABC ∆的某个内角不是锐角.(4)若0abc =,则,,a b c 中都不为0.(5)若(1)(2)0x x --≠,则1x =或2x =.【例2】 若:{|1},:{0}p N x R x q ⊄∈>-=∅.写出由其构成的“p 或q ”、“p 且q ”、“非p ”形式的新命题,并指出其真假.【考点】逻辑连接词 【难度】2星【题型】解答【关键词】无【解析】 ,p q 均为假命题.典例分析板块三.逻辑连接词与量词【答案】 “p 或q ”为::{|1}p N x R x ⊄∈>-或:{0}q =∅,是假命题;“p 且q ”为::{|1}p N x R x ⊄∈>-且:{0}q =∅,是假命题;“非p ”为::{|1}p N x R x ⊆∈>-,是真命题.【例3】 用联结词“且”、“或”分别联结下面所给的命题p q ,构成一个新的复合命题,判断它们的真假.⑴p :1是质数;q :1是合数;⑵p :菱形的对角线互相垂直;q :菱形的对角线互相平分;【考点】逻辑连接词 【难度】2星【题型】解答【关键词】无【解析】 【答案】⑴p 是假命题,q 是假命题,故p q ∨,p q ∧都是假命题;⑵p 是真命题,q 是真命题,故p q ∨是真命题,p q ∧是真命题.【例4】 把下列各组命题,分别用逻辑联结词“且”“或”“非”联结成新命题,并判断其真假.⑴p :梯形有一组对边平行;q :梯形有一组对边相等.⑵p :1是方程2430x x -+=的解;q :3是方程2430x x -+=的解.⑶p :不等式2210x x -+>解集为R ;q :不等式2221x x -+≤解集为∅.⑷p :{0}∅Ü;q :0∈∅.【考点】逻辑连接词 【难度】2星【题型】解答【关键词】无【解析】 ⑴∵p 真,q 假,∴p q ∧为假,p q ∨为真,p ⌝为假,q ⌝为真. ⑵∵p 真,q 真,∴p q ∧为真,p q ∨为真,p ⌝为假,q ⌝为假.⑶∵p 假,q 假,∴p q ∧为假,p q ∨为假,p ⌝为真,q ⌝为真.⑷∵p 真,q 假,∴p q ∧为假,p q ∨为真,p ⌝为假,q ⌝为真.【答案】⑴p q ∧为假,p q ∨为真,p ⌝为假,q ⌝为真.⑵p q ∧为真,p q ∨为真,p ⌝为假,q ⌝为假.⑶p q ∧为假,p q ∨为假,p ⌝为真,q ⌝为真.⑷p q ∧为假,p q ∨为真,p ⌝为假,q ⌝为真.【例5】 判断下面对结论的否定是否正确,如果不正确,请写出正确的否定结论:⑴至少有一个S 是P ;否定:至少有两个或两个以上S 是P ;⑵最多有一个S 是P .否定:最少有一个S 是P ;⑶全部S 都是P .否定:全部的S 都不是P .【考点】逻辑连接词 【难度】2星【题型】解答【关键词】无【解析】 “集合M 中至少有一个元素m 不具有性质a ”的否定是:集合M 中所有元素都具有性质a .反之亦对.因为“集合M 中至少有一个元素不具有性质a ”,它包含了“M 中有一个元素不具有性质a 、两个元素不具有性质a ……所有元素都不具有性质a ”等各种情形.因此它的否定是“M 中所有元素都具有性质a ”.如“三角形中至少有一个内角大于或等于60︒”的否定是“三角形中所有内角都小于60︒”.注意“都不是”的否定不是“都是”,而是“不都是”,也即“至少有一个是”.如“a 、b 都不是零”的否定是“a ,b 中至少有一个是零”.【答案】⑴不正确,没有一个S 是P .⑵不正确,至少有两个S 是P .⑶不正确,存在一个S 不是P .【例6】 “220a b +≠”的含义为__________;“0ab ≠”的含义为__________.A .a b ,不全为0B .a b ,全不为0C .a b ,至少有一个为0D .a 不为0且b 为0,或b 不为0且a 为0【考点】逻辑连接词 【难度】2星【题型】选择【关键词】无【解析】 220a b +≠的含义为a b ,不全为0,选A ; 0ab ≠的含义为,a b 全不为0,选B .【答案】A,B【例7】 已知全集R U =,A U ⊆,B U ⊆,如果命题p A B U ,则命题“p ⌝”是( )A AB U B ðC A B ID ()()U U A B I 痧 【考点】逻辑连接词 【难度】2星【题型】选择【关键词】无【解析】 【答案】D ;【例8】 命题“关于x 的方程(0)ax b a =≠的解是唯一的”的结论的否定是( )A .无解B .两解C .至少两解D .无解或至少两解【考点】逻辑连接词 【难度】2星【题型】选择【关键词】无【解析】 【答案】D ;【例9】 若条件:P x A B ∈I ,则P ⌝是( )A .x A ∈且xB ∉ B .x A ∉或x B ∉C .x A ∉且x B ∉D .x A B ∈U【考点】逻辑连接词 【难度】2星【题型】选择【关键词】无【解析】 x 至少不属于A B ,中的一个. 【答案】B ;【例10】 命题:“若220()R a b a b +=∈,,则“0a b ==”的逆否命题是( ) A .若0()R a b a b ≠≠∈,,则220a b +≠B .若0a ≠且0()R b a b ≠∈,,则220a b +≠C .若0()R a b a b =≠∈,,则220a b +≠D .若0a ≠或0()R b a b ≠∈,,则220a b +≠【考点】逻辑连接词 【难度】2星【题型】选择【关键词】无【解析】 0a b ==的否定为a b ,至少有一个不为0. 【答案】D ;【例11】 命题“2230ax ax -+>恒成立”是假命题,则实数a 的取值范围是( )A .0a <或3a ≥B .0a ≤或3a ≥C .0a <或3a >D .03a <<【考点】逻辑连接词 【难度】2星【题型】选择【关键词】无【解析】 0a <时,显然2230ax ax -+>不恒成立;0a =时,恒成立; 0a >时,只需240a ∆=-12a ≥即可,解得3a ≥.【答案】A ;【例12】 命题“p 或q ”是真命题,“p 且q ”是假命题,则( )A .命题p 和命题q 都是假命题B .命题p 和命题q 都是真命题C .命题p 和命题“非q ”的真值不同D .命题p 和命题q 的真值不同【考点】逻辑连接词 【难度】2星【题型】选择【关键词】无【解析】 【答案】D .【例13】 已知命题p :若实数x y ,满足220x y +=,则x y ,全为0;命题q :若a b >,则11a b<,给出下列四个复合命题:①p 且q ②p 或q ③p ⌝④q ⌝,其中真命题的个数为( )A .1B .2C .3D .4【考点】逻辑连接词 【难度】2星【题型】选择【关键词】无【解析】 p 为真命题,q 为假命题,∴p ⌝为假命题,q ⌝为真命题,②④为真命题. 【答案】B ;【例14】 由下列各组命题构成“p 或q ”为真,“p 且q ”为假,“p ⌝”为真的是( )A .p :0=∅,q :0∈∅B .p :等腰三角形一定是锐角三角形,q :正三角形都相似C .p :{}{}a a b ,躿,q :{}a a b ∈,D .p :53>,q :12是质数【关键词】无【解析】 【答案】B ;【例15】 在下列结论中,正确的是( )①“p q ∧”为真是“p q ∨”为真的充分不必要条件②“p q ∧”为假是“p q ∨”为真的充分不必要条件③“p q ∨”为真是“p ⌝”为假的必要不充分条件④“p ⌝”为真是“p q ∧”为假的必要不充分条件A .①②B .①③C .②④D .③④【考点】逻辑连接词 【难度】2星【题型】选择【关键词】无【解析】 p q ∧为真,p q ⇒都为真p q ⇒∨为真,反之不成立,①正确; p q ∧为假,可能,p q 都为假,故推不出p q ∨为真,②错误;p ⌝为假,有p 为真,故p q ∨为真;而p q ∨为真,p 可能为假,从而p ⌝可能 为真,③正确;p ⌝为真,说明p 假,从而p q ∧为假,④错误;故选B .【答案】B【例16】 设命题p :2x >是24x >的充要条件,命题q :若22a b c c >,则a b >.则( ) A .“p 或q ”为真 B .“p 且q ”为真C .p 真q 假D .p ,q 均为假命题【考点】逻辑连接词 【难度】2星 【题型】选择【关键词】2008年,北京东城,高考二模【解析】 p 假q 真.【答案】A .【例17】 若命题“p 且q ”为假,且“p ⌝”为假,则 ()A .p 或q 为假B .q 假C .q 真D .p 假【关键词】无【解析】“p∧(且)为假,得q为假⌝”为假,则p为真,而p q【答案】B【例18】若条件:∈I,则PP x A B⌝是()A.x A∉ D. x A B∉且x B∈⋃∈且x B∉ B. x A∉或x B∉ C. x A【考点】逻辑连接词【难度】2星【题型】选择【关键词】无【解析】P∉I,∴x至少不属于,A B中的一个.⌝:x A B【答案】B【例19】设集合{}{}=>=<,那么“x MM x x P x x|2,|3∈I”的∈”是“x M P∈,或x P()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件【考点】逻辑连接词【难度】2星【题型】选择【关键词】无【解析】“x M∈I”,反之可以∈”不能推出“x M P∈,或x P【答案】A【例20】p或q”是假命题.其中正确的结论是()A.①③B.②④C.②③D.①④【考点】逻辑连接词【难度】2星【题型】选择【关键词】无【解析】“非p或非q”是假命题⇒“非p”与“非q”均为假命题.【答案】C【例21】 已知命题p 且q 为假命题,则可以肯定 ( )A.p 为真命题B.q 为假命题C.,p q 中至少有一个是假命题D.,p q 都是假命题【考点】逻辑连接词 【难度】2星【题型】选择【关键词】无【解析】 【答案】C【例22】 已知条件:12p x +>,条件2:56q x x ->,则p ⌝是q ⌝的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【考点】逻辑连接词 【难度】2星【题型】选择【关键词】无【解析】 :12p x ⌝+≤,31x -≤≤,2:56q x x ⌝-≤,2560x x -+≥,3x ≥或2x ≤ 【答案】A【例23】 下列判断正确的是 ( )A.22x y x y ≠⇔≠或x y ≠-B.命题“a 、b 都是偶数,则a b +是偶数” 的逆否命题是“若a b +不是偶数,则a 、b 都不是偶数”C.若“p 或q ”为假命题,则“非p 且非q ”是真命题D.已知,,a b c 是实数,关于x 的不等式20ax bx c ++≤的解集是空集,必有0a >且0∆≤【考点】逻辑连接词 【难度】2星【题型】选择【关键词】无 【解析】 A 不正确,因为“x y ≠或x y ≠-”只要求其中之一成立即行,而22x y ≠需二者都成立;B 不正确,“a 、b 都是偶数”的否定是“a 、b 不都是偶数”;D 不正确,不等式 20ax bx c ++≤的解集是空集还可能是0,0a b c ==> .【答案】C【例24】 在下边的横线上填上真命题或假命题.⑴若命题“p ⌝”与命题“p q ∨”都是真命题,那么p q ∧是______; p q ⌝∧是_____;⑵若命题“p ⌝或q ⌝”是假命题,那么p q ∧是______;p q ∨是_______; p ⌝是_______.【考点】逻辑连接词 【难度】2星【题型】填空【关键词】无 【解析】 ⑴p ⌝真,说明p 为假命题;又p q ∨为真命题,故q 为真命题,从而p q ∧是假命题;p q ⌝∧是真命题;⑵根据“p ⌝或q ⌝”是假命题知,命题p ⌝、q ⌝都是假命题,从而p 、q 都是真命题,故p q ∧ 是真命题;p q ∨是真命题;p ⌝是假命题.【答案】⑴真命题,真命题,⑵真命题,真命题,假命题【例25】 ⑴p q ∨为真命题是p q ∧为真命题的 条件;⑵p ⌝为假命题是p q ∨为真命题的 条件.(填:充分不必要、必要不充分、充要、既不充分也不必要).【考点】逻辑连接词 【难度】2星【题型】填空【关键词】无【解析】 ⑴p q ∨真⇒p 真或q 真;p q ∧真⇒p 真且q 真,故p q ∨为真命题是p q ∧为真命题的必要不充分条件;⑵p ⌝假则p 真,从而p q ∨真,但p q ∨真时,p 可能假,故推不出p ⌝假,故p ⌝为假命题是p q ∨为真命题的充分不必要条件.【答案】⑴必要不充分,⑵充分不必要【例26】 如在下列说法中:①“p 且q ”为真是“p 或q ”为真的充分不必要条件;②“p 且q ”为假是“p 或q ”为真的充分不必要条件;③“p 或q ”为真是“非p ”为假的必要不充分条件;④“非p ”为真是“p 且q ”为假的必要不充分条件.其中正确的是__________.【考点】逻辑连接词 【难度】2星【题型】填空【关键词】无【解析】 【答案】①③.【例27】 如果命题“非p 或非q ”是假命题,给出下列四个结论:①命题“p 且q ”是真命题;②命题“p 且q ”是假命题;③命题“p 或q ”是真命题;④命题“用“充分、必要、充要”填空:①p q ∨为真命题是p q ∧为真命题的________________条件;②p ⌝为假命题是p q ∨为真命题的_____________________条件.【考点】逻辑连接词 【难度】2星【题型】填空【关键词】无【解析】 【答案】必要,必要【例28】 已知命题::p “若1a >,则32a a >”;命题:q “若0a >,则1a a>”.则在“p 或q ”、“p 且q ”、“非p ”、“非q ”四个命题中,真命题是 .【考点】逻辑连接词 【难度】2星【题型】填空【关键词】无【解析】 p 真,q 假. 【答案】p 或q ,非q【例29】 命题:0p 不是自然数;命题q 是无理数,则在命题“p 或q ”、“p 且q ”、“非p ”、“非q ”中,真命题是 ;假命题是 .【考点】逻辑连接词 【难度】2星 【题型】填空【关键词】无【解析】 p 假,q 真. “p 或q ”为真,只要,p q 中有一个为真即可;“p 且q ”必须,p q中均为真.【答案】 “p 或q ”, “非p ”; “p 且q ”, “非q ”【例30】 命题“对一切非零实数x ,总有12x x+≥”的否定是 ,它是 命题.(填“真”或“假”)【考点】逻辑连接词 【难度】2星 【题型】填空【关键词】无【解析】 例如:2x =-,则1,0,2x R x x x∈≠+<. 【答案】1,0,2x R x x x∃∈≠+<,真命题【例31】 甲、乙两人参加一次竞赛,设命题p 是“甲获奖”,命题q 是“乙获奖”,试用p q,及逻辑联结词“且”、“或”、“非”表示:⑴两人都获奖; ⑵两人都未获奖; ⑶恰有一人获奖; ⑷至少有一人获奖.【考点】逻辑连接词 【难度】2星 【题型】解答【关键词】无【解析】 ⑷也是对⑵中情况的否定,故也可表示为(()())p q ⌝⌝∧⌝,故容易知道(()())p q p q ∨=⌝⌝∧⌝,也即()()()p q p q ⌝∨=⌝∧⌝.【答案】⑴两人都获奖说明两个命题都成立,故为p q ∧;⑵都未获奖说明两个命题都不成立,故为()()p q ⌝∧⌝; ⑶恰有一人获奖说明一个命题成立,另一个命题不成立,故为()()p q p q ⌝∧∨∧⌝;⑷至少有一人获奖说明p 或q 成立,即p q ∨.