《圆的标准方程》的说课稿
高中数学说课稿:《圆的标准方程》.doc
高中数学说课稿:《圆的标准方程》"说课"有利于提高教师理论素养和驾驭教材的能力,也有利于提高教师的语言表达能力,因而受到广大教师的重视,登上了教育研究的大雅之堂。
下面是我为大家收集的关于高中数学说课稿:《圆的标准方程》,欢迎大家阅读借鉴!高中数学说课稿:《圆的标准方程》【一】教学背景分析1.教材结构分析《圆的方程》安排在高中数学第二册(上)第七章第六节.圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用.圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用.2.学情分析圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的.但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难.另外学生在探究问题的能力,合作交流的意识等方面有待加强.根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:3.教学目标(1) 知识目标:①掌握圆的标准方程;②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程;③利用圆的标准方程解决简单的实际问题.(2) 能力目标:①进一步培养学生用代数方法研究几何问题的能力;②加深对数形结合思想的理解和加强对待定系数法的运用;③增强学生用数学的意识.(3) 情感目标:①培养学生主动探究知识、合作交流的意识;②在体验数学美的过程中激发学生的学习兴趣.根据以上对教材、教学目标及学情的分析,我确定如下的教学重点和难点:4. 教学重点与难点(1)重点:圆的标准方程的求法及其应用.(2)难点:①会根据不同的已知条件求圆的标准方程;②选择恰当的坐标系解决与圆有关的实际问题.为使学生能达到本节设定的教学目标,我再从教法和学法上进行分析:【二】教法学法分析1.教法分析为了充分调动学生学习的积极性,本节课采用"启发式"问题教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上.另外我恰当的利用多媒体课件进行辅助教学,借助信息技术创设实际问题的情境既能激发学生的学习兴趣,又直观的引导了学生建模的过程.2.学法分析通过推导圆的标准方程,加深对用坐标法求轨迹方程的理解.通过求圆的标准方程,理解必须具备三个独立的条件才可以确定一个圆.通过应用圆的标准方程,熟悉用待定系数法求的过程.下面我就对具体的教学过程和设计加以说明:【三】教学过程与设计整个教学过程是由七个问题组成的问题链驱动的,共分为五个环节:创设情境启迪思维深入探究获得新知应用举例巩固提高反馈训练形成方法小结反思拓展引申下面我从纵横两方面叙述我的教学程序与设计意图.首先:纵向叙述教学过程(一)创设情境——启迪思维问题一已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?通过对这个实际问题的探究,把学生的思维由用勾股定理求线段CD的长度转移为用曲线的方程来解决.一方面帮助学生回顾了旧知——求轨迹方程的一般方法,另一方面,在得到汽车不能通过的结论的同时学生自己推导出了圆心在原点,半径为4的圆的标准方程,从而很自然的进入了本课的主题.用实际问题创设问题情境,让学生感受到问题来源于实际,应用于实际,激发了学生的学习兴趣和学习欲望.这样获取的知识,不但易于保持,而且易于迁移.通过对问题一的探究,抓住了学生的注意力,把学生的思维引到用坐标法研究圆的方程上来,此时再把问题深入,进入第二环节.(二)深入探究——获得新知问题二 1.根据问题一的探究能不能得到圆心在原点,半径为的圆的方程?2.如果圆心在,半径为时又如何呢?这一环节我首先让学生对问题一进行归纳,得到圆心在原点,半径为4的圆的标准方程后,引导学生归纳出圆心在原点,半径为r 的圆的标准方程.然后再让学生对圆心不在原点的情况进行探究.我预设了三种方法等待着学生的探究结果,分别是:坐标法、图形变换法、向量平移法.得到圆的标准方程后,我设计了由浅入深的三个应用平台,进入第三环节.(三)应用举例——巩固提高I.直接应用内化新知问题三 1.写出下列各圆的标准方程:(1)圆心在原点,半径为3;(2)经过点,圆心在点.2.写出圆的圆心坐标和半径.我设计了两个小问题,第一题是直接或间接的给出圆心坐标和半径求圆的标准方程,第二题是给出圆的标准方程求圆心坐标和半径,这两题比较简单,可以安排学生口答完成,目的是先让学生熟练掌握圆心坐标、半径与圆的标准方程之间的关系,为后面探究圆的切线问题作准备.II.灵活应用提升能力问题四 1.求以点为圆心,并且和直线相切的圆的方程.2.求过点,圆心在直线上且与轴相切的圆的方程.3.已知圆的方程为,求过圆上一点的切线方程.你能归纳出具有一般性的结论吗?已知圆的方程是,经过圆上一点的切线的方程是什么?我设计了三个小问题,第一个小题有了刚刚解决问题三的基础,学生会很快求出半径,根据圆心坐标写出圆的标准方程.第二个小题有些困难,需要引导学生应用待定系数法确定圆心坐标和半径再求解,从而理解必须具备三个独立的条件才可以确定一个圆.第三个小题解决方法较多,我预设了四种方法再一次为学生的发散思维创设了空间.最后我让学生由第三小题的结论进行归纳、猜想,在论证经过圆上一点圆的切线方程的过程中,又一次模拟了真理发现的过程,使探究气氛达到高潮.III.实际应用回归自然问题五如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m,拱高OP=4m,在建造时每隔4m需用一个支柱支撑,求支柱的长度(精确到0.01m).我选用了教材的例3,它是待定系数法求出圆的三个参数的又一次应用,同时也与引例相呼应,使学生形成解决实际问题的一般方法,培养了学生建模的习惯和用数学的意识.(四)反馈训练——形成方法问题六 1.求过原点和点,且圆心在直线上的圆的标准方程.2.求圆过点的切线方程.3.求圆过点的切线方程.接下来是第四环节——反馈训练.这一环节中,我设计三个小题作为巩固性训练,给学生一块"用武"之地,让每一位同学体验学习数学的乐趣,成功的喜悦,找到自信,增强学习数学的愿望与信心.另外第3题是我特意安排的一道求过圆外一点的圆的切线方程,由于学生刚刚归纳了过圆上一点圆的切线方程,因此很容易产生思维的负迁移,另外这道题目有两解,学生容易漏掉斜率不存在的情况,这时引导学生用数形结合的思想,结合初中已有的圆的知识进行判断,这样的设计对培养学生思维的严谨性具有良好的效果.(五)小结反思——拓展引申1.课堂小结把圆的标准方程与过圆上一点圆的切线方程加以小结,提炼数形结合的思想和待定系数的方法①圆心为,半径为r 的圆的标准方程为:圆心在原点时,半径为r 的圆的标准方程为:.②已知圆的方程是,经过圆上一点的切线的方程是:.2.分层作业(A)巩固型作业:教材P81-82:(习题7.6)1,2,4.(B)思维拓展型作业:试推导过圆上一点的切线方程.3.激发新疑问题七 1.把圆的标准方程展开后是什么形式?2.方程表示什么图形?在本课的结尾设计这两个问题,作为对这节课内容的巩固与延伸,让学生体会知识的起点与终点都蕴涵着问题,旧的问题解决了,新的问题又产生了.在知识的拓展中再次掀起学生探究的热情.另外它为下节课研究圆的一般方程作了重要的准备.