专题05 一元一次方程与二元一次方程组-
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题05.一元一次方程与二元一次方程组
一、单选题
1.(2021·湖南株洲市·中考真题)方程
122x -=的解是( ) A .2x = B .3x = C .5x = D .6x =
2.(2021·浙江杭州市·中考真题)某景点今年四月接待游客25万人次,五月接待游客60.5万人次,设该景点今年四月到五月接待游客人次的增长率为x (0x >),则( )
A .()60.5125x -=
B .()25160.5x -=
C .()60.5125x +=
D .()25160.5x +=
3.(2021·浙江温州市·中考真题)解方程()221x x -+=,以下去括号正确的是( )
A .41x x -+=-
B .42x x -+=-
C .41x x --=
D .42x x --=
4.(2021·安徽中考真题)设a ,b ,c 为互不相等的实数,且4155b a c =
+,则下列结论正确的是( ) A .a b c >> B .c b a >> C .4()a b b c -=- D .5()a c a b -=-
5.(2021·湖北武汉市·中考真题)我国古代数学名著《九章算术》中记载:“今有共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?”意思是现有几个人共买一件物品,每人出8钱.多出3钱;每人出7钱,差4钱.问人数,物价各是多少?若设共有x 人,物价是y 钱,则下列方程正确的是( ) A .()()8374x x -=+ B .8374x x +=- C .3487
y y -+= D .3487y y +-= 6.(2021·湖南株洲市·中考真题)《九章算术》之“粟米篇”中记载了中国古代的“粟米之法”:“粟率五十,粝米三十……”(粟指带壳的谷子,粝米指糙米),其意为:“50单位的粟,可换得30单位的粝米……”.问题:有3斗的粟(1斗=10升),若按照此“粟米之法”,则可以换得粝米为( )
A .1.8升
B .16升
C .18升
D .50升
7.(2021·湖南中考真题)已知二元一次方程组2521x y x y -=⎧⎨
-=⎩,则x y -的值为( ) A .2 B .6 C .2-
D .6- 8.(2021·新疆中考真题)某校举行篮球赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分.八年级一班在16场比赛中得26分.设该班胜x 场,负y 场,则根据题意,下列方程组中正确的是( )
A .26216x y x y +=⎧⎨+=⎩
B .26216x y x y +=⎧⎨+=⎩
C .16226x y x y +=⎧⎨+=⎩
D .16226
x y x y +=⎧⎨+=⎩ 9.(2021·湖北宜昌市·中考真题)我国古代数学经典著作《九章算术》中有这样一题,原文是:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”意思是:今有人合伙购物,每人出八钱,会多三钱;每人出七钱,又差四钱.问人数、物价各多少?设人数为x 人,物价为y 钱,下列方程组正确的是( )
A .8374y x y x =-⎧⎨=+⎩
B .8374y x y x =+⎧⎨=+⎩
C .8374y x y x =-⎧⎨=-⎩
D .8374y x y x =+⎧⎨=-⎩
10.(2021·江苏苏州市·中考真题)某公司上半年生产甲,乙两种型号的无人机若干架.已知甲种型号无人机架数比总架数的一半多11架,乙种型号无人机架数比总架数的三分之一少2架.设甲种型号无人机x 架,乙种型号无人机y 架.根据题意可列出的方程组是( )
A .()()111,3122x x y y x y ⎧=+-⎪⎪⎨⎪=++⎪⎩
B .()()111.3122x x y y x y ⎧=++⎪⎪⎨⎪=+-⎪⎩
C .()()111,2123x x y y x y ⎧=+-⎪⎪⎨⎪=++⎪⎩
D .()()111,2123x x y y x y ⎧=++⎪⎪⎨⎪=+-⎪⎩
11.(2021·天津中考真题)方程组234
x y x y +=⎧⎨+=⎩的解是( )
A .02x y =⎧⎨=⎩
B .11x y =⎧⎨=⎩
C .22x y =⎧⎨=-⎩
D .33
x y =⎧⎨=-⎩ 12.(2021·浙江宁波市·中考真题)我国古代数学名著《张邱建算经》中记载:“今有清洒一斗直粟十斗,醑酒一斗直粟三斗.今持粟三斛,得酒五斗,问清、醑酒各几何?”意思是:现在一斗清酒价值10斗谷子,一斗醑酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清酒、醑酒各几斗?如果设清酒x 斗,醑酒y 斗,那么可列方程组为( )
A .510330x y x y +=⎧⎨+=⎩
B .531030x y x y +=⎧⎨+=⎩
C .305103x y x y +=⎧⎪⎨+=⎪⎩
D .305310
x y x y +=⎧⎪⎨+=⎪⎩ 13.(2020·湖南益阳市·中考真题)同时满足二元一次方程9x y -=和431x y +=的x ,y 的值为( )
A.