【例32】 命题p :若R a b ∈,,则1a b +>是1a b +>的充分条件,命题q :函数y 的定义域是(1][3)-∞-+∞U ,,,则( ) A .p 或q 为假 B .p 且q 为真 C .p 真q 假 D .p 假q 真【考点】逻辑连接词 【难度】3星 【题型】选择【关键词】无【解析】 令1,1a b ==-,知命题p 假;由1203x x --⇒≥≥或1x -≤,故命题q 真;【答案】D ;【例33】 已知p 是r 的充分条件而不是必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件.现有下列命题:①s 是q 的充要条件;②p 是q 的充分条件而不是必要条件;③r 是q 的必要条件而不是充分条件;④p s ⌝⌝是的必要条件而不是充分条件;⑤r 是s 的充分条件而不是必要条件,则正确命题序号是( )A .①④⑤B .①②④C .②③⑤D .②④⑤【考点】逻辑连接词 【难度】3星 【题型】选择【关键词】2007年,湖北,高考【解析】 由右图易知;qsr p【答案】B ;【例34】 已知p :方程220x mx ++=有两个不等的负根;q :方程244(2)10x m x +-+=无实根.若p q ∨为真,p q ∧为假,则实数m 的取值范围是_______.【考点】逻辑连接词 【难度】3星 【题型】填空【关键词】无【解析】 由题意知,命题p q ,一真一假;p 为真时有:280m m m -<⎧⇒>⎨∆=->⎩q 为真时有:216(2)16013m m ∆=--<⇒<<;p 真q 假时有3m ≥;p 假q 真时有1m <≤(1[3)m ∈+∞U ,; 【答案】(1[3)m ∈+∞U ,【例35】 已知命题p :关于x 的不等式20062008x x a -+->恒成立;命题q :关于x 的函数log (2)a y ax =-在[01],上是减函数.若p 或q 为真命题,p 且q 为假命题,则实数a 的取值范围是_______;【考点】逻辑连接词 【难度】3星 【题型】填空【关键词】无【解析】 由题意知,命题p q ,一真一假;20062008x x -+-的最小值为2,故此不等式恒成立,即p 为真时有2a <;q 为真时log (2)a y ax =-在[01],上是减函数,∵0a >,故内层函数为减函数,从而外层对数函数为增函数,有1a >,又202a a ->⇒<,故12a <<;p 真q 假时1a ≤;p 假q 真时a 不存在,故(1]a ∈-∞,; 【答案】(1]-∞,;【例36】 已知命题p :方程2220a x ax +-=在[11]-,上有解;命题q :只有一个实数满足不等式2220x ax a ++≤.若p q ∨是假命题,求a 的取值范围.【考点】逻辑连接词 【难度】3星 【题型】解答【关键词】无【解析】 由2220a x ax +-=知0a ≠,解此方程得1212x x a a ==-,.∵方程2220a x ax +-=在[11]-,上有解,∴1||1a ≤或2||1a≤,∴||1a ≥.只有一个实数满足不等式2220x ax a ++≤,表明抛物线222y x ax a =++与x 轴只有一个公共点,∴2480a a ∆=-=, ∴0a =或2a =.∴命题p 为假,则11a -<<;命题q 为假,则0a ≠且2a ≠.∴若p q ∨是假命题,则p q ,都是假命题,a 的取值范围是(10)(01)-U ,,. 【答案】(10)(01)-U ,,【例37】 命题:p 方程210x mx ++=有两个不等的正实数根,命题:q 方程244(2)10x m x +++=无实数根.若“p 或q ”为真命题,求m 的取值范围.【考点】逻辑连接词 【难度】3星 【题型】解答【关键词】无【解析】 “p 或q ”为真命题,则p 为真命题,或q 为真命题,或q 和p 都是真命题当p 为真命题时,则2121240010m x x m x x ⎧∆=->⎪+=->⎨⎪=>⎩,得2m <-;当q 为真命题时,则216(2)160m ∆=+-<,得31m -<<- 当q 和p 都是真命题时,得32m -<<- ∴1m <-【答案】1m <-【例38】 已知函数2()(1)lg 2f x x a x a =++++(R a ∈,且2)a ≠-,⑴()f x 能表示成一个奇函数()g x 和一个偶函数()h x 的和,求()g x 和()h x 的解析式;⑵命题p :函数()f x 在区间2[(1))a ++∞,上是增函数;命题q :函数()g x 是减函数.如果命题p 且q 为假,p 或q 为真,求a 的取值范围. ⑶在⑵的条件下,比较(2)f 与3lg2-的大小.【考点】逻辑连接词 【难度】4星 【题型】解答【关键词】无【解析】 ⑴∵()()()f x g x h x =+,()()()()()f x g x h x g x h x -=-+-=-+,∴[]1()()()(1)2g x f x f x a x =--=+,[]21()()()lg 22h x f x f x x a =+-=++; ⑵命题p 为真时有:21(1)2a a +-+≤1a ⇒≥-或32a -≤,命题q 为真时有:101a a +<⇒<-;命题p 且q 为假,p 或q 为真包括:p 真q 假与p 假q 真两种情况;故1a -≥或312a -<<-,即32a >-;⑶(2)42(1)lg 226lg 2f a a a a =++++=+++,(2)(3lg 2)23lg 2lg 2f a a --=++++,32x >-时,20x +>,函数()23lg 2lg 2x x x ϕ=++++在32⎛⎫-+∞ ⎪⎝⎭,上单调递增, 故3()02a ϕϕ⎛⎫>-= ⎪⎝⎭,即在⑵的条件下,(2)3lg2f >-.【答案】⑴()(1)g x a x =+,2()lg 2h x x a =++, ⑵32a >-,⑶(2)3lg2f >-题型二:全称量词与存在量词【例39】 判断下列命题是全称命题,还是存在性命题.⑴平面四边形都存在外接圆;⑵有些直线没有斜率; ⑶三角形的内角和等于π; ⑷有一些向量方向不定; ⑸所有的有理数都是整数; ⑹实数的平方是非负的.【考点】全称量词与存在量词 【难度】1星 【题型】解答【关键词】无【解析】 .【答案】⑴全称命题;⑵存在性命题;⑶全称命题,意思是所有的三角形都有内角和等于π;⑷存在性命题;⑸全称命题;⑹全称命题【例40】 判断下列命题是全称命题还是存在性命题.⑴线段的垂直平分线上的点到这条线段两个端点的距离相等;⑵负数的平方是正数;⑶有些三角形不是等腰三角形; ⑷有些菱形是正方形.【考点】全称量词与存在量词 【难度】1星 【题型】解答【关键词】无【解析】【答案】⑴全称命题;⑵全称命题;⑶存在性命题;⑷存在性命题.【例41】 设语句()p x :cos()sin 2πx x +=-,写出“()R p θθ∀∈,”,并判断它是不是真命题.【考点】全称量词与存在量词 【难度】2星 【题型】解答【关键词】无【解析】 R θ∀∈,cos()sin 2πθθ+=-;由诱导公式知,是真命题.【答案】R θ∀∈,cos()sin 2πθθ+=-;真命题【例42】 用量词符号“∀∃,”表示下列命题,并判断下列命题的真假.⑴任意实数x 都有,2210x x ++>; ⑵存在实数x ,2210x x ++<;⑶存在一对实数a b ,,使20a b +<成立; ⑷有理数x 的平方仍为有理数;⑸实数的平方大于0.⑹有一个实数乘以任意一个实数都等于0.【考点】全称量词与存在量词 【难度】2星 【题型】解答【关键词】无【解析】 ⑴R x ∀∈,2210x x ++>;假命题,1x =-时,结论不成立;⑵R x ∃∈,2210x x ++<;假命题,R x ∈时,2221(1)0x x x ++=+≥; ⑶R a b ∃∈,,20a b +<;真命题,如12a b ==-,; ⑷Q x ∀∈,2Q x ∈;真命题; ⑸R x ∀∈,20x >;假命题,200=.⑹R a ∃∈,R x ∀∈,有0ax =;真命题,0a =即满足.【答案】⑴R x ∀∈,2210x x ++>;假命题⑵R x ∃∈,2210x x ++<;假命题 ⑶R a b ∃∈,,20a b +<;真命题 ⑷Q x ∀∈,2Q x ∈;真命题⑸R x ∀∈,20x >;假命题,200=. ⑹R a ∃∈,R x ∀∈,有0ax =;真命题【例43】判断下列命题是全称命题还是存在性命题,并判断真假.⑴所有的素数是奇数;⑵一切实数x,有2(1)0x->;⑶对于正实数x,12xx+≥;⑷1sin2sinRx xx∀∈+,≥;⑸一定有实数x满足2230x x--=;⑹至少有一个整数x能被2和3整除;⑺存在两个相交平面垂直于同一条直线;⑻{|x x x∃∈是无理数},2x是无理数.【考点】全称量词与存在量词【难度】2星【题型】解答【关键词】无【解析】【答案】⑴⑵⑶⑷是全称命题,⑸⑹⑺⑻是存在性命题,⑴⑵⑷⑺是假命题,⑶⑸⑹⑻是真命题.【例44】判断下列命题是全称命题还是存在性命题,并判断真假.⑴21x+是整数(Rx∈);⑵对所有的实数x,3x>;⑶对任意一个整数x,221x+为奇数;⑷末位是0的整数,可以被2整除;⑸角平分线上的点到这个角的两边的距离相等;⑹正四面体中两侧面的夹角相等;⑺有的实数是无限不循环小数;⑻有些三角形不是等腰三角形;⑼有的菱形是正方形.【考点】全称量词与存在量词【难度】2星【题型】解答【关键词】无【解析】⑴~⑹是全称命题,⑺~⑼是存在性命题,⑶~⑼是真命题,⑴⑵是假命题.【答案】⑴~⑹是全称命题,⑺~⑼是存在性命题,⑶~⑼是真命题,⑴⑵是假命题【例45】 写出下列命题p 的否定形式,并判断p 与p ⌝的真假.⑴平行四边形的对边相等; ⑵不等式22210x x ++≤有实数解. ⑶R x ∀∈,210x x ++>; ⑷R x ∃∈,21x x +<; ⑸有些实数的绝对值是正数.⑹不是每个质数都是偶数.【考点】全称量词与存在量词 【难度】2星 【题型】解答【关键词】无【解析】 ⑴p ⌝:存在对边不相等的平行四边形;p 真,p ⌝假;⑵p ⌝:不等式22210x x ++≤无实数解;p 假,p ⌝真; ⑶p ⌝:R x ∃∈,210x x ++≤;p 真,p ⌝假; ⑷p ⌝:R x ∀∈,21x x +≥;p 假,p ⌝真;⑸p ⌝:任意实数的绝对值都不是正数(或:,0R x x ∀∈≤);p 真,p ⌝假. ⑹p ⌝:每个质数都是偶数;p 真,p ⌝假.【答案】⑴p 真,p ⌝假;⑵p 假,p ⌝真;⑶p 真,p ⌝假;⑷p 假,p ⌝真;⑸p 真,p ⌝假;⑹p 真,p ⌝假.【例46】 判断下列命题的真假:(1)对任意的,x y 都有222x y xy +≥; (2)所有四边形的两条对角线都互相平分; (3)∃实数2a ≠且1b ≠-使22425a b a b +-+≤-;(4)存在实数x 使函数4()(0)f x x x x=+>取得最小值4.【考点】全称量词与存在量词 【难度】2星 【题型】解答【关键词】无【解析】 (1)是真命题,因为对任意实数,x y ,都有2222()0x y xy x y +-=-≥,∴222x y xy +≥.(2)是假命题,只有平行四边形才满足两条对角线互相平分,如梯形就不满足这个条件.(3)是假命题,因为2222425(2)(1)0a b a b a b +-++=-++≥,当且仅当2,1a b ==-时等号成立, 所以不存在实数对,a b ,使22(2)(1)0a b -++<,不存在即实数2a ≠且1b ≠-使22425a b a b +-+≤-.(4)是真命题,因为存在实数20x =>,使函数4()(0)f x x x x=+>取得最小值4.【答案】(1)是真命题,(2)是假命题,(3)是假命题,(4)是真命题。
高一数学中的常用逻辑用语有哪些
高一数学中的常用逻辑用语有哪些在高一数学的学习中,逻辑用语就像是搭建数学大厦的基石,它们帮助我们更准确、清晰地表达数学概念和进行推理。
接下来,让我们一起深入了解一下高一数学中常见的逻辑用语。
一、命题命题是能够判断真假的陈述句。
比如“2 是偶数”,这是一个真命题;而“1 + 1 =3”,则是一个假命题。
命题通常用小写字母 p、q、r 等来表示。
理解命题的关键在于明确其陈述的内容是否能够明确地判断出真假。
二、充分条件与必要条件这是高一数学中非常重要的逻辑概念。
如果“若p,则q”为真命题,那么我们就说 p 是 q 的充分条件,q 是 p 的必要条件。
举个例子,“如果一个数是偶数,那么这个数能被2 整除”,在这里,“一个数是偶数”就是“这个数能被 2 整除”的充分条件,“这个数能被 2整除”就是“一个数是偶数”的必要条件。
充分条件意味着只要满足 p,就一定能推出 q;必要条件则是说若要使 q 成立,p 必须成立。
三、充要条件当 p 既是 q 的充分条件,又是 q 的必要条件时,我们就说 p 是 q 的充要条件。
简单来说,就是“若 p,则q”和“若 q,则p”都为真命题。
例如,“一个三角形是等边三角形”与“这个三角形的三个内角相等”,这两个条件就是互为充要条件。
四、全称量词与存在量词全称量词常见的有“任意”“所有”“一切”等,用符号“∀”表示。
比如“∀x∈R,x²≥0”,意思是对于任意实数 x,x 的平方都大于等于 0。
存在量词常见的有“存在”“至少有一个”等,用符号“∃”表示。
像“∃x∈R,x + 1 =0”,表示存在实数 x,使得 x + 1 等于 0。
理解全称量词和存在量词对于解决一些含有变量的问题非常关键。
五、全称量词命题与存在量词命题的否定对于全称量词命题“∀x∈M,p(x)”,它的否定是“∃x∈M,¬p(x)”;对于存在量词命题“∃x∈M,p(x)”,它的否定是“∀x∈M,¬p(x)”。
高中数学常用逻辑用语
逆否命题: 若 q 则 p
结论1:要写出一个命题的另外三个命
题关键是分清命题的题设和结论(即
把原命题写成“若p则q”的形式)
注意:三种命题中最难写 的是否命题。 高中数学常用逻辑用语
三、四种命题之间的 关系
原命题
பைடு நூலகம்若p则q
互逆 逆命题
若q则p
互
互
否
否
否命题
逆否命题
若﹁p则﹁q
互逆 若﹁q则﹁p
高中数学常用逻辑用语
x∈N”是“x∈M∩N”的
B
A.充要条件
B必要不充分条件
C充分不必要 D既不充分也不必要
注、集合法
2、a∈R,|a|<3成立的一个必要不充分条件是
A.a<3 B.|a|<2 C.a2<9 D.0<a<2
A
高中数学常用逻辑用语
练习5、
1.已知p是q的必要而不充分条件, 那么┐p是┐q的___充__分_不__必__要_条__件__.
(2)从这个假设出发,经过推理 论证,得出矛盾;
(3) 由矛盾判定假设不正确, 从而肯定命题的高中数结学常用论逻辑正用语 确。
归谬 结论
1.写出命题“当c>0时,若a>b, 则ac>bc“的逆命题,否命题 与逆否命题,并分别判断他们的真假
2.写出命题“若x≠a且x≠b, 则x2-(a+b)x+ab≠0”的否命题
充分非必要条件
2) 若A B且B A,则甲是乙的
必要非充分条件
3)若A B且B A,则甲是乙的
既不充分也不必要条件 4)若A=B ,则甲是高中乙数学的常用逻充辑用分语 且必要条件。
注意点
1.在判断条件时,要特别注意的是它们能否互相 推出,切不可不加判断以单向推出代替双向推出.