以上是我纵向的教学过程及简单的设计意图,接下来,我从三个方面横向的进一步阐述我的教学设计:横向阐述教学设计(一)突出重点抓住关键突破难点求圆的标准方程既是本节课的教学重点也是难点,为此我布设了由浅入深的学习环境,先让学生熟悉圆心、半径与圆的标准方程之间的关系,逐步理解三个参数的重要性,自然形成待定系数法的解题思路,在突出重点的同时突破了难点.第二个教学难点就是解决实际应用问题,这是学生固有的难题,主要是因为应用问题的题目冗长,学生很难根据问题情境构建数学模型,缺乏解决实际问题的信心,为此我首先用一道题目简洁、贴近生活的实例进行引入,激发学生的求知欲,同时我借助多媒体课件的演示,引导学生真正走入问题的情境之中,并从中抽象出数学模型,从而消除畏难情绪,增强了信心.最后再形成应用圆的标准方程解决实际问题的一般模式,并尝试应用该模式分析和解决第二个应用问题——问题五.这样的设计,使学生在解决问题的同时,形成了方法,难点自然突破.(二)学生主体教师主导探究主线本节课的设计用问题做链,环环相扣,使学生的探究活动贯穿始终.从圆的标准方程的推导到应用都是在问题的指引、我的指导下,由学生探究完成的.另外,我重点设计了两次思维发散点,分别是问题二和问题四的第三问,要求学生分组讨论,合作交流,为学生设立充分的探究空间,学生在交流成果的过程中,既体验了科学研究和真理发现的复杂与艰辛,又在我的适度引导、侧面帮助、不断肯定下顺利完成了探究活动并走向成功,在一个个问题的驱动下,高效的完成本节的学习任务.(三)培养思维提升能力激励创新为了培养学生的理性思维,我分别在问题一和问题四中,设计了两次由特殊到一般的学习思路,培养学生的归纳概括能力.在问题的设计中,我利用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,使能力与知识的形成相伴而行.以上是我对这节课的教学预设,具体的教学过程还要根据学生在课堂中的具体情况适当调整,向生成性课堂进行转变.最后我以赫尔巴特的一句名言结束我的说课,发挥我们的创造性,力争"使教育过程成为一种艺术的事业".。
圆的标准方程说课稿
圆的标准方程说课稿各位评委:上午好!今天我说课的课题是《圆的标准方程》。
下面我对本课题进行分析:首先是我的说课思路是:1、教材分析 2、教法学法设计 3、教学过程 4、自我评价。
一、教材分析1、教材的地位与作用《圆的标准方程》是人教版必修二第4章第1节的第1个课题。
在此之前,学生已经学习了直线及其方程,这为过渡到本课题起到铺垫的作用。
同时,学好本课题为今后学习圆锥曲线及其方程奠定了基础,所以本课题在整个教材中起到承上启下的作用。
2、教学目标根据本教材的结构和内容分析,结合高一年级学生他们的认知结构及其心理特征,我制定了以下的教学目标:(1)知识目标①掌握圆的标准方程;②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程③利用圆的标准方程解决简单的实际问题。
(2)能力目标①进一步培养学生用代数方法研究几何问题的能力;②加深对数形结合思想的理解;③增强学生用数学的意识。
(3)情感目标①培养学生主动探究知识、合作交流的意识;②在体验数学美的过程中激发学生的学习兴趣。
3、教学重难点⑴重点:圆的标准方程的求法及其简单应用;⑵难点:会根据不同的已知条件求圆的标准方程。
二、教法分析我们都知道数学是一门培养人的逻辑思维能力的重要学科。
因此,在教学过程中,不仅要使学生“知其然”,还要使学生“知其所以然”。
我们在以师生既为主体又为客体的原则下,展现获取理论知识、解决实际问题的思维过程。
为了充分调动学生学习的积极性,本节课采用“启发式”教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上。
借助创设实际问题的情境既能激发学生的学习兴趣,又直观的引导了学生建模的过程。
三、学法分析通过推导圆的标准方程,求圆的标准方程,理解必须具备两个个独立的条件才可以确定一个圆。
通过应用圆的标准方程,使学生认识到数学在实际问题中的应用。
四、教学过程在这节课的教学过程中,我注重突出重点,条理清晰,紧凑合理,各项活动的安排也注重互动、交流,最大限度的调动学生参与课堂的积极性、主动性。
圆的标准方程说课稿
《圆的标准方程》说课稿《圆的标准方程》说课稿(第一课时)大家好,我今天说课的题目是圆的标准方程。
下面我将从以下几个方面来阐述我的教学设计。
一、教材分析《圆的标准方程》选基础模块下册第八章第4节的内容,在此之前我们学了直线方程,圆的标准方程是是进一步学习圆的一般方程、直线与圆的位置关系的基础,所以本节内容在整个解析几何中起着承前启后的作用。
二、学情分析我教授的是幼教二年级的学生,他们在知识、能力和情感上有以下特征。
在新课开始之前教师借助“问卷星”创建网络问卷,通过微信将问卷发布到班级微信群,学生填写提交。
老师在手机浏览每一份问卷,并获得详细的统计分析报告,准确了解学生知识准备情况。
三、教学目标依据教学大纲和新课程理念,结合本专业学生的认知特点,我确定本节课的教学目标如下:四、重点、难点分析重点:圆的标准方程的推导和初步运用。
难点:利用待定系数法求圆的标准方程,五、教法学法分析结合本节课的教学目标,我主要采用了以下教学策略,本着以学生发展为核心的理念,我引导学生形成以下几种学习方法下面我将着重阐述我教学过程设计。
六、教学过程设计(一)课前诊测,扫除障碍根据课前调查了解的情况,学生对两点间距离公式有关知识不太熟悉了。
我制作微课以便学生在线学习。
课前教师通过问卷星设计课前检测,让学生可以在线答题。
(二)创设情境,导入新课通过播放赵州桥的视频,设置问题引起学生思考。
使学生感受到数学源于生活,学会用数学的眼光去关注生活,体现了数学的应用价值。
(三)合作交流,探究新知本环节旨在探究圆的标准方程,整个教学环节分三步完成。
第一步,深入探究圆的定义我指出“不以规矩,无以成方圆。
”要求学生用圆规在直角坐标系中作出一个圆,我又利用几何画板演示了一遍圆的定义。
让他们尝试回忆出圆的定义,最后说出完整的圆的定,也为下一步方程的推导奠定了基础。
第二步,探究圆的标准方程中职学生数学基础薄弱,很大部分原因是没有建立基本数学思维,因此我让他们自学圆的标准方程的推导过程。
圆的标准方程教学设计
圆的标准方程教学设计
教学目标:学生能够理解和应用圆的标准方程进行圆的表示和计算。
教学步骤:
1. 导入:引入圆的概念,强调圆是由所有与一个给定点的距离相等的点构成。
2. 指出圆的标准方程形式:(x-a)² + (y-b)² = r²,其中(a,b)是圆心的坐标,r是半径。
3. 示范:展示如何根据给定的圆心和半径,确定圆的位置和大小。
例如,以圆心(2,3)和半径r=4为例,解释如何画出该圆。
4. 练习:让学生自己尝试根据给定的圆心和半径,画出相应的圆。
5. 探究:通过探究实例,引导学生发现圆心位于坐标原点(0,0)时的特殊情况。
解释在此情况下,圆的标准方程变为x² + y² = r²。
6. 巩固:提供一些练习题,要求学生根据给定的等式,确定圆的圆心和半径。
7. 应用:引导学生思考如何应用圆的标准方程解决实际问题,例如找到与已知点相切的圆,或者确定两个圆是否相交。
8. 拓展:介绍其他与圆有关的方程形式,例如一般方程和参数方程,展示它们在不同场景中的应用。
9. 总结:总结圆的标准方程的要点,以及常见的应用情境。
10. 总结反思:与学生一起回顾所学内容,确保他们理解并能够应用圆的标准方程。
解答他们可能存在的疑问。
教学资源:白板/黑板,标尺,作图纸,练习题。
评估方式:解答问题、完成练习题和课堂接力练习。
人教版高中数学《圆的标准方程》说课稿
问题3:求曲线的方程的一般步骤是什么? 其中哪几个步骤必不可少?
