2020版高考数学历史专用讲义:专题探究课五 高考中解析几何问题的热点题型
2020年高考数学热点复习:解析几何热点问题
y
l
P3A
P2
P1
P4
F2
O
F1
x
B
故不满足. ………………………6 分 (得分点 4)
从而可设 l:y=kx+m(m≠1). 将 y=kx+m 代入x42+y2=1 得(4k2+1)x2+8kmx+4m2-4=0.
…7 分 (得分点 5)
由题设可知 Δ=16(4k2-m2+1)>0.
设 A(x1,y1),B(x2,y2),
❸得计算分:解题过程中的计算准确是得满分的根本保证,如(得分点 3),(得 分点 5),(得分点 7).
解答圆锥曲线中的定点问题的一般步骤 第一步:研究特殊情形,从问题的特殊情形出发,得到目标关系所 要探求的定点. 第二步:探究一般情况.探究一般情形下的目标结论. 第三步:下结论,综合上面两种情况定结论.
(1)解 ∵椭圆xa22+by22=1(a>b>0)的离心率为 22, ∴e2=ac22=a2-a2b2=12,得 a2=2b2,① 又点 Qb,ba在椭圆 C 上,∴ba22+ab24=1,②
联立①、②得 a2=8,且 b2=4. ∴椭圆 C 的方程为x82+y42=1.
(2)证明 当直线 PN 的斜率 k 不存在时,
2020年高考数学热点复习
解析几何热点问题
高考导航
1.圆锥曲线是平面解析几何的核心部分,也是高考必考知识,主 要以一个小题一个大题的形式呈现,难度中等偏上; 2.高考中的选择题或填空题主要考查圆锥曲线的基本性质,高考 中的解答题,常以求曲线的标准方程、位置关系、定点、定值、 最值、范围、探索性问题为主.这些试题的命制有一个共同的特 点,就是起点低,但在第(2)问或第(3)问中一般都伴有较为复杂 的运算,对考生解决问题的能力要求较高.
2020高考数学名师预测 知识点05解析几何
高考猜题专题05 解析几何一.选择题(共6小题,每小题5分,共30分)1若圆)0(222>=+r r y x 上恰有相异两点到直线02534=+-y x 的距离等于1,则r 的取值范围是:A .[4,6]B .)6,4[C .]6,4(D .)6,4(2、直线0=+-b y ax 与圆02222=+-+by ax y x 的图象可能是:3.从集合{1,2,3,…,11}中的任意取两个元素作为椭圆22221x y m n+=方程中的m 和n ,则能组成落在矩形区域(){},|||11,||9B x y x y =<<内的椭圆的个数是A .43B .72C .86D .904、 动点P (m,n )到直线5:-=x l 的距离为λ22n m +,点P 的轨迹为双曲线(且原点O为准线l 对应的焦点),则λ的取值为A 、λ∈RB 、λ=1C 、λ>1D 、0<λ<15.点P (-3,1)在椭圆22221(0)x y a b a b+=>>的左准线上.过点P 且方向为a =(2,-5)的光线,经直线y=-2反射后通过椭圆的左焦点,则这个椭圆的离心率为 ( )A .3B .13C .2D .126.点P 到点A (21,0),B (a ,2)及到直线x =-21的距离都相等,如果这样的点恰好只有一个,那么a 的值是 A .21B .23C .21或23D .-21或21 7.已知对k∈R,直线y-kx-1=0与椭圆1522=+my x 恒有公共点,则实数m 的取值范围是 ( )A .(0,1)B .(0,5)C .[1,5]∪(5,+∞)D .[1,5]8.在椭圆22221(0)x y a b a b+=>>中,12,F F 分别是其左右焦点,若122PF PF =,则该椭圆离心率的取值范围是( )A .1,13⎛⎫ ⎪⎝⎭B .1,13⎡⎫⎪⎢⎣⎭C .10,3⎛⎫ ⎪⎝⎭D .10,3⎛⎤ ⎥⎝⎦9.如图所示,下列三图中的多边形均为正多边形,M 、N 是所在边的中点,双曲线均以图中的F 1,F 2为焦点,设图中的双曲线的离心率分别为e 1,e 2,e 3,则 ( )A .e 1>e 2>e 3B .e 1<e 2<e 3C .e 1=e 3<e 2D .e 1=e 3>e 210.设P 是△ABC 内任意一点,S △ABC 表示△ABC 的面积,λ1=ABc PBC S S ∆∆, λ2=ABC PCA S S ∆∆,λ3=ABCPAB S S∆∆,定义f (P )=(λ1, λ, λ3),若G 是△ABC 的重心,f (Q )=(21,31,61),则 A .点Q 在△GAB 内 B .点Q 在△GBC 内C .点Q 在△GCA 内D .点Q 与点G 重合11、 点P 在直线:1l y x =-上,若存在过P 的直线交抛物线2y x =于,A B 两点,且|||PA AB =,则称点P 为“正点”,那么下列结论中正确的是( )A .直线l 上的所有点都是“正点”B .直线l 上仅有有限个点是“正点”C .直线l 上的所有点都不是“正点”D .直线l 上有无穷多个点(点不是所有的点)是“正点” 12 若存在过点(1,0)的直线与曲线3y x =和21594y ax x =+-都相切,则a 等于( )A .1-或25-64 B .1-或214 C .74-或25-64D .74-或7二.填空题(共4小题,每小题5分,共20分)13、椭圆14922=+y x 的焦点为21,F F ,点P 为其上的动点,当21PF F ∠为钝角时,点P 横坐标的取值范围是:14、若不论k 为何实数,直线1+=kx y 与圆0422222=--+-+a a ax y x 恒有交点,则实数a 的取值范围是:15.直线y x a =+与圆224x y +=交于点,A B ,若2OA OB =-u u u r u u u rg (O 为坐标原点),则实数a 的值为 。
2020版高考数学二轮复习第2部分专题5解析几何解密高考5圆锥曲线问题巧在“设”、难在“算”课件文 (1)
整理得 17k6+9k4-24k2-2=0,
即(k2-1)(17k4+26k2+2)=0,解得 k=±1.
故存在直线 l:y=x-2 或 y=-x+2 满足题意.
Thank you for watching !
由对称性可知,点 S 必在 x 轴上,故可设 S(t,0),M(x1,y1),N(x2, y2).
由抛物线的定义,得|MF|+|NF|=x1+2+x2+2, 因为|MF|+|NF|=8,所以 x1+x2=4, 由|SM|=|SN|,得 x1-t2+y21= x2-t2+y22,
所以(x1-t)2+8x1=(x2-t)2+8x2,即[(x1+x2)+(8-2t)](x1-x2)= 0,
[解] (1)由ac= 22和 a2=b2+c2,可设 a=2λ,则 c= 2λ,b= 2
λ,其中 λ>0.
由题意不妨设 M(c,
c),代入椭圆方程,得ac22+bc2=1,即12+
2λ 2λ2
=1,解得 λ= 2,从而 a=2 2,b=2,c=2.
故所求椭圆方程为x82+y42=1.
(2)假设存在满足条件的直线 l,结合已知条件易知直线 l 的斜率 存在且不为零,
所以(6-t)(x1-x2)=0 ①, 因为①对满足条件的任意 M,N 恒成立,所以 t=6. 故存在定点 S(6,0),使得|SM|=|SN|.
法三:设 M(x1,y1),N(x2,y2),MN 的中点为 C(x0,y0). 由抛物线的定义,得|MF|+|NF|=x1+2+x2+2, 因为|MF|+|NF|=8,所以 x1+x2=4,故 x0=2. 当直线 MN 的斜率存在时,可设其方程为 y=kx+b(k≠0), 由yy= 2=k8xx+b ,得 ky2-8y+8b=0. Δ=64-32kb,令 Δ>0,得 kb<2.
2020高考数学二轮复习专题五解析几何高考解答题的审题与答题示范五教案[浙江]
高考解答题的审题与答题示范(五)解析几何类解答题[思维流程]——圆锥曲线问题重在“设”与“算”[审题方法]——审方法数学思想是问题的主线,方法是解题的手段.审视方法,选择适当的解题方法,往往使问题的解决事半功倍.审题的过程还是一个解题方法的抉择过程,开拓的解题思路能使我们心涌如潮,适宜的解题方法则帮助我们事半功倍.典例 (本题满分15分)设O 为坐标原点,动点M 在椭圆C :x 22+y 2=1上,过点M 作x 轴的垂线,垂足为N ,点P 满足NP →= 2 NM →.(1)求点P 的轨迹方程;(2)设点Q 在直线x =-3上,且OP →·PQ →=1.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F . 审题路线 (1)要求P 点的轨迹方程⇒求点P (x ,y )的横坐标x 与纵坐标y 的关系式⇒利用条件NP →=2 NM →求解.(2)要证过点P 且垂直于OQ 的直线l 过C 的左焦点F ⇒证明OQ →⊥PF →⇒OQ →·PF →=0.标准答案阅卷现场(1)设P (x ,y ),M (x 0,y 0),N (x 0,0),则NP →=(x -x 0,y ),NM →=(0,y 0),① 第(1)问 第(2)问 得 分 点 ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩2 2 2 1 2 1 1 1 2 17分 8分以下内容为“高中数学该怎么有效学习?”首先要做到以下两点:1、先把教材上的知识点、理论看明白。
买本好点的参考书,做些练习。
如果没问题了就可以做些对应章节的试卷。
做练习要对答案,最好把自己的错题记下来。
平时学习也是,看到有比较好的解题方法,或者自己做错的题目,做标记,或者记在错题本上,大考之前那出来复习复习。
2、首先从课本的概念开始,要能举出例子说明概念,要能举出反例,要能用自己的话解释概念(理解概念)然后由概念开始进行独立推理活动,要能把课本的公式、定理自己推导一遍(搞清来龙去脉),课本的例题要自己先试做,尽量自己能做的出来(依靠自己才是最可靠的力量)。
2020届高考数学专题复习《解析几何典例剖析及备考策略》
2020届高考数学专题复习《解析几何典例剖析及备考策略》近几年解析几何的试题,小题难度有所增加,解答题在难度、计算的复杂程度等方面都有所下降(特别是2018年开始理科解析几何大题位置的前移导致难度下降更为明显),但突出对解析几何基本思想和基本方法的考查,重点要掌握解析几何的一些基本方法来解决问题,解析几何中解题的基本方法有解析法、待定系数法、变换法、参数法等方法。
在复习时应做到牢固掌握圆锥曲线定义;重视基础知识,基本题型的训练;注意课本典型例题、习题的延伸,教材中的例题、习题虽然大多比较容易,但其解法往往具有示范性,可延伸性,适当地编拟题组进行复习训练,有利于系统地掌握知识,融会贯通;注意转化条件,优化解题方法。
解析几何中有一些基本问题,如两直线垂直的证明、求弦的中点、弦长的计算等等,对这些问题的处理方法要做到熟知。
但有不少题目,所给的条件无法直接使用,或者使用起来比较困难,此时,可考虑对条件进行适当的转化,使解题过程纳入到学生所熟悉的轨道。
强化数学思想方法的训练和运用,譬如:函数与方程思想,解析几何的研究对象和方法决定了它与函数、方程的“不解之缘”,很多解析几何问题实际上就是建立方程后研究方程的解或建立函数后研究函数的性质。
又如:分类讨论思想 ,解析几何中,有些公式,性质是有适用条件的,解题时必须注意分类讨论、区别处理。
例如直线方程的点斜式、斜截式中斜率必须存在,截距式只适用在两轴上的截距存在且不为零的情况,两点式不适用于与坐标轴垂直的直线。
再如:数形结合思想 ,解析几何的本质就是将“数”与“形”有机地联系起来,曲线的几何特征必然在方程、函数或不等式中有所反映,而函数、方程或不等式的数字特征也一定体现出曲线的特性。
总之,解析几何题综合性强、应用面广,有些题目对运算求解能力要求高、有些题目对推理论证能力要求高,所以在高三复习中,要在狠抓落实上下功夫,既要注重基础,又要有所创新提高,既要注重通性通法,又要注意技巧锻炼,要做到灵活多变,培养学生养成良好的学习习惯,自觉地运用数学思想方法进行分析、推理、运算,指导同学的复习,提高效率。
高考中解析几何的常考题型分析总结
高考中解析几何的常考题型分析一、高考定位回顾2008,2012年的江苏高考题,解析几何是重要内容之一,所占分值在25分左右,在高考中一般有2,3条填空题,一条解答题.填空题有针对性地考查椭圆、双曲线、抛物线的定义、标准方程和简单几何性质及其应用,主要针对圆锥曲线本身,综合性较小,试题的难度一般不大;解答题主要是以圆或椭圆为基本依托,考查椭圆方程的求解、考查直线与曲线的位置关系,除了本身知识的综合,还会与其它知识如向量、函数、不等式等知识构成综合题,多年高考压轴题是解析几何题.二、应对策略复习中,一要熟练掌握椭圆、双曲线、抛物线的基础知识、基本方法,在抓住通性通法的同时,要训练利用代数方法解决几何问题的运算技巧.二要熟悉圆锥曲线的几何性质,重点掌握直线与圆锥曲线相关问题的基本求解方法与策略,提高运用函数与方程思想、向量与导数的方法来解决问题的能力.三在第二轮复习中要熟练掌握圆锥曲线的通性通法和基本知识.预测在2013年的高考题中:1.填空题依然是直线和圆的方程问题以及考查圆锥曲线的几何性质为主,三种圆锥曲线都有可能涉及.2.在解答题中可能会出现圆、直线、椭圆的综合问题,难度较高,还有可能涉及简单的轨迹方程和解析几何中的开放题、探索题、证明题,重点关注定值问题.三、常见题型1.直线与圆的位置关系问题直线与圆的位置关系是高考考查的热点,常常将直线与圆和函数、三角、向量、数列、圆锥曲线等相互交汇,求解参数、函数最值、圆的方程等,主要考查直线与圆的相交、相切、相离的判定与应用,以及弦长、面积的求法等,并常与圆的几何性质交汇,要求学生有较强的运算求解能力.求解策略:首先,要注意理解直线和圆等基础知识及它们之间的深入联系;其次,要对问题的条件进行全方位的审视,特别是题中各个条件之间的相互关系及隐含条件的挖掘;再次,要掌握解决问题常常使用的思想方法,如数形结合、化归转化、待定系数、分类讨论等思想方法;最后,要对求解问题的过程清晰书写,准确到位.点评:(1)直线和圆的位置关系常用几何法,即利用圆的半径r,圆心到直线的距离d及半弦长l2构成直角三角形关系来处理.(2)要注意分类讨论,即对直线l分为斜率存在和斜率不存在两种情况分别研究,以防漏解或推理不严谨.2.圆锥曲线中的证明问题圆锥曲线中的证明问题,主要有两类:一类是证明点、直线、曲线等几何元素中的位置关系,如:某点在某直线上、某直线经过某个点、某两条直线平行或垂直等;另一类是证明直线与圆锥曲线中的一些数量关系(相等或不等).求解策略:主要根据直线、圆锥曲线的性质、直线与圆锥曲线的位置关系等,通过相关的性质应用、代数式的恒等变形以及必要的数值计算等进行证明.常用的一些证明方法:点评:本题主要考查双曲线的概念、标准方程、几何性质及其直线与双曲线的关系.特别要注意直线与双曲线的关系问题,在双曲线当中,最特殊的为等轴双曲线,它的离心率为2,它的渐近线为y=?x,并且相互垂直,这些性质的运用可以大大节省解题时间.3.“是否存在”问题所谓存在性问题,就是判断满足某个(某些)条件的点、直线、曲线(或参数)等几何元素是否存在的问题.这类问题通常以开放性的设问方式给出,若存在符合条件的几何元素或参数值,就求出这些几何元素或参数值,若不存在,则要求说明理由.求解策略:首先假设满足条件的几何元素或参数值存在,然后利用这些条件并结合题目的其他已知条件进行推理与计算,若不出现矛盾,并且得到了相应的几何元素或参数值,就说明满足条件的几何元素或参数值存在;若在推理与计算中出现了矛盾,则说明满足条件的几何元素或参数值不存在,同时推理与计算的过程就是说明理由的过程.例3(2012年高考(湖北文))设A是单位圆x2+y2=1上任意一点,l是过点A与x轴垂直的直线,D是直线l与x轴的交点,点M在直线l上,且满足|DM|=m|DA|(m>0,且m?1),当点A在圆上运动时,记点M的轨迹为曲线C.(1)求曲线C的方程,判断曲线C为何种圆锥曲线,并求其焦点坐标.(2)过原点斜率为k的直线交曲线C于P,Q两点,其中P在第一象限,且它在y轴上的射影为点N,直线QN交曲线C于另一点H,是否存在m,使得对任意的k>0,都有PQ?PH,若存在,请说明理由.点评:本题是一个椭圆模型,求解标准方程时注意对焦点的位置分类讨论,不要漏解.对于探讨性问题一直是高考考查的热点,一般先假设结论成立,再逆推所需要求解的条件,对运算求解能力和逻辑推理能力有较高的要求.4.定点定值问题的方法圆锥曲线中的定点、定值问题是高考的热点,是指某些几何量线段的长度、图形的面积、角的度数、直线的斜率等的大小或某些代数表达式的值等和题目中的参数无关,不依参数的变化而变化,而始终是一个确定的值.