高一数学集合与常用逻辑用语
1.在解题时经常用到集合元素的互异性,一方面利用集合元素的互异性能顺利找到解题的切入点;另一方面,在解答完毕之时,注意检验集合的元素是否满足互异性以确保答案正确.2.对连续数集间的运算,借助数轴的直观性,进行合理转化;对已知连续数集间的关系,求其中参数的取值范围时,要注意单独考察等号能否取到.解题时注意区分两大关系:一是元素与集合的从属关系;二是集合与集合的包含关系.3.对离散的数集间的运算,或抽象集合间的运算,可借助Venn 图.这是数形结合思想的又一体现.4.充分、必要条件与集合的关系,p ,q 成立的对象构成的集合分别为A 和B .(1)若A ⊆B ,则p 是q 的充分条件,q 是p 的必要条件.(2)若A ⊂≠B ,则p 是q 的充分不必要条件,q 是p 的必要不充分条件.(3)若A =B ,则p 是q 的充要条件.高一数学单元知识梳理:集合与常用逻辑用语5.判断条件之间的关系要注意条件之间关系的方向,正确理解“p 的一个充分而不必要条件是q ”等语言.6.要写一个命题的否定,需先分清其是全称命题还是特称命题,再对照否定结构去写,并注意与否命题的区别;否定的规律是“改量词,否结论”.一、数学抽象数学抽象是指通过对数量关系与空间形式的抽象,得到数学研究对象的素养.主要表现为:获得数学概念和规则,提出数学命题和模型,形成数学方法和思想,认识数学结构与体系.在本章中,主要表现在集合概念的理解及应用中.【典例1】(1)已知集合A ={0,1,2},则集合B ={x -y |x ∈A ,y ∈A }中元素的个数是( )A .1B .3C .5D .9(2)若-3∈{x -2,2x 2+5x ,12},则x =________.【答案】(1)C (2)-23 【解析】(1)①当x =0时,y =0,1,2,此时x -y 的值分别为0,-1,-2;②当x =1时,y =0,1,2,此时x -y 的值分别为1,0,-1;③当x =2时,y =0,1,2,此时x -y 的值分别为2,1,0.综上可知,x -y 的可能取值为-2,-1,0,1,2,共5个,故选C.(2)由题意知,x -2=-3或2x 2+5x =-3.①当x -2=-3时,x =-1.把x =-1代入,得集合的三个元素为-3,-3,12,不满足集合中元素的互异性;②当2x 2+5x =-3时,x =-23或x =-1(舍去), 当x =-23时,集合的三个元素为-27,-3,12,满足集合中元素的互异性,由①②知x =-23.二、数学运算数学运算是指在明晰运算对象的基础上,依据运算法则解决数学问题的素养,主要表现为:理解运算对象,掌握运算法则,探究运算思路,求得运算结果.在本章中,主要表现在集合的交、并、补运算中.【典例2】(1)设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=()A.{1,-3} B.{1,0}C.{1,3} D.{1,5}(2)若集合A={x|-2<x<1},B={x|x<-1或x>3},则A∩B=()A.{x|-2<x<-1} B.{x|-2<x<3}C.{x|-1<x<1} D.{x|1<x<3}【答案】(1)C(2)A【解析】(1)由A∩B={1}得1∈B,所以m=3,B={1,3}.(2)A∩B={x|-2<x<-1}.(3)已知集合A={x|2≤x<7},B={x|3<x<10},C={x|x<a}.①求A∪B,(∁R A)∩B;②若A∩C≠∅,求a的取值范围.【解析】①因为A={x|2≤x<7},B={x|3<x<10},所以A∪B={x|2≤x<10}.因为A={x|2≤x<7},所以∁R A={x|x<2或x≥7},则(∁R A)∩B={x|7≤x<10}.②因为A={x|2≤x<7},C={x|x<a},且A∩C≠∅,所以a>2,所以a的取值范围是{a|a>2}.三、逻辑推理逻辑推理是指从一些事实和命题出发,依据规则推出其他命题的素养,主要表现为:掌握推理基本形式和规则,发现问题和提出问题,探索和表述论证过程,理解命题体系,有逻辑地表达与交流.本章主要表现在集合的基本关系、充要条件及全称量词命题和存在量词命题中.【典例3】(1)集合A={x|x=a2-4a+5,a∈R},B={y|y=4b2+4b+3,b∈R},则下列关系正确的是()A.A=B B.B AC.A⊆B D.B A(2)已知集合A={x|0<x<4},B={x|x<a},若A⊆B,则实数a的取值范围是()A.{a|0<a<4} B.{a|-8<a<4}C.{a|a≥4} D.{a|a>4}【答案】(1)B(2)C【解析】(1)A={x|x=(a-2)2+1,a∈R},即A中的元素x≥1;而B={y|y=(2b+1)2+2,b∈R},即B中的元素y≥2,∴B A.(2)在数轴上标出A,B两集合如图所示,结合数轴知,若A⊆B,则a≥4.【典例4】设x∈R,则“2-x≥0”是“-1≤x-1≤1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】由-1≤x-1≤1,得0≤x≤2,因为0≤x≤2⇒x≤2,x≤20≤x≤2,故“2-x≥0”是“-1≤x-1≤1”的必要不充分条件,故选B.【典例5】若a ,b 都是实数,试从①ab =0;②a +b =0;③a (a 2+b 2)=0;④ab >0中选出满足下列条件的式子,用序号填空:(1)使a ,b 都为0的必要条件是________;(2)使a ,b 都不为0的充分条件是________;(3)使a ,b 至少有一个为0的充要条件是________.【答案】(1)①②③ (2)④ (3)①8【解析】①ab =0⇔a =0或b =0,即a ,b 至少有一个为0;②a +b =0⇔a ,b 互为相反数,则a ,b 可能均为0,也可能为一正数一负数;③a (a 2+b 2)=0⇔a =0,b 为任意实数;④ab >0⇔⎩⎨⎧>>00b a 或⎩⎨⎧<<00b a 即a ,b 同为正数或同为负数. 综上可知:(1)使a ,b 都为0的必要条件是①②③;(2)使a ,b 都不为0的充分条件是④;(3)使a ,b 至少有一个为0的充要条件是①.【典例6】已知集合A ={x ∈R |2x +m <0},B ={x ∈R |x <-1或x >3}.(1)是否存在实数m ,使得x ∈A 是x ∈B 成立的充分条件?(2)是否存在实数m ,使得x ∈A 是x ∈B 成立的必要条件?【解析】(1)欲使x ∈A 是x ∈B 成立的充分条件, 则只要}2{m x x -<⊆{x |x <-1或x >3},则只要-2m ≤-1即m ≥2, 故存在实数m ≥2时使x ∈A 是x ∈B 成立的充分条件.(2)欲使x ∈A 是x ∈B 成立的必要条件, 则只要}2{m x x -<⊇{x |x <-1或x >3},则这是不可能的,故不存在实数m ,使x ∈A 是x ∈B 成立的必要条件.【典例7】判断下列命题是全称量词命题还是存在量词命题,判断真假,并写出它们的否定:(1)空集是任何一个非空集合的真子集.(2)∀x∈R,4x2>2x-1+3x2.(3)∃x∈{-2,-1,0,1,2},|x-2|<2.(4)∀a,b∈R,方程ax+b=0恰有一解.【解析】(1)该命题是全称量词命题,是真命题.该命题的否定:存在一个非空集合,空集不是该集合的真子集.(2)该命题是全称量词命题,是假命题.因为4x2-(2x-1+3x2)=x2-2x+1=(x-1)2≥0,所以当x=1时,4x2=2x-1+3x2.该命题的否定:∃x∈R,4x2≤2x-1+3x2.(3)该命题是存在量词命题,是真命题.因为当x=1时,|x-2|=1<2.该命题的否定:∀x∈{-2,-1,0,1,2},|x-2|≥2.(4)该命题是全称量词命题,是假命题.当a≠0时,方程ax+b=0才恰有一解.该命题的否定:∃a,b∈R,方程ax+b=0无解或至少有两解.四、数学建模数学建模是对现实问题进行数学抽象,用数学语言表达问题、用数学方法构建模型解决问题的素养,主要表现在:发现和提出问题,建立和求解模型,检验和完善模型,分析和解决问题,在本章主要表现在集合的实际应用问题中.【典例8】某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有________人.【答案】8【解析】设参加数学、物理、化学小组的人数构成的集合分别为A,B,C,同时参加数学和化学小组的有x人,由题意可得如图所示的Venn图.由全班共36名同学可得(26-6-x)+6+(15-4-6)+4+(13-4-x)+x=36,解得x=8,即同时参加数学和化学小组的有8人.。
常用逻辑用语高一数学
第02练 常用逻辑用语1.充分、必要条件的判断: (1)定义法:①分清条件和结论:分清哪个是条件,哪个是结论; ②找推式:判断“q p ⇒”及“p q ⇒”的真假; ③下结论:根据推式及定义下结论.(2)等价法:将命题转化为另一个等价的又便于判断真假的命题。
(3)集合法:写出集合A={x|p(x)}及B={x|q(x)},利用集合之间的包含关系进行判断。
2.充要条件的证明:(1)证明充要条件时要分别证明充分性和必要性,二者缺一不可。
一般地,证明“p 成立的充要条件是q ”,①充分性:把q 当作已知条件,结合命题的前提条件,推出p ; ②必要性:把p 当作已知条件,结合命题的前提条件,推出q ;(2)等价证明:从条件开始,逐步推出结论,或者从结论开始,逐步推出条件,但要求每一步都是等价的。
3.应用充分、必要条件确定参数:利用充分条件和必要条件求参数的取值范围、主要是根据集合间的包含关系与充分条件和必要条件的关系,将问题转化为集合之间的关系,建立关于参数的不等式或不等式组求解。
4.判断全称量词命题、存在量词命题的真假:(1)要判定一个全称量词命题是真命题,必须对限定集合M 中的每个元素x ,证明p(x)成立;但要判定全称量词命题是假命题,只要能举出集合M 中的一个0x x =,使得)(0x p 不成立即可(这就是通常所说的“举出一个反例”).(2)要判定一个存在量词命题是真命题,只要在限定集合M 中,至少能找到一个0x x =;使)(0x p 成立即可。
否则,这一存在量词命题就是假命题。
一、单选题 1.“0a b >>”是“1ab>”的( ) A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 【答案】B【解析】解:由0a b >>,得1a b >,反之不成立,如2a =-,1b =-,满足1ab>,但是不满足0a b >>, 故“0a b >>”是“1ab>”的充分不必要条件.故选:B 2.命题“x ∀∈R ,23230x x -->”的否定为( ) A .x ∀∈R ,23230x x --≤B .x ∀∉R ,23230x x --≤ C .x ∃∈R ,23230x x --≤D .x ∃∉R ,23230x x --≤ 【答案】C【解析】命题“x ∀∈R ,23230x x -->”的否定为x ∃∈R ,23230x x --≤,故选:C 。
高中数学:常用逻辑用语
常用逻辑用语一、知识框架1.命题定义:用语言、符号或式子表达的、可以判断正误的陈述语句,叫做命题。
其中,判断为真的即为真命题,为假的即为假命题。
2.命题的判断以及命题真假的判断(1)命题的判断:①判断该语句是否是陈述句;②能否判断真假。
(2)命题真假的判断:首先,分清条件与结论,其次,再判断命题真假。
3.一般地,用p 和q 分别表示原命题的条件和结论,用¬p 和¬q 表示p 与q 的否定,即如下:(四种命题的关系)4.充分条件和必要条件 (1)充分条件:如果A 成立,那么B 成立,则条件A 是B 成立的充分条件。
(2)必要条件:如果A 成立,那么B 成立,这时B 是A 的必然结果,则条件B 是A 成立的必要条件。
(3)充要条件:如果A 既是B 成立的充分条件,又是B 成立的必要条件,则A 是B 成立的充要条件,与此同时,B 也一定是A 成立的重要条件,所以此时,A 、B 互为充要条件。
【注意】充分条件与必要条件是完全等价的,是同一逻辑关系“A =>B ”的不同表达方法。
5.逻辑联结词(1)不含逻辑联结词的命题是简单命题,由简单命题和逻辑联结词“或”“且”“非”构成的命题是复合命题,它们有以下几种形式:p 或q (p ∨q );p 且q (p ∧q );非p (¬p )。
(2)逻辑联结词“或”“且”“非”的含义的理解 在集合中学习的“并集”“交集”“补集”与逻辑联结词中的“或”“且”“非”关系十分密切。
6.量词与命题量词名称 常见量词表示符号全称量词 所有、一切、任意、全部、每一个、任给等 ∀存在量词 存在一个、至少有一个、某个、有些、某些等∃命 题 表述形式 原命题 若p 则q 逆命题 若q 则p 否命题 若¬p 则¬q 逆否命题若¬q 则¬p(2)全称命题与特称命题 命题全称命题“()x p M x ,∈∀”特称命题“()00,x p M x ∈∃”定义短语“对所有的”“对任意一个”等,在逻辑中通常叫做全称量词,用符号“∀”表示。
高中数学-常用逻辑用语
§1.2常用逻辑用语考试要求 1.理解充分条件、必要条件、充要条件的意义;理解判定定理与充分条件、性质定理与必要条件、数学定义与充要条件的关系.2.理解全称量词和存在量词的意义,能正确对两种命题进行否定.知识梳理1.充分条件、必要条件与充要条件的概念若p⇒q,则p是q的充分条件,q是p的必要条件p是q的充分不必要条件p⇒q且q⇏pp是q的必要不充分条件p⇏q且q⇒pp是q的充要条件p⇔qp是q的既不充分也不必要条件p⇏q且q⇏p2.全称量词与存在量词(1)全称量词:短语“所有的”“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示.(2)存在量词:短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示.3.全称量词命题和存在量词命题名称全称量词命题存在量词命题结构对M中任意一个x,p(x)成立存在M中的元素x,p(x)成立简记∀x∈M,p(x)∃x∈M,p(x)否定∃x∈M,綈p(x)∀x∈M,綈p(x)常用结论1.充分、必要条件与对应集合之间的关系设A={x|p(x)},B={x|q(x)}.①若p是q的充分条件,则A⊆B;②若p是q的充分不必要条件,则A B;③若p是q的必要不充分条件,则B A;④若p是q的充要条件,则A=B.2.含有一个量词命题的否定规律是“改变量词,否定结论”. 3.命题p 与p 的否定的真假性相反. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)p 是q 的充分不必要条件等价于q 是p 的必要不充分条件.( √ ) (2)“三角形的内角和为180°”是全称量词命题.( √ ) (3)已知集合A ,B ,A ∪B =A ∩B 的充要条件是A =B .( √ ) (4)命题“∃x ∈R ,sin 2x 2+cos 2x 2=12”是真命题.( × )教材改编题1.“a >b ”是“ac 2>bc 2”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 B解析 当a >b 时,若c 2=0,则ac 2=bc 2, 所以a >b ⇏ac 2>bc 2,当ac 2>bc 2时,c 2≠0,则a >b , 所以ac 2>bc 2⇒a >b ,即“a >b ”是“ac 2>bc 2”的必要不充分条件. 2.使-2<x <2成立的一个充分条件是( ) A .x <2 B .0<x <2 C .-2≤x ≤2 D .x >0答案 B3.“等边三角形都是等腰三角形”的否定是________. 答案 存在一个等边三角形,它不是等腰三角形题型一 充分、必要条件的判定例1 (1)已知p :⎝⎛⎭⎫12x<1,q :log 2x <0,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 B解析 由⎝⎛⎭⎫12x<1知x >0,所以p 对应的x 的范围为(0,+∞), 由log 2x <0知0<x <1,所以q 对应的x 的范围为(0,1), 显然(0,1)(0,+∞), 所以p 是q 的必要不充分条件.