(1)建立适当的坐标系,用有序实数对例如(x,y)表示曲线上 任意一点M的坐标; (2)写出适合条件 p 的点M的集合P={M|p(M)}; (3)用坐标表示条件p(M),列出方程f(x,y)=0; (4)化方程f(x,y)=0为最简形式; (5)证明以化简后的方程的解为坐标的点都是曲线上的点. 其中步骤(1)(3)(4)必不可少.
下面我们用求曲线方程的一般步骤来建立圆的标准方程.
求圆心是C(a, b),半径是r的圆的方程。
解:设M(x,y)是圆上任意一点, 根据圆的定义|MC|=r 由两点间距离公式,得
y M
.
r C
x a
2
y b r
2
①
x 说明: 1.特点:明确给出了圆心和 半径。 2.确定圆的方程必须具备三个 独立的条件。 O
问题1:具有什么性质的点的轨迹称为圆? 平面内与一定点距离等于定长的点的轨迹称为圆. 问题2:图中哪个点是定点?哪个点是动点?动点具有什么 性质?圆心和半径都反映了圆的什么特点? 圆心C是定点,圆周上的点M是动点,它 们到圆心距离等于定长|MC|=r,圆心和半径分 别确定了圆的位置(定位)和大小(定型).
x 3
x 8
2
2
y 4 5
2
2
(3)经过点P(5,1),圆心在点C(8,-3)
y 3 25
练习2.写出下列各圆的圆心坐标和半径 (1)
2 x 1 y 6 2
2 2
1, 0
a,0
6
3
(2) x 1 y 2 9 (3) x a
“兴趣是最好的老师!”可利用生活中的实例:小学课 本中所学习的《赵州桥》、学生在游乐场见过的摩天轮 等,以两个圆的模型为背景,激发学生学习圆的兴趣.
圆的标准方程说课稿
圆的标准方程我说课的内容是《圆的标准方程》,下面我将从教材、学情、教学目标、教学方法与手段、教学过程、板书设计和教学反思等几个方面来阐述我对这节课的分析和设计。
一、教材分析《圆的方程》是人教版高中数学必修二第四章《圆与方程》第一节的内容。
圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用。
圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用.计划安排两课时,本节是圆的标准方程的第一课时。
二、学情分析圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的.但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难.另外学生在探究问题的能力,合作交流的意识等方面有待加强.因此,计划与学生一起推导圆的标准方程,以便学生进一步了解坐标在解决实际问题中的运用.推导出圆的标准方程后,加强对圆是标准方程的直接运用的练习题,通过这样的训练来达到让学生充分掌握圆的标准方程的形式的目的.三、教学目标1. 知识目标:①掌握圆的标准方程;②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程;③利用圆的标准方程解决简单的实际问题。
2.能力目标:①进一步培养学生用代数方法研究几何问题的能力;②加深对数形结合思想的理解和加强对待定系数法的运用;③增强学生用数学的意识。
3.情感目标:①培养学生主动探究知识、合作交流的意识;②在体验数学美的过程中激发学生的学习兴趣。
四、教学重点与难点(1)重点:会根据不同的已知条件求圆的标准方程。
(2)难点:求点的轨迹方程方法的理解及灵活应用已知条件求圆的方法。
五、教法学法分析1.教法分析:为了充分调动学生学习的积极性,本节课采用“启发式”问题教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上。
《圆的标准方程》教学设计教案
《圆的标准方程》教学设计教案一、教学目标:1、理解圆的标准方程,并能根据方程求出圆的坐标和圆的半径。
2、掌握求圆的标准方程的各种方法。
3、通过探求圆的标准方程,培养学生的动手能力,解决问题的能力。
二、教学重点与难点:重点:圆的标准方程的运用。
难点:探求圆的标准方程。
三、教学过程:1、创设情境,引入新课:生活中的圆形(图片展示)。
2、知识链接:平面几何中“圆”是如何定义的?圆的定义:平面内到定点的距离等于定长的点的轨迹。
定点就是圆心,定长就是半径在平面直角坐标系中,当圆心位置与半径大小确定后,圆就唯一确定了。
3、知识探究:构建圆的标准方程平面直角坐标系中,求圆心是C(a,b),半径是r的圆的方程.解:设M(x,y)是圆上任意一点,则|MC|=r 根据22122121()()PP x x y y =-+- ()()22x a y b r -+-=把上式两边平方得 ()()222x a y b r -+-=我们把这个方程称为圆的标准方程,其中圆心坐标(a,b),半径为r 。
4、特征分析:圆的标准方程()()222x a y b r -+-=(1)圆的标准方程是关于变量x ,y 的二元二次方程,且为平方和的形式,方程形式明确给出了圆心坐标(定位)和半径(定大小)。
(2)确定圆的标准方程必须具备三个条件:a,b,r 。
(3)参数的几何意义: (a ,b )表示圆心坐标, r 表示圆的半径。