题型以解答题为主,解决的基本思想从变量中寻求不变,即先用变量表示要求的量或点的坐标,再通过推理计算,导出这些量或点的坐标和变量无关.常见的类型:(1)直线恒过定点问题;(2)动圆恒过定点问题;(3)探求定值问题;(4)证明定值问题.点评:(1)椭圆和双曲线的定义反映了它们的图形特点,是画图的依据和基础,而定义中的定值是求标准方程的基础,在许多实际问题中正确利用定义可以使问题的解决更加灵活.已知圆锥曲线上一点及焦点,首先要考虑使用圆锥曲线的定义求解.(2)求解直线和曲线过定点问题的基本思路是:把直线或曲线方程中的变量m,k 当作常数看待,把方程一端化为零,既然是过定点,那么这个方程就要对任意参数都成立,这时参数的系数就要全部等于零,这样就得到一个关于x1的方程组,这个方程组的解所确定的点就是直线或曲线所过的定点. 5.最值与范围问题解决圆锥曲线中最值、范围问题的基本思想是建立目标函数和建立不等关系,根据目标函数和不等式求最值、范围,因此这类问题的难点,就是如何建立目标函数和不等关系.建立目标函数或不等关系的关键是选用一个合适变量,其原则是这个变量能够表达要解决的问题,这个变量可以是直线的斜率、直线的截距、点的坐标等,要根据问题的实际情况灵活处理.求参数范围的方法:据已知条件建立等式或不等式的函数关系,再求参数范围.圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何方法,即通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数方法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.求解最值问题应注意:(1)如果建立的函数是关于斜率k的函数,要增加考虑斜率不存在的情况;(2)如果建立的函数是关于点的坐标x,y的函数,可以考虑用代入消元、基本不等式、三角换元或几何解法来解决问题.例5(2012年高考(广东理))在平面直角坐标系xOy中,已知椭圆C:)的距x2a2+y2b2=1(a>b>0)的离心率e=23,且椭圆C上的点到Q(0,2离的最大值为3.点评:从近两年高考试题来看,直线与圆锥曲线的位置关系、弦长、中点弦的问题是高考的热点问题,题型既有选择题、填空题,又有解答题,难度中等偏高.客观题主要考查直线与圆锥曲线的位置关系、弦长问题,解答题考查较为全面,在考查上述问题的同时,注重考查函数与方程、转化与化归,分类讨论等思想,所以在备战2013年高考中对于此类问题应引起足够的重视.6.轨迹问题求轨迹方程的常用方法:法:将几何关系直接转化成代数方程. (1)直接(2)定义法:满足的条件恰适合某已知曲线的定义,用待定系数法求方程.(3)代入法:把所求动点的坐标与已知动点的坐标建立联系.(4)交轨法:写出两条动直线的方程直接消参,求得两条动直线交点的轨迹.求动点的轨迹方程的一般步骤(1)建系――建立适当的坐标系;(2)设点――设轨迹上的任一点P(x,y);(3)列式――列出动点P所满足的关系式;(4)代换――依条件式的特点,选用距离公式、斜率公式等将其转化为x,y的方程式,并化简;――证明所求方程即为符合条件的动点轨迹方程. (5)证明点评:本小题主要考查圆的性质、椭圆的定义、标准方程及其几何性质、直线方程求解、直线与椭圆的关系和交轨法在求解轨迹方程组的运用.在求解点M的轨迹方程时,要注意首先写出直线AA1和直线A2B的方程,然后求解.。
高考数学专题检测卷五解析几何
专题检测卷(五) 解析几何(时间:120分钟 满分:150分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2020·济南质检)若双曲线C :x 2m -y 2=1(m >0)的一条渐近线的方程为3x +2y =0,则m =( ) A.49B.94C.23D.32解析 由题意知,双曲线的渐近线方程为y =±1mx (m >0).3x +2y =0可化为 y =-32x ,所以1m =32,解得m =49.故选A.答案 A2.(2020·北京西城区二模)若圆x 2+y 2-4x +2y +a =0与x 轴、y 轴均有公共点,则实数a 的取值范围是( ) A.(-∞,1] B.(-∞,0] C.[0,+∞)D.[5,+∞)解析 将圆的一般方程化作标准方程为(x -2)2+(y +1)2=5-a ,则该圆的圆心坐标为(2,-1),半径r =5-a .因为该圆与x 轴、y 轴均有公共点,所以⎩⎪⎨⎪⎧2≤5-a ,1≤5-a ,5-a >0,解得a ≤1,则实数a 的取值范围是(-∞,1].故选A. 答案 A3.(2020·河南六市模拟)已知P 为圆C :(x -5)2+y 2=36上任意一点,A (-5,0).若线段P A 的垂直平分线交直线PC 于点Q ,则点Q 的轨迹方程为( ) A.x 29+y 216=1 B.x 29-y 216=1 C.x 29-y 216=1(x <0)D.x 29-y 216=1(x >0)解析 如图,由题意知|QA |=|QP |,||QA |-|QC ||=||QP |-|QC ||=|PC |=6<|AC |=10,所以动点Q 的轨迹是以A ,C 为焦点的双曲线,其方程为x 29-y 216=1.故选B.答案 B4.(2020·辽宁五校模拟)仿照“Dandelin 双球”模型,人们借助圆柱内的两个内切球完美地证明了平面截圆柱的截面为椭圆面.如图,底面半径为1的圆柱内两个内切球球心距离为4,现用与两球都相切的平面截圆柱所得到的截面边缘线是一椭圆,则该椭圆的离心率为( )A.12B.33C.22D.32解析 由题意可知椭圆的长轴与两球心连线的夹角为30°,所以椭圆的长轴2a =2sin 30°=4,a =2,椭圆的短轴长等于球的直径,所以b =1,c =3,e =c a =32,故选D. 答案 D5.(2020·江南十校素质测试)已知点P 在圆C :x 2+(y -2)2=1上,点Q 在直线l :x -2y +1=0上,且点Q 的横坐标x ∈[-1,a ).若|PQ |既有最大值又有最小值,则实数a 的取值范围是( ) A.⎝ ⎛⎦⎥⎤35,115 B.⎝ ⎛⎭⎪⎫35,+∞ C.⎣⎢⎡⎦⎥⎤35,115D.⎣⎢⎡⎭⎪⎫35,+∞ 解析 如图,直线l :x -2y +1=0与x 轴交于点Q 1(-1,0).连接Q 1C 并延长,交圆C 于点P 1.过点C 作CQ 2⊥直线l 于点Q 2,交圆C 于点P 2,则|P 2Q 2|为|PQ |的最小值.易知直线CQ 2:y =-2x +2.设Q 2(x 2,y 2),联立得方程组⎩⎨⎧y =-2x +2,x -2y +1=0,解得x 2=35,∴a >35.设点Q 3(x 3,y 3).为点Q 1关于点Q 2的对称点,则x 3=115.当a >115时,|PQ |无法取到最大值,当35<a ≤115时,|PQ |的最大值为|P 1Q 1|,∴35<a ≤115.故选A. 答案 A6.(2020·青岛检测)已知直线y =k (x -1)与抛物线C :y 2=4x 交于A ,B 两点,直线y =2k (x -2)与抛物线D :y 2=8x 交于M ,N 两点,设λ=|AB |-2|MN |,则( ) A.λ<-16 B.λ=-16 C.-12<λ<0D.λ=-12解析 设A (x 1,y 1),B (x 2,y 2).由⎩⎨⎧y =k (x -1),y 2=4x ,得k 2x 2-(2k 2+4)x +k 2=0,则x 1+x 2=2k 2+4k 2=2+4k 2.因为直线y =k (x -1)经过抛物线C 的焦点,所以|AB |=x 1+x 2+p =4+4k 2.同理可得|MN |=8+2k 2.所以λ=4+4k 2-2×⎝ ⎛⎭⎪⎫8+2k 2=4-16=-12.故选D. 答案 D7.(2020·南昌调研)圆C :x 2+y 2-10y +16=0上有且仅有两点到双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线的距离为1,则该双曲线离心率的取值范围是( ) A.(2,5) B.⎝ ⎛⎭⎪⎫53,52 C.⎝ ⎛⎭⎪⎫54,52D.(5,2+1)解析 双曲线x 2a 2-y 2b 2=1的一条渐近线方程为bx -ay =0,圆C :x 2+y 2-10y +16=0的圆心坐标为(0,5),半径为3.因为圆C 上有且仅有两点到直线bx -ay =0的距离为1,所以圆心(0,5)到直线bx -ay =0的距离d 的范围为2<d <4,即2<5a a 2+b2<4.又a 2+b 2=c 2,所以2<5a c <4,即54<e <52.故选C. 答案 C8.(2020·潍坊模拟)如图,已知抛物线C :y 2=2px (p >0)的焦点为F ,点P (x 0,23)⎝ ⎛⎭⎪⎫x 0>p 2是抛物线C 上一点.以P 为圆心的圆与线段PF 交于点Q ,与过焦点F且垂直于x 轴的直线交于点A ,B ,|AB |=|PQ |,直线PF 与抛物线C 的另一交点为M .若|PF |=3|PQ |,则|PQ ||FM |=( )A.1B. 3C.2D. 5解析 如图,连接P A ,PB .因为|AB |=|PQ |,所以△P AB 是正三角形.又x 0>p2,所以x 0-p 2=32|PQ |.又因为|PF |=x 0+p 2=3|PQ |,所以x 0=3p 2.所以点P ⎝ ⎛⎭⎪⎫3p 2,23,所以(23)2=2p ·3p 2.因为p >0,所以p =2.所以F (1,0),P (3,23),所以|PQ |=33|PF |=33·(23-0)2+(3-1)2=433,抛物线C 的方程为y 2=4x ,直线PF 的方程为y =3(x -1).由⎩⎨⎧y =3(x -1),y 2=4x ,得M ⎝ ⎛⎭⎪⎫13,-233,所以|FM |=13+1=43,所以|PQ ||FM |= 3.故选B.答案 B二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分.9.过点P(2,2)作圆C:(x+2)2+(y+2)2=r2(r>0)的两条切线,切点分别为A,B,下列说法正确的是()A.0<r<2 2B.若△P AB为直角三角形,则r=4C.△P AB外接圆的方程为x2+y2=4D.直线AB的方程为4x+4y+16-r2=0解析因为过点P(2,2)作圆C:(x+2)2+(y+2)2=r2(r>0)的切线有两条,则点P 在圆C外,则r<|PC|=42,故A错误;若△P AB为直角三角形,则四边形P ACB 为正方形,则2r=|PC|=42,解得r=4,故B正确;由P A⊥CA,PB⊥CB,可得点P,A,C,B共圆,所以△P AB的外接圆就是以PC为直径的圆,即x2+y2=8,故C错误;将(x+2)2+(y+2)2=r2与x2+y2=8相减即得直线AB的方程,所以直线AB的方程为4x+4y+16-r2=0,所以D正确.故选BD.答案BD10.(2020·潍坊模拟)已知双曲线x24-y22=sin2θ(θ≠kπ,k∈Z),则不因θ改变而变化的是()A.焦距B.离心率C.顶点坐标D.渐近线方程解析由题意,得双曲线的标准方程为x24sin2θ-y22sin2θ=1,则a=2|sin θ|,b=2|sin θ|,则c=a2+b2=6|sin θ|,则双曲线的焦距为2c=26|sin θ|,顶点坐标为(±2|sin θ|,0),离心率为e=ca=62,渐近线方程为y=±22x.所以不因θ改变而变化的是离心率、渐近线方程.故选BD. 答案BD11.设P 是椭圆C :x 22+y 2=1上任意一点,F 1,F 2是椭圆C 的左、右焦点,则( ) A.|PF 1|+|PF 2|=2 2 B.-2<|PF 1|-|PF 2|<2 C.1≤|PF 1|·|PF 2|≤2 D.0≤PF 1→·PF 2→≤1解析 椭圆C 的长轴长为22,根据椭圆的定义得|PF 1|+|PF 2|=22,故A 正确;||PF 1|-|PF 2||≤|F 1F 2|=22-1=2,所以-2≤|PF 1|-|PF 2|≤2,B 错误;|PF 1|·|PF 2|=14[(|PF 1|+|PF 2|)2-(|PF 1|-|PF 2|)2],而0≤(|PF 1|-|PF 2|)2≤4,所以1≤|PF 1|·|PF 2|≤2,C 正确;PF 1→·PF 2→=(OF 1→-OP →)·(OF 2→-OP →)=OF 1→·OF 2→-OP →·(OF 1→+OF 2→)+|OP →|2=|OP →|2-1,根据椭圆性质有1≤|OP |≤2,所以0≤PF 1→·PF 2→=|OP →|2-1≤1,D 正确.故选ACD. 答案 ACD12.如图,在平面直角坐标系xOy 中,抛物线C :y 2=2px (p >0)的焦点为F ,准线为l .设l 与x 轴的交点为K ,P 为C 上异于O 的任意一点,P 在l 上的射影为E ,∠EPF 的外角平分线交x 轴于点Q ,过点Q 作QN ⊥PE 交EP 的延长线于点N ,作QM ⊥PF 交线段PF 于点M ,则( )A.|PE |=|PF |B.|PF |=|QF |C.|PN |=|MF |D.|PN |=|KF |解析 由抛物线的定义,得|PE |=|PF |,A 正确;∵PN ∥QF ,PQ 是∠FPN 的平分线,∴∠FQP =∠NPQ =∠FPQ ,∴|PF |=|QF |,B 正确;若|PN |=|MF |,则由PQ 是∠FPN 的平分线,QN ⊥PE ,QM ⊥PF ,得|QM |=|QN |,从而有|PM |=|PN |,于是有|PM |=|FM |,则有|QP |=|QF |,∴△PFQ 为等边三角形,∠FPQ =60°,也即有∠FPE =60°,这只是在特殊位置才有可能, 因此C 错误;连接EF ,如图,由选项A、B知|PE|=|QF|,又PE∥QF,∴EPQF是平行四边形,∴|EF|=|PQ|,∴△EKF≌△QNP,∴|KF|=|PN|,D正确.故选ABD.答案ABD三、填空题:本题共4小题,每小题5分,共20分.13.(2020·武汉质检)已知以x±2y=0为渐近线的双曲线经过点(4,1),则该双曲线的标准方程为________.解析由题知,双曲线的渐近线方程为x±2y=0,设双曲线的方程为x2-4y2=λ(λ≠0).因为点(4,1)在双曲线上,所以λ=42-4=12,所以双曲线的标准方程为x212-y23=1.答案x212-y23=114.已知点A(-5,0),B(-1,-3),若圆x2+y2=r2(r>0)上恰有两点M,N,使得△MAB和△NAB的面积均为5,则r的取值范围是________.解析由题意可得|AB|=(-1+5)2+(-3-0)2=5,根据△MAB和△NAB的面积均为5可得M,N到直线AB的距离均为2,由于直线AB的方程为y-0-3-0=x+5-1+5,即3x+4y+15=0,若圆上只有一个点到直线AB的距离为2,则圆心到直线AB的距离为|0+0+15|9+16=r+2,解得r=1,若圆上只有3个点到直线AB的距离为2,则圆心到直线AB的距离为|0+0+15|9+16=r-2,解得r=5.故r的取值范围是(1,5). 答案(1,5)15.如图,点A,B分别是椭圆x225+y2b2=1(0<b<5)的长轴的左、右端点,F为椭圆的右焦点,直线PF 的方程为15x +y -415=0,且P A →·PF →=0,设M 是椭圆长轴AB 上的一点,M 到直线AP 的距离等于|MB |,则椭圆上的点到点M 的距离d 的最小值为________.解析 依题意得直线AP 的方程为x -15y +5=0,直线PF 与x 轴的交点为(4,0),即F (4,0),∴b 2=25-16=9,即椭圆方程为x 225+y 29=1.设M (m ,0)(-5≤m ≤5),则M 到直线AP 的距离为|m +5|4,又|MB |=|5-m |,所以|m +5|4=|5-m |,∵-5≤m ≤5,∴m +54=5-m ,解得m =3,∴M (3,0).设椭圆上的点(x ,y )(x ∈[-5,5])到M (3,0)的距离为d ,则d 2=(x -3)2+y 2=(x -3)2+9⎝ ⎛⎭⎪⎫1-x 225=1625x 2-6x +18=1625⎝ ⎛⎭⎪⎫x -75162+6316,∵x ∈[-5,5],∴当x =7516时,d 2最小,此时d min =374. 答案37416.(2020·烟台诊断)已知F 为抛物线x 2=2py (p >0)的焦点,点A (1,p ),M 为抛物线上任意一点,且|MA |+|MF |的最小值为3,则该抛物线的方程为________.若线段AF 的垂直平分线交抛物线于P ,Q 两点,则四边形APFQ 的面积为________.