(2)(2021·全国甲卷)等比数列{a n }的公比为q ,前n 项和为S n .设甲:q >0,乙:{S n }是递增数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件 答案 B解析 当a 1<0,q >1时,a n =a 1q n -1<0,此时数列{S n }单调递减,所以甲不是乙的充分条件.当数列{S n }单调递增时,有S n +1-S n =a n +1=a 1q n >0,若a 1>0,则q n >0(n ∈N *),即q >0;若a 1<0,则q n <0(n ∈N *),不存在.所以甲是乙的必要条件. 教师备选1.在△ABC 中,“AB 2+BC 2=AC 2”是“△ABC 为直角三角形”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 A解析 在△ABC 中,若AB 2+BC 2=AC 2, 则∠B =90°,即△ABC 为直角三角形,若△ABC 为直角三角形,推不出∠B =90°, 所以AB 2+BC 2=AC 2不一定成立,综上,“AB 2+BC 2=AC 2”是“△ABC 为直角三角形”的充分不必要条件.2.(2022·宁波模拟)设a ,b ∈R ,p :log 2(a -1)+log 2(b -1)>0,q :1a +1b <1,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 A解析 由题意得,p :log 2(a -1)+log 2(b -1) =log 2(a -1)(b -1)>0=log 21, 所以(a -1)(b -1)>1,即a +b <ab ,因为⎩⎪⎨⎪⎧a -1>0,b -1>0,所以a >1,b >1,则ab >0,所以1a +1b<1,所以p 是q 的充分条件; 因为1a +1b <1,所以a +b ab<1,若ab >0,则a +b <ab ,若ab <0,则a +b >ab , 所以p 是q 的非必要条件, 所以p 是q 的充分不必要条件.思维升华 充分条件、必要条件的两种判定方法(1)定义法:根据p ⇒q ,q ⇒p 进行判断,适用于定义、定理判断性问题.(2)集合法:根据p ,q 对应的集合之间的包含关系进行判断,多适用于条件中涉及参数范围的推断问题.跟踪训练1 (1)“a >2,b >2”是“a +b >4,ab >4”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析若a>2,b>2,则a+b>4,ab>4.当a=1,b=5时,满足a+b>4,ab>4,但不满足a>2,b>2,所以a+b>4,ab>4⇏a>2,b>2,故“a>2,b>2”是“a+b>4,ab>4”的充分不必要条件.(2)(2022·太原模拟)若a,b为非零向量,则“a⊥b”是“(a+b)2=a2+b2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 C解析因为a⊥b,所以a·b=0,则(a+b)2=a2+2a·b+b2=a2+b2,所以“a⊥b”是“(a+b)2=a2+b2”的充分条件;反之,由(a+b)2=a2+b2得a·b=0,所以非零向量a,b垂直,“a⊥b”是“(a+b)2=a2+b2”的必要条件.故“a⊥b”是“(a+b)2=a2+b2”的充要条件.题型二充分、必要条件的应用例2已知集合A={x|x2-8x-20≤0},非空集合B={x|1-m≤x≤1+m}.若x∈A是x∈B 的必要条件,求m的取值范围.解由x2-8x-20≤0,得-2≤x≤10,∴A={x|-2≤x≤10}.由x∈A是x∈B的必要条件,知B⊆A.则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≥-2, ∴0≤m ≤3.1+m ≤10,∴当0≤m ≤3时,x ∈A 是x ∈B 的必要条件, 即所求m 的取值范围是[0,3].延伸探究 本例中,若把“x ∈A 是x ∈B 的必要条件”改为“x ∈A 是x ∈B 的充分不必要条件”,求m 的取值范围.解 ∵x ∈A 是x ∈B 的充分不必要条件, ∴A B ,则⎩⎪⎨⎪⎧ 1-m ≤-2,1+m >10或⎩⎪⎨⎪⎧1-m <-2,1+m ≥10,解得m ≥9,故m 的取值范围是[9,+∞). 教师备选(2022·泰安模拟)已知p :x ≥a ,q :|x +2a |<3,且p 是q 的必要不充分条件,则实数a 的取值范围是( ) A .(-∞,-1] B .(-∞,-1) C .[1,+∞) D .(1,+∞)答案 A解析 因为q :|x +2a |<3, 所以q :-2a -3<x <-2a +3, 记A ={x |-2a -3<x <-2a +3}, p :x ≥a ,记为B ={x |x ≥a }.因为p 是q 的必要不充分条件,所以A B , 所以a ≤-2a -3,解得a ≤-1. 思维升华 求参数问题的解题策略(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解. (2)要注意区间端点值的检验.跟踪训练2 (1)(2022·衡水中学模拟)若不等式(x -a )2<1成立的充分不必要条件是1<x <2,则实数a 的取值范围是________. 答案 [1,2]解析 由(x -a )2<1得a -1<x <a +1,因为1<x <2是不等式(x -a )2<1成立的充分不必要条件,所以满足⎩⎪⎨⎪⎧a -1≤1,a +1≥2且等号不能同时取得,即⎩⎪⎨⎪⎧a ≤2,a ≥1,解得1≤a ≤2.(2)已知p :实数m 满足3a <m <4a (a >0),q :方程x 2m -1+y 22-m =1表示焦点在y 轴上的椭圆,若p 是q 的充分条件,则a 的取值范围是________. 答案 ⎣⎡⎦⎤13,38解析 由2-m >m -1>0,得1<m <32,即q :1<m <32.因为p 是q 的充分条件,所以⎩⎪⎨⎪⎧3a ≥1,4a ≤32,解得13≤a ≤38.题型三 全称量词与存在量词 命题点1 含量词命题的否定例3 (1)已知命题p :∃n ∈N ,n 2≥2n +5,则綈p 为( ) A .∀n ∈N ,n 2≥2n +5 B .∃n ∈N ,n 2≤2n +5 C .∀n ∈N ,n 2<2n +5 D .∃n ∈N ,n 2=2n +5 答案 C解析 由存在量词命题的否定可知,綈p 为∀n ∈N ,n 2<2n +5.所以C 正确,A ,B ,D 错误. (2)命题:“奇数的立方是奇数”的否定是________. 答案 存在一个奇数,它的立方不是奇数 命题点2 含量词命题的真假判定 例4 (多选)下列命题是真命题的是( ) A .∃a ∈R ,使函数y =2x +a ·2-x 在R 上为偶函数 B .∀x ∈R ,函数y =sin x +cos x +2的值恒为正数 C .∃x ∈R ,2x <x 2D .∀x ∈(-10,+∞),⎝⎛⎭⎫13x >13log x答案 AC解析 当a =1时,y =2x +2-x 为偶函数,故A 为真命题; y =sin x +cos x +2=2sin ⎝⎛⎭⎫x +π4+2, 当sin ⎝⎛⎭⎫x +π4=-1时,y =0,故B 为假命题; 当x ∈(2,4)时,2x <x 2,故C 为真命题; 当x =13时,1313⎛⎫⎪⎝⎭∈(0,1),13log 13=1,∴1313⎛⎫⎪⎝⎭<13log 13,故D 为假命题.命题点3 含量词命题的应用例5 已知命题“∃x ∈R ,使ax 2-x +2≤0”是假命题,则实数a 的取值范围是________. 答案 a >18解析 因为命题“∃x ∈R ,使ax 2-x +2≤0”是假命题, 所以命题“∀x ∈R ,使得ax 2-x +2>0”是真命题,当a =0时,得x <2,故命题“∀x ∈R ,使得ax 2-x +2>0”是假命题,不符合题意;当a ≠0时,得⎩⎪⎨⎪⎧a >0,Δ=1-8a <0,解得a >18.教师备选1.(2022·西安模拟)下列命题中假命题是()A.∀x∈R,2x-1>0B.∀x∈N*,(x-1)2>0C.∃x∈R,lg x<1D.∃x∈R,tan x=2答案 B解析∵指数函数y=2x的值域为(0,+∞),∴∀x∈R,均可得到2x-1>0成立,故A项为真命题;∵当x∈N*时,x-1∈N,可得(x-1)2≥0,当且仅当x=1时取等号,∴∃x∈N*,使(x-1)2>0不成立,故B项为假命题;∵当x=1时,lg 1=0<1,∴∃x∈R,使得lg x<1成立,故C项为真命题;∵正切函数y=tan x的值域为R,∴存在锐角x,使得tan x=2成立,故D项为真命题.综上所述,只有B项是假命题.2.若命题“∀x∈[1,4],x2-4x-m≠0”是假命题,则m的取值范围是() A.-4≤m≤-3 B.m<-4C.m≥-4 D.-4≤m≤0答案 D解析若命题“∀x∈[1,4],x2-4x-m≠0”是假命题,则命题“∃x∈[1,4],x2-4x-m=0”是真命题,则m=x2-4x,设y=x2-4x=(x-2)2-4,因为函数y=x2-4x在(1,2)上单调递减,在(2,4)上单调递增,所以当x=2时,y min=-4;当x=4时,y max=0,故当1≤x ≤4时,-4≤y ≤0,则-4≤m ≤0. 思维升华 含量词命题的解题策略(1)判定全称量词命题是真命题,需证明都成立;要判定存在量词命题是真命题,只要找到一个成立即可.当一个命题的真假不易判定时,可以先判断其否定的真假.(2)由命题真假求参数的范围,一是直接由命题的真假求参数的范围;二是可利用等价命题. 跟踪训练3 (1)命题“∀x >0,x sin x <2x -1”的否定是( ) A .∀x >0,x sin x ≥2x -1 B .∃x >0,x sin x ≥2x -1 C .∀x ≤0,x sin x <2x -1 D .∃x ≤0,x sin x ≥2x -1 答案 B解析 因为全称量词命题的否定是存在量词命题,所以命题“∀x >0,x sin x <2x -1”的否定是:∃x >0,x sin x ≥2x -1.(2)(2022·重庆模拟)下列命题为真命题的是( ) A .∀x ∈R ,x 2-|x |+1≤0 B .∀x ∈R ,-1≤1cos x ≤1C .∃x ∈R ,(ln x )2≤0D .∃x ∈R ,sin x =3 答案 C解析 对于A ,因为x 2-|x |+1=⎝⎛⎭⎫|x |-122+34>0恒成立, 所以∀x ∈R ,x 2-|x |+1≤0是假命题; 对于B ,当x =π3时,1cos x =2,所以∀x ∈R ,-1≤1cos x ≤1是假命题;对于C ,当x =1时,ln x =0, 所以∃x ∈R ,(ln x )2≤0是真命题;对于D ,因为-1≤sin x ≤1,所以∃x ∈R ,sin x =3是假命题.(3)若命题“∃x ∈R ,x 2-mx -m <0”为真命题,则实数m 的取值范围是________. 答案 (-∞,-4)∪(0,+∞)解析 依题意,Δ=m 2+4m >0,∴m >0或m <-4.课时精练1.命题 p :“有些三角形是等腰三角形”的否定是( )A .有些三角形不是等腰三角形B .有些三角形可能是等腰三角形C .所有三角形不是等腰三角形D .所有三角形是等腰三角形答案 C解析 命题p :“∃x ∈A ,使 P (x ) 成立”,綈p 为“对∀x ∈A ,有 P (x ) 不成立”.故命题p :“有些三角形是等腰三角形”,则綈p 是“所有三角形不是等腰三角形”.2.(2021·浙江)已知非零向量a ,b ,c ,则“a ·c =b ·c ”是“a =b ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件答案 B解析 由a ·c =b ·c ,得到(a -b )·c =0,所以(a -b )⊥c 或a =b ,所以“a ·c =b ·c ”是“a =b ”的必要不充分条件.3.以下四个命题既是存在量词命题又是真命题的是( )A .锐角三角形有一个内角是钝角B .至少有一个实数x ,使x 2≤0C .两个无理数的和必是无理数D .存在一个负数x ,使1x>2 答案 B解析 A 中锐角三角形的内角都是锐角,所以A 是假命题;B 中当x =0时,x 2=0,满足x 2≤0,所以B 既是存在量词命题又是真命题;C 中因为2+(-2)=0不是无理数,所以C 是假命题;D 中对于任意一个负数x ,都有1x <0,不满足1x>2,所以D 是假命题. 4.(2022·沈阳模拟)在空间中,设m ,n 是两条直线,α,β表示两个平面,如果m ⊂α,α∥β,那么“m ⊥n ”是“n ⊥β”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 B解析 当m ⊥n 时,∵m ⊂α,α∥β,则n 与β可能平行,∴充分性不成立;当n ⊥β时,∵α∥β,∴n ⊥α,∵m ⊂α,∴m ⊥n ,∴必要性成立,∴“m ⊥n ”是“n ⊥β”的必要不充分条件.5.若命题“∃x ∈(0,+∞),使得ax >x 2+4成立”是假命题,则实数a 的取值范围是( )A .(4,+∞)B .(-∞,4)C .[4,+∞)D .(-∞,4]答案 D解析 若命题“∃x ∈(0,+∞),使得ax >x 2+4成立”是假命题,则有“∀x ∈(0,+∞),使得ax ≤x 2+4成立”是真命题.即a ≤x +4x,则a ≤⎝⎛⎭⎫x +4x min , 又x +4x≥24=4,当且仅当x =2时取等号,故a ≤4. 6.(2022·南京模拟)已知集合M =[-1,1],那么“a ≥-23”是“∃x ∈M ,4x -2x +1-a ≤0”的( )A .充分不必要条件B .必要不充分条件C .既不充分也不必要条件D .充要条件答案 A解析 ∵∃x ∈M ,4x -2x +1-a ≤0,∴a ≥(4x -2x +1)min ,x ∈[-1,1],设t =2x ,则f (t )=t 2-2t =(t -1)2-1,t ∈⎣⎡⎦⎤12,2,∴f (t )min =f (1)=-1,∴a ≥-1,∵⎣⎡⎭⎫-23,+∞[-1,+∞),∴“a ≥-23”是“∃x ∈M ,4x -2x +1-a ≤0”的充分不必要条件.7.(多选)(2022·烟台调研)下列四个命题中是真命题的有( )A .∀x ∈R ,3x >0B .∀x ∈R ,x 2+x +1≤0C .∀x ∈R ,sin x <2xD .∃x ∈R ,cos x >x 2+x +1答案 AD解析 ∀x ∈R,3x >0恒成立,A 是真命题; ∵x 2+x +1=⎝⎛⎭⎫x +122+34>0, ∴B 是假命题;由sin ⎝⎛⎭⎫-32π=1>322-π,知C 是假命题;取x =-12,cos ⎝⎛⎭⎫-12>cos ⎝⎛⎭⎫-π6=32,但x 2+x +1=34<32,则D 是真命题.8.(多选)(2022·临沂模拟)下列四个条件中,能成为x >y 的充分不必要条件的是() A .xc 2>yc 2 B.1x <1y <0C .|x |>|y |D .ln x >ln y答案 ABD解析 对于A 选项,若xc 2>yc 2 ,则c 2≠0,则x >y ,反之x >y ,当c =0时得不出xc 2>yc 2,所以“xc 2>yc 2”是“x >y ”的充分不必要条件,故A 正确;对于B 选项,由1x <1y<0可得y <x <0, 即能推出x >y ;但x >y 不能推出1x <1y<0(因为x ,y 的正负不确定), 所以“1x <1y<0”是“x >y ”的充分不必要条件, 故B 正确;对于C 选项,由|x |>|y |可得x 2>y 2,则(x +y )(x -y )>0,不能推出x >y ;由x >y 也不能推出|x |>|y |(如x =1,y =-2),所以“|x |>|y |”是“x >y ”的既不充分也不必要条件,故C 错误;对于D 选项,若ln x >ln y ,则x >y ,反之x >y 得不出ln x >ln y ,所以“ln x >ln y ”是“x >y ”的充分不必要条件,故D 正确.9.