特别地:若圆心在坐标原点,则圆方程为222x y r +=5、典例分析例1 求以点C (-3,2)为圆心,半径r 5 解 因为 a =-3,b =2,r 5 ,所以 所求圆的标准方程为(x +3)2+(y -2)2=5.练习1、根据已知条件,求圆的标准方程:(1)圆心在原点,半径是3;1(2-),半径是5;2(3)圆心点(0,2例2 写出圆(x -5)2+y 2=2的圆心坐标和半径长.练习2、已知圆的标准方程,请说出圆心和半径.()()22(1)129x y ++-=()22(2)16x y -+=22(3)16x y += ()222(4)1(0)x y a a ++=≠ 例3 已知圆心在坐标原点O (0,0),且点A (3,4)是圆上一点,求圆的标准方程.练习3.根据下列条件,求出圆的标准方程:(1)已知点A (2,3),点B (2,7),以线段AB 为直径;(2)圆心在点(1,2),且圆过点(2,4);(3)圆心是直线x +y +3=0与直线2x -y =0的交点,半径r =.四、 课堂小结1、圆的定义:平面内到定点的距离等于定长的点的轨迹。
《圆的标准方程》教学方案
《圆的标准方程》教学方案《《圆的标准方程》教学方案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!作业内容4.1 圆的方程4.1.1 圆的标准方程学习目标1.会推导圆的标准方程.2.能运用圆的标准方程正确地求出其圆心和半径.3.掌握圆的标准方程的特点,能根据所给有关圆心、半径的具体条件准确地写出圆的标准方程.4.体会数形结合思想,初步形成代数方法处理几何问题能力.能根据不同的条件,利用待定系数法求圆的标准方程.学习过程一、设计问题,创设情境前面我们已经学习过直线方程,初中也学习过圆的一些知识,请同学们思考:问题1:在平面直角坐标系中,两点能确定一条直线,一点和直线的倾斜角也能确定一条直线.那么在平面直角坐标系中确定一个圆的几何要素是什么呢?问题2:根据前面我们所学的直线方程的知识,应该怎样确立圆的方程呢?二、学生探索,尝试解决若设圆的圆心坐标为A(a,b),半径为r(其中a,b,r都是常数,r>0),试求圆的方程.三、信息交流,揭示规律1.在直角坐标系中,当与确定后,圆就唯一确定了,因此,确定圆的基本要素是.2.在平面直角坐标系中,若一个圆的圆心A(a,b),半径长为r,则圆的标准方程为.推导的步骤是.若点M(x0,y0)在圆(x-a)2+(y-b)2=r2上,则点M的坐标就适合方程,即;反之,若点M的坐标适合方程,这就说明与的距离为r,即点M在圆心为A的圆上.3.圆心在坐标原点,半径为r的圆的方程为.4.若点P(x0,y0)在圆x2+y2=r2内,则满足条件;若点P(x0,y0)在圆x2+y2=r2外,则满足条件;同理,若点P(x0,y0)在圆(x-a)2+(y-b)2=r2内,则满足条件;若点P(x0,y0)在圆(x-a)2+(y-b)2=r2外,则满足条件.5.△ABC外接圆的圆心即为外心,即的交点.四、运用规律,解决问题6.写出下列各圆的标准方程:(1)圆心在原点,半径为3.(2)圆心为(2,3),半径为.(3)经过点(5,1),圆心在(8,-3).7.根据圆的方程写出圆心和半径:(1)(x-2)2+(y-3)2=5;(2)(x+2)2+y2=(-2)2.8.写出圆心为A(2,-3),半径长等于5的圆的方程,并判断点M1(5,-7),M2(-,-1)是否在这个圆上.总结规律:(试总结如何判断“点与圆的位置关系”)9.△ABC的三个顶点的坐标分别为A(5,1),B(7,-3),C(2,-8),求它的外接圆的方程.总结规律:(试总结如何根据题设条件求圆的标准方程,是用的什么方法?)10.已知圆心为C的圆经过点A(1,1)和B(2,-2),且圆心C在直线l:x-y+1=0上,求圆心为C的圆的标准方程.总结规律:(试总结如何根据题设条件求圆的标准方程,是用的什么方法?)五、变练演编,深化提高同学们仿照上述例题,自己试着编几道写、求圆的标准方程,或判断点与圆的位置关系的题目.六、信息交流,教学相长(请同学们把你编写的较为典型的题目选几个写在下面)七、反思小结,观点提炼1.圆的标准方程:(x-a)2+(y-b)2=r22.求圆的标准方程的方法:待定系数法.3.要求一个圆的标准方程,需要三个条件:圆心的横坐标、纵坐标和半径.4.点与圆的位置关系:点在圆上,点在圆外,点在圆内.《圆的标准方程》教学方案这篇文章共3331字。
教学设计1:2.4.1 圆的标准方程
2.4.1圆的标准方程教材分析本节课选自《2019人教A版高中数学选择性必修第一册》第二章《直线和圆的方程》,本节课主要学习圆的标准方程.在初中曾经学习过圆的有关知识,本节内容是在初中所学知识及前一章内容的基础上,在平面直角坐标系中建立圆的代数方程,它与其他图形的位置关系及其应用.在这一过程中,进一步体会数形结合的思想,形成用代数的方法解决几何问题的能力.同时,由于圆也是特殊的圆锥曲线,因此,学习了圆的方程,就为后面学习其它圆锥曲线的方程奠定了基础.也就是说,本节内容在教材体系中起到承上启下的作用,具有重要的地位.坐标法不仅是研究几何问题的重要方法,而且是一种广泛应用于其他领域的重要数学方法.通过坐标系,把点和坐标、曲线和方程联系起来,实现了形和数的统一.教学目标与核心素养重点难点重点:会用定义推导圆的标准方程,掌握点与圆的位置关系难点:根据所给条件求圆的标准方程课前准备多媒体教学过程一、情境导学 《古朗月行》 唐 李白小时不识月,呼作白玉盘. 又疑瑶台镜,飞在青云端.月亮,是中国人心目中的宇宙精灵,古代人们在生活中崇拜、敬畏月亮,在文学作品中也大量描写、如果把天空看作一个平面,月亮当做一个圆,建立一个平面直角坐标系,那么圆的坐标方程如何表示? 二、探究新知思考1 圆是怎样定义的?确定它的要素又是什么呢?各要素与圆有怎样的关系?定义:平面内到定点的距离等于定长的点的集合叫作圆,定点称为圆心,定长称为圆的半径.确定圆的因素:圆心和半径 圆心确定圆的位置,半径确定圆的大小.思考2 已知圆心为A(a,b),半径为你能推导出圆的方程吗?|MA |=r ,由两点间的距离公式,得22()()x a y b -+-=r ,化简可得:(x -a )2+(y -b )2=r 2. 