(本小题第一空2分,第二空3分)解析 由题意,得抛物线x 2=2py (p >0)的焦点为F ⎝ ⎛⎭⎪⎫0,p 2,准线的方程为y =-p 2.因为|MF |等于点M 到准线的距离,所以当p >12p 时,|MA |+|MF |的最小值为点A 到准线y =-p 2的距离,而|MA |+|MF |的最小值为3,所以3p2=3,解得p =2,满足p >12p ;当p ≤12p 时,|MA |+|MF |的最小值为|AF |,而|MA |+|MF |的最小值为3,所以(1-0)2+⎝ ⎛⎭⎪⎫p -p 22=3,解得p =42,不满足p ≤12p .综上所述,p =2.因此抛物线的方程为x 2=4y .由p =2得,点A (1,2),焦点F (0,1),则线段AF 的垂直平分线的方程为x +y -2=0,且|AF |=(1-0)2+(2-1)2= 2.设线段AF 的垂直平分线与抛物线的交点分别为P (x 1,y 1),Q (x 2,y 2).由⎩⎨⎧x +y -2=0,x 2=4y .解得⎩⎨⎧x 1=-2+23,y 1=4-23或⎩⎨⎧x 2=-2-23,y 2=4+23,则|PQ |=(4+23-4+23)2+(-2-23+2-23)2=4 6.所以四边形APFQ 的面积S =12|AF |·|PQ |=12×2×46=4 3. 答案 x 2=4y 4 3四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)(2020·北京适应性考试)已知椭圆C 的短轴的两个端点分别为A (0,1),B (0,-1),焦距为2 3. (1)求椭圆C 的方程;(2)已知直线y =m 与椭圆C 有两个不同的交点M ,N ,设D 为直线AN 上一点,且直线BD ,BM 的斜率的积为-14.证明:点D 在x 轴上. (1)解 由题意知c =3,b =1,∴a 2=b 2+c 2=4. ∵焦点在x 轴上,∴椭圆C 的方程为x 24+y 2=1.(2)证明 由题意可设M (-x 0,m ),N (x 0,m ),-1<m <1,则x 20=4(1-m 2).①∵点D 在直线AN 上一点,A (0,1), ∴AD →=λAN →=λ(x 0,m -1), ∴OD →=OA →+AD →=(λx 0,λ(m -1)+1), ∴D (λx 0,λ(m -1)+1). ∵B (0,-1),M (-x 0,m ),∴k BD ·k BM =λ(m -1)+2λx 0·m +1-x 0=-14. 整理,得4λ(m 2-1)+8(m +1)=λx 20. 将①代入上式得(m +1)[λ(m -1)+1]=0. ∵m +1≠0,∴λ(m -1)+1=0, ∴点D 在x 轴上.18.(本小题满分12分)(2020·浙江卷)如图,已知椭圆C 1:x 22+y 2=1,抛物线C 2:y 2=2px (p >0),点A 是椭圆C 1与抛物线C 2的交点,过点A 的直线l 交椭圆C 1于点B ,交抛物线C 2于点M (B ,M 不同于A ).(1)若p =116,求抛物线C 2的焦点坐标;(2)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值. 解 (1)由p =116,得抛物线C 2的焦点坐标是⎝ ⎛⎭⎪⎫132,0. (2)由题意可设直线l :x =my +t (m ≠0,t ≠0),点A (x 0,y 0). 将直线l 的方程代入椭圆C 1:x 22+y 2=1,得 (m 2+2)y 2+2mty +t 2-2=0, 所以点M 的纵坐标y M =-mtm 2+2. 将直线l 的方程代入抛物线C 2:y 2=2px ,得y 2-2pmy -2pt =0, 所以y 0y M =-2pt ,解得y 0=2p (m 2+2)m,因此x 0=2p (m 2+2)2m 2.由x 202+y 20=1,得1p 2=4⎝ ⎛⎭⎪⎫m +2m 2+2⎝ ⎛⎭⎪⎫m +2m 4≥160, 当且仅当m =2,t =105时,p 取到最大值1040.19.(本小题满分12分)(2019·北京卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为(1,0),且经过点A (0,1).(1)求椭圆C 的方程;(2)设O 为原点,直线l :y =kx +t (t ≠±1)与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N .若|OM |·|ON |=2,求证:直线l 经过定点.(1)解 由题意,得b 2=1,c =1,所以a 2=b 2+c 2=2.所以椭圆C 的方程为x 22+y 2=1.(2)证明 设P (x 1,y 1),Q (x 2,y 2),则直线AP 的方程为y =y 1-1x 1x +1. 令y =0,得点M 的横坐标x M =-x 1y 1-1. 又y 1=kx 1+t ,从而|OM |=|x M |=⎪⎪⎪⎪⎪⎪x 1kx 1+t -1. 同理,|ON |=⎪⎪⎪⎪⎪⎪x 2kx 2+t -1. 由⎩⎪⎨⎪⎧y =kx +t ,x 22+y 2=1,得(1+2k 2)x 2+4ktx +2t 2-2=0, 则x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-21+2k 2. 所以|OM |·|ON |=⎪⎪⎪⎪⎪⎪x 1kx 1+t -1·⎪⎪⎪⎪⎪⎪x 2kx 2+t -1 =⎪⎪⎪⎪⎪⎪x 1x 2k 2x 1x 2+k (t -1)(x 1+x 2)+(t -1)2 =⎪⎪⎪⎪⎪⎪⎪⎪2t 2-21+2k 2k 2·2t 2-21+2k 2+k (t -1)·⎝ ⎛⎭⎪⎫-4kt 1+2k 2+(t -1)2 =2⎪⎪⎪⎪⎪⎪1+t 1-t . 又|OM |·|ON |=2,所以2⎪⎪⎪⎪⎪⎪1+t 1-t =2.解得t =0,所以直线l 经过定点(0,0).20.(本小题满分12分)(2020·沈阳一监)已知抛物线C :y 2=2px (p >0)的焦点为F ,点A (2,2),点B 在抛物线C 上,且满足OF →=FB →-2F A →(O 为坐标原点).(1)求抛物线C 的方程;(2)过焦点F 任作两条相互垂直的直线l 与l ′,直线l 与抛物线C 交于P ,Q 两点,直线l ′与抛物线C 交于M ,N 两点,△OPQ 的面积记为S 1,△OMN 的面积记为S 2,求证:1S 21+1S 22为定值. (1)解 设B (x 0,y 0),∵F ⎝ ⎛⎭⎪⎫p 2,0, ∴OF →=FB →-2F A →=⎝ ⎛⎭⎪⎫x 0-p 2,y 0-2⎝ ⎛⎭⎪⎫2-p 2,2=⎝ ⎛⎭⎪⎫x 0+p 2-4,y 0-4=⎝ ⎛⎭⎪⎫p 2,0, ∴⎩⎪⎨⎪⎧x 0+p 2-4=p 2,y 0-4=0,∴⎩⎨⎧x 0=4,y 0=4. ∵点B 在抛物线C 上,∴42=2p ×4,∴p =2,∴y 2=4x .(2)证明 设P (x 1,y 1),Q (x 2,y 2),由题意得,直线l 的斜率存在且不为零.设l :x =my +1,代入y 2=4x 得,y 2-4my -4=0.∴y 1+y 2=4m ,y 1y 2=-4.∴|y 1-y 2|=(y 1+y 2)2-4y 1y 2=16m 2+16=4m 2+1.因此S 1=12|y 1-y 2|×1=2m 2+1.同理可得,S 2=21m 2+1.∴1S 21+1S 22=14(m 2+1)+14⎝ ⎛⎭⎪⎫1m 2+1=14(m 2+1)+m 24(m 2+1)=14. ∴1S 21+1S 22为定值,定值为14. 21.(本小题满分12分)设圆x 2+y 2+2x -15=0的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(1)证明|EA |+|EB |为定值,并写出点E 的轨迹方程;(2)设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.(1)证明 因为|AD |=|AC |,EB ∥AC ,故∠EBD =∠ACD =∠ADC ,所以|EB |=|ED |,故|EA |+|EB |=|EA |+|ED |=|AD |.由题设得A (-1,0),B (1,0),|AB |=2,又圆A 的标准方程为(x +1)2+y 2=16,从而|AD |=4,所以|EA |+|EB |=4>|AB |.由椭圆定义可得点E 的轨迹方程为:x 24+y 23=1(y ≠0).(2)解 当l 与x 轴不垂直时,设l 的方程为y =k (x -1)(k ≠0),M (x 1,y 1),N (x 2,y 2).由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 23=1得(4k 2+3)x 2-8k 2x +4k 2-12=0. 则x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3, 所以|MN |=1+k 2|x 1-x 2|=12(k 2+1)4k 2+3. 过点B (1,0)且与l 垂直的直线m :y =-1k (x -1),A 到m 的距离为2k 2+1, 所以|PQ |=242-⎝ ⎛⎭⎪⎫2k 2+12=44k 2+3k 2+1. 故四边形MPNQ 的面积S =12|MN ||PQ |=121+14k 2+3. 可得当l 与x 轴不垂直时,四边形MPNQ 面积的取值范围为(12,83).当l 与x 轴垂直时,其方程为x =1,|MN |=3,|PQ |=8,故四边形MPNQ 的面积为12.综上,四边形MPNQ 面积的取值范围为[12,83).22.(本小题满分12分)(2020·东北三校一联)已知以动点P 为圆心的⊙P 与直线l :x=-12相切,与定圆F :(x -1)2+y 2=14外切.(1)求动圆圆心P 的轨迹C 的方程;(2)过曲线C 上位于x 轴两侧的点M ,N (MN 不与x 轴垂直)分别作直线l 的垂线,垂足分别为M 1,N 1,直线l 交x 轴于点A ,记△AMM 1,△AMN ,△ANN 1的面积分别为S 1,S 2,S 3,且S 22=4S 1S 3,求证:直线MN 过定点.(1)解 设P (x ,y ),⊙P 的半径为R ,则R =x +12,|PF |=R +12,∴点P 到直线x =-1的距离与到定点F (1,0)的距离相等,故点P 的轨迹C 的方程为y 2=4x .(2)证明 设M (x 1,y 1),N (x 2,y 2),则M 1⎝ ⎛⎭⎪⎫-12,y 1,N ⎝ ⎛⎭⎪⎫-12,y 2, 设直线MN :x =ty +n (t ≠0,n >0).将直线MN 的方程代入y 2=4x 消去x 并整理,得y 2-4ty -4n =0,则y 1+y 2=4t ,y 1y 2=-4n <0.∵S 1=12⎝ ⎛⎭⎪⎫x 1+12·|y 1|,S 3=12⎝ ⎛⎭⎪⎫x 2+12·|y 2|, ∴4S 1S 3=⎝ ⎛⎭⎪⎫x 1+12⎝ ⎛⎭⎪⎫x 2+12|y 1y 2| =⎝ ⎛⎭⎪⎫ty 1+n +12⎝ ⎛⎭⎪⎫ty 2+n +12|y 1y 2| =⎣⎢⎡⎦⎥⎤t 2y 1y 2+⎝ ⎛⎭⎪⎫n +12t (y 1+y 2)+⎝ ⎛⎭⎪⎫n +122·|-4n | =⎣⎢⎡⎦⎥⎤-4nt 2+4t 2⎝ ⎛⎭⎪⎫n +12+⎝ ⎛⎭⎪⎫n +122·4n =⎣⎢⎡⎦⎥⎤2t 2+⎝ ⎛⎭⎪⎫n +122·4n . ∵S 2=12⎝ ⎛⎭⎪⎫n +12·|y 1-y 2| =12⎝⎛⎭⎪⎫n +12·(y 1+y 2)2-4y 1y 2, ∴S 22=14⎝ ⎛⎭⎪⎫n +122·(16t 2+16n )=4⎝ ⎛⎭⎪⎫n +122(t 2+n ).∵S 22=4S 1S 3,∴n ⎣⎢⎡⎦⎥⎤2t 2+⎝ ⎛⎭⎪⎫n +122=⎝ ⎛⎭⎪⎫n +122(t 2+n ), 即2n =⎝ ⎛⎭⎪⎫n +122,解得n =12. ∴直线MN 恒过定点⎝ ⎛⎭⎪⎫12,0.。
2020高考数学逆袭:专题五解析几何
专题五解析几何第1讲直线与圆[全国卷3年考情分析](1)圆的方程近几年成为高考全国课标卷命题的热点,需重点关注.此类试题难度中等偏下,多以选择题或填空题形式考查.(2)直线与圆的方程偶尔单独命题,单独命题时有一定的深度,有时也会出现在压轴题的位置,难度较大,对直线与圆的方程(特别是直线)的考查主要体现在圆锥曲线的综合问题上.考点一直线的方程1.已知直线l1:(k-3)x+(4-k)y+1=0与直线l2:2(k-3)x-2y+3=0平行,则k的值是()A.1或3 B.1或5C.3或5 D.1或22.已知直线mx+4y-2=0与2x-5y+n=0互相垂直,垂足为P(1,p),则m-n+p 的值是()A.24 B.20C .0 D.-43.坐标原点(0,0)关于直线x -2y +2=0对称的点的坐标是( ) A.⎝⎛⎭⎫-45,85 B.⎝⎛⎭⎫-45,-85 C.⎝⎛⎭⎫45,-85 D.⎝⎛⎭⎫45,854.已知直线l 过直线l 1:x -2y +3=0与直线l 2:2x +3y -8=0的交点,且点P (0,4)到直线l 的距离为2,则直线l 的方程为_________________.考点二 圆的方程[例1] 在平面直角坐标系xOy 中,曲线Γ:y =x 2-mx +2m (m ∈R )与x 轴交于不同的两点A ,B ,曲线Γ与y 轴交于点C .(1)是否存在以AB 为直径的圆过点C ?若存在,求出该圆的方程;若不存在,请说明理由.(2)求证:过A ,B ,C 三点的圆过定点.1.若方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,则实数a 的取值范围是( ) A .(-∞,-2) B.⎝⎛⎭⎫-23,0 C .(-2,0) D.⎝⎛⎭⎫-2,232.已知圆M :x 2+y 2-2x +a =0,若AB 为圆M 的任意一条直径,且OA ―→·OB ―→=-6(其中O 为坐标原点),则圆M 的半径为( )A. 5B.6C.7D.223.已知圆C 的圆心在x 轴的正半轴上,点M (0,5)在圆C 上,且圆心到直线2x -y =0的距离为455,则圆C 的标准方程为________.考点三 直线与圆的位置关系 题型一 圆的切线问题[例2] (1)(2019·永州模拟)自圆C :(x -3)2+(y +4)2=4外一点P (x ,y )引该圆的一条切线,切点为Q ,PQ 的长度等于点P 到原点O 的距离,则点P 的轨迹方程为( )A .8x -6y -21=0 B.8x +6y -21=0 C .6x +8y -21=0D.6x -8y -21=0(2)设点M (x 0,y 0)为直线3x +4y =25上一动点,过点M 作圆x 2+y 2=2的两条切线,切点为B ,C ,则四边形OBMC 面积的最小值为________.题型二 直线与圆相交问题[例3] 在平面直角坐标系xOy 中,已知圆C 与y 轴相切,且过点M (1,3),N (1,-3).(1)求圆C 的方程;(2)已知直线l 与圆C 交于A ,B 两点,且直线OA 与直线OB 的斜率之积为-2.求证:直线l 恒过定点,并求出定点的坐标.1.已知圆O :x 2+y 2=1,点P 为直线x 4+y2=1上一动点,过点P 向圆O 引两条切线P A ,PB ,A ,B 为切点,则直线AB 经过定点( )A.⎝⎛⎭⎫12,14B.⎝⎛⎭⎫14,12C.⎝⎛⎭⎫34,0D.⎝⎛⎭⎫0,342.已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点,若|MN |=255,则直线l 的方程为________________.3.已知圆C 经过点A (0,2),B (2,0),圆C 的圆心在圆x 2+y 2=2的内部,且直线3x +4y +5=0被圆C 所截得的弦长为2 3.点P 为圆C 上异于A ,B 的任意一点,直线P A 与x 轴交于点M ,直线PB 与y 轴交于点N .(1)求圆C 的方程;(2)若直线y =x +1与圆C 交于A 1,A 2两点,求BA 1―→·BA 2―→; (3)求证:|AN |·|BM |为定值.4. 已知圆O :x 2+y 2=9,过点C (2,1)的直线l 与圆O 交于P ,Q 两点,则当△OPQ 的面积最大时,直线l 的方程为( )A .x -y -3=0或7x -y -15=0B .x +y +3=0或7x +y -15=0C .x +y -3=0或7x -y +15=0D .x +y -3=0或7x +y -15=0[解析] 当直线l 的斜率不存在时,l 的方程为x =2,则P (2,5),Q (2,-5),所以S【课后专项练习】A 组一、选择题1.