若命题p :∀x ∈(0,+∞),x >x +1,则命题p 的否定为________.答案 ∃x ∈(0,+∞),x ≤x +110.(2022·衡阳模拟)使得“2x >4x ”成立的一个充分条件是________.答案 x <-1(答案不唯一)解析 由于4x =22x ,故2x >22x 等价于x >2x ,解得x <0,使得“2x >4x ”成立的一个充分条件只需为集合{x |x <0}的子集即可.11.直线y =kx +1与圆x 2+y 2=a 2(a >0)有公共点的充要条件是________.答案 a ∈[1,+∞)解析 直线y =kx +1过定点(0,1),依题意知点(0,1)在圆x 2+y 2=a 2内部(包含边界),∴a 2≥1.又a>0,∴a≥1.12.已知命题p:“∀x∈[1,+∞),x2-a≥0”,命题q:“∃x∈R,x2+2ax+2-a=0”,若命题p,q均为真命题,则实数a的取值范围为____________________.答案{a|a≤-2或a=1}解析由题意可知p和q均为真命题,由命题p为真命题,得∀x∈[1,+∞),x2≥a恒成立,(x2)min=1,得a≤1;由命题q为真命题,知Δ=4a2-4(2-a)≥0成立,得a≤-2或a≥1,所以实数a的取值范围为{a|a≤-2或a=1}.13.(2022·苏州中学月考)在△ABC中,“A>B”是“cos A<cos B”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 C解析因为A,B是△ABC的内角,且A>B,所以0<B<A<π,因为y=cos x在(0,π)上单调递减,所以cos A<cos B,故充分性成立;反之,y=cos x在(0,π)上单调递减,0<A<π,0<B<π,若cos A<cos B,则A>B,故必要性成立,所以在△ABC中,“A>B”是“cos A<cos B”的充要条件.14.已知函数f(x)的定义域为(a,b),若“∃x∈(a,b),f(x)+f(-x)≠0”是假命题,则f(a+b)=________.答案0解析“∃x∈(a,b),f(x)+f(-x)≠0”的否定是∀x∈(a,b),f(x)+f(-x)=0,依题意得,命题∀x∈(a,b),f(x)+f(-x)=0为真命题,故函数y=f(x),x∈(a,b)为奇函数,∴a+b=0,∴f(a+b)=f(0)=0.15.(多选)已知a ∈R ,则使命题“∀x ∈⎝⎛⎭⎫π2,π,x 2-sin x -a ≥0”为真命题的一个充分不必要条件是( )A .a <1B .a ≤2C .a <π2-44D .a ≤π2-44答案 AC解析 x ∈⎝⎛⎭⎫π2,π,令f (x )=x 2-sin x ,则f ′(x )=2x -cos x >0,则函数f (x )=x 2-sin x 在⎝⎛⎭⎫π2,π上单调递增,∀x ∈⎝⎛⎭⎫π2,π,f (x )>f ⎝⎛⎭⎫π2=π2-44, 所以原命题为真命题的充要条件为a ≤π2-44, 而1<π2-44<2,则满足A 选项、C 选项的a 均有a ≤π2-44,a ≤π2-44时a <1和a <π2-44都不一定成立,所以所求的一个充分不必要条件是选项A ,C.16.f (x )=-x 2-6x -3,记max{p ,q }表示p ,q 二者中较大的一个,函数g (x )=max ⎩⎨⎧⎭⎬⎫⎝⎛⎭⎫12x -2,log 2(x +3),若m <-2,且∀x 1∈[m ,-2],∃x 2∈[0,+∞),使f (x 1)=g (x 2)成立,则m 的最小值为________.答案 -5解析 y =⎝⎛⎭⎫12x -2为减函数,y =log 2(x +3)为增函数,观察尝试可知当且仅当x =1时,⎝⎛⎭⎫12x -2=log 2(x +3).由题意得,g (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x -2,0≤x <1,log 2(x +3),x ≥1,∴在[0,+∞)上,g (x )min =g (1)=2,g (x )的值域为[2,+∞),f (x )=-(x +3)2+6≤6.“∀x 1∈[m ,-2],∃x 2∈[0,+∞),使f (x 1)=g (x 2)成立”等价于f (x )在[m ,-2]上的函数值域是g (x )在[0,+∞)上的值域的子集,作函数y =f (x ),y =g (x )的图象,如图所示,令f (x )=-x 2-6x -3=2,解得x =-5或x =-1,则m 的最小值为-5.。
常用逻辑用语
常用逻辑用语一、充分条件与必要条件1.1、命题的定义在数学中,命题是用来判断一件事情的句子。
这些句子用语言、符号或数学式子来表达,并且能够明确地判断为真或假。
数学命题是数学推理和证明的基础,它们构成了数学理论的基石。
注意:命题的明确性和可判断性。
1.2、真命题与假命题真命题:定义:如果一个命题在特定条件下为真,即它所陈述的内容在逻辑上是成立的,那么该命题被称为真命题。
举例说明:如“两直线平行,则它们不会相交”是一个真命题。
假命题:定义:如果一个命题在特定条件下为假,即它所陈述的内容在逻辑上是不成立的,那么该命题被称为假命题。
举例说明:如“所有的质数都是奇数”是一个假命题,因为存在反例(如2是质数但它是偶数)。
1.3、数学命题的一般形式数学命题经常以“若p,则q”的形式出现,其中p被称为命题的条件,q被称为命题的结论。
这种形式是数学推理和证明中常用的结构。
条件(p):命题的前提或假设部分,是推理的起点。
结论(q):在条件成立的情况下,必然为真的部分,是推理的终点。
示例:命题“若一个数是偶数,则它能被2整除”中,“一个数是偶数”是条件p,“它能被2整除”是结论q。
根据整数的性质,这个命题是真命题。
1.4、充分条件和必要条件的背景在探索世界的奥秘时,人们常常需要判断事物之间的因果关系或逻辑关系。
充分条件和必要条件作为逻辑学中的核心概念,为我们提供了一种分析和理解这些关系的工具。
从古代的哲学思考到现代的科学研究,充分条件和必要条件始终扮演着重要角色。
1.5、充分条件和必要条件定义(1)、充分条件定义:如果条件A成立,那么结果B一定成立,即A是B的充分条件。
换句话说,A的发生足以保证B的发生,但B的发生不一定只由A导致。
实例:假设“下雨”是“地面湿润”的充分条件。
当天空下雨时,地面一定会变得湿润;但地面湿润的原因可能还有其他,如洒水、河流泛滥等。
需要着重记忆和理解的地方:充分条件强调的是“足够性”,即A足够导致B,但B的发生不一定仅由A引起。
高中数学知识点总结:常用逻辑用语
优选精品优选精品 欢迎下载欢迎下载1 / 2高中数学知识点总结:常用逻辑用语高中学生在学习中或多或少有一些困惑,的编辑为大家总结了高中数学知识点总结:常用逻辑用语,各位考生可以参考。
常用逻辑用语:1、四种命题:⑴原命题:若p 则q;⑵逆命题:若q 则p;⑶否命题:若p;⑶否命题:若 p p 则 q;⑷逆否命题:若q;⑷逆否命题:若 q q 则 p注:注:11、原命题与逆否命题等价、原命题与逆否命题等价;;逆命题与否命题等价。
判断命题真假时注意转化。
2、注意命题的否定与否命题的区别:命题否定形式是、注意命题的否定与否命题的区别:命题否定形式是 ; ; ;否否命题是命题是 . . .命题命题或 的否定是 且 且 的否定是 或 . 3、逻辑联结词:⑴且⑴且(and) (and) (and) :命题形式:命题形式:命题形式 p q; p q p q p q p p q; p q p q p q p⑵或⑵或(or)(or)(or):命题形式:命题形式:命题形式 p q; p q; p q; 真真真 真 真 假 ⑶非⑶非(not)(not)(not):命题形式:命题形式:命题形式 p . p . p . 真真假 假 真 假 假 真 假 真 真假 假 假 假 真或命题的真假特点是一真即真,要假全假且命题的真假特点是一假即假,要真全真非命题的真假特点是一真一假4、充要条件优选精品优选精品 欢迎下载欢迎下载2 / 2 由条件可推出结论,条件是结论成立的充分条件由条件可推出结论,条件是结论成立的充分条件;;由结论可推出条件,则条件是结论成立的必要条件。
5、全称命题与特称命题:短语所有在陈述中表示所述事物的全体,逻辑中通常叫做全称量词,并用符号表示。
含有全体量词的命题,叫做全称命题。
短语有一个或有些或至少有一个在陈述中表示所述事物的个体或部分,逻辑中通常叫做存在量词,并用符号 表示,含有存在量词的命题,叫做存在性命题。
高中数学常用逻辑用语
充分非必要条件
2) 若A B且B A,则甲是乙的
必要非充分条件
3)若A B且B A,则甲是乙的
既不充分也不必要条件
4)若A=B ,则甲是乙的充分且必要条件。
注意点
1.在判断条件时,要特别注意的是它们能否互相 推出,切不可不加判断以单向推出代替双向推出.
2.搞清 ①A是B的充分条件与A是B的充分非必要条件之间 的区别与联系; ②A是B的必要条件与A是B的必要非充分条件之间 的区别与联系
复合命题有以下三种形式: (1)P且q. (2)P或q. (3)非p.
逻辑联结词 : 或、且、非
一般地,用逻辑联结词”且”把命题p和命 题q联结起来.就得到一个新命题,记作
p q 读作”p且q”.
规定:当p,q都是真命题时, p q 是 真命题;当p,q两个命题中有一个命
题是假命题时, p q 是假命题. pq
结论1:要写出一个命题的另外三个命
题关键是分清命题的题设和结论(即
把原命题写成“若p则q”的形式)
注意:三种命题中最难写 的是否命题。
三、四种命题之间的 关系
原命题
若p则q
互逆 逆命题
若q则p
互
互
否
否
否命题
逆否命题
若﹁p则﹁q
互逆 若﹁q则﹁p
四、命题真假性判断
(1) 原命题为真,则其逆否命题一定为 真。但其逆命题、否命题不一定为真。 (2) 若其逆命题为真,则其否命题一定为 真。但其原命题、逆否命题不一定为真。
2.写出命题“若x≠a且x≠b, 则x2-(a+b)x+ab≠0”的否命题
充要条件
如果命题“若p则q”为真,则记
作p
高中数学第一章常用逻辑用语1.2简单的逻辑联结词作业苏教版选修1-1(2021年整理)
2018-2019学年高中数学第一章常用逻辑用语1.2 简单的逻辑联结词作业苏教版选修1-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年高中数学第一章常用逻辑用语1.2 简单的逻辑联结词作业苏教版选修1-1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019学年高中数学第一章常用逻辑用语1.2 简单的逻辑联结词作业苏教版选修1-1的全部内容。
1。
2 简单的逻辑联结词[基础达标]1.已知命题p:所有有理数都是实数,命题q:正数的对数都是负数,则下列命题中为真命题的是________.①綈p或q;②p且q;③綈p且綈q;④綈p或綈q。
解析:不难判断命题p为真命题,命题q为假命题,从而上述叙述中只有綈p或綈q为真命题.答案:④2.已知命题p1:函数y=2x-2-x在R上为增函数,p2:函数y=2x+2-x在R上为减函数,则在命题q1:p1或p2;q2:p1且p2;q3:綈p1或p2;q4:p1且綈p2中,真命题有________.解析:易知p1是真命题;对p2,取特殊值来判断,如取x1=1〈x2=2,得y1=错误!<y2=错误!;取x3=-1>x4=-2,得y3=错误!<y4=错误!,故p2是假命题.由此可知,q1真,q2假,q3假,q4真.答案:q1,q43.若p、q是两个命题,且“p或q”的否定是真命题,则p、q的真假性是________.解析:由p或q的否定是真命题,知p或q为假命题,因此p、q为假命题.答案:p假q假4.对于命题p、q,若p且q为真命题,则下列四个命题:①p或綈q是真命题;②p且綈q是真命题;③綈p且綈q是假命题;④綈p或q是假命题.其中真命题是________.解析:∵p且q真,则p真,q真,∴綈p假,綈q假,所以只有①③为真命题.答案:①③5.给出两个命题:p:|x|=x的充要条件是x为正实数,q:奇函数的图象一定关于原点对称,则綈p∧q为________命题(填“真"、“假”).解析:∵p为假命题,∴綈p为真命题,又∵q为真命题,故綈p∧q为真命题.答案:真6.若命题p:不等式4x+6>0的解集为{x|x>-错误!},命题q:关于x的不等式(x-4)(x-6)〈0的解集为{x|4<x〈6},则“p且q”,“p或q",“綈p”形式的复合命题中的真命题是________.解析:因为命题p为真命题,q为真命题,所以“綈p”为假命题,“p或q”,“p且q”为真命题.答案:p或q,p且q7.分别指出下列各组命题构成的“p∧q"“p∨q"“綈p”形式的命题的真假.(1)p:6〈6。
高中数学-常用逻辑用语
常用逻辑用语一、命题1.定义:用语言、符号或式子表达的,可以判断真假的陈述句2.疑问句,祈使句,感叹句都不是命题3.真命题:判断为真的语句4.假命题:判断为假的语句5.一般用小写英文字母表示如p:∀x>0,x2+1>0二、量词1.全称量词所有、一切、任意、全部、每一个、任给等符号:∀2.存在量词存在、至少有、有一个、某个、某(有)些等符号:∃3.全称命题:含有全称量词的命题全称命题q:∀x∈A,q(x) 它的否定是⌝q:∃x∈A,⌝q(x) 4.存在性命题:含有存在量词的命题存在性命题p:∃x∈A,p(x) 它的否定是⌝p:∀x∈A,⌝p(x)三、“且”与“或”,“非”1. “且”(p∧q一假则假)“或”(p∨q一真则真)2. “非”(否定)互 否互 否互逆互逆四、推出与充分条件、必要条件 1.推出“如果p ,则q”经过推理证明断定是真命题时,我们就说由p 可以推出q ;记作:p ⇒q 2.充分条件、必要条件如果p 可推出q ,则称:p 是q 的充分条件;q 是p 的必要条件 3.充要条件如果p ⇒q ,且q ⇒p ,则称 p 是q 的充分且必要条件(p 是q 的充要条件) 五、命题的四种形式 1.若p ,则q原命题:若p ,则q 逆命题:若q ,则p 否命题:若非p ,则非q 逆否命题:若非q ,则非p 注:命题的否定(否结论)否命题(否条件,否结论)2.充分条件、必要条件的判定(一)(1)如果p ⇒q ,则p 是q 的充分条件,同时q 是p 的必要条件 (2)如果p ⇒q ,但q ⇏p ,则p 是q 的充分不必要条件 (3)如果p ⇒q ,且q ⇒p ,则p 是q 的充要条件 (4)如果q ⇒p ,但p ⇏q ,则p 是q 的必要不充分条件 (5)如果p ⇏q ,且q ⇏p ,则p 是q 的既不充分也不必要条件原命题:若p ,则q逆否命题:若非q ,则非p否命题:若非p ,则非q逆命题:若q ,则p3.充分条件、必要条件的判定(二)若p 以集合A 的形式出现,q 以集合B 的形式出现即A ={ x | p(x) },B ={ x | q(x) },则关于充分条件、必要条件又可以叙述为 (1)若A ⊆B ,则p 是q 的充分条件 (2)若A ⊇B ,则p 是q 的必要条件 (3)若A =B ,则p 是q 的充要条件(4)若A B ,则p 是q 的充分不必要条件(5)若A B ,则p 是q 的必要不充分条件 (6)若A ⊈B 且A ⊉B ,则p 是q 的既不充分也不必要条件 4.等价命题(1)两个命题互为逆否命题,它们有相同的真假性①¬q 是¬p 的充分不必要条件⇔p 是q 的充分不必要条件 ②¬q 是¬p 的必要不充分条件⇔p 是q 的必要不充分条件 ③¬q 是¬p 的充要条件⇔p 是q 的充要条件④¬q 是¬p 的既不充分也不必要条件⇔p 是q 的既不充分也不必要条件 (2)两个命题为互逆命题或互否命题,它们的真假性没有关系 5. 常见结论的否定形式≠⊂≠⊃。
高一数学集合与常用逻辑用语试题