一、 圆的标准方程通过古诗中关于月亮的描述,引出建立圆的方程的问题,同时类比直线方程的建立过程,帮助学生通过类比建立圆的标准方程.学会联系旧知,制定解决问题的策略.让学生进一步感悟运用坐标法研究几何问题的方法.较,二是代入圆的标准方程,判断与r 2的大小关系.通过点与圆的位置关系建立方程或不等式可求参数值或参数的取值范围.跟踪训练3 若点(1,1)在圆(x-a )2+(y+a )2=4的内部,则a 的取值范围是( ) A .a<-1或a>1B .-1<a<1C .0<a<1D .a=±1解析:由题意可知,(1-a )2+(1+a )2<4,解得a 2<1,故-1<a<1. 答案:B金题典例 1.若P (x ,y )为圆C (x +1)2+y 2=14上任意一点,请求出P (x ,y )到原点的距离的最大值和最小值.[提示] 原点到圆心C (-1,0)的距离d =1,圆的半径为12,故圆上的点到坐标原点的最大距离为1+12=32,最小距离为1-12=12.2.若P (x ,y )是圆C (x -3)2+y 2=4上任意一点,请求出P (x ,y )到直线x -y +1=0的距离的最大值和最小值.[提示] P (x ,y )是圆C 上的任意一点,而圆C 的半径为2,圆心C (3,0),圆心C 到直线x -y +1=0的距离d =|3-0+1|12+(-1)2=22,所以点P到直线x -y +1=0的距离的最大值为22+2,最小值为22-2.3. 已知x ,y 满足x 2+(y +4)2=4,求(x +1)2+(y +1)2的最大值与最小值.思路探究:x ,y 满足x 2+(y +4)2=4,即点P (x ,y )是圆上的点.而(x +1)2+(y +1)2表示点(x ,y )与点(-1,-1)的距离.故此题可以转四、小结五、课时练教学反思在本节课的教学中,引导学生回顾确定直线的几何要素——两点(或者一点和斜率)的基础上,类比得到圆的几何要素——圆心位置和半径大小.由直线方程类比得到从圆心坐标和半径大小入手探究圆的标准方程.这一过程提升逻辑推理、数学抽样等数学素养.在求解圆的标准方程中,注意几何法与代数法的比较,提升学生数学运算素养.。
数学高中 圆的标准方程说课稿
今天说课的课题是《圆的标准方程》,下面我将从教材分析,教法设计,学法设计,教学过程设计,教学反思等五个方面向各位介绍我的总体教学设计.第一个方面:教材分析教材选用高等教育出版社出版、李广全和李尚志主编的《数学》(基础模板).《圆的标准方程》是本书下册的第八章第四节内容.圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用.我授课的对象为电子专业的学生,所以本内容的学习为学生专业知识和专业技能的钻研提供了理论依据.针对学生已有的认知结构和心理特征,我制定了如下教学目标:知识技能目标:掌握圆的标准方程的结构,能根据已知条件求圆的标准方程;会由圆的标准方程写出圆的半径和圆心坐标.过程性目标:能运用数形结合思想解题,培养学生观察问题,发现问题,解决问题的能力.情感、价值观目标:通过运用圆的知识解决实际问题,激发学生学习数学的热情和兴趣.根据教学大纲及对教材的分析,确定本节课重难点如下:教学重点:圆的标准方程的结构;教学难点:圆的标准方程的推导.第二个方面:教法设计为了有效地完成教学任务,本节课的教学方法我设计了:演示法:首先创造通过课件把生活中圆形的物体展示给学生,借助直观,启发引导学生归纳出圆的定义,推导出圆的标准方程.讲练结合法:把例题和练习从易到难分成三等,让学生能够比较轻松的学习,克服他们对数学的恐惧心里,恢复自信,自豪起来.第三个方面:学法设计这个方面我是这样考虑的,模具专业中职班的学生,大部分数学基础都比较差,对数学的学习存在害怕心理,因此我针对教学内容,采用了对照课件,动手实验,找出规律,强化训练.通过学生自主探求圆的标准方程,提高分析问题、解决问题的能力.第四个方面:教学过程设计环节一:导入新知这个环节我通过课件向学生展示了生活中的许多五彩圆,吸引学生的注意力.这里,提出思考题,让学生思考,然后回答.设计意图是动态课件可以引发学生的好奇心,激励学生探究新知.学生通过观察、思考,对圆会增加更多的感性认识.这里我安排学生动手实验.在平面固定一个点C,画出到C点的距离等于10的所有点.图中,点C周围的10个点到C的距离都是10.这样的点还有很多,要求学生尽量多画一些.引导学生自主发现,当这样的点越来越多时,平面上逐渐形成了一个以点C为圆心,以10为半径的圆.我这样的安排是为了:训练学生观察、发现、动手的能力,使他们亲自经历、感受、探索与发现,真正体现以学生发展为本的教育理念,避免了老师讲学生听的千人一面的传统教育模式.环节二:讲授新课这个环节我是这样设计的:在学生动手作图的基础上,提出思考题:什么是圆?让学生讨论。
人教版高中数学教案圆的标准方程
人教版高中数学教案圆的标准方程教学目标:1. 理解圆的标准方程的概念和意义。
2. 学会运用圆的标准方程解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
教学重点:1. 圆的标准方程的概念和意义。
2. 运用圆的标准方程解决实际问题。
教学难点:1. 圆的标准方程的推导和理解。
教学准备:1. 教学课件或黑板。
2. 练习题。
教学过程:一、导入(5分钟)1. 引入圆的概念,复习已学过的圆的性质。
2. 提问:我们已经学过圆的方程了,圆的方程有哪些形式呢?二、新课讲解(15分钟)1. 讲解圆的标准方程的概念和意义。
2. 通过示例展示圆的标准方程的推导过程。
3. 解释圆的标准方程中的各个符号的含义。
三、例题解析(10分钟)1. 给出一个实际的例题,让学生尝试运用圆的标准方程解决。