“ab =4”是“直线2x +ay -1=0与直线bx +2y -2=0平行”的( ) A .充要条件 B.充分不必要条件 C .必要不充分条件 D.既不充分也不必要条件2.已知直线l 1过点(-2,0)且倾斜角为30°,直线l 2过点(2,0)且与直线l 1垂直,则直线l 1与直线l 2的交点坐标为( )A .(3,3)B .(2,3)C .(1,3)D .⎝⎛⎭⎫1,323.已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A .内切 B.相交 C .外切 D.相离4.直线x +y +2=0分别与x 轴,y 轴交于A ,B 两点,点P 在圆(x -2)2+y 2=2上,则△ABP 面积的取值范围是( )A .[2,6]B .[4,8]C .[2,32]D .[22,32]5.已知圆O :x 2+y 2=4上到直线l :x +y =a 的距离等于1的点至少有2个,则实数a 的取值范围为( )A .(-32,32)B .(-∞,-32)∪(32,+∞)C .(-22,22)D .[-32,3 2 ]6.在平面直角坐标系中,O 为坐标原点,直线x -ky +1=0与圆C :x 2+y 2=4相交于A ,B 两点,OM ―→=OA ―→+OB ―→,若点M 在圆C 上,则实数k 的值为( )A .-2 B.-1 C .0 D.1二、填空题7.过点C (3,4)作圆x 2+y 2=5的两条切线,切点分别为A ,B ,则点C 到直线AB 的距离为________.8.已知直线l :ax -3y +12=0与圆M :x 2+y 2-4y =0相交于A ,B 两点,且∠AMB =π3,则实数a =________.9.(2019·浙江高考)已知圆C 的圆心坐标是(0,m ),半径长是r .若直线2x -y +3=0与圆C 相切于点A (-2,-1),则m =________,r =________.三、解答题10.已知以点A (-1,2)为圆心的圆与直线l 1:x +2y +7=0相切.过点B (-2,0)的动直线l 与圆A 相交于M ,N 两点.(1)求圆A 的方程;(2)当|MN |=219时,求直线l 的方程.11.已知点P(2,2),圆C:x2+y2-8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.(1)求M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及△POM的面积.12.(2018·全国卷Ⅱ)设抛物线C:y2=4x的焦点为F,过F且斜率为k(k>0)的直线l与C交于A,B两点,|AB|=8.(1)求l的方程;(2)求过点A,B且与C的准线相切的圆的方程.B组1.已知点M(-1,0),N(1,0),曲线E上任意一点到点M的距离均是到点N的距离的3倍.(1)求曲线E的方程;(2)已知m≠0,设直线l1:x-my-1=0交曲线E于A,C两点,直线l2:mx+y-m=0交曲线E于B,D两点.当CD的斜率为-1时,求直线CD的方程.2.在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4,设圆C的半径为1,圆心在l上.(1)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线的方程;(2)若圆C上存在点M,使|MA|=2|MO|,求圆心C的横坐标a的取值范围.3.在直角坐标系xOy中,曲线y=x2+mx-2与x轴交于A,B两点,点C的坐标为(0,1),当m变化时,解答下列问题:(1)能否出现AC⊥BC的情况?说明理由;(2)证明过A,B,C三点的圆在y轴上截得的弦长为定值.4.如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :x 2+y 2-12x -14y +60=0及其上一点A (2,4).(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程;(2)设平行于OA 的直线l 与圆M 相交于B ,C 两点,且|BC |=|OA |,求直线l 的方程;(3)设点T (t ,0)满足:存在圆M 上的两点P 和Q ,使得TA ―→+TP ―→=TQ ―→,求实数t 的取值范围.第2讲 圆锥曲线的定义、方程与性质[全国卷3年考情分析](1)圆锥曲线的定义、方程与性质是每年高考必考的内容.以选择题、填空题的形式考查,常出现在第4~12或15~16题的位置,着重考查圆锥曲线的几何性质与标准方程,难度中等.(2)圆锥曲线的综合问题多以解答题的形式考查,常作为压轴题出现在第19~20题的位置,一般难度较大.考点一 圆锥曲线的定义与标准方程[例1] (1)(2019·全国卷Ⅰ)已知椭圆C 的焦点为F 1(-1,0),F 2(1,0),过F 2的直线与C 交于A ,B 两点.若|AF 2|=2|F 2B |,|AB |=|BF 1|,则C 的方程为( )A.x 22+y 2=1 B.x 23+y 22=1 C.x 24+y 23=1 D.x 25+y 24=1 (2)(2019·全国卷Ⅱ)若抛物线y 2=2px (p >0)的焦点是椭圆x 23p +y 2p=1的一个焦点,则p =( )A .2B .3C .4D .8(3)(2019·郑州模拟)设F 1,F 2分别是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,P是C 上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2最小内角的大小为30°,则双曲线C 的渐近线方程是( )A.2x ±y =0B.x ±2y =0 C .x ±2y =0D.2x ±y =01.椭圆x 25+y 24=1的左焦点为F ,直线x =m 与椭圆相交于点M ,N ,当△FMN 的周长最大时,△FMN 的面积是( )A.55B.655C.855D.4552.(2019·福州模拟)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,点B 是虚轴的一个端点,线段BF 与双曲线C 的右支交于点A ,若BA ―→=2AF ―→,且|BF ―→|=4,则双曲线C 的方程为( )A.x 26-y 25=1 B.x 28-y 212=1 C.x 28-y 24=1 D.x 24-y 26=13.若抛物线y 2=2px (p >0)上一点到焦点和到抛物线对称轴的距离分别为10和6,则抛物线的标准方程为____________________.考点二 圆锥曲线的性质[例2] (1)(2018·全国卷Ⅱ)已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,A是C 的左顶点,点P 在过A 且斜率为36的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则C 的离心率为( )A.23 B.12 C.13D.14(2)(2019·全国卷Ⅰ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若F 1A ―→=AB ―→, F 1B ―→·F 2B ―→=0,则C 的离心率为________.(3)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线与抛物线y 2=2px (p >0)的准线分别交于A ,B 两点,O 为坐标原点.若双曲线的离心率为5,△AOB 的面积为2,则p =________.1.(2018·全国卷Ⅱ)双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为3,则其渐近线方程为( )A .y =±2x B.y =±3x C .y =±22x D.y =±32x2.(2019·济南市模拟考试)设F 1,F 2分别是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过F 2的直线交椭圆于A ,B 两点,且AF 1―→·AF 2―→=0,AF 2―→=2F 2B ―→,则椭圆E 的离心率为( )A.23B.34C.53D.743.(2019·广州市调研测试)已知抛物线y2=2px(p>0)与双曲线x2a2-y2b2=1(a>0,b>0)有相同的焦点F,点A是两曲线的一个交点,且AF⊥x轴,则双曲线的离心率为()A.2+1B.3+1C.5+1D.2+24.已知F1,F2是双曲线y2a2-x2b2=1(a>0,b>0)的两个焦点,过其中一个焦点与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点M,若点M在以线段F1F2为直径的圆内,则双曲线离心率的取值范围是________.考点三直线与圆锥曲线题型一直线与圆锥曲线的位置关系[例3]在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p >0)于点P,M关于点P的对称点为N,连接ON并延长交C于点H.(1)求|OH| |ON|;(2)除H以外,直线MH与C是否有其他公共点?说明理由.题型二 直线与圆锥曲线的弦长[例4] (2019·全国卷Ⅰ)已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若AP ―→=3PB ―→,求|AB |.1.已知椭圆C :x 2a 2+y 2=1(a >1),F 1,F 2分别是其左、右焦点,以F 1F 2为直径的圆与椭圆C 有且仅有两个交点.(1)求椭圆C 的方程;(2)设过点F 1且不与坐标轴垂直的直线l 交椭圆于A ,B 两点,线段AB 的垂直平分线与x 轴交于点P ,点P 横坐标的取值范围是⎝⎛⎭⎫-14,0,求线段AB 长度的取值范围.2.(2019·全国卷Ⅲ)已知曲线C :y =x 22,D 为直线y =-12上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点;(2)若以E ⎝⎛⎭⎫0,52为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.3.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为(3,0),且经过点⎝⎛⎭⎫-1,32,点M 是x 轴上的一点,过点M 的直线l 与椭圆C 交于A ,B 两点(点A 在x 轴的上方).(1)求椭圆C 的方程;(2)若AM ―→=2MB ―→,且直线l 与圆O :x 2+y 2=47相切于点N ,求|MN |.【课后专项练习】A 组一、选择题1.(2019·济南模拟)已知双曲线x 29-y 2m =1的一个焦点F 的坐标为(-5,0),则该双曲线的渐近线方程为( )A .y =±43xB.y =±34xC .y =±53xD.y =±35x2.已知抛物线x 2=4y 上一动点P 到x 轴的距离为d 1,到直线l :x +y +4=0的距离为d 2,则d 1+d 2的最小值是( )A.552+2B.522+1C.522-2D.522-13.(2019·全国卷Ⅲ)双曲线C :x 24-y 22=1的右焦点为F ,点P 在C 的一条渐近线上,O为坐标原点,若|PO |=|PF |,则△PFO 的面积为( )A.324B.322C.22D.324.(2019·全国卷Ⅱ)设F 为双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ |=|OF |,则C 的离心率为( )A. 2B.3 C .2 D.55.(2019·昆明模拟)已知F 1,F 2为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,B 为C 的短轴的一个端点,直线BF 1与C 的另一个交点为A ,若△BAF 2为等腰三角形,则|AF 1||AF 2|=( )A.13B.12C.23D.36.(2019·广州调研)已知椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)的长轴长是短轴长的2倍,过右焦点F 且斜率为k (k >0)的直线与Γ相交于A ,B 两点.若AF ―→=3FB ―→,则k =( )A.1B.2C.3D.2二、填空题7.已知P (1,3)是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)渐近线上的点,则双曲线C 的离心率是________.8.若F 1,F 2是椭圆x 29+y 27=1的两个焦点,A 为椭圆上一点,且∠AF 1F 2=45°,则△AF 1F 2的面积为________.9.(2019·洛阳尖子生第二次联考)过抛物线C :y 2=2px (p >0)的焦点F 的直线与抛物线C交于A ,B 两点,且AF ―→=3FB ―→,抛物线C 的准线l 与x 轴交于点E ,AA 1⊥l 于点A 1,若四边形AA 1EF 的面积为63,则p =________.三、解答题10.(2019·天津高考)设椭圆x2a2+y2b2=1(a>b>0)的左焦点为F,上顶点为B.已知椭圆的短轴长为4,离心率为5 5.(1)求椭圆的方程;(2)设点P在椭圆上,且异于椭圆的上、下顶点,点M为直线PB与x轴的交点,点N 在y轴的负半轴上,若|ON|=|OF|(O为原点),且OP⊥MN,求直线PB的斜率.11.已知抛物线C:x2=2py(p>0)上一点M(m,9)到其焦点F的距离为10.(1)求抛物线C的方程;(2)设过焦点F的直线l与抛物线C交于A,B两点,且抛物线在A,B两点处的切线分别交x轴于P,Q两点,求|AP|·|BQ|的取值范围.12.(2019·江苏高考)如图,在平面直角坐标系xOy 中,椭圆C :x 2a2+y 2b2=1(a >b >0)的焦点为F 1(-1,0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:(x -1)2+y 2=4a 2交于点A ,与椭圆C 交于点D .连接AF 1并延长交圆F 2于点B ,连接BF 2交椭圆C 于点E ,连接DF 1.已知DF 1=52. (1)求椭圆C 的标准方程;(2)求点E 的坐标.1.已知抛物线C:x2=2py(p>0),过焦点F的直线交C于A,B两点,D是抛物线的准线l与y轴的交点.(1)若AB∥l,且△ABD的面积为1,求抛物线的方程;(2)设M为AB的中点,过M作l的垂线,垂足为N.2.(2019·武汉市调研测试)已知椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)经过点M (-2,1),且右焦点F (3,0).(1)求椭圆Γ的标准方程;(2)过N (1,0)且斜率存在的直线AB 交椭圆Γ于A ,B 两点,记t =MA ―→·MB ―→,若t 的最大值和最小值分别为t 1,t 2,求t 1+t 2的值.3.如图,椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,右顶点、上顶点分别为点A ,B ,且|AB |=52|BF |. (1)求椭圆C 的离心率;(2)若点M ⎝⎛⎭⎫-1617,217在椭圆C 的内部,过点M 的直线l 交椭圆C 于P ,Q 两点,M 为线段PQ 的中点,且OP ⊥OQ ,求直线l 的方程及椭圆C 的方程.4.(2019·福建省质量检查)在平面直角坐标系xOy中,圆F:(x-1)2+y2=1外的点P 在y轴的右侧运动,且P到圆F上的点的最小距离等于它到y轴的距离.记P的轨迹为E.(1)求E的方程;(2)过点F的直线交E于A,B两点,以AB为直径的圆D与平行于y轴的直线相切于点M,线段DM交E于点N,证明:△AMB的面积是△AMN的面积的四倍.第3讲圆锥曲线的综合问题[全国卷3年考情分析]解析几何是数形结合的典范,是高中数学的主要知识板块,是高考考查的重点知识之一,在解答题中一般会综合考查直线、圆、圆锥曲线等.试题难度较大,多以压轴题出现.解答题的热点题型有:(1)直线与圆锥曲线位置关系;(2)圆锥曲线中定点、定值、最值及范围的求解;(3)圆锥曲线中的判断与证明.