高一数学集合与常用逻辑用语试题1.已知集合,集合,则集合()A.B.C.D.【答案】B【解析】两集合的公共元素组成的集合,所以【考点】集合的运算2.(12分)已知集合,集合,集合(1)求;(2)若,求实数的取值范围;【答案】(1);(2)【解析】(1)首先求集合和集合,再求两集合;(2)第一步,先解集合,第二步,根据,得,画数轴得到的取值范围.试题解析:解:(1),,(4分)(6分)(2)由,得,即.(12分)【考点】1.集合的运算;2.集合的关系;3.不等式的解法.3.若集合,则()A.B.C.D.【答案】C【解析】由题意,,,故选C。
【考点】集合的运算4.满足条件的集合M的个数为()A.6B.7C.8D.9【答案】B【解析】的非空子集有个,故选B.【考点】集合的关系(子集).5.设,则下列正确的是()A.B.C.D.【答案】C【解析】集合A表示的是奇数集,故选C.【考点】描述法表示集合及元素与集合的关系.6.设A={a,b},集合B={a+1,5},若A∩B={2},则A∪B=()A.{1,2}B.{1,5}C.{2,5}D.{1,2,5}【答案】D【解析】由A∩B={2}可知集合A,B中都含有2,【考点】集合的交并运算7.已知集合()A.{x|2<x<3}B.{x|-1≤x≤5}C.{x|-1<x<5}D.{x|-1<x≤5}【答案】B【解析】集合的并集是由两集合所有的元素构成的集合,因此{x|-1≤x≤5}【考点】集合的并集8.某班共50人,其中21人喜爱篮球运动,18人喜爱乒乓球运动,20人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为.【答案】12【解析】设有人既喜爱篮球也喜爱乒乓球,则,解得,所以喜爱篮球运动但不喜爱乒乓球运动的人数为.【考点】集合的运算.9.集合,若,则a+b= .【答案】3【解析】因为,所以,则b=2,所以a+b=3.【考点】交集运算.10.已知集合,集合,若,则实数的取值范围是.【答案】【解析】,由可得【考点】集合的交集运算(A∪B)=()11.(2012秋•白城期末)设集合U={1,2,3,4},A={1,2},B={2,3},则∁UA.{1,2,3} B.{4} C.{2} D.{1,4}【答案】B【解析】利用集合的并集和补集的定义求解.解:∵集合U={1,2,3,4},A={1,2},B={2,3},∴A∪B={1,2,3},C(A∪B)={4}.U故选:B.【考点】交、并、补集的混合运算.12.已知,求的值.【解析】试题分析:根据题意可得,即方程有两个相等实根为2,有韦达定理即可得a,b的值.试题解析:∴方程有两个相等实根为2【考点】1.集合间的关系;2.一元二次方程的根.13.已知函数的定义域为集合,集合,集合,是的真子集,求(1);(2)的值.【答案】(1);(2)1.【解析】(1)明确集合A,C的元素,由交集定义可得;(2)求出集合B,及,由真子集的定义可得的不等式,由是正整数可得结论.试题解析:(1)由题意,,∴.(2),,,∵,∴,又,∴,,∴.【考点】集合的运算,集合的包含关系.14.已知集合A={x|a≤x≤a+4},B={x|x2﹣x﹣6≤0}.B);(1)当a=0时,求A∩B,A∪(∁R(2)若A∪B=B,求实数a的取值范围.B)={x|x<﹣2或x≥0};(2)实数a的范围是{a|﹣【答案】(1)A∩B={x|0≤x≤3},A∪(∁R2≤a≤﹣1}.【解析】(1)求出B中不等式的解集确定出B,把a=0代入确定出A,找出A与B的交集,求出A与B补集的并集即可;(2)根据A与B的并集为B,得到A为B的子集,由A与B确定出a的范围即可.解:(1)由B中不等式变形得:(x﹣3)(x+2)≤0,解得:﹣2≤x≤3,即B={x|﹣2≤x≤3},∴∁B={x|x<﹣2或x>3},R把a=0代入得:A={x|0≤x≤4},B)={x|x<﹣2或x≥0};则A∩B={x|0≤x≤3},A∪(∁R(2)∵A∪B=B,∴A⊆B,则有,解得:﹣2≤a≤﹣1,则实数a的范围是{a|﹣2≤a≤﹣1}.【考点】交、并、补集的混合运算;集合的包含关系判断及应用.15.下列命题正确的是()A.“”是“”的必要不充分条件B.对于命题:,使得,则:,均有C.若为假命题,则,均为假命题D.命题“若,则”的否命题为“若,则”【答案】B【解析】对于A,即或,所以当时,,充分性成立,但当时,不一定成立,故A不正确;对于B,特称命题:,,它的否定:,,可得B正确;对于C,当为假命题时,,中至少有一个为假命题,所以,均为假命题不一定成立,故C不正确;对于D,原命题“若,则”的否命题为“若,则”,则命题“若,则”的否命题为“若,则”,故D不正确.【考点】常用逻辑用语.16.已知集合M={y|y=lgx,0<x<1},N={y|y=()x,x>1},则M∩N=()A.{y|y<0}B.{y|y<}C.{y|0<y<}D.∅【答案】D【解析】求出M中y的范围确定出M,求出N中y的范围确定出N,找出两集合的交集即可.解:由M中y=lgx,0<x<1,得到y<0,即M=(﹣∞,0),由N中y=()x,x>1,得到0<y<1,即N=(0,1),则M∩N=∅,故选:D.【考点】交集及其运算.17.已知集合B={x|﹣3<x<2},C={y|y=x2+x﹣1,x∈B}(1)求B∩C,B∪C;(2)设函数的定义域为A,且B⊆(∁RA),求实数a的取值范围.【答案】(1),(﹣3,5)(2)[8,+∞)【解析】集合B={x|﹣3<x<2},由于x∈B,可得y=x2+x﹣1=﹣∈,可得C.(1)利用集合的运算性质可得:B∩C,B∪C.(2)函数的定义域为A=,可得∁R A=,利用B⊆(∁RA),即可得出.解:集合B={x|﹣3<x<2},∵x∈B,∴y=x2+x﹣1=﹣∈,∴C=.(1)∴B∩C=,B∪C=(﹣3,5).(2)函数的定义域为A=,∴∁RA=,∵B⊆(∁RA),∴2,解得a≥8.∴实数a的取值范围是[8,+∞).【考点】集合的包含关系判断及应用;并集及其运算;交集及其运算.18.已知集合M={(a,b)|a≤﹣1,且 0<b≤m},其中m∈R.若任意(a,b)∈M,均有alog2b﹣b﹣3a≥0,求实数m的最大值.【答案】2【解析】如图所示,由alog2b﹣b﹣3a≥0,化为:.由于≥﹣m,b≤m时,可得log2m≤3﹣m.结合图形即可得出.解:如图所示,由alog2b﹣b﹣3a≥0,化为:.∵≥﹣m,b≤m时,∴log2m≤3﹣m.当m=2时取等号,∴实数m的最大值为2.【考点】对数的运算性质.19.已知集合,,则()A.B.[0,1]C.[0,3]D.【答案】C【解析】因为由得:,又,所以,故选C.【考点】集合的交集运算.20.已知集合,且,求实数a的值。
人教B版高一数学寒假作业常用逻辑用语
寒假作业(2)常用逻辑用语1、已知命题0:p x R ∃∈,使得200220x ax a +++≤”,若命题P 是假命题,则实数a 的取值范围是( )A.[]1,2-B.()1,2-C.()2,1-D.(]0,22、已知命题():0,ln 10p x x ∀>+> ;命题q :若a b >,则22a b >下列命题为真命题的是( )A .p q ∧B .p q ⌝∧C .p q ⌝∧D .p q ⌝⌝∧ 3、下列命题中为真命题的是( )A .命题“若1x >,则21x >”的否命题B .命题“若x y =,则x y >”的逆命题C .命题“若1x =,则220x x +-=”的否命题D .命题“已知,,R a b c ∈,若22ac bc >,则a b >”的逆命题、否命题、逆否命题均为真命题 4、原命题为“若12n n n a a a ++<,N n +∈,则{}n a 为递减数列”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )A .真,真,真B .假,假,真C .真,真,假D .假,假,假5、已知R a ∈,则“1a >”是“11a<”的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6、“x y =”是“x y =”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7、使3x >成立的一个必要条件是( )A.0x >B.4x >C.5x >D.5x <8、已知命题:p 对任意R x ∈,总有0x ≥;:1q x =是方程20x +=的根,则下列命题为真命题的是( )A .p q ∧⌝B .p q ⌝∧C .p q ⌝∧⌝D .p q ∧9、已知命题2:,210p x R x ax ∀∈-+>;命题2:,20q x R ax ∃∈+≤.若p q ∨为假命题,则实数a 的取值范围是()A .[]1,1-B .(]1,--∞C .(],2-∞-D .[)1,+∞ 10、已知命题0:R p x ∃∈,2000x ax a ++<,若命题p 是假命题,则实数a 的取值范围是( )A.[]0,4B.(][),04,-∞⋃+∞C.(0,4)D.(,0)(4,)-∞⋃+∞11、已知:01<<p x , :>q x k ,若p 是q 的充分不必要条件,则实数k 的取 值范围是___________。
2021北京高中数学合格性考试汇编:常用逻辑用语(教师版)
2021北京高中数学合格性考试汇编:常用逻辑用语一.选择题(共9小题)1.(2021•北京学业考试)已知x ∈R ,则“x 1>”是“x 0>”的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件2.(2019•北京学业考试)改革开放40年来,我国经济社会发展取得举世瞩目的辉煌成就,坚持巩固加强第一产业、优化升级第二产业、积极发展第三产业,三次产业结构在调整中不断优化,农业基础地位更趋巩固,工业逐步迈向中高端,服务业成长为国民经济第一大产业,尤其是党的十八大以来,经济增长由主要依靠第二产业带动转向依靠三次产业共同带动,三次产业内部结构调整优化,国家统计局发布的数据如下,反映了从2013年到2017年三次产业对国内生产总值增长的拉动情况20132017-年三次产业对国内生产总值增长的拉动指标说明:我国的三次产业划分是:第一产业是指农、林、牧、渔业(不含农、林、牧、渔服务业).第二产业是指采矿业(不含开采辅助活动),制造业(不含金属制品、机械和设备修理业),电力、热力、燃气及水生产和供应业,建筑业,第三产业即服务业,是指除第一产业、第二产业以外的其他行业 根据上述信息,下列结论中错误的是( )A .2013~2017年,第一产业增加值占国内生产总值的比值保持不变B .2013~2017年,第二产业增加值占国内生产总值的比值逐年减少C .2014~2017年,第三产业增加值占国内生产总值的比值不断增加D .2013~2017年,三次产业增加值占国内生产总值的比例保持不变3.(2021•北京学业考试)设α,β表示平面,l 表示直线,A ,B ,C 表示三个不同的点,给出下列命题: ①若A l ∈,A α∈,B l ∈,B α∈,则l α⊂; ②若A α∈,A β∈,B α∈,B β∈,则AB αβ=;③若l α⊂/,A l ∈,则A α≠;④若A ,B ,C α∈,A ,B ,C β∈,则α与β重合. 其中,正确的有( )A .1个B .2个C .3个D .4个4.(2019•北京学业考试)设m ,n 是两条不同的直线,α,β是两个不同的平面,给出下列四个命题: ①如果//m α,n α⊂,那么//m n ;②如果m α⊥,n α⊥,那么//m n ; ③如果//αβ,m α⊂,那么//m β;④如果αβ⊥,m α⊂,那么m β⊥. 其中正确的命题是( ) A .①②B .②③C .③④D .①④5.(2019•北京学业考试)设m ,n 是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题: ①如果//m α,//n α,那么//m n ; ②如果m α⊥,m β⊥,那么//a β; ③如果αβ⊥,m α⊥,那么//m β; ④如果αγ⊥,βγ⊥,那么//αβ 其中正确命题的序号是( ) A .①B .②C .③D .④6.(2018•北京学业考试)已知直线m ,n ,l ,平面α,β,γ,给出下面四个命题: ①//αββγαγ⊥⎫⇒⎬⊥⎭②//////αββγαγ⎫⇒⎬⎭③//l m m n l n ⊥⎫⇒⎬⊥⎭④//////m n m n αα⎫⇒⎬⎭其中正确的命题是( ) A .①B .②C .③D .④7.(2017•北京学业考试)中国共产党第十八届中央委员会第五次全体会议认为,到2020年全面建成小康社会,是我们党确定的“两个一百年”奋斗目标的第一个百年奋斗目标.全会提出了全面建成小康社会新的目标要求:经济保持中高速增长,在提高发展平衡性、包容性、可持续性的基础上,到2020年国内生产总值和城乡居民人均收入比2010年翻一番,产业迈向中高端水平,消费对经济增长贡献明显加大,户籍人口城镇化率加快提高. 设从2011年起,城乡居民人均收入每一年比上一年都增长%p .下面给出了依据“到2020年城乡居民人均收入比2010年翻一番”列出的关于p 的四个关系式: ①(1%)102p +⨯=; ②10(1%)2p +=; ③(1%)2lg p +=; ④110%2p +⨯=. 其中正确的是( )A .①B .②C .③D .④8.(2017•北京学业考试)已知函数1()1f x x =-.关于()f x 的性质,给出下面四个判断: ①()f x 的定义域是R ; ②()f x 的值域是R ; ③()f x 是减函数;④()f x 的图象是中心对称图形. 其中正确的判断是( ) A .①B .②C .③D .④9.(2017•北京学业考试)给出下面四个命题: ①三个不同的点确定一个平面; ②一条直线和一个点确定一个平面; ③空间两两相交的三条直线确定一个平面; ④两条平行直线确定一个平面. 其中正确的命题是( ) A .① B .②C .③D .④2021北京高中数学合格性考试汇编:常用逻辑用语参考答案一.选择题(共9小题)1.【分析】直接由充分必要条件的定义,可得结论. 【解答】解:由1x >可得0x >;但0x >推不到1x >, 所以“x 1>”是“x 0>”的充分不必要条件. 故选:A .【点评】本题考查充分必要条件的判断,考查定义法的运用,以及推理能力,属于基础题.2.【分析】由20132017-年三次产业对国内生产总值增长的拉动指标,可判断A ,B ,C 均正确,D 错误. 【解答】解:由图表可得20132017-年第一产业对国内生产总值增长的拉动指标均为0.30,故A 正确; 2013~2017年,第二产业增加值占国内生产总值的比值逐年减少,故B 正确; 2014~2017年,第三产业增加值占国内生产总值的比值不断增加,故C 正确; 2013~2017年,三次产业增加值占国内生产总值的比例起伏不定,故D 错误.故选:D .【点评】图表问题的解决,注意观察数据的变化,培养分析问题和解决问题的能力.3.【分析】由平面的基本性质的公理1可判断①;由公理2判断②;由线面的位置关系可判断③;由平面基本性质的公理3可判断④.【解答】解:α,β表示两个平面,l 表示直线,A ,B ,C 表示三个不同的点, ①若A l ∈,A α∈,B l ∈,B α∈,则l α⊂,由平面的基本性质的公理1,可得①正确; ②α,β不重合,若A α∈,A β∈,B α∈,B β∈,则AB αβ=,由平面的基本性质的公理2,可得②正确;③若l α⊂/,A l ∈,则A α∈或A α∉,可得③不正确;④若A ,B ,C α∈,A ,B ,C β∈,如果A ,B ,C 不共线,则α与β重合,如果3点共线,则α与β可以相交.由平面的基本性质的公理3,可得④不正确. 其中正确的个数为2, 故选:B .【点评】本题考查平面的基本性质,主要是三个公理的运用,考查符号语言的掌握,考查判断能力和空间想象能力,属于基础题.4.【分析】利用空间线面平行垂直的判定与性质即可判断出正误.【解答】解:①如果//m α,n α⊂,那么//m n 或为异面直线,因此不正确;②如果m α⊥,n α⊥,那么//m n ,正确; ③如果//αβ,m α⊂,那么//m β,正确; ④如果αβ⊥,m α⊂,那么m 不一定垂直β. 其中正确的命题是②③. 故选:B .【点评】本题考查了空间线面位置关系、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题. 5.