2. 引导学生思考并解答例题,解释解题思路和方法。
四、课堂练习(10分钟)1. 给出一些练习题,让学生独立完成。
2. 引导学生运用圆的标准方程解决实际问题。
2. 让学生反思自己在解题过程中的优点和不足,提出问题并讨论解决方法。
教学延伸:1. 进一步学习圆的方程的其他形式。
2. 探索圆的方程在实际问题中的应用。
教学反思:六、课堂互动(10分钟)1. 教师提出问题:“圆的标准方程能否表示所有的圆?”引导学生进行思考和讨论。
2. 学生分组进行讨论,分享各自观点和理由。
七、拓展学习(10分钟)1. 教师介绍圆的一般方程,即圆的方程可以表示为(x-a)²+(y-b)²=r²的形式。
2. 学生跟随教师一起推导一般方程,理解其中各个参数的含义。
3. 教师给出一些例子,让学生运用一般方程解决圆的相关问题。
八、练习与巩固(10分钟)1. 学生独立完成一些关于圆的标准方程的练习题,巩固所学知识。
2. 教师选取部分学生的作业进行点评,指出其中的错误和不足之处,并进行讲解。
九、课堂小结(5分钟)1. 教师引导学生回顾本节课所学的圆的标准方程的概念、推导过程和应用。
圆的标准方程的说课课件
圆的标准方程的推导过程
总结词:方程推导
详细描述:最后,我们将推导圆的标准方程。设圆心为$(h, k)$,半径为$r$,则圆的标准方程为$(x - h)^2 + (y - k)^2 = r^2$。 这个方程描述了所有与圆心距离等于半径的点的集合,也就是我们定义的圆。通过这个方程,我们可以方便地找到圆上任意一点 的坐标。
案例式教学
结合具体案例,让学生在实际问 题中理解和应用圆的标准方程, 提高其分析和解决问题的能力。
互动式教学
鼓励学生提问、讨论,通过师生 互动、生生互动,加深学生对圆
的标准方程的理解和掌握。
教学手段
多媒体教学
利用PPT、几何画板等多媒体工 具,形象生动地展示圆的标准方
程的形成过程和几何意义。
实验教学
通过数学实验,让学生亲自动手操 作,观察圆的标准方程的变化规律, 加深对圆的标准方程的理解。
类比教学
通过与椭圆的比较,让学生更好地 理解圆的标准方程的特点和性质。
学生活动设计
小组讨论
01
将学生分成若干小组,针对圆的标准方程的相关问题进行讨论,
培养学生的合作精神和沟通能力。
个人探究
02
布置相关问题,让学生自主探究,培养其独立思考和解决问题
的基本定义
总结词:基础概念
详细描述:首先,我们需要理解圆的基本定义。圆是一种几何图形,由一个点( 称为圆心)和固定距离(称为半径)的集合组成。在平面几何中,圆定义为所有 与给定点等距的点的集合。
圆上三点确定一个圆的定理
总结词:定理理解
详细描述:接下来,我们需要理解并掌握一个重要的定理,即“圆上三点确定一个圆的定理”。这个 定理表明,如果在平面上选择三个不共线的点,那么存在一个唯一的圆通过这三个点。这三个点可以 用来确定圆心和半径。
2024版《圆的标准方程》说课课件大纲
阶段性测试成绩分析
平均分与及格率
统计班级平均分和及格率,了解 班级整体掌握情况。
分数段分布
分析各分数段学生人数和比例, 了解班级内部的差异情况。
知识点掌握情况
针对测试中出现的错误类型,分 析学生对各个知识点的掌握程度。
历年对比
将本次测试成绩与历年同期成绩 进行对比,了解教学质量的变化
趋势。
总体评价及改进建议
人合作、分享想法。
作业完成情况检查
01
02
03
04
作业完成率
统计学生按时提交作业的比例, 了解学生对课后任务的重视程
度。
作业正确率
分析学生作业中的错误类型和 数量,评估其对知识点的掌握
情况。
订正情况
检查学生是否对错误进行了及 时订正,并了解订正后的掌握
程度。
书写规范与整洁度
评估学生作业的书写是否清晰、 整洁,符合规范要求。
圆心等。
圆的几何要素
圆心、半径、直径、弧、弦等概 念及其性质。
求解圆的标准方程方法
已知圆心和半径求圆的标准方程
01
直接代入圆的标准方程公式求解。
已知圆上三点求圆的标准方程
02
设圆的一般方程,利用待定系数法求解。
已知圆的直径端点求圆的标准方程
03
利用中点坐标公式和距离公式求解圆心和半径,再代入圆的标
易错点提示及预防措施
易错点
在求解圆的标准方程时,容易忽略方程中各参数的取值范围; 在解决实际问题时,容易忽略问题的实际背景和意义。
预防措施
在讲解圆的标准方程时,强调方程中各参数的取值范围及其意 义;在解决实际问题时,引导学生认真分析问题的实际背景和 意义,避免盲目套用公式。
圆的标准方程说课课件
《圆的标准方程》
圆的方程是学生在初中学习了圆的概念和基本性质后, 又掌握了求曲线方程一般方法的基础上进行研究的.但由于 学生学习解析几何的时间不长、学习程度较浅,且对坐标法 的运用还不够熟练,学生大部分忘记了圆的几何性质,因此 在学习过程中难免会出现困难.另外学生学习习惯和主动探 究问题的能力,合作交流的意识等方面有待加强.
《圆的标准方程》
教学重点 掌握圆的标准方程及求圆的标准方程. 教学难点 圆的标准方程推导和根据不同的已知条件求圆的标准方程.
《圆的标准方程》
教法分析
为了充分调动学 生学习的积极性,本 节课采用“启发式” 问题教学法,用环环 相扣的问题将探究活 动层层深入,使教师 总是站在学生思维的 最近发展区上.
《圆的标准方程》
(二)深入探究 获得新知 问题二 求以C(a,b)为圆心,以r为半径的圆的方程?
具体设计: 1、复习求曲线方程的一般步骤:建系、设点、列式、化简、(证明) 2、复习两点间距离公式: d x1 x2 2 y1 y2 2 3、化简过程中说明去根号方法:等式两边同时平方
4、强调确定个圆需要三个独立的条件:a, b, r 圆的标准方程: x a2 y b2 r2 ,特别的,如果圆心在原点,半径 为 r ,则圆的方程为 x2 y2 r 2 .