第1课时 圆锥曲线中的最值、范围、证明问题考点一 圆锥曲线中的最值问题[例1] (2019·全国卷Ⅱ)已知点A (-2,0),B (2,0),动点M (x ,y )满足直线AM 与BM的斜率之积为-12.记M 的轨迹为曲线C . (1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连接QE 并延长交C 于点G .①证明:△PQG 是直角三角形;②求△PQG 面积的最大值.(2019·河北省九校第二次联考)已知抛物线C :y 2=2px (p >0)的焦点为F ,若过点F 且斜率为1的直线与抛物线相交于M ,N 两点,且|MN |=8.(1)求抛物线C 的方程;(2)设直线l 为抛物线C 的切线,且l ∥MN ,P 为l 上一点,求PM ―→·PN ―→的最小值.考点二 圆锥曲线中的范围问题[例2] (2019·安徽五校联盟第二次质检)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦点坐标分别为F 1(-1,0),F 2(1,0),P 为椭圆C 上一点,满足3|PF 1|=5|PF 2|且cos ∠F 1PF 2=35. (1)求椭圆C 的标准方程;(2)设直线l :y =kx +m 与椭圆C 交于A ,B 两点,点Q ⎝⎛⎭⎫14,0,若|AQ |=|BQ |,求k 的取值范围.1.(2019·洛阳模拟)已知A ,B 是x 轴正半轴上两点(A 在B 的左侧),且|AB |=a (a >0),过A ,B 分别作x 轴的垂线,与抛物线y 2=2px (p >0)在第一象限分别交于D ,C 两点.(1)若a =p ,点A 与抛物线y 2=2px 的焦点重合,求直线CD 的斜率;(2)若O 为坐标原点,记△OCD 的面积为S 1,梯形ABCD 的面积为S 2,求S 1S 2的取值范围.2.已知A ,B 分别为曲线C :x 2a 2+y 2=1(y ≥0,a >0)与x 轴的左、右两个交点,直线l 过点B 且与x 轴垂直,M 为l 上位于x 轴上方的一点,连接AM 交曲线C 于点T .(1)若曲线C 为半圆,点T 为AB ︵的三等分点,试求出点M 的坐标.(2)若a >1,S △MAB =2,当△TAB 的最大面积为43时,求椭圆的离心率的取值范围.考点三 圆锥曲线中的证明问题[例3] (2018·全国卷Ⅰ)设椭圆C :x 22+y 2=1的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程;(2)设O 为坐标原点,证明:∠OMA =∠OMB .(2019·福州市第一学期抽测)已知点A ⎝⎛⎭⎫1,-32在椭圆C :x 2a 2+y 2b 2=1(a >b >0)上,O 为坐标原点,直线l :x a 2-3y 2b 2=1的斜率与直线OA 的斜率乘积为-14. (1)求椭圆C 的方程;(2)不经过点A 的直线y =32x +t (t ≠0且t ∈R )与椭圆C 交于P ,Q 两点,P 关于原点的对称点为R (与点A 不重合),直线AQ ,AR 与y 轴分别交于两点M ,N ,求证:|AM |=|AN |.【课后专项练习】1.(2019·湖南省五市十校联考)已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为22,右焦点为F,以原点O为圆心,椭圆C的短半轴长为半径的圆与直线x-y+2=0相切.(1)求椭圆C的方程;(2)如图,过定点P(2,0)的直线l交椭圆C于A,B两点,连接AF并延长交C于M,求证:∠PFM=∠PFB.2.(2019·广东六校第一次联考)已知椭圆D :x 2a 2+y 2b 2=1(a >b >0)的离心率为e =22,点(-2,1)在椭圆D 上.(1)求椭圆D 的方程;(2)过椭圆D 内一点P (0,t )的直线l 的斜率为k ,且与椭圆D 交于M ,N 两点,设直线OM ,ON (O 为坐标原点)的斜率分别为k 1,k 2,若对任意k ,存在实数λ,使得k 1+k 2=λk ,求实数λ的取值范围.3.已知抛物线C :y 2=2px (p >0)的准线l 1与x 轴交于点M ,直线l 2:4x -3y +6=0与抛物线C 没有公共点,动点P 在抛物线C 上,点P 到l 1,l 2的距离之和的最小值等于2.(1)求抛物线C 的方程;(2)过点M 的直线与抛物线C 交于两个不同的点A ,B ,设MA ―→=λMB ―→ ⎝⎛⎭⎫13≤λ<1,求|AB |的取值范围.4.(2019·重庆七校联考)椭圆C:x2a2+y2b2=1(a>b>0)的离心率为12,其左焦点到点P(2,1)的距离为10.不经过原点O的直线l与椭圆C相交于A,B两点,且线段AB被直线OP 平分.(1)求椭圆C的方程;(2)求△ABP的面积取最大值时,直线l的方程.第2课时 圆锥曲线中的定点、定值、探索性问题考点一 定点问题[例1] (2019·郑州市第一次质量预测)设M 点为圆C :x 2+y 2=4上的动点,点M 在x轴上的投影为N .动点P 满足2PN ―→=3MN ―→,动点P 的轨迹为E .(1)求E 的方程;(2)设E 的左顶点为D ,若直线l :y =kx +m 与曲线E 交于A ,B 两点(A ,B 不是左、右顶点),且满足|DA ―→+DB ―→|=|DA ―→-DB ―→|,求证:直线l 恒过定点,并求出该定点的坐标.1.(2019·北京高考)已知抛物线C:x2=-2py经过点(2,-1).(1)求抛物线C的方程及其准线方程;(2)设O为原点,过抛物线C的焦点作斜率不为0的直线l交抛物线C于两点M,N,直线y=-1分别交直线OM,ON于点A和点B.求证:以AB为直径的圆经过y轴上的两个定点.2.(2019·安徽省考试试题)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的上顶点为P ,右顶点为Q ,直线PQ 与圆x 2+y 2=45相切于点M ⎝⎛⎭⎫25,45. (1)求椭圆C 的方程;(2)若不经过点P 的直线l 与椭圆C 交于A ,B 两点,且P A ―→·PB ―→=0,求证:直线l 过定点.考点二定值问题[例2]已知椭圆C:x2a2+y2b2=1(a>b>0),过A(2,0),B(0,1)两点.(1)求椭圆C的方程及离心率;(2)设P为第三象限内一点且在椭圆C上,直线P A与y轴交于点M,直线PB与x轴交于点N,求证:四边形ABNM的面积为定值.如图所示,已知点M(a,3)是抛物线y2=4x上一定点,直线AM,BM的斜率互为相反数,且与抛物线另交于A,B两个不同的点.(1)求点M到其准线的距离;(2)求证:直线AB的斜率为定值.考点三探索性问题[例3](2019·重庆市学业质量调研)如图,已知椭圆C:x2a2+y2b2=1(a>b>0),其左、右焦点分别为F1(-2,0)及F2(2,0),过点F1的直线交椭圆C于A,B两点,线段AB的中点为G,AB的中垂线与x轴和y轴分别交于D,E两点,且|AF1|,|F1F2|,|AF2|构成等差数列.(1)求椭圆C的方程;(2)记△GF 1D的面积为S1,△OED(O为坐标原点)的面积为S2.试问:是否存在直线AB,使得S1=S2?请说明理由.(2019·广州市调研测试)已知动圆C过定点F(1,0),且与定直线x=-1相切.(1)求动圆圆心C的轨迹E的方程;(2)过点M(-2,0)的任一条直线l与轨迹E交于不同的两点P,Q,试探究在x轴上是否存在定点N(异于点M),使得∠QNM+∠PNM=π?若存在,求点N的坐标;若不存在,请说明理由.【课后专项练习】1.(2019·开封模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,上顶点为M ,△MF 1F 2为等腰直角三角形,且其面积为1.(1)求椭圆C 的方程;(2)过点M 分别作直线MA ,MB 交椭圆C 于A ,B 两点,设这两条直线的斜率分别为k 1,k 2,且k 1+k 2=2,证明:直线AB 过定点.2.(2019·南昌市第一次模拟测试)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为12,P 是C 上的一个动点,且△F 1PF 2面积的最大值为4 3. (1)求C 的方程;(2)设C 的左、右顶点分别为A ,B ,若直线P A ,PB 分别交直线x =2于M ,N 两点,过点F 1作以MN 为直径的圆的切线,证明:切线长为定值,并求该定值.3.(2019·福州市质量检测)已知抛物线C 1:x 2=2py (p >0)和圆C 2:(x +1)2+y 2=2,倾斜角为45°的直线l 1过C 1的焦点,且l 1与C 2相切.(1)求p 的值;(2)动点M 在C 1的准线上,动点A 在C 1上,若C 1在A 点处的切线l 2交y 轴于点B ,设MN ―→=MA ―→+MB ―→,求证:点N 在定直线上,并求该定直线的方程.。
2020高考数学解析几何内容剖析及备考建议
2020高考数学解析几何内容剖析及备考建议解析几何是高中数学的重要内容。
高考主要考查直线与圆、椭圆、抛物线、双曲线的定义、标准方程和简单的几何性质。
其中直线与圆、直线与圆锥曲线的位置关系是考查重点。
运动与变化是研究几何问题的基本观点,利用代数方法研究几何问题是基本方法。
试题强调综合性,综合考查数形结合思想、函数与方程思想、特殊与一般思想等思想方法,突出考查考生推理论证能力和运算求解能力。
一、直线与方程1.在平面直角坐标系下,结合具体图形掌握确定直线位置的几何要素.2. 理解直线的倾斜角概念,掌握过两点的直线斜率的计算公式.3.能根据两条直线的斜率判断两条直线平行或垂直.4.掌握确定直线的几何要素,掌握直线方程的三种形式(点斜式、两点式、一般式),了解斜截式与一次函数的关系.5.能用解方程组的方法求两条相交直线的交点坐标.6.掌握两点间的距离公式,点到直线的距离公式,会求两平行直线间的距离.二、圆的方程1.掌握确定圆的几何要素,掌握圆的标准方程与一般方程.2.能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判定圆与圆的位置关系.3.能用直线与圆的方程解决一些简单的问题。
4 .初步了解用代数方法处理几何问题的思想。
三、空间直角坐标系1.了解空间直角坐标系,会用空间直角坐标表示点的位置。
2.会简单应用空间两点间的距离公式。
四、圆锥曲线(理科)1.了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用。
2.掌握椭圆、抛物线的定义、几何图形、标准方程及简单几何性质(范围、对称性、顶点、离心率).3.了解双曲线的定义、几何图形和标准方程,知道双曲线的简单的几何性质(范围、对称轴、顶点、离心率、渐近线).4.了解曲线与方程的对应关系。
5.理解数形结合思想。
了解圆锥曲线的简单应用。
四、圆锥曲线(文科)1.掌握椭圆的定义、几何图形、标准方程及简单几何性质(范围、对称性、顶点、离心率).2.了解双曲线的定义、几何图形和标准方程,知道双曲线的简单的几何性质(范围、对称轴、顶点、离心率、渐近线).3.了解抛物线的定义、几何图形和标准方程,知道其简单的几何性质(范围、对称轴、顶点、离心率).4.理解数形结合思想。
2020年高考数学(理)大题分解专题05 解析几何
(2019年全国卷I)已知抛物线C :x y 32=的焦点为F,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若4||||=+BF AF ,求l 的方程;(2)若3AP PB =,求||AB .【肢解1】若4||||=+BF AF ,求l 的方程;【肢解2】若3AP PB =,求||AB.【肢解1】若4||||=+BF AF ,求l 的方程;【解析】设直线l 方程为m x y +=23,()11,A x y ,()22,B x y ,由抛物线焦半径公式可知12342AF BF x x +=++=,所以1252x x +=,联立2323y x m y x⎧=+⎪⎨⎪=⎩得04)12(12922=+-+m x m x ,由0144)1212(22>--=∆m m 得12m <,所以121212592m x x -+=-=,解得78m =-,所以直线l 的方程为3728y x =-,即12870x y --=.【肢解2】若3AP PB =,求||AB .大题肢解一直线与抛物线【解析】设直线l 方程为23x y t =+,联立2233x y t y x ⎧=+⎪⎨⎪=⎩得0322=--t y y ,由4120t ∆=+>得31->t ,由韦达定理知221=+y y ,因为PB AP 3=,所以213y y -=,所以12-=y ,31=y ,所以1=t ,321-=y y .则=-+⋅+=212214)(941||y y y y AB =-⨯-⋅+)3(4294123134.设抛物线)0(22>=p px y 的焦点为F ,过点F 的而直线交抛物线于A (x 1,y 1),B (x 2,y 2),则|AB |=x 1+x 2+p.弦长的计算方法:求弦长时可利用弦长公式,根据直线方程与圆锥曲线方程联立消元后得到的一元二次方程,利用根与系数的关系得到两根之和、两根之积的代数式,然后进行整体代入弦长公式求解.温馨提示:注意两种特殊情况:(1)直线与圆锥曲线的对称轴平行或垂直;(2)直线过圆锥曲线的焦点.【拓展1】已知抛物线C :x y 32=的焦点为F,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .若27||||=+BF AF ,求l 在y 轴上的截距.【解析】设直线l 方程为m x y +=23,()11,A x y ,()22,B x y ,由抛物线焦半径公式可知123722AF BF x x +=++=,所以122x x +=,联立2323y x m y x⎧=+⎪⎨⎪=⎩得04)12(12922=+-+m x m x ,由0144)1212(22>--=∆m m 得12m <,所以12121229m x x -+=-=,解得21m =-,所以直线l 的方程为3122y x =-,令0=x 得21-=y ,所以直线l 在y 轴上的截距为21-.【拓展2】已知抛物线C :x y 32=的焦点为F,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .若2AP PB =,)0,4(-M ,求ABM ∆的面积.【解析】设直线l 方程为23x y t =+,联立2233x y t y x⎧=+⎪⎨⎪=⎩得0322=--t y y ,由4120t ∆=+>得31->t ,由韦达定理知221=+y y ,t y y 321-=,因为PB AP 2=,所以212y y -=,所以22-=y ,41=y ,所以821-=y y .38-=t ,所以=-+⋅+=212214)(941||y y y y AB =-⨯-⋅+)8(429412132,直线l 方程为2833x y =-,即0823=+-y x ,所以点)0,4(-M 到l 的距离13413|812|=+-=d ,所以ABM ∆的面积为413413221||21=⨯⨯=⋅d AB .1.(2019年山西太原一模)已知抛物线x y 42=的焦点为F ,过焦点F 的直线交抛物线于A ,B 两点,O 为坐标原点,若AOB ∆的面积为6,求||AB .【解析】由题意知抛物线x y 42=的焦点F 的坐标为)0,1(,易知当直线AB 垂直于x 轴时,AOB ∆的面积为2,不满足题意,所以可设直线AB 的方程为)0)(1(≠-=k x k y ,与x y 42=联立,消去x 得0442=--k y ky ,设),(11y x A ,),(22y x B ,由韦达定理知ky y 421=+,421-=y y ,变式训练一所以1616||221+=-ky y ,所以AOB ∆的面积为616161212=+⨯⨯k,解得2±=k ,所以6||11||212=-⋅+=y y k AB .2.(2019年湖北荆州模拟)已知抛物线24y x =的焦点为F ,过点F 的直线交抛物线于,A B 两点.(1)若3AF FB =,求直线AB 的斜率;(2)设点M 在线段AB 上运动,原点O 关于点M 的对称点为C ,求四边形OACB 面积的最小值.【解析】(1)依题意可设直线:1AB x my =+,将直线AB 与抛物线联立214x my y x =+⎧⎨=⎩⇒2440y my --=,设11(,)A x y ,22(,)B x y ,由韦达定理得121244y y my y +=⎧⎨=-⎩,因为3AF FB = ,所以213y y -=,即312=m ,所以直线AB的斜率为或.