【分析】由线面平行的性质可判断①;由面面平行的判定和线面垂直的性质,可判断②; 由线面垂直和面面垂直的性质可判断③;由面面的位置关系可判断④.【解答】解:①如果//m α,//n α,那么//m n 或m ,n 相交或异面,故①错误; ②如果m α⊥,m β⊥,由面面平行的判定可得//αβ,故②正确; ③如果αβ⊥,m α⊥,那么//m β或m β⊂,故③错误; ④如果αγ⊥,βγ⊥,那么//αβ或α,β相交,故④错误. 故选:B .【点评】本题考查空间线线、线面和面面的位置关系,注意运用平行和垂直的判定和性质,属于基础题. 6.【分析】由墙角存在相互垂直的三个平面,可判断①;运用面面平行的传递性,可判断②; 由线线的位置关系,可判断③;由线面平行的性质和线面位置关系,可判断④. 【解答】解:①//αββγαγ⊥⎫⇒⎬⊥⎭不正确,可能βγ⊥,比如墙角存在相互垂直的三个平面; ②//////αββγαγ⎫⇒⎬⎭正确,由面面平行的公理可得; ③//l m m n l n ⊥⎫⇒⎬⊥⎭不正确,可能m ,n 相交或异面; ④//////m n m n αα⎫⇒⎬⎭不正确,可能n α⊂. 故正确的为②. 故选:B .【点评】本题考查空间线面的位置关系的判断,注意运用面面平行和垂直的性质、线面平行和线线平行、垂直的性质,属于基础题.7.【分析】设从二0一一年起,城乡居民人均收入每一年比上一年都增长%p .则由到二0二0年城乡居民人均收入比二0一0年翻一番,可得:10(1%)2p +=;进而得到答案.【解答】解:设从二0一一年起,城乡居民人均收入每一年比上一年都增长%p .则由到二0二0年城乡居民人均收入比二0一0年翻一番,可得:10(1%)2p +=; 正确的关系式为②; 故选:B .【点评】本题以命题的真假判断与应用为载体,考查了函数模型的选择与应用,难度基础 8.【分析】函数1()1f x x =-的图象可由函数1y x =向右平移一个单位得到,类比1y x =的性质可判定.【解答】解:函数1()1f x x =-的图象可由函数1y x =向右平移一个单位得到,所以值域为{|0}y y ≠;单调减区间为(,0)-∞,(0,)+∞;对称中心为(1,0) 故④正确,故选:D .【点评】本题考查了函数的定义域、值域、对称性,属于基础题. 9.【分析】①,三个不共线的点确定一个平面,故错; ②,一条直线和直线外一个点确定一个平面,故错;③,空间两两相交的三条直线,且不能交于同一点,确定一个平面,故错; ④,两条平行直线确定一个平面,正确.【解答】解:对于①,三个不共线的点确定一个平面,故错; 对于②,一条直线和直线外一个点确定一个平面,故错;对于③,空间两两相交的三条直线,且不能交于同一点,确定一个平面,故错; 对于④,两条平行直线确定一个平面,正确. 故选:D .【点评】本题考查了命题真假的判定,属于基础题.。
寒假作业(二)常用逻辑用语题高一新教材期末考试专题复习资料
寒假作业(二)——常用逻辑用语一、单选题1.命题0x R ∃∈,01()2f x <的否定形式是( ) A .x R ∀∈,1f < ( )2xB .x R ∀∈,f ( )1x 或f ( )2x >C .x R ∃∈,1f < ( )2xD .x R ∃∈,f ( )1x 或f ( )2x >2.命题“x R ∀∈,*n N ∃∈,使得21n x +”的否定形式是( ) A .x R ∀∈,*n N ∃∈,使得21n x <+ B .x R ∀∈,*n N ∀∈,使得21n x <+ C .x R ∃∈,*n N ∃∈,使得21n x <+D .x R ∃∈,*n N ∀∈,使得21n x <+3.若0a >,0b >,则“4a b +”是“4ab ”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件4.设R θ∈,则“||1212ππθ-<”是“1sin 2θ<”的( ) A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件5.已知命题2:230p x x +->;命题:q x a >,且q ⌝的一个充分不必要条件是p ⌝,则a 的取值范围是( ) A .(-∞,1]B .[1,)+∞C .[1-,)+∞D .(-∞,3]-6.已知不等式||1x m -<成立的充分不必要条件是1132x <<,则m 的取值范围是( )A .14{|}23m m -<<B .14{|}23m m -C .4{|}3m mD .1{|}2m m <7.已知命题:p m R ∃∈,10m +,命题:q x R ∀∈,210x mx ++>恒成立.若p q ∨为假命题,则实数m 的取值范围是( ) A .2mB .2m -C .2m -或2mD .22m -8.已知函数4()f x x x =+,()2x g x a =+,若11[2x ∀∈,1],2[2x ∃∈,3],使得12()()f x g x ,则实数a 的取值范围是( ) A .1a B .1aC .2aD .2a二、多选题9.若函数3()2f x x x =+,则不等式2(3)(1)0f x f x -+-<成立的必要不充分条件是( ) A .(-∞,2)(1-⋃,)+∞ B .(2,2)- C .(-∞,3)(4⋃,)+∞D .(1,2)-10.命题“函数()f x =的定义域为R ”为真命题的一个必要不充分条件是()A .01a <B .01aC .1aD .12a -<11.命题p :“方程|21|0x b -+=有且仅有一个根”为真命题的充分不必要条件是( )A .{0}B .{|0b b =或1}b -C .{|1}b b -D .4{|1}3b b -<<-12.定义,{,},a a bmin a b b a b <⎧=⎨⎩,例如{2min ,4}2=.已知(){f x min x =,2}x --,则命题“x R ∀∈,()m f x 恒成立”是真命题的一个充分不必要条件可以是( )A .2m -B .1m -C .0mD .1m三、填空题13.设x R ∈,则“11||22x -<”是“31x <”的 条件(从“充分不必要”,“必要不充分”,“充要”,“既不充分也不必要”中选一个)14.已知“2(22)(2)0x a x a a -+++”是“|23|1x +<”必要非充分条件,则实数a 的取值范围是 .15.已知集合261{|()1}3x x A x --=,3{|log ()1B x x a =+,}a R ∈,若x A ∈是x B ∈的必要不充分条件,则实数a 的取值范围是 .16.不等式210kx x --对任意的实数x 恒成立的充要条件是k ∈ . 四、解答题17.已知|A x y ⎧⎫⎪==⎨⎪⎩,1|()102xB x ⎧⎫=-<⎨⎬⎩⎭. (1)求()R BA ;(2)若集合{|223}C x a x a =-<<-,若“x B ∈”是“x C ∈”的必要不充分条件,求实数a 的取值范围.18.已知全集为R ,集合5|03x A x R x -⎧⎫=∈>⎨⎬+⎩⎭,2{|2(10)50}B x R x a x a =∈-++.(1)若RB A ⊆,求实数a 的取值范围;(2)从下面所给的三个条件中选择一个,说明它是RB A ⊆的什么条件(充分必要性). ①[7a ∈-,10);②(7a ∈-,10];③(6a ∈,10].19.已知关于x 的不等式220ax x a -+<的解集为空集,函数2()21f x x m x =+++在1(2x ∈-,)+∞上的值域为B .(1)求实数a 的取值集合A 及函数()f x 的值域B ;(2)对(1)中的集合A ,B ,若x A ∈是x B ∈的必要不充分条件,求实数m 的取值范围.20.已知命题p :“函数y 的定义域为R ”;命题q :“(0,1)x ∃∈,使得不等式390x x a --<成立”.若()p q ⌝∨为真命题,()p q ⌝∧为假命题,求实数a 的取值范围.寒假作业(二)——常用逻辑用语答案1.解:因为特称命题的否定是全称命题,所以,命题“0x R ∃∈,01()2f x <”的否定形式是x R ∀∈,()1f x 或()2f x >.故选:B .2.解:由题意可知;全称命题“x R ∀∈,*n N ∃∈,使得21n x +”的否定形式为特称命题“x R ∃∈,*n N ∀∈,使得21n x <+”故选:D .3.解:0a >,0b >,42a b ab ∴+,2ab ∴,4ab ∴,即44a b ab +⇒,若4a =,14b =,则14ab =,但1444a b +=+>,即4ab 推不出4a b +, 4a b ∴+是4ab 的充分不必要条件 故选:A .4.解:||012121212126ππππππθθθ-<⇔-<-<⇔<<,17sin 22266k k ππθπθπ<⇔-+<<+,k Z ∈, 则(0,7)(266k πππ-+,2)6k ππ+,k Z ∈, 可得“||1212ππθ-<”是“1sin 2θ<”的充分不必要条件. 故选:A .5.解:由2:230p x x +->,知3x <-或1x >,则p ⌝为31x -,q ⌝为x a ,又p ⌝是q ⌝的充分不必要条件,所以1a .故选:B . 6.解:由||1x m -<,得11m x m -<<+,||1x m -<成立的充分不必要条件是1132x <<,∴113112m m ⎧-⎪⎪⎨⎪+⎪⎩,且不能同时取等号.即4312m m ⎧⎪⎪⎨⎪-⎪⎩,∴1423m -, 即m 的取值范围是14{|}23x m -,故选:B . 7.解:命题:p m R ∃∈,10m +,是真命题时,1m -, 故当1m >-时,命题p 为假命题;又命题:q x R ∀∈,210x mx ++>恒成立,是真命题时,22m -<<, 故当2m -,或2m 时,命题q 为假命题;若p q ∨为假命题,命题p 为假命题且命题q 为假命题. 故2m , 故选:A .8.解:当11[2x ∈,1]时,由4()f x x x =+得,224()x f x x -'=, 令()0f x '>,解得:2x >,令()0f x '<,解得:2x <, ()f x ∴在1[2,1]单调递减,f ∴(1)5=是函数的最小值,当2[2x ∈,3]时,()2x g x a =+为增函数, g ∴(2)4a =+是函数的最小值,又11[2x ∀∈,1],都2[2x ∃∈,3],使得12()()f x g x ,可得()f x 在11[2x ∈,1]的最小值不小于()g x 在2[2x ∈,3]的最小值,即54a +,解得:1a ,故选:A .9.解:函数3()2f x x x =+,即为奇函数,又为增函数,故不等式2(3)(1)0f x f x -+-<整理得不等式2(3)(1)f x f x -<--,整理得2(3)(1)f x f x -<-,所以231x x -<-,整理得220x x --<,故12x -<<,即不等式2(3)(1)0f x f x -+-<成立的必要充分条件是(1,2)-.故不等式2(3)(1)0f x f x -+-<成立的必要不充分条件只要满足(1,2)-时某一集合的子集即可,根据选项BC 符合.故选:BC .10.解:函数()f x =的定义域为R ,则当0a =时,满足,当0a ≠时,则△2440a a =-,解得01a <, 综上可得a 的范围为01a , 则由011a a ⇒,反之不成立, 由0112a a ⇒-,反之不成立,故CD 为“函数()f x =R ”为真命题的一个必要不充分条件;B 为充要条件,由0112a a <⇒-,反之不成立,故A 为函数()f x =R ”为真命题的一个充分不必要条件, 故选:CD .11.解:方程|21|0x b -+=有且仅有一个根,即函数|21|x y =-和y b =-的图象有且只有1个交点, 画出函数的图象,如图示:,故1b -或0b -=即1b -或0b =时,方程|21|0x b -+=有且仅有一个根,对于:{0}{|1A b b -,或0}b =,是充分不必要条件,对于:{|0B b b =或1}{|0b b b -==或1}b -,是充分必要条件, 对于:{|1}{|0C b b b b -=或1}b -,是充分不必要条件, 对于4:{|1}{|03D b b b b -<<-=或1}b -,是充分不必要条件,故选:ACD .12.解:根据函数的新定义可知2,1(){,2},1x x f x min x x x x ---⎧=--=⎨<-⎩,作出函数图象:易知函数()f x 最大值为1-,要使命题“x R ∀∈,()m f x 恒成立”,则1m -,则其充分不必要条件需满足为集合{|1}m m -的真子集,选项中只有CD 满足条件. 故选:CD .13.解:由11||22x -<可得111222x -<-<,解得01x <<,由31x <,解得1x <,故“11||22x -<”是“31x <”的充分不必要条件,14.解:p 是q 的必要不充分条件,q p ∴⇒,且p q .记:{||23|1}{|21}q A x x x x =+<=-<<-,2:{|(22)(2)0}{|2}p B x x a x a a x a x a =-+++=+,则A 是B 的真子集.从而221a a -⎧⎨+-⎩且两个等号不同时成立,解得32a --.故实数a 的取值范围是[3-,2]-15.解:由261(()13x x --得,260x x --,解得2x -或3x ,由3log ()1x a +得,3x a +,解得3x a -,因为x A ∈是x B ∈的必要不充分条件,所以B A ,即33a -,解得0a . 故答案为:(-∞,0]16.解:0k =时,原式为10x -<任意的实数x 不恒成立,不满足题意; 0k ≠时,只需0140k k <⎧⎨+⎩,解得14k -. 故不等式210kx x --对任意的实数x 恒成立的充要条件是(k ∈-∞,1]4-,故答案为:(-∞,1]4-.17.解:(1)|{|12}A x y x x ⎧⎫⎪==-<<⎨⎪⎩,1|()10{|0}2x B x x x ⎧⎫=-<=>⎨⎬⎩⎭.{|1R A x x ∴=-或2}x ,{|1RBA x x =-或0}x >.(2) “x B ∈”是“x C ∈”的必要不充分条件,C B ∴,∴当C =∅时,223a a --,解得1a ;当C ≠∅时,22320a a a -<-⎧⎨-⎩,解得2a ;综上述,实数a 的取值范围是(-∞,1][2,)+∞.18.解:(1)集合5{|0}(3)(53x A x R x -=∈>=-∞-+⋃,)+∞,所[3R C A =-,5],集合2{|2(10)50}{|(2)(5)0}B x R x a x a x R x a x =∈-++=∈--,若R B C A ⊆,且5[3R C A ∈=-,5],只需352a-,所以610a -. (2)由(1)可知RB A ⊆的充要条件是[6a ∈-,10],选择①,则结论是不充分不必要条件; 选择②,则结论是必要不充分条件; 选择③,则结论是充分不必要条件.19.解:(1)0a =时,20x -<的解集不是空集, 0a >时,若不等式220ax x a -+<的解集为空集,则△2440a =-,则1a -或1a ,故1a ,0a <时,关于x 的不等式220ax x a -+<的解集不是空集,综上:1a ,故[1A =,)+∞;令21(0,)t x =+∈+∞,则12t x -=, 则122121()222222t t t g t m m m t t t -=++=++-+-, 当且仅当24t =即2t =时,3()2min g t m =+, 故3[2B m =+,)+∞;(2)x A ∈是x B ∈的必要不充分条件,B ∴是A 的真子集,高中数学教研群 QQ 群号929518278 精品资料每天更新 ∴312m +>,解得:12m >-. 20.