圆的标准方程
温州华侨职专 周士浙
《圆的标准方程》
1.《圆的标准方程》选自温州市中职地 方实验教材数学基础必修模块第三册第 八章第四节《圆的方程》; 2. 圆是学生学习了直线方程基础上研究 的一个特殊的二次曲线,是后续直线与 圆的位置关系的学习的基础。对于部分 要求参加高职考的学生来讲,圆还是学 习其它圆锥曲线的基础,所以本节内容 在整个章节和教材中起着承前启后的作 用; 3、本节内容可以按照学生情况分为两 个课时,第一课时侧重圆的标准方程的 推导及直接应用;第二课时侧重根据不 同条件求圆的标准方程。
圆的标准方程教案
圆的标准方程教案圆是我们生活中常见的几何图形之一,它具有许多独特的性质和特点。
在数学学习中,掌握圆的标准方程是非常重要的一部分,因此本教案将围绕圆的标准方程展开讲解,帮助学生更好地理解和掌握这一知识点。
一、圆的定义。
圆是平面上到一个定点距离等于定长的点的集合。
这个定点称为圆心,定长称为半径。
圆的直径是通过圆心并且两端点在圆上的线段,直径的长度是半径长度的两倍。
二、圆的标准方程。
1. 圆的标准方程一般形式为,$(x-a)^2 + (y-b)^2 = r^2$,其中$(a, b)$为圆心坐标,$r$为半径。
2. 圆的标准方程可以通过圆的性质和定义来推导得到。
假设圆心坐标为$(a, b)$,过圆心的任意一点坐标为$(x, y)$,根据圆的性质可知,点$(x, y)$到圆心$(a, b)$的距离等于半径$r$,即$\sqrt{(x-a)^2 + (y-b)^2} = r$。
对此方程两边进行平方得到$(x-a)^2 + (y-b)^2 = r^2$,这就是圆的标准方程。
三、圆的标准方程的应用。
1. 圆的标准方程可以用来表示平面直角坐标系中的圆。
2. 通过圆的标准方程,可以求解圆的圆心和半径,进而描绘出圆的几何图形。
3. 圆的标准方程也可以用来解决与圆相关的几何问题,如判定点的位置关系、求解交点坐标等。
四、圆的标准方程的例题。
例题1,求圆心坐标为$(3, -2)$,半径为$5$的圆的标准方程。
解,根据圆的标准方程一般形式,代入圆心坐标和半径得到$(x-3)^2 + (y+2)^2 = 25$,这就是所求的圆的标准方程。
例题2,已知圆的标准方程为$(x-1)^2 + (y+4)^2 = 16$,求圆的圆心坐标和半径。
解,比较已知的标准方程与一般形式可知,圆心坐标为$(1, -4)$,半径为$4$。
五、总结。
通过本教案的学习,我们对圆的标准方程有了更深入的理解。
圆的标准方程是描述平面直角坐标系中圆的重要工具,掌握了这一知识点,我们可以更好地应用它来解决与圆相关的问题。
圆的标准方程教案高中数学
圆的标准方程教案高中数学
一、教学目标:
1. 熟练掌握圆的标准方程的概念和计算方法;
2. 能够根据给定的信息,求解圆的标准方程;
3. 进一步理解圆的性质和应用。
二、教学内容:
1. 圆的标准方程的定义和示例;
2. 求解圆的标准方程的步骤;
3. 圆的相关性质和应用。
三、教学步骤:
1. 引入:通过举例说明圆的标准方程的重要性和应用场景;
2. 讲解:介绍圆的标准方程的定义和推导过程;
3. 演示:通过实例演示如何求解圆的标准方程;
4. 练习:让学生进行练习,巩固所学知识;
5. 总结:总结圆的标准方程的相关性质和应用。
四、教学材料:
1. 教科书《高中数学》;
2. 白板和彩色粉笔;
3. 课件PPT。
五、教学评估:
1. 学生通过练习题的答题情况;
2. 学生对于圆的标准方程的理解和应用程度。
六、拓展延伸:
1. 让学生自主探究圆的标准方程的推导过程;
2. 引导学生应用圆的标准方程解决实际问题。
通过以上教学方案,相信学生能够更好地掌握圆的标准方程的相关知识和技巧,为今后学习和工作打下坚实的基础。
《圆的标准方程》说课稿
《圆的标准方程》说课稿《圆的标准方程》说课稿11.教材结构分析《圆的方程》安排在高中数学第二册(上)第七章第六节.圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用.圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用.2.学情分析圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的.但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难.另外学生在探究问题的能力,合作交流的意识等方面有待加强.根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:3.教学目标(1)知识目标:①掌握圆的标准方程;②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程;③利用圆的标准方程解决简单的实际问题.(2)能力目标:①进一步培养学生用代数方法研究几何问题的能力;②加深对数形结合思想的理解和加强对待定系数法的运用;③增强学生用数学的意识.(3)情感目标:①培养学生主动探究知识、合作交流的意识;②在体验数学美的过程中激发学生的学习兴趣.根据以上对教材、教学目标及学情的分析,我确定如下的教学重点和难点:4.教学重点与难点(1)重点:圆的标准方程的求法及其应用.(2)难点:①会根据不同的已知条件求圆的标准方程;②选择恰当的坐标系解决与圆有关的实际问题.《圆的标准方程》说课稿2(一)说教材1、教材结构编排:本节课位于直线方程之后和圆的一般方程之前,学习直线方程为后边学习圆的方程奠定了基础,而学好圆的标准方程是为了进一步学习圆的一般方程和切线方程打好基础,因此在结构上起承上启下的作用。
2、教学目标知识目标:(1)掌握圆的标准方程,并能根据圆的标准方程写出圆心坐标和半径、(2)已知圆心和半径会写出圆的标准方程、能力目标:(1)培养学生数形结合能力、(2)培养学生应用数学知识解决实际问题的能力情感目标:(1)培养学生主动探究知识,合作交流的意识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《圆的标准方程》的说课稿
《圆的标准方程》的说课稿
【一】教学背景分析
1. 教材结构分析
《圆的方程》安排在高中数学第二册(上)第七章第六节.圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用.圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用.
2.学情分析
圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的. 但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难.另外学生在探究问题的能力,合作交流的意识等方面有待加强.
根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:
3.教学目标
(1) 知识目标:①掌握圆的标准方程;
②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程;
③利用圆的标准方程解决简单的实际问题.
(2) 能力目标:①进一步培养学生用代数方法研究几何问题的能力;
②加深对数形结合思想的理解和加强对待定系数法的运用;
③增强学生用数学的意识.
(3) 情感目标:①培养学生主动探究知识、合作交流的意识;
②在体验数学美的过程中激发学生的学习兴趣.
根据以上对教材、教学目标及学情的分析,我确定如下的教学重
点和难点:
4. 教学重点与难点
(1)重点: 圆的标准方程的求法及其应用.
(2)难点:①会根据不同的已知条件求圆的标准方程;
②选择恰当的坐标系解决与圆有关的实际问题.
为使学生能达到本节设定的教学目标,我再从教法和学法上进行分析:
【二】教法学法分析
1.教法分析为了充分调动学生学习的积极性,本节课采用“启发式”问题教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上.另外我恰当的利用多媒体课件进行辅助教学,借助信息技术创设实际问题的情境既能激发学生的学习兴趣,又直观的引导了学生建模的过程.
2.学法分析通过推导圆的标准方程,加深对用坐标法求轨迹方程的理解.通过求圆的标准方程,理解必须具备三个独立的条件才可以确定一个圆.通过应用圆的标准方程,熟悉用待定系数法求的过程.
下面我就对具体的教学过程和设计加以说明:
【三】教学过程与设计
整个教学过程是由七个问题组成的问题链驱动的,共分为五个环节:
创设情境启迪思维
深入探究获得新知
应用举例巩固提高
反馈训练形成方法
小结反思拓展引申
下面我从纵横两方面叙述我的教学程序与设计意图.
首先:纵向叙述教学过程
(一)创设情境——启迪思维
问题一已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?
通过对这个实际问题的探究,把学生的思维由用勾股定理求线段CD的长度转移为用曲线的方程来解决.一方面帮助学生回顾了旧知——求轨迹方程的一般方法,另一方面,在得到汽车不能通过的结论的同时学生自己推导出了圆心在原点,半径为4的圆的标准方程,从而很自然的进入了本课的主题.用实际问题创设问题情境,让学生感受到问题来源于实际,应用于实际,激发了学生的学习兴趣和学习欲望.这样获取的知识,不但易于保持,而且易于迁移.