(2)121212242OACB AOB S S OF y y y y ∆==⋅⋅-=-=,当0m =时,四边形OACB 的面积最小,最小值为4.(2020届广东省珠海市高三上学期期末)中心在坐标原点,对称轴为坐标轴的椭圆C 过)1,0(-A 、21,3(B 两点,(1)求椭圆C 的方程;(2)设直线)0(21:≠+=m m x y l 与椭圆C 交于P ,Q 两点,求当所取何值时,OPQ ∆的面积最大.【肢解1】求椭圆C 的方程;【肢解2】设直线)0(21:≠+=m m x y l 与椭圆C 交于P ,Q 两点,求当所取何值时,OPQ ∆的面积最大题肢解二大.【肢解1】求椭圆C 的方程;【解析】(1)由题意可设椭圆C 的方程为22221x y m n+=,代入()0,1A -、12B ⎫⎪⎭两点得()2222222101121m n m n ⎧-+=⎪⎪⎪⎨⎛⎫ ⎪⎝⎭+=⎪⎩解得21n =,24m =,所以椭圆:C 2214x y +=.【肢解2】设直线)0(21:≠+=m m x y l 与椭圆C 交于P ,Q 两点,求当所取何值时,OPQ ∆的面积最大.【解析】将直线1:,(0)2l y x m m =+>代入2214x y +=得:221442x x m ⎛⎫++= ⎪⎝⎭.整理得222220x mx m ++-=.()()2222422840m m m ∆=--=->得m <<由韦达定理得122x x m +=-,21222x x m =-.12x x -===1212OPQ S m x x ∆=-==由二次函数可知当21m =即1m =时,OPQ ∆的面积的最大.直线与圆锥曲线的相交弦长问题:设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),则|AB |=1+k 2|x 1-x 2|=1+k 2(x 1+x 2)2-4x 1x 2=1+1k 2|y 1-y 2|=1+1k2(y 1+y 2)2-4y 1y 2.【变式1】中心在坐标原点,对称轴为坐标轴的椭圆C 过)1,0(-A 、)213(B 两点,(1)求椭圆C 的方程;(2)设直线)0(21:>+=m m x y l 与椭圆C 交于P ,Q 两点,若APQ ∆的面积为1+m ,求m 的值.【解析】(1)由题意可设椭圆C 的方程为22221x y m n+=,代入()0,1A -、12B ⎫⎪⎭两点得()22222221011321m n m n ⎧-+=⎪⎪⎪⎨⎛⎫ ⎪⎝⎭+=⎪⎩解得21n =,24m =.所以椭圆:C 2214x y +=.(2)将直线1:,(0)2l y x m m =+>代入2214x y +=得221442x x m ⎛⎫++= ⎪⎝⎭.整理得222220x mx m ++-=.()()2222422840m m m ∆=--=->得m <<设),(11y x P ,),(22y x Q ,韦达定理得122x x m +=-,21222x x m =-.所以)22(4)2()21(1||222---⋅+=m m PQ 252+-⋅=m ,由点到直线的距离公式得点)1,0(-A 到直线l 的距离5|22|m d +=.所以APQ ∆的面积为255|22|212+-⋅⋅+⋅m m 2|1|2+-⋅+=m m ,变式训练二因为APQ ∆的面积为1+m ,所以12|1|2+=+-⋅+m m m ,解得1=m 或1-=m (舍去).所以1=m .【变式2】已知椭圆)0(1:2222>>=+b a by a x C 的离心率为22,其中左焦点为)0,2(-F .(1)求椭圆C 的方程;(2)若直线m x y +=与椭圆C 交于不同的两点A ,B ,1ABF ∆的面积为)2(6-m ,求直线的方程.【解析】(1)由题意,得⎪⎪⎪⎩⎪⎪⎪⎨⎧+===222222c b a c a c 解得⎩⎨⎧==222b a ,所以椭圆C 的方程为14822=+y x .(2)设点),(11y x A ,),(22y x B ,由⎪⎩⎪⎨⎧+==+m x y y x 14822消去y 得0824322=-++m mx x ,由0)84(12)4(22>--=∆m m 得3232<<-m ,由韦达定理知3421mx x -=+,382221-=m x x ,所以)82(4)34(2||22---⋅=m m AB 367342+-=m ,由点到直线的距离公式得)0,2(1-F 到直线m x y +=的距离2|2|m d -=,所以1ABF ∆的面积为36342|2|212+-⋅-⋅m m )2(6-=m ,解得3±=m ,满足3232<<-m ,所以所求直线方程为3+=x y 或3-=x y.1.(2019年山东高考模拟)已知圆22:4O x y +=,抛物线2:2(0)C x py p =>.(1)若抛物线C 的焦点F 在圆O 上,且A 为抛物线C 和圆O 的一个交点,求AF ;(2)若直线l 与抛物线C 和圆O 分别相切于,M N 两点,设()00,M x y ,当[]03,4y ∈时,求MN 的最大值.【解析】(1)由题意知(0,2)F ,所以4p =.所以抛物线C 的方程为28x y =.将28x y =与224x y +=联立得点A的纵坐标为2)A y =,结合抛物线定义得||22A pAF y =+=-.(2)由22x py =得22x y p=,x y p '=,所以直线l 的斜率为0x p ,故直线l 的方程为()000xy y x x p -=-.即000x x py py --=.又由||2ON ==得02084y p y =-且2040y ->,所以2222200||||||4MN OM ON x y =-=+-220000020824244y py y y y y =+-=+--()2202200022001644164444y y y y y y -+=+-=+---2020641644y y =++--.令204t y =-,0[3,4]y ∈,则[5,12]t ∈,令64()16f t t t =++,则264()1f t t'=-;当[5,8]t ∈时()0f t '≤,()f t 单调递减,当(8,12]t ∈时()0f t '>,()f t 单调递增,又64169(5)16555f =++=,64100169(12)16121235f =++=<,所以max 169()5f x =,即||MN 的最大值为1355.2.(2020黑龙江省齐市地区普高联谊高二上学期期末)已知椭圆C :22221(0)x y a b a b+=>>过点)23,22(与点)22,1(--.(1)求椭圆C 的方程;(2)设直线l 过定点1(0,2-,且斜率为()10k k-≠,若椭圆C 上存在A ,B 两点关于直线l 对称,O 为坐标原点,求k 的取值范围及AOB ∆面积的最大值.【解析】(1)由题意,可得2222231441214a b a b ⎧+=⎪⎪⎨⎪+=⎪⎩,解得222,1a b ==,所以椭圆的方程为2212x y +=.(2)由题意,设直线AB 的方程为(0)y kx m k =+≠,由2212y kx m x y =+⎧⎪⎨+=⎪⎩,整理得222(12)4220k x kmx m +++-=,所以∆>0,即2221k m +>,……….①且2121222422,1212km m x x x x k k-+=-=++,所以线段AB 的中点横坐标02212km x k =-+,纵坐标为00212my kx m k=+=+,将00,x y 代入直线l 方程112y x k =--,可得2122k m +=………②,由①②可得232k <,又0k ≠,所以66(,0)(0,22k ∈-⋃,又AB ==所以2122(12)AOB m S AB d k ∆==⋅+==所以1m =时,AOB S ∆最大值2,此时22k =±,所以22k =±时,AOB S ∆最大值22.3.(2020福建省宁德市高三第一次质量检查)已知抛物线2:2C y px =的焦点为F ,1(2Q 在抛物线C上,且32QF =.(1)求抛物线C 的方程及t 的值;(2)若过点(0,)M t 的直线l 与C 相交于,A B 两点,N 为AB 的中点,O 是坐标原点,且AOB MON S D D =,求直线l 的方程.【解析】(1)因为3||2QF =,所以13222p +=,所以2p =,抛物线C 的方程为:24y x =,将1(2Q 代入24y x =得2t =,(2)设1122(,),(,),A x y B x y 00(,),(0,2)N x y M ,显然直线l 的斜率存在,设直线l :2(0)y kx k =+≠,联立242y x y kx ⎧=⎨=+⎩,消去y 得224(1)40k x k x --+=,因为22Δ16(1)160k k =-->,得12k <且0k ≠,所以1212224(1)4,k x x x x k k -+==,因为ΔΔAOB MON S =,所以||||AB MN =,所以1200x -=-,即120x x x -=,因为N是AB的中点,所以1202x=,所以22121212()()434x xx x x x++-=×,整理得21212()16x x x x+=所以2224(1)64[]kk k-=,解得1211,3k k=-=,所以直线l的方程为:2y x=-+或123y x=+.4.(2020福建省龙岩市上杭县第一中学月考)已知点A(0,-2),椭圆E:22221x ya b+=(a>b>0)的离心率为2,F是椭圆E的右焦点,直线AF的斜率为3,O为坐标原点.(1)求E的方程;(2)设过点A的动直线l与E相交于P,Q两点.当△OPQ的面积最大时,求l的方程.【解析】(1)设(),0F c,因为直线AF的斜率为233,()0,2A-,所以2233c=,c=.又2223,2c b a ca==-,解得2,1a b==,所以椭圆E的方程为2214x y+=.(2)设()()1122,,,P x y Q x y由题意可设直线l的方程为:2y kx=-,联立22142,x yy kx+==-⎧⎪⎨⎪⎩,消去y得()221416120k x kx+-+=,当()216430k∆=->,所以234k>,所以32k<-或32k>,由韦达定理知1212221612,1414kx x x xk k+==++.所以PQ==214k=+,点O到直线l的距离d=,所以21214OPQS d PQk∆==+,t=>,则2243k t=+,所以244144OPQ S t t t∆==≤=++,当且仅当2t =,即2=,解得72k =±时取等号,满足234k >,所以OPQ ∆的面积最大时直线l 的方程为:22y x =-或22y x =--.5.(2020广东省佛山市高三教学质量检测)已知椭圆C :()222210x y a b a b +=>>的离心率为12,点31,2A ⎛⎫ ⎪⎝⎭在椭圆C 上,直线1l 过椭圆C 的右焦点与上顶点,动直线2l :y kx =与椭圆C 交于M ,N 两点,交1l 于P 点.(1)求椭圆C 的方程;(2)已知O 为坐标原点,若点P 满足14OP MN =,求此时MN 的长度.【解析】(1)由题意得12c e a ==,2223121a b⎛⎫ ⎪⎝⎭+=,结合222a b c =+,解得24a =,23b =,21c =,故所求椭圆C 的方程为22143x y +=.(2)易知定直线1l 0y +=.联立22143y kx x y =⎧⎪⎨+=⎪⎩,整理得()223412k x +=,解得x =,令M 点的坐标为.因为14OP MN =,由对称性可知,点P 为OM 的中点,故P ,又P 在直线1l0y +=0,解得10k =,23k =,所以M 点的坐标为()2,0或6,55⎛⎫ ⎪ ⎪⎝⎭,所以2OM =或2215,所以MN 的长度为4或4215.6.(2020广西名校高三上学期12月高考模拟)如图,中心为坐标原点O 的两圆半径分别为11r =,22r =,射线OT 与两圆分别交于A、B 两点,分别过A、B 作垂直于x 轴、y 轴的直线1l 、2l ,1l 交2l 于点P.(1)当射线OT 绕点O 旋转时,求P 点的轨迹E 的方程;(2)直线l:y kx =+与曲线E 交于M、N 两点,两圆上共有6个点到直线l 的距离为12时,求MN 的取值范围.【解析】(1)设(),P x y ,OT 与x 轴正方向夹角为θ,则cos sin x OA y OB θθ⎧=⎪⎨=⎪⎩,即cos 2sin x y θθ=⎧⎨=⎩,化简得2214y x +=,即P 点的轨迹E 的方程为2214y x +=.(2)当两圆上有6个点到直线1的距离为12时,原点O 至直线l 的距离13,22d ⎛⎫∈ ⎪⎝⎭,即1322<<,解得21,113k ⎛⎫∈ ⎪⎝⎭,联立方程2214y kx y x ⎧=+⎪⎨+=⎪⎩得()22410k x ++-=,设()11,M x y ,()22,N x y,则1224x x k +=-+,12214x x k =-+,所以MN =()2224134144k k k +⎛⎫==- ⎪++⎝⎭,则1616,135MN ⎛⎫∈ ⎪⎝⎭.7.(2020辽宁省沈阳市东北育才学校高三模拟)已知(2,0)P 为椭圆2222:1(0)x y C a b a b+=>>的右顶点,点M 在椭圆C 的长轴上,过点M 且不与x 轴重合的直线交椭圆C 于AB 、两点,当点M 与坐标原点O 重合时,直线PA PB 、的斜率之积为14-.(1)求椭圆C 的标准方程;(2)若2AM MB = ,求OAB ∆面积的最大值.【解析】(1)设1(A x ,1)y ,1(B x -,1)y -,则2121144PA PB y k k x ==-- .又2211221x y a b +=,代入上式可得2214b a -=-,又2a =,解得1b =.所以椭圆C 的标准方程为:2214x y +=.(2)设直线AB 的方程为:(0)x ty m t =+≠,(22)m -.1(A x ,1)y ,2(B x ,2)y ,联立2244x ty m x y =+⎧⎨+=⎩,化为222(4)240t ymty m +++-=,由韦达定理知12224mt y y t +=-+,212244m y y t -=+,因为2AM MB = ,所以122y y =-,所以122152y y y y +=-,代入可得:22241694t m t +=+.所以OAB ∆的面积12213|()|||22S m y y my =-=,22222222222299416161694494(4)(94)(94)t t t S m y t t t t +==⨯=⨯++++ .所以212||1214949||||t S t t t ==++,当且仅当249t =时取等号.所以OAB ∆面积的最大值为1.。
高三数学高考热点专题解析几何全国通用(20200623092943)
平行于直线
时有 :
, 则是必要条件 , 故是充分必要条件 .
5. ( 06 年福建卷文)已知两条直线
( A)2 5. 答案: D
( B) 1
解析 : 两条直线
和
和 ( C) 0
互相垂直,则 等于 (D)
互相垂直,则
,∴ a=- 1,选 D.
6. ( 08 年全国卷 2 文)原点到直线
的距离为(
)
A. 1
A.
B.
C.
3. 【解析】 : A 设底边斜率为K,直线
D.
与
的斜率分别为
,又原点在底边上,所以K=3
4. ( 07 年天津卷文) “ A.充分而不必要条件 C.充分必要条件
要条件 4. 答案: C
解析: 当
则直线
”是“直线 平行于直线
平行于直线
”的(
)
B .必要而不充分条件
D .既不充分也不必
, 则是充分条件 ; 直线
( 2)整体平衡,重点突出: 《考试说明》中解析几何部分原有 33 个知识点,现缩为 19
个知识点,一般考查的知识点超过
50%,其中对直线、圆、圆锥曲线知识的考查几乎没有
遗漏,通过对知识的重新组合,考查时既注意全面,更注意突出重点,
对支撑数学科知识
体系的主干知识, 考查时保证较高的比例并保持必要深度。近四年新教材高考对解析几何
上,线段过原点,故点P到原
点最短距离为零,最远距离为点 答案: B
到原点距离且距离为10,故选B;
8. ( 2009 重庆卷理)直线 y x 1 与圆 x2 y 2 1的位置关系为(
平移化简方程一般不出解答题,大多是以选择题形式出现.解析几何的解答题一般为难题, 近两年都考查了解析几何的基本方法——坐标法以及二次曲线性质的运用的命题趋向要引 起我们的重视.