解:依题意若()p q ⌝∨为真命题,()p q ⌝∧为假命题,()p ⌝和q 一真一假,故p 和q 同真或同假,若p 真,则10a +=或210(1)4(1)0a a a +>⎧⎨+-+⎩,解得13a -, 若q 真,则(39)x x min a >-,令3x t =,则239x x y t t =-=-,(1,3)t ∈,所以39x x y =-的值域为(6,0)-,若命题q 为真,则6a -;若p 和q 同真,则13136a a a -⎧⇒-⎨-⎩; 若p 和q 同假,则1366a a a a ⎧-⇒<-⎨<-⎩或. 实数a 的取值范围为6a <-或13a -; 故答案为:{|6a a <-或13}a -;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学寒假作业专题02常用逻辑用语1.命题:∀x∈Z,2x∈Z的否定为()A.∀x∈Z,2x∉Z B.∃x∈Z,2x∉Z C.∀x∉Z,2x∉Z D.∃x∈Z,2x∈Z 【答案】B【解析】命题:∀x∈Z,2x∈Z为全称量词命题,其否定为∃x∈Z,2x∉Z;故选:B2.“a=1”是“函数f(x)=lg(√x2+1−ax)为奇函数”的()A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分也不必要条件【答案】A【解析】由函数f(x)=lg(√x2+1−ax)为奇函数,即f(−x)=−f(x),即f(−x)+f(x)=0,可得lg(√x2+1+ax)+lg(√x2+1−ax)=lg(x2+1−a2x2)=0,所以x2−a2x2=0,可得a=±1,所以“a=1”是“函数f(x)=lg(√x2+1−ax)为奇函数”的充分不必要条件.故选:A.3.已知命题p:x2+x−2>0,命题q:x−1>0,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】因为命题p:x>1或x<−2,命题q:x>1,所以p是q的必要不充分条件,故选:B4.设a>0且a≠1,则“函数f(x)=a x在R上是减函数”是“函数g(x)=(2−a)x在R上是增函数”的()A.充分非必要条件B.必要非充分条件C.充分必要条件D.非充分必要条件【答案】A【解析】若函数f(x)=a x在R上是减函数,则0<a<1,若函数g(x)=(2−a)x在R上是增函数,则2−a>0,又a>0且a≠1,所以0<a<2且a因为集合(0,1)真包含于集合(0,1)⋃(1,2)所以“函数f(x)=a x在R上是减函数”是“函数g(x)=(2−a)x在R上是增函数”的充分非必要条件.故选:A5.命题“∀x∈[1,2],3x2−a≥0”为真命题的一个充分不必要条件是()A.a≤2B.a≥2C.a≤3D.a≤4【答案】A【解析】若“∀x∈[1,2],3x2−a≥0为真命题,得a≤3x2对于x∈[1,2]恒成立,只需a≤(3x2)min=3,所以a≤2是命题“∀x∈[1,2],3x2−a≥0为真命题的一个充分不必要条件,故选:A.6.2021年1月初,中国多地出现散发病例甚至局部聚集性疫情,在此背景下,各地陆续发出“春节期间非必要不返乡”的倡议,鼓励企事业单位职工就地过年.某市针对非本市户籍并在本市缴纳社保,且春节期间在本市过年的外来务工人员,每人发放1000元疫情专项补贴.小张是该市的一名务工人员,则“他在该市过年”是“他可领取1000元疫情专项补贴”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】只有非本市户籍并在本市缴纳社保的外来务工人员就地过年,才可领取1000元疫情专项补贴,小张是该市的一名务工人员,但他可能是本市户籍或非本市户籍但在本市未缴纳社保,所以“他在该市过年”是“他可领取1000元疫情专项补贴”的必要不充分条件.故选:B.7.若a,b∈R,则“a<b”是“lna<lnb”的()条件A.充分不必要B.必要不充分C.充要D.既不充分也不必要【答案】B【解析】因函数y=lnx在(0,+∞)上单调递增,则lna<lnb⇔0<a<b而a,b∈R,当a<b时,a,b可能是负数或者是0,即lna或lnb可能没有意义,所以“a<b”是“lna<lnb”的必要不充分条件.8.下列四个结论中正确的个数是()(1)设x<0,则4+x2x有最小值时4;(2)若f(x+1)为R上的偶函数,则f(x)的图象关于x=1对称;(3)命题“∃n∈N,2n>1000”的否定为:“∀n∈N,2n≤1000”;(4)命题“已知x,y∈R,若x+y=3,则x=2且y=1”是真命题.A.1B.2C.3D.4【答案】B【解析】(1)∵x<0,∴−x>0,4−x >0,∴4+x2x=x+4x=−(−x+4−x),∴(−x)+(4−x )≥2√(−x)(4−x)=4,当且仅当x=−2时取等号,∴4+x2x≤−4,∴(1)错;(2)∵函数y=f(x+1)为偶函数,∴函数y=f(x+1)的图象关于y轴对称,∵y=f(x+1)的图象是由y=f(x)的图象向左平移一个单位得到的,∴函数y=f(x)的图象关于x=1对称.∴(2)对.(3)由命题的否定可判断正确;(4)令x=4,y=−1,满足x+y=3与x=2且y=1矛盾,∴(4)错.正确个数为两个.故选:B9.下列说法中,错误的是()A.“x,y中至少有一个小于零”是“x+y<0”的充要条件B.已知a,b∈R,则“a2+b2=0”是“a=0且b=0”的充要条件C.“ab≠0”是“a≠0或b≠0”的充要条件D.若集合A是全集U的子集,则x∉∁U A⇔x∈A【答案】AC【解析】对于A,当x=3,y=−2时,满足x,y中至少有一个小于零,但无法推出x+y<0,A 说法错误;对于B,若a2+b2=0,则a=b=0;若a=b=0,则a2+b2=0,即“a2+b2=0”是“a =0且b=0”的充要条件,B说法正确;对于C,当a=0,b=1时,满足a≠0或b≠0,但此时ab=0,即无法推出ab≠0,C说法错误;对于D ,若集合A 是全集U 的子集,则(∁U A )∪A =U ,即命题“x ∉∁U A ”与“x ∈A ”是等价命题,D 说法正确. 故选:AC10.下列选项中,p 是q 的充要条件的是( ) A .p :xy >0,q :x >0,y >0 B .p :A ∪B =A ,q :B ⊆AC .p :三角形是等腰三角形,q :三角形存在两角相等D .p :四边形是正方形,q :四边形的对角线互相垂直平分 【答案】BC 【解析】对于A :由xy >0,得x >0,y >0或x <0,y <0,故P 不是q 的充要条件,故A 错误; 对于B :由A ∪B =A ,则B ⊆A ,若B ⊆A 则A ∪B =A ,故P 是q 的充要条件,故B 正确; 对于C :三角形是等腰三角形⇔三角形存在两角相等,故P 是q 的充要条件,故C 正确; 对于D :四边形的对角线互相垂直且平分⇔四边形为菱形,故p 不是q 的充要条件,故D 错误; 故选:BC11.下列命题中,是真命题的是( ) A .a >1且b >1是ab >1的充分条件B .“x >12”是“1x <2”的充分不必要条件C .命题“∀x <1,x 2<1”的否定是“∃x ≥1,x 2≥1”D .a +b =0的充要条件是ab =−1 【答案】AB 【解析】对于A ,当a >1,b >1时,ab >1,充分性成立,A 正确;对于B ,当x >12时,0<1x <2,充分性成立;当1x <2时,x >12或x <0,必要性不成立,则“x >12”是“1x <2”的充分不必要条件,B 正确;对于C ,由全称命题的否定知原命题的否定为:∃x <1,x 2≥1,C 错误; 对于D ,当a =0,b =0时,a +b =0,此时ab 无意义,充分性不成立,D 错误. 故选:AB.12.下列所给的各组p 、q 中,p 是q 的必要条件是( ) A .p :△ABC 中,∠BAC >∠ABC ,q :△ABC 中,BC >AC ; B .p :a 2<1, q :a <2; C .p :ba<1,q :b <a ;D .p :m ≤1,q :关于x 的方程mx 2+2x +1=0有两个实数解. 【答案】AD【解析】对于A,因为在三角形中大边对大角,小边对小角,反之也成立,所以当∠BAC>∠ABC时,有BC>AC,当BC>AC时,有∠BAC>∠ABC,所以p是q的充要条件;对于B,由a2<1,得−1<a<1,则a<2一定成立,而当a<2时,如a=−2,a2<1不成立,所以p是q的充分不必要条件;对于C,由ba<1可知,当a>0时,b<a;当a<0时,b>a;而当b<a时,若a>0,则b a <1,若a<0,则ba>1,所以p是q的既不充分也不必要条件;对于D,当m=0时,关于x的方程mx2+2x+1=0只有一个实根,若关于x的方程mx2+2x +1=0有两个实数解时,则{m≠0Δ=4−4m>0,得m<1且m≠0,所以p是q的必要不充分条件;故选:AD13.已知“∃x∈R,使得2x2+ax+12≤0”是假命题,则实数的a取值范围为________.【答案】(−2,2)【解析】∵“∃x∈R,使得2x2+ax+12≤0”是假命题,∴命题“∀x∈R,使2x2+ax+12>0”是真命题,∴判别式Δ=a2−4×2×12<0,∴−2<a<2.故答案为:(−2,2).14.若命题p是“对所有正数x,均有x>x2+2”,则¬p是___________.【答案】∃x>0,使得x≤x2+2【解析】解:根据全称命题的否定为特称命题得命题p:“对所有正数x,均有x>x2+2”的否定¬p是:存在正数x,使得x≤x2+2.故答案为:∃x>0,使得x≤x2+2.15.下列四个结论:①“λ=0”是“λa⃗=0⃗⃗”的充分不必要条件;②在△ABC中,“AB2+AC2=B C2”是“△ABC为直角三角形”的充要条件;③若a,b∈R,则“a2+b2≠0”是“a,b全不为0”的充要条件;④若a,b∈R,“a2+b2≠0”是“a,b不全为0”的充要条件.其中正确命题的序号是________.【答案】①④【解析】当λ=0时,λa ⃗=0⃗⃗,当λa ⃗=0⃗⃗时,λ=0或a ⃗=0⃗⃗,①正确; 当△ABC 中∠B =π2,则AC 2=BC 2+AB 2,故②错误; 取a =0,b =1得到a 2+b 2≠0,故③错误;若a 2+b 2≠0,则a ,b 不全为0,若a ,b 不全为0,则a 2+b 2≠0,故④正确; 故答案为:①④.16.在复数范围内,给出下面3个命题:①|a +b |2=a 2+2ab +b 2;②已知z 1、z 2、z 3∈C ,若(z 2−z 1)2+(z 3−z 1)2=0,则z 1=z 2=z 3;③z 是纯虚数⇔z +z =0.其中所有假命题的序号为______. 【答案】①②③ 【解析】①:等号的左边是非负实数,而右边不一定是非负实数,如a =1,b =i ,假命题. ②:取z 1=0,z 2=1,z 3=i ,则(z 2−z 1)2+(z 3−z 1)2=0,但z 1、z 2、z 3互不相等,假命题.③:当z =0时满足z +z =0,但z 不是纯虚数,所以z +z =0推不出z 是纯虚数,假命题. 故答案为:①②③17.已知p:∀x ∈R,ax 2−ax +1>0恒成立,q:∃x ∈R,x 2+x +a =0.如果p,q 中有且仅有一个为真命题,求实数a 的取值范围. 【答案】(−∞,0)⋃(14,4) 【解析】若p 为真命题,当a =0时,可得1>0恒成立,满足题意; 当a ≠0时,则{a >0Δ=(−a )2−4a <0,解得0<a <4,∴当p 为真命题,实数a 的取值范围是[0,4). 若q 为真命题,则有Δ=12−4a ≥0,解得a ≤14, ∴当q 为真命题,实数a 的取值范围是(−∞,14]. ∵p,q 中有且仅有一个为真命题,∴当p 为真命题,q 为假命题时,实数a 的取值范围是[0,4)∩(14,+∞)=(14,4); 当p 为假命题,q 为真命题时,实数a 的取值范围是(−∞,0).综上,当p,q 中有且仅有一个为真命题时,实数a 的取值范围是(−∞,0)⋃(14,4). 18.已知集合M ={x ∣(x +3)(x −5)⩽0},N ={x ∣−m ⩽x ⩽m }. (1)若“x ∈M ”是“x ∈N ”的充分条件,求实数m 的取值范围;(2)当m ⩾0时,若“x ∈M ”是“x ∈N ”的必要条件,求实数m 的取值范围.(1)[5,+∞) (2)[0,3] 【解析】(1)可得M ={x ∣(x +3)(x −5)⩽0}={x ∣−3⩽x ⩽5} 若“x ∈M ”是“x ∈N ”的充分条件,则M ⊆N ,所以{−m ⩽−3m ⩾5,解得m ⩾5,所以实数m 的取值范围为[5,+∞);(2)若“x ∈M ”是“x ∈N ”的必要条件,则N ⊆M , 因为m ⩾0,所以N ≠∅,则{m ⩾0−m ⩾−3m ⩽5,解得0⩽m ⩽3,综上所述,实数m 的取值范围为[0,3].19.将下列命题改写成“若α,则β”的形式,并判断“α⇒β”是否成立. (1)直角三角形的外心在斜边上; (2)有理数是实数;(3)面积相等的两个三角形全等. 【答案】(1)若一个三角形是直角三角形,则该三角形的外心在斜边上.α⇒β成立 (2)若一个数是有理数,则这个数是实数.α⇒β成立(3)若两个三角形的面积相等,则这两个三角形全等.α⇒β不成立 【解析】(1)命题改写成:若一个三角形是直角三角形,则该三角形的外心在斜边上. 由直角三角形的外心是斜边的中点,可知α⇒β成立. (2)命题改写成:若一个数是有理数,则这个数是实数. 实数由有理数和无理数构成,即Q ⊆R ,可知α⇒β成立.(3)命题改写成:若两个三角形的面积相等,则这两个三角形全等.因为两个面积相等的三角形,则面积的2倍也相等,也就是底乘高相等;但是一个数可以有许多不同的因数,所以说这两个三角形的对应边、对应高不一定相等,故面积相等的两个三角形不一定全等,可知α⇒β不成立.20.已知命题p :“∀−1⩽x ⩽1,不等式x 2−x −m <0成立”是真命题. (1)求实数m 的取值范围;(2)若q:−4<m −a <4是p 的充分不必要条件,求实数a 的取值范围. 【答案】 (1)(2,+∞); (2)[6,+∞).(1)由题意命题p :“∀−1⩽x ⩽1,不等式x 2−x −m <0成立”是真命题. ∴m >x 2−x 在−1⩽x ⩽1恒成立,即m >(x 2−x)max ,x ∈[−1,1]; 因为x 2−x =(x −12)2−14,所以−14⩽x 2−x ⩽2,即m >2, 所以实数m 的取值范围是(2,+∞);(2)由p 得,设A ={m|m >2},由q 得,设B ={m|a −4<m <a +4}, 因为q:−4<m −a <4是p 的充分不必要条件; 所以q ⇒p ,但p 推不出q , ∴B ⫋A ; 所以a −4⩾2,即a ⩾6, 所以实数a 的取值范围是[6,+∞).21.已知集合A 是函数y =√2−x 2的定义域,集合B ={x |x 2−2ax +a 2−1≤0},其中a ∈R . (1)若a =1,求A⋂B ;(2)若“x ∈A ”是“x ∈B ”的必要条件,求a 的取值范围. 【答案】(1)A⋂B ={x|0≤x <√2}; (2)1−√2<a <√2−1. 【解析】(1)由题设,A ={x|−√2<x <√2},B ={x|a −1≤x ≤a +1}, 由a =1,则B ={x|0≤x ≤2}, ∴A⋂B ={x|0≤x <√2}.(2)由题意知:B ⊆A ,而a +1>a −1恒成立, ∴{a −1>−√2a +1<√2,可得1−√2<a <√2−1. 22.请在①充分不必要条件②必要不充分条件③充要条件这三个条件中任选一个补充在下面的问题中横线部分.若问题中的a 存在,求出a 的取值范围,若问题中的a 不存在,请说明理由.问题:已知集合A {x |0≤x ≤4},B ={x |1−a ≤x ≤1+a }(a >0),是否存在实数a ,使得x ∈A 是x ∈B 成立的______? 【答案】答案见解析. 【解析】选①,则A 是B 的真子集,则1−a ≤0且1+a ≥4(两等号不同时取), 又a >0,解得a ≥3,∴存在a ,a 的取值集合M ={a |a ≥3}选②,则B 是A 的真子集,则1−a ≥0且1+a ≤4(两等号不同时取),又a>0,解得0<a≤1,∴存在a,a的取值集合M={a|0<a≤1}选③,则A=B,则1−a=0且1+a=4,又a>0,方程组无解∴不存在满足条件的a.。