通过对问题一的探究,抓住了学生的注意力,把学生的思维引到用坐标法研究圆的方程上来,此时再把问题深入,进入第二环节.
(二)深入探究——获得新知
问题二1.根据问题一的探究能不能得到圆心在原点,半径为几的圆的方程?
2.如果圆心在,半径为xx时又如何呢?
这一环节我首先让学生对问题一进行归纳,得到圆心在原点,半径为4的圆的标准方程后,引导学生归纳出圆心在原点,半径为r的圆的标准方程.然后再让学生对圆心不在原点的情况进行探究.我预设了三种方法等待着学生的探究结果,分别是:坐标法、图形变换法、向量平移法.
得到圆的标准方程后,我设计了由浅入深的三个应用平台,进入第三环节.
(三)应用举例——巩固提高
I.直接应用内化新知
问题三 1.写出下列各圆的标准方程:
(1)圆心在原点,半径为3;
(2)经过点,圆心在点
2.写出圆的圆心坐标和半径.
我设计了两个小问题,第一题是直接或间接的给出圆心坐标和半径求圆的标准方程,第二题是给出圆的标准方程求圆心坐标和半径,这两题比较简单,可以安排学生口答完成,目的是先让学生熟练掌握圆心坐标、半径与圆的标准方程之间的关系,为后面探究圆的切线问
题作准备.
II.灵活应用提升能力
问题四
1.求以点为圆心,并且和直线相切的圆的方程.
2.求过点,圆心在直线上且与轴相切的圆的方程.
3.已知圆的方程为,求过圆上一点的'切线方程.你能归纳出具有一般性的结论吗?已知圆的方程是,经过圆上一点的切线的方程是什么?
我设计了三个小问题,第一个小题有了刚刚解决问题三的基础,学生会很快求出半径,根据圆心坐标写出圆的标准方程.第二个小题有些困难,需要引导学生应用待定系数法确定圆心坐标和半径再求解,从而理解必须具备三个独立的条件才可以确定一个圆.第三个小题解决方法较多,我预设了四种方法再一次为学生的发散思维创设了空间.最后我让学生由第三小题的结论进行归纳、猜想,在论证经过圆上一点圆的切线方程的过程中,又一次模拟了真理发现的过程,使探究气氛达到高潮.
III.实际应用回归自然
问题五如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m,拱高OP=4m,在建造时每隔4m需用一个支柱支撑,求支柱的长度(精确到0.01m).
我选用了教材的例3,它是待定系数法求出圆的三个参数的又一次应用,同时也与引例相呼应,使学生形成解决实际问题的一般方法,培养了学生建模的习惯和用数学的意识.
(四)反馈训练——形成方法
问题六
1.求过原点和点,且圆心在直线上的圆的标准方程.
2.求圆过点的切线方程.
3.求圆过点的切线方程.
接下来是第四环节——反馈训练.这一环节中,我设计三个小题作为巩固性训练,给学生一块“用武”之地,让每一位同学体验学习数学的乐趣,成功的喜悦,找到自信,增强学习数学的愿望与信心.另外
第3题是我特意安排的一道求过圆外一点的圆的切线方程,由于学生刚刚归纳了过圆上一点圆的切线方程,因此很容易产生思维的负迁移,另外这道题目有两解,学生容易漏掉斜率不存在的情况,这时引导学生用数形结合的思想,结合初中已有的圆的知识进行判断,这样的设计对培养学生思维的严谨性具有良好的效果.
(五)小结反思——拓展引申
1.课堂小结
把圆的标准方程与过圆上一点圆的切线方程加以小结,提炼数形结合的思想和待定系数的方法
①圆心为,半径为r 的圆的标准方程为;圆心在原点时,半径为r 的圆的标准方程为:
②已知圆的方程是,经过圆上一点的切线的方程是:
2.分层作业 (A)巩固型作业:教材P81-82:(习题7.6)1,2,4.
(B)思维拓展型作业:
试推导过圆上一点的切线方程.
3.激发新疑
问题七
1.把圆的标准方程展开后是什么形式?
2.方程表示什么图形?
在本课的结尾设计这两个问题,作为对这节课内容的巩固与延伸,让学生体会知识的起点与终点都蕴涵着问题,旧的问题解决了,新的问题又产生了.在知识的拓展中再次掀起学生探究的热情.另外它为下节课研究圆的一般方程作了重要的准备.
以上是我纵向的教学过程及简单的设计意图,接下来,我从三个方面横向的进一步阐述我的教学设计:
横向阐述教学设计
(一)突出重点抓住关键突破难点
求圆的标准方程既是本节课的教学重点也是难点,为此我布设了由浅入深的学习环境,先让学生熟悉圆心、半径与圆的标准方程之间的关系,逐步理解三个参数的重要性,自然形成待定系数法的解题思
路,在突出重点的同时突破了难点.
第二个教学难点就是解决实际应用问题,这是学生固有的难题,主要是因为应用问题的题目冗长,学生很难根据问题情境构建数学模型,缺乏解决实际问题的信心,为此我首先用一道题目简洁、贴近生活的实例进行引入,激发学生的求知欲,同时我借助多媒体课件的演示,引导学生真正走入问题的情境之中,并从中抽象出数学模型,从而消除畏难情绪,增强了信心.最后再形成应用圆的标准方程解决实际问题的一般模式,并尝试应用该模式分析和解决第二个应用问题——问题五.这样的设计,使学生在解决问题的同时,形成了方法,难点自然突破。
(二)学生主体教师主导探究主线
本节课的设计用问题做链,环环相扣,使学生的探究活动贯穿始终.从圆的标准方程的推导到应用都是在问题的指引、我的指导下,由学生探究完成的.另外,我重点设计了两次思维发散点,分别是问题二和问题四的第三问,要生分组讨论,合作交流,为学生设立充分的探究空间,学生在交流成果的过程中,既体验了科学研究和真理发现的复杂与艰辛,又在我的适度引导、侧面帮助、不断肯定下顺利完成了探究活动并走向成功,在一个个问题的驱动下,高效的完成本节的学习任务.
(三)培养思维提升能力激励创新
为了培养学生的理性思维,我分别在问题一和问题四中,设计了两次由特殊到一般的学习思路,培养学生的归纳概括能力.在问题的设计中,我利用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,使能力与知识的形成相伴而行。
以上是我对这节课的教学预设,具体的教学过程还要根据学生在课堂中的具体情况适当调整,向生成性课堂进行转变.最后我以赫尔巴特的一句名言结束我的说课,发挥我们的创造性,力争“使教育过程成为一种艺术的事业”。