2020年高考数学考纲揭秘专题5平面解析几何理
(五)平面解析几何初步考纲原文1.直线与方程(1)在平面直角坐标系中,结合具体图形,确定直线位置的几何要素(2)理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式(3)能根据两条直线的斜率判定这两条直线平行或垂直(4)掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.(5)能用解方程组的方法求两条相交直线的交点坐标(6)掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离2.圆与方程(1)掌握确定圆的几何要素,掌握圆的标准方程与一般方程(2)能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系(3)能用直线和圆的方程解决一些简单的问题(4)初步了解用代数方法处理几何问题的思想3.空间直角坐标系(1)了解空间直角坐标系,会用空间直角坐标表示点的位置(2)会推导空间两点间的距离公式(十五)圆锥曲线与方程1.圆锥曲线(1)了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用.(2)掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质.(3)了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质.(4)了解圆锥曲线的简单应用.(5)理解数形结合的思想.2.曲线与方程了解方程的曲线与曲线的方程的对应关系.高考预测对于直线与圆的考查:1.从考查题型来看,涉及本专题的题目一般在选择题、填空题中出现,考查直线的倾斜角与斜率、直线的方程、圆的方程、直线与直线、直线与圆的位置关系等.2.从考查内容来看,主要考查直线与圆的方程,判断直线与圆的位置关系,及直线、圆与其他知识点相结合.3.从考查热点来看,直线与圆的位置关系是高考命题的热点,通过几何图形判断直线与圆的位置关系,利用代数方程的形式进行代数化推理判断,是对直线与圆位置关系的最好的判断,体现了数形结合的思想. 对于圆锥曲线的考查:1.从考查题型来看,涉及本专题的选择题、填空题常结合圆锥曲线的定义及其简单几何性质,利用直线与圆锥曲线的位置关系,通过建立代数方程求解.解答题中则常综合考查椭圆的定义、标准方程、直线与椭圆的位置关系等.2.从考查内容来看,主要考查圆锥曲线的方程,以及根据方程及其相应图形考查简单几何性质,重点是椭圆及抛物线的简单几何性质的综合应用,注重运算求解能力的考查.3.从考查热点来看,直线与圆锥曲线的位置关系是高考命题的热点,利用直线与圆锥曲线的位置关系,通过直线方程与圆锥曲线方程的联立,结合椭圆、双曲线、抛物线的定义考查与之有关的问题,重点突出考查运算的能力,体现了数形结合的思想. 新题速递1.已知点()2,0F 是双曲线2233(0)x my m m -=>的一个焦点,则此双曲线的离心率为A .2 D .4 2.若圆C 过点()()0,1,0,5-,且圆心到直线20x y --=的距离为则圆C 的标准方程为__________.3的右焦点为1F ,离心率为,过点1F 且与x 轴垂直的直线被椭圆截(1)求椭圆C 的方程;(2)若24y x =上存在两点M N 、,椭圆C 上存在两个点P Q 、满足: 1P Q F 、、三点共线,1M N F 、、三点共线且PQ MN ⊥,求四边形PMQN 的面积的最小值.答案1.C 【解析】将双曲线2233(0)x my m m -=>的方程化为标准方程可得2213x y m -=,故23c m =+, 即34m +=,得1m =,故双曲线的离心率为2ce a==,故选C.3.【解析】(1)∵过焦点且垂直于长轴的直线被椭圆截得的线段长为2,∴222b a=, ∵离心率22∴22c a =又222a b c =+,解2,1,1a c b ===∴椭圆C 的方程为2212x y +=. (2)当直线MN 的斜率不存在时,直线PQ 的斜率为0,此时4,22,42PMQN MN PQ S ===四边形; 当直线MN 的斜率存在时,设直线MN 的方程为()(1)0y k x k =-≠,联立24y x =,得()2222240(0)k x k x k ∆-++=>,设,M N 的横坐标分别为,M N x x , 则242M N x x k +=+,∴MN 244M Nx x p k ++=+, 由PQ MN ⊥可得直线PQ 的方程()()110y x k k=--≠联立椭圆C 的方程,消去y ,得()22224220(0)kx x k ∆+-+-=>,设,P Q 的横坐标分别为,P Q x x ,则24,2P Q x x k +=+P Q x x 22222k k -+, ∴()2222222221142214222k kPQ k k k k +-⎛⎫=+-= ⎪+++⎝⎭,()()2222421122PMQNk SMN PQ k k +=⋅=+四边形,令21(1)k t t +=>,则()()222242421421421111PMQN t t S t t t t ⎛⎫===+> ⎪-+--⎝⎭四边形, 综上,()min42PMQNS =四边形.。
2020版高考数学新增分大一轮新高考专题探究课五 高考中解析几何问题的热点题型 Word版含解析
专题探究课五高考中解析几何问题的热点题型.(·全国Ⅰ卷)在直角坐标系中,曲线:=与直线:=+(>)交于,两点,()当=时,分别求在点和处的切线方程;()轴上是否存在点,使得当变动时,总有∠=∠?说明理由.解()由题设可得(,),(-,),或(-,),(,).又′=,故=在=处的导数值为,在点(,)处的切线方程为-=(-),即--=.=在=-处的导数值为-,在点(-,)处的切线方程为-=-(+),即++=.故所求切线方程为--=和++=.()存在符合题意的点,证明如下:设(,)为符合题意的点,(,),(,),直线,的斜率分别为,.将=+代入的方程得--=.故+=,=-.从而+=+==.当=-时,有+=,则直线的倾斜角与直线的倾斜角互补,故∠=∠,所以点(,-)符合题意..(·北京卷)已知椭圆:+=过点(,),(,)两点.()求椭圆的方程及离心率;()设为第三象限内一点且在椭圆上,直线与轴交于点,直线与轴交于点,求证:四边形的面积为定值.()解由题意知=,=.所以椭圆方程为+=,又==.所以椭圆离心率==.()证明设点坐标为(,)(<,<),则+=,由点坐标(,)得直线方程为:-=(-),令=,得=,从而=-=+,由点坐标(,)得直线方程为-=(-),令=,得=,从而=-=+,所以四边形=·====.即四边形的面积为定值..已知中心在坐标原点,焦点在轴上的椭圆过点(,),且它的离心率=.()求椭圆的标准方程;()与圆(-)+=相切的直线:=+交椭圆于,两点,若椭圆上一点满足+=λ,求实数λ的取值范围.解()设椭圆的标准方程为+=(>>),由已知得:解得所以椭圆的标准方程为+=.。
2020年高考数学大题分解专题05--解析几何
2020年高考数学(理)大题分解专题05--解析几何(含答案)(总15页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--(2019年全国卷I )已知抛物线C :x y 32=的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若4||||=+BF AF ,求l 的方程; (2)若3AP PB =,求||AB . 【肢解1】若4||||=+BF AF ,求l 的方程; 【肢解2】若3AP PB =,求||AB .【肢解1】若4||||=+BF AF ,求l 的方程;【解析】设直线l 方程为m x y +=23,()11,A x y ,()22,B x y ,由抛物线焦半径公式可知12342AF BF x x +=++=,所以1252x x +=, 联立2323y x m y x⎧=+⎪⎨⎪=⎩得04)12(12922=+-+m x m x , 由0144)1212(22>--=∆m m 得12m <, 所以121212592m x x -+=-=,解得78m =-,所以直线l 的方程为3728y x =-,即12870x y --=.【肢解2】若3AP PB =,求||AB .大题肢解一直线与抛物线【解析】设直线l 方程为23x y t =+,联立2233x y t y x ⎧=+⎪⎨⎪=⎩得0322=--t y y ,由4120t ∆=+>得31->t , 由韦达定理知221=+y y ,因为PB AP 3=,所以213y y -=,所以12-=y ,31=y ,所以1=t ,321-=y y . 则=-+⋅+=212214)(941||y y y y AB =-⨯-⋅+)3(4294123134.设抛物线)0(22>=p px y 的焦点为F ,过点F 的而直线交抛物线于A (x 1,y 1),B (x 2,y 2),则|AB |=x 1+x 2+p.弦长的计算方法:求弦长时可利用弦长公式,根据直线方程与圆锥曲线方程联立消元后得到的一元二次方程,利用根与系数的关系得到两根之和、两根之积的代数式,然后进行整体代入弦长公式求解.温馨提示:注意两种特殊情况:(1)直线与圆锥曲线的对称轴平行或垂直;(2)直线过圆锥曲线的焦点.【拓展1】已知抛物线C :x y 32=的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .若27||||=+BF AF ,求l 在y 轴上的截距. 【解析】设直线l 方程为m x y +=23,()11,A x y ,()22,B x y ,由抛物线焦半径公式可知123722AF BF x x +=++=,所以122x x +=, 联立2323y x m y x⎧=+⎪⎨⎪=⎩得04)12(12922=+-+m x m x ,由0144)1212(22>--=∆m m 得12m <, 所以12121229m x x -+=-=,解得21m =-,所以直线l 的方程为3122y x =-,令0=x 得21-=y , 所以直线l 在y 轴上的截距为21-.【拓展2】已知抛物线C :x y 32=的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .若2AP PB =,)0,4(-M ,求ABM ∆的面积.【解析】设直线l 方程为23x y t =+, 联立2233x y ty x ⎧=+⎪⎨⎪=⎩得0322=--t y y ,由4120t ∆=+>得31->t , 由韦达定理知221=+y y ,t y y 321-=,因为PB AP 2=,所以212y y -=,所以22-=y ,41=y ,所以821-=y y .38-=t ,所以=-+⋅+=212214)(941||y y y y AB =-⨯-⋅+)8(429412132, 直线l 方程为2833x y =-,即0823=+-y x ,所以点)0,4(-M 到l 的距离13413|812|=+-=d , 所以ABM ∆的面积为413413221||21=⨯⨯=⋅d AB .1.(2019年山西太原一模)已知抛物线x y 42=的焦点为F ,过焦点F 的直线交抛物线于A ,B 两点,O 为坐标原点,若AOB ∆的面积为6,求||AB .【解析】由题意知抛物线x y 42=的焦点F 的坐标为)0,1(, 易知当直线AB 垂直于x 轴时,AOB ∆的面积为2,不满足题意, 所以可设直线AB 的方程为)0)(1(≠-=k x k y , 与x y 42=联立,消去x 得0442=--k y ky , 设),(11y x A ,),(22y x B ,由韦达定理知k y y 421=+,421-=y y , 变式训练一所以1616||221+=-k y y , 所以AOB ∆的面积为616161212=+⨯⨯k,解得2±=k , 所以6||11||212=-⋅+=y y kAB . 2.(2019年湖北荆州模拟)已知抛物线24y x =的焦点为F ,过点F 的直线交抛物线于,A B 两点.(1)若3AF FB =,求直线AB 的斜率;(2)设点M 在线段AB 上运动,原点O 关于点M 的对称点为C ,求四边形OACB 面积的最小值.【解析】(1)依题意可设直线:1AB x my =+,将直线AB 与抛物线联立214x my y x =+⎧⎨=⎩⇒2440y my --=,设11(,)A x y ,22(,)B x y ,由韦达定理得121244y y my y +=⎧⎨=-⎩,因为3AF FB =,所以213y y -=,即312=m ,所以直线AB 的斜率为3或3-. (2)2212121212122()4161642OACB AOB S S OF y y y y y y y y m ∆==⋅⋅-=-=+-=+≥, 当0m =时,四边形OACB 的面积最小,最小值为4.(2020届广东省珠海市高三上学期期末)中心在坐标原点,对称轴为坐标轴的椭圆C 过)1,0(-A 、)21,3(B 两点,(1)求椭圆C 的方程; (2)设直线)0(21:≠+=m m x y l 与椭圆C 交于P ,Q 两点,求当所取何值时,OPQ ∆的面积最大.大题肢解二【肢解1】求椭圆C 的方程; 【肢解2】设直线)0(21:≠+=m m x y l 与椭圆C 交于P ,Q 两点,求当所取何值时,OPQ ∆的面积最大.【肢解1】求椭圆C 的方程;【解析】(1)由题意可设椭圆C 的方程为22221x y m n+=,代入()0,1A -、13,2B ⎛⎫ ⎪⎝⎭两点得()222222221011321m n m n ⎧-+=⎪⎪⎪⎨⎛⎫⎪ ⎪⎝⎭⎪+=⎪⎩ 解得21n =,24m =, 所以椭圆:C 2214x y +=.【肢解2】设直线)0(21:≠+=m m x y l 与椭圆C 交于P ,Q 两点,求当所取何值时,OPQ ∆的面积最大.【解析】将直线1:,(0)2l y x m m =+>代入2214x y +=得:221442x x m ⎛⎫++= ⎪⎝⎭.整理得222220x mx m ++-=.()()2222422840m m m ∆=--=->得22m -<<.由韦达定理得122x x m +=-,21222x x m =-.()()22221212124442284x x x x x x m m m -=+-=--=-242121222OPQ S m x x m m m m ∆=-=-=-+. 由二次函数可知当21m =即1m =时,OPQ ∆的面积的最大.直线与圆锥曲线的相交弦长问题:设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),则|AB |=1+k 2|x 1-x 2|=1+k 2(x 1+x 2)2-4x 1x 2=1+1k 2|y 1-y 2|=1+1k2(y 1+y 2)2-4y 1y 2.【变式1】中心在坐标原点,对称轴为坐标轴的椭圆C 过)1,0(-A 、)21,3(B 两点,(1)求椭圆C 的方程; (2)设直线)0(21:>+=m m x y l 与椭圆C 交于P ,Q 两点,若APQ ∆的面积为1+m ,求m 的值.【解析】(1)由题意可设椭圆C 的方程为22221x y m n+=,代入()0,1A -、13,2B ⎫⎪⎭两点得()22222221011321m n n ⎧-+=⎪⎪⎪⎨⎛⎫ ⎪⎝⎭+= 解得21n =,24m =. 所以椭圆:C 2214x y +=.(2)将直线1:,(0)2l y x m m =+>代入2214x y +=得221442x x m ⎛⎫++= ⎪⎝⎭.整理得222220x mx m ++-=.()()2222422840m m m ∆=--=->得22m -<<设),(11y x P ,),(22y x Q ,韦达定理得122x x m +=-,21222x x m =-.所以)22(4)2()21(1||222---⋅+=m m PQ 252+-⋅=m ,由点到直线的距离公式得点)1,0(-A 到直线l 的距离5|22|m d +=. 变式训练二所以APQ ∆的面积为255|22|212+-⋅⋅+⋅m m 2|1|2+-⋅+=m m , 因为APQ ∆的面积为1+m ,所以12|1|2+=+-⋅+m m m ,解得1=m 或1-=m (舍去). 所以1=m .【变式2】已知椭圆)0(1:2222>>=+b a by a x C 的离心率为22,其中左焦点为)0,2(-F .(1)求椭圆C 的方程;(2)若直线m x y +=与椭圆C 交于不同的两点A ,B ,1ABF ∆的面积为)2(6-m ,求直线的方程.【解析】(1)由题意,得⎪⎪⎪⎩⎪⎪⎪⎨⎧+===222222c b a c a c 解得⎩⎨⎧==222b a ,所以椭圆C 的方程为14822=+y x . (2)设点),(11y x A ,),(22y x B ,由⎪⎩⎪⎨⎧+==+m x y y x 14822消去y 得0824322=-++m mx x , 由0)84(12)4(22>--=∆m m 得3232<<-m ,由韦达定理知3421mx x -=+,382221-=m x x ,所以)82(4)34(2||22---⋅=m m AB 367342+-=m , 由点到直线的距离公式得)0,2(1-F 到直线m x y +=的距离2|2|m d -=, 所以1ABF ∆的面积为36342|2|212+-⋅-⋅m m )2(6-=m ,解得3±=m ,满足3232<<-m ,所以所求直线方程为3+=x y 或3-=x y .1.(2019年山东高考模拟)已知圆22:4O x y +=,抛物线2:2(0)C x py p =>.(1)若抛物线C 的焦点F 在圆O 上,且A 为抛物线C 和圆O 的一个交点,求AF ; (2)若直线l 与抛物线C 和圆O 分别相切于,M N 两点,设()00,M x y ,当[]03,4y ∈时,求MN 的最大值.【解析】(1)由题意知(0,2)F ,所以4p =. 所以抛物线C 的方程为28x y =.将28x y =与224x y +=联立得点A 的纵坐标为2(52)A y =, 结合抛物线定义得||2522A pAF y =+=. (2)由22x py =得22x y p =,x y p'=,所以直线l 的斜率为0x p ,故直线l 的方程为()000xy y x x p-=-.即000x x py py --=. 又由0220||2py ON x p -==+得02084y p y =-且240y ->, 所以2222200||||||4MN OM ON x y =-=+- 220000020824244y py y y y y =+-=+-- ()2202200022001644164444y y y y y y -+=+-=+--- 2020641644y y =++--.令24t y =-,0[3,4]y ∈,则[5,12]t ∈,令64()16f t t t =++,则264()1f t t'=-; 当[5,8]t ∈时()0f t '≤,()f t 单调递减, 当(8,12]t ∈时()0f t '>,()f t 单调递增, 又64169(5)16555f =++=,64100169(12)16121235f =++=<, 所以max 169()5f x =,即||MN.2.(2020黑龙江省齐市地区普高联谊高二上学期期末)已知椭圆C :22221(0)x y a b a b+=>>过点)23,22(与点)22,1(--. (1)求椭圆C 的方程;(2)设直线l 过定点1(0,)2-,且斜率为()10k k -≠,若椭圆C 上存在A ,B 两点关于直线l 对称,O 为坐标原点,求k 的取值范围及AOB ∆面积的最大值.【解析】(1)由题意,可得2222231441214a b a b ⎧+=⎪⎪⎨⎪+=⎪⎩,解得222,1a b ==,所以椭圆的方程为2212x y +=.(2)由题意,设直线AB 的方程为(0)y kx m k =+≠,由2212y kx m x y =+⎧⎪⎨+=⎪⎩,整理得222(12)4220k x kmx m +++-=, 所以∆>0,即2221k m +>,……….①且2121222422,1212km m x x x x k k-+=-=++, 所以线段AB 的中点横坐标02212km x k =-+,纵坐标为00212my kx m k=+=+,将00,x y 代入直线l 方程112y x k =--,可得2122k m += ……… ②,由①②可得232k <,又0k ≠,所以((0,22k ∈-⋃,又AB ==且原点O 到直线AB的距离d =所以2122(12)AOB m S AB d k ∆==+== 所以1m =时,AOB S ∆最大值2,此时2k =±,所以2k =±时,AOB S ∆最大值2.3.(2020福建省宁德市高三第一次质量检查)已知抛物线2:2C y px =的焦点为F,1(2Q 在抛物线C 上,且32QF. (1)求抛物线C 的方程及t 的值;(2)若过点(0,)M t 的直线l 与C 相交于,A B 两点,N 为AB 的中点,O 是坐标原点,且3AOBMONSS,求直线l 的方程.【解析】(1)因为3||2QF ,所以13222p ,所以2p =, 抛物线C 的方程为:24y x =, 将1(2Q 代入24y x =得2t =,(2)设1122(,),(,),A x y B x y 00(,),(0,2)N x y M ,显然直线l 的斜率存在,设直线l :2(0)y kx k =+≠,联立242y x y kx ⎧=⎨=+⎩,消去y 得224(1)40k x k x --+=,因为22Δ16(1)160k k ,得12k <且0k ≠, 所以1212224(1)4,k x x x x k k -+==, 因为ΔΔ3AOBMON S S ,所以||3||AB MN ,所以1200x -=-,即120x x x -=, 因为N 是AB 的中点,所以1202x x x +=, 所以22121212()()434x x x x x x ,整理得21212()16x x x x +=所以2224(1)64[]k k k ,解得1211,3k k =-=, 所以直线l 的方程为:2y x =-+或123y x =+.4.(2020福建省龙岩市上杭县第一中学月考)已知点A(0,-2),椭圆E:22221x y a b+=(a>b>0)的离心率为F 是椭圆E 的右焦点,直线AF ,O 为坐标原点. (1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点.当△OPQ 的面积最大时,求l 的方程. 【解析】(1)设(),0F c ,因为直线AF()0,2A-, 所以23c =,c =又222,2c b a c a ==-,解得2,1a b ==, 所以椭圆E 的方程为2214x y +=.(2)设()()1122,,,P x y Q x y 由题意可设直线l 的方程为:2y kx =-,联立22142,x y y kx +==-⎧⎪⎨⎪⎩,消去y 得()221416120k x kx +-+=,当()216430k ∆=->,所以234k >,所以k <或k >由韦达定理知1212221612,1414k x x x x k k+==++.所以PQ ===, 点O 到直线l 的距离d =12OPQS d PQ ∆==设0t =>,则2243k t =+,所以244144OPQ t S t t t∆==≤=++,当且仅当2t =2=,解得k =时取等号,满足234k >, 所以OPQ ∆的面积最大时直线l 的方程为:2y x =-或2y x =-.5.(2020广东省佛山市高三教学质量检测)已知椭圆C :()222210x y a b a b +=>>的离心率为12,点31,2A ⎛⎫⎪⎝⎭在椭圆C 上,直线1l 过椭圆C 的右焦点与上顶点,动直线2l :y kx =与椭圆C 交于M ,N 两点,交1l 于P 点.(1)求椭圆C 的方程;(2)已知O 为坐标原点,若点P 满足14OP MN =,求此时MN 的长度. 【解析】(1)由题意得12c e a ==,2223121ab ⎛⎫ ⎪⎝⎭+=,结合222a bc =+, 解得24a =,23b =,21c =,故所求椭圆C 的方程为22143x y +=. (2)易知定直线1l0y +=.联立22143y kxx y =⎧⎪⎨+=⎪⎩,整理得()223412k x +=,解得x =令M 点的坐标为221212,3434k k k ⎛⎫⎪ ⎪++⎝⎭. 因为14OP MN =,由对称性可知,点P 为OM 的中点,故2212123434(,)22k k k P ++, 又P 在直线1l :330x y +-=上,故221212343433022k k k ++⨯+-=, 解得10k =,2233k =,所以M 点的坐标为()2,0或643,55⎛⎫ ⎪ ⎪⎝⎭, 所以2OM =或2215,所以MN 的长度为4或4215.6.(2020广西名校高三上学期12月高考模拟)如图,中心为坐标原点O 的两圆半径分别为11r =,22r =,射线OT 与两圆分别交于A 、B 两点,分别过A 、B 作垂直于x 轴、y 轴的直线1l 、2l ,1l 交2l 于点P .(1)当射线OT 绕点O 旋转时,求P 点的轨迹E 的方程;(2)直线l :3y kx =+E 交于M 、N 两点,两圆上共有6个点到直线l 的距离为12时,求MN 的取值范围. 【解析】(1)设(),P x y ,OT 与x 轴正方向夹角为θ,则cos sin x OA y OB θθ⎧=⎪⎨=⎪⎩,即cos 2sin x y θθ=⎧⎨=⎩,化简得2214y x +=,即P 点的轨迹E 的方程为2214y x +=.(2)当两圆上有6个点到直线1的距离为12时,原点O 至直线l 的距离13,22d ⎛⎫∈ ⎪⎝⎭,即1322<<,解得21,113k ⎛⎫∈ ⎪⎝⎭,联立方程2214y kx y x ⎧=+⎪⎨+=⎪⎩得()22410k x ++-=, 设()11,M x y ,()22,N x y ,则12x x +=,12214x x k =-+, 所以MN ==()2224134144k k k +⎛⎫==- ⎪++⎝⎭, 则1616,135MN ⎛⎫∈ ⎪⎝⎭.7.(2020辽宁省沈阳市东北育才学校高三模拟)已知(2,0)P 为椭圆2222:1(0)x y C a b a b+=>>的右顶点,点M 在椭圆C 的长轴上,过点M 且不与x 轴重合的直线交椭圆C 于A B 、两点,当点M 与坐标原点O 重合时,直线PA PB 、的斜率之积为14-.(1)求椭圆C 的标准方程;(2)若2AM MB =,求OAB ∆面积的最大值. 【解析】(1)设1(A x ,1)y ,1(B x -,1)y -,则2121144PA PBy k k x ==--. 又2211221x y a b +=,代入上式可得2214b a -=-,又2a =,解得1b =. 所以椭圆C 的标准方程为:2214x y +=.(2)设直线AB 的方程为:(0)x ty m t =+≠,(22)m -.1(A x ,1)y ,2(B x ,2)y ,联立2244x ty m x y =+⎧⎨+=⎩,化为222(4)240t y mty m +++-=, 由韦达定理知12224mty y t+=-+,212244m y y t -=+, 因为2AM MB =,所以122y y =-,所以122152y y y y +=-,代入可得:22241694t m t +=+.所以OAB ∆的面积12213|()|||22S m y y my =-=,22222222222299416161694494(4)(94)(94)t t t S m y t t t t +==⨯⨯=⨯++++.所以212||1214949||||t S t t t ==++,当且仅当249t =时取等号. 所以OAB ∆面积的最大值为1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题探究课五 高考中解析几何问题的热点题型1.(2015·全国Ⅰ卷)在直角坐标系xOy 中,曲线C :y =x 24与直线l :y =kx +a (a >0)交于M ,N 两点,(1)当k =0时,分别求C 在点M 和N 处的切线方程;(2)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由. 解 (1)由题设可得M (2a ,a ),N (-2a ,a ),或M (-2a ,a ),N (2a ,a ).又y ′=x 2,故y =x 24在x =2a 处的导数值为a ,C 在点(2a ,a )处的切线方程为y -a =a (x -2a ), 即ax -y -a =0.y =x 24在x =-2a 处的导数值为-a ,C 在点(-2a ,a )处的切线方程为y -a =-a (x +2a ), 即ax +y +a =0. 故所求切线方程为ax -y -a =0和ax +y +a =0.(2)存在符合题意的点,证明如下:设P (0,b )为符合题意的点,M (x 1,y 1),N (x 2,y 2),直线PM ,PN 的斜率分别为k 1,k 2.将y =kx +a 代入C 的方程得x 2-4kx -4a =0.故x 1+x 2=4k ,x 1x 2=-4a .从而k 1+k 2=y 1-b x 1+y 2-b x 2=2kx 1x 2+(a -b )(x 1+x 2)x 1x 2=k (a +b )a. 当b =-a 时,有k 1+k 2=0,则直线PM 的倾斜角与直线PN 的倾斜角互补,故∠OPM =∠OPN ,所以点P (0,-a )符合题意.2.(2016·北京卷)已知椭圆C :x 2a 2+y 2b 2=1过点A (2,0),B (0,1)两点.(1)求椭圆C 的方程及离心率;(2)设P 为第三象限内一点且在椭圆C 上,直线P A 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值.(1)解 由题意知a =2,b =1.所以椭圆方程为x 24+y 2=1,又c =a 2-b 2= 3.所以椭圆离心率e =c a =32.(2)证明 设P 点坐标为(x 0,y 0)(x 0<0,y 0<0),则x 20+4y 20=4,由B 点坐标(0,1)得直线PB 方程为:y -1=y 0-1x 0(x -0), 令y =0,得x N =x 01-y 0,从而|AN |=2-x N =2+x 0y 0-1, 由A 点坐标(2,0)得直线P A 方程为y -0=y 0x 0-2(x -2), 令x =0,得y M =2y 02-x 0, 从而|BM |=1-y M =1+2y 0x 0-2, 所以S 四边形ABNM =12|AN |·|BM | =12⎝ ⎛⎭⎪⎫2+x 0y 0-1⎝ ⎛⎭⎪⎫1+2y 0x 0-2 =x 20+4y 20+4x 0y 0-4x 0-8y 0+42(x 0y 0-x 0-2y 0+2)=2x 0y 0-2x 0-4y 0+4x 0y 0-x 0-2y 0+2=2. 即四边形ABNM 的面积为定值2.3.已知中心在坐标原点,焦点在x 轴上的椭圆过点P (2,3),且它的离心率e =12.(1)求椭圆的标准方程;(2)与圆(x -1)2+y 2=1相切的直线l :y =kx +t 交椭圆于M ,N 两点,若椭圆上一点C 满足OM→+ON →=λOC →,求实数λ的取值范围.解 (1)设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),由已知得:⎩⎪⎨⎪⎧4a 2+3b 2=1,c a =12,c 2=a 2-b 2,解得⎩⎨⎧a 2=8,b 2=6, 所以椭圆的标准方程为x 28+y 26=1.(2)因为直线l :y =kx +t 与圆(x -1)2+y 2=1相切, 所以|t +k |1+k 2=1⇒2k =1-t 2t (t ≠0), 把y =kx +t 代入x 28+y 26=1并整理得:(3+4k 2)x 2+8ktx +(4t 2-24)=0,设M (x 1,y 1),N (x 2,y 2),则有x 1+x 2=-8kt 3+4k 2, y 1+y 2=kx 1+t +kx 2+t =k (x 1+x 2)+2t =6t 3+4k 2, 因为λOC →=(x 1+x 2,y 1+y 2), 所以C ⎝ ⎛⎭⎪⎫-8kt (3+4k 2)λ,6t (3+4k 2)λ, 又因为点C 在椭圆上,所以,8k 2t 2(3+4k 2)2λ2+6t 2(3+4k 2)2λ2=1⇒λ2=2t 23+4k 2=2⎝ ⎛⎭⎪⎫1t 22+1t2+1, 因为t 2>0,所以⎝ ⎛⎭⎪⎫1t 22+1t 2+1>1, 所以0<λ2<2,所以λ的取值范围为(-2,0)∪(0,2).4.已知椭圆C 的方程为:x 2+2y 2=4.(1)求椭圆C 的离心率;(2)设O 为坐标原点,若点A 在直线y =2上,点B 在椭圆C 上,且OA ⊥OB ,求线段AB 长度的最小值.解 (1)由题意,椭圆C 的标准方程为x 24+y 22=1,所以a 2=4,b 2=2,从而c 2=a 2-b 2=2.因此a =2,c = 2.故椭圆C 的离心率e =c a =22.(2)设点A ,B 的坐标分别为(t ,2),(x 0,y 0),其中x 0≠0.因为OA ⊥OB ,则OA→·OB →=0, 所以tx 0+2y 0=0,解得t =-2y 0x 0. 又x 20+2y 20=4,所以|AB |2=(x 0-t )2+(y 0-2)2=⎝ ⎛⎭⎪⎫x 0+2y 0x 02+(y 0-2)2 =x 20+y 20+4y 20x 20+4=x 20+4-x 202+2(4-x 20)x 20+4=x 202+8x 20+4(0<x 20≤4) 因为x 202+8x 20≥4(0<x 20≤4),当且仅当x 20=4时等号成立, 所以|AB |2≥8.故线段AB 长度的最小值为2 2.5.如图,已知椭圆C :x 2a 2+y 2=1(a >1)的上顶点为A ,右焦点为F ,直线AF 与圆M :x 2+y 2-6x -2y +7=0相切.(1)求椭圆C 的方程;(2)若不过点A 的动直线l 与椭圆C 相交于P ,Q 两点,且AP→·AQ →=0,求证:直线l 过定点,并求出该定点N 的坐标.(1)解 将圆M 的一般方程x 2+y 2-6x -2y +7=0化为标准方程为(x -3)2+(y -1)2=3,圆M 的圆心为M (3,1),半径r = 3.由A (0,1),F (c ,0)(c =a 2-1)得直线AF :x c +y =1,即x +cy -c =0.由直线AF 与圆M 相切,得|3+c -c |c 2+1= 3.∴c =2或c =-2(舍去).∴a =3,∴椭圆C 的方程为x 23+y 2=1.(2)证明 由AP→·AQ →=0,知AP ⊥AQ ,从而直线AP 与坐标轴不垂直, 由A (0,1)可设直线AP 的方程为y =kx +1,直线AQ 的方程为y =-1k x +1(k ≠0),将y =kx +1代入椭圆C 的方程x 23+y 2=1并整理得:(1+3k 2)x 2+6kx =0,解得x =0或x =-6k 1+3k 2, 因此P 的坐标为⎝ ⎛⎭⎪⎫-6k 1+3k 2,-6k 21+3k 2+1, 即⎝ ⎛⎭⎪⎫-6k 1+3k 2,1-3k 21+3k 2. 将上式中的k 换成-1k ,得Q ⎝ ⎛⎭⎪⎫6k k 2+3,k 2-3k 2+3. ∴直线l 的方程为y =k 2-3k 2+3-1-3k 21+3k 26k k 2+3+6k 1+3k 2⎝ ⎛⎭⎪⎫x -6k k 2+3+k 2-3k 2+3,化简得直线l 的方程为y =k 2-14k x -12.因此直线l 过定点N ⎝ ⎛⎭⎪⎫0,-12. 6.(2015·山东卷)平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,且点⎝ ⎛⎭⎪⎫3,12在椭圆C 上. (1)求椭圆C 的方程;(2)设椭圆E :x 24a 2+y 24b 2=1,P 为椭圆C 上任意一点,过点P 的直线y =kx +m 交椭圆E 于A ,B 两点,射线PO 交椭圆E 于点Q .(ⅰ)求|OQ ||OP |的值;(ⅱ)求△ABQ 面积的最大值.解 (1)由题意知3a 2+14b 2=1.又a 2-b 2a =32,解得a 2=4,b 2=1.所以椭圆C 的方程为x 24+y 2=1.(2)由(1)知椭圆E 的方程为x 216+y 24=1.(ⅰ)设P (x 0,y 0),|OQ ||OP |=λ,由题意知Q (-λx 0,-λy 0).因为x 204+y 20=1, 又(-λx 0)216+(-λy 0)24=1,即λ24⎝ ⎛⎭⎪⎫x 204+y 20=1, 所以λ=2,即|OQ ||OP |=2.(ⅱ)设A (x 1,y 1),B (x 2,y 2).将y =kx +m 代入椭圆E 的方程,可得(1+4k 2)x 2+8kmx +4m 2-16=0, 由Δ>0,可得m 2<4+16k 2,①则有x 1+x 2=-8km 1+4k 2,x 1x 2=4m 2-161+4k 2. 所以|x 1-x 2|=416k 2+4-m 21+4k 2. 因为直线y =kx +m 与y 轴交点的坐标为(0,m ),所以△OAB 的面积S =12|m ||x 1-x 2|=216k 2+4-m 2|m |1+4k 2=2(16k 2+4-m 2)m 21+4k 2=2⎝ ⎛⎭⎪⎫4-m 21+4k 2m 21+4k 2. 设m 21+4k 2=t ,将y =kx +m 代入椭圆C 的方程, 可得(1+4k 2)x 2+8kmx +4m 2-4=0,由Δ≥0,可得m 2≤1+4k 2.②由①②可知0<t ≤1,因此S =2(4-t )t =2-t 2+4t ,故S ≤23,当且仅当t=1,即m2=1+4k2时取得最大值2 3. 由(ⅰ)知,△ABQ面积为3S,所以△ABQ面积的最大值为6 3.。