4
5
x
y
=
⎧
⎨
=-
⎩
B.
4
5
x
y
=-
⎧
⎨
=
⎩
C.
2
3
x
y
=-
⎧
⎨
=
⎩
D.
3
6
x
y
=
⎧
⎨
=-
⎩
14.(2020·辽宁铁岭市·)我市在落实国家“精准扶贫”政策的过程中,为某村修建一条长为400米的公路,由甲、乙两个工程队负责施工.甲工程队独立施工2天后,乙工程队加入两工程队联合施工3天后,还剩50米的工程.已知甲工程队每天比乙工程队多施工2米,求甲、乙工程队每天各施工多少米?设甲工程队每天施工x米,乙工程队每天施工y米,根据题意,所列方程组正确的是()
A.
2 23400 x y
x y
=-
⎧
⎨
+=⎩B.
2
23()40050
x y
x x y
=-
⎧
⎨
++=-
⎩
C.
2
2340050
x y
x y
=+
⎧
⎨
+=-
⎩
D.
2
23()40050
x y
x x y
=+
⎧
⎨
++=-
⎩
15.(2020·黑龙江齐齐哈尔市·中考真题)母亲节来临,小明去花店为妈妈准备节日礼物.已知康乃馨每支2元,百合每支3元.小明将30元钱全部用于购买这两种花(两种花都买),小明的购买方案共有()A.3种B.4种C.5种D.6种
16.(2020·黑龙江牡丹江市·朝鲜族学校中考真题)若
2
1
a
b
=
⎧
⎨
=
⎩
是二元一次方程组
3
5
2
2
ax by
ax by
⎧
+=
⎪
⎨
⎪-=
⎩
的解,则x
+2y的算术平方根为()
A.3 B.3,-3 C
D
17.(2020·天津中考真题)方程组
24
1
x y
x y
+=
⎧
⎨
-=-
⎩
的解是()
A.
1
2
x
y
=
⎧
⎨
=
⎩
B.
3
2
x
y
=-
⎧
⎨
=-
⎩
C.
2
x
y
=
⎧
⎨
=
⎩
D.
3
1
x
y
=
⎧
⎨
=-
⎩
18.(2020·浙江绍兴市·中考真题)同型号的甲、乙两辆车加满气体燃料后均可行驶210km.它们各自单独行驶并返回的最远距离是105km.现在它们都从A地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A地,而乙车继续行驶,到B地后再行驶返回A地.则B地最远可距离A地()
A.120km B.140km C.160km D.180km
19.(2020·浙江嘉兴市·中考真题)用加减消元法解二元一次方程组
34
21
x y
x y
+=
⎧
⎨
-=
⎩
①
②
时,下列方法中无法消元
的是( )
A .①×2﹣②
B .②×(﹣3)﹣①
C .①×(﹣2)+②
D .①﹣②×3
20.(2020·贵州毕节市·中考真题)由于换季,超市准备对某商品打折出售,如果按原售价的七五折出售,将亏损25元;而按原售价的九折出售,将盈利20元,则该商品的原售价为( )
A .300元
B .270元
C .250元
D .230元
21.(2020·广西玉林市·中考真题)观察下列按一定规律排列的n 个数:2,4,6,8,10,12,…;若最后三个数之和是3000,则n 等于( )
A .499
B .500
C .501
D .1002
22.(2020·湖北恩施土家族苗族自治州·中考真题)在实数范围内定义运算“☆”:1a b a b =+-☆,例如:
232314=+-=☆.如果21x =☆,则x 的值是( )
. A .1- B .1 C .0 D .2
23.(2020·江苏盐城市·中考真题)把19-这9个数填入33⨯方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”.它源于我国古代的“洛書”(图①),是世界上最早的“幻方”.图②是仅可以看到部分数值的“九宫格”,则其中x 的值为:( )
A .1
B .3
C .4
D .6
24.(2020·青海中考真题)根据图中给出的信息,可得正确的方程是( )
A .2286(5)22x x ππ⎛⎫⎛⎫⨯=⨯⨯+ ⎪ ⎪⎝⎭⎝⎭
B .22
86(5)22x x ππ⎛⎫⎛⎫⨯=⨯⨯- ⎪ ⎪⎝⎭⎝⎭ C .2286(5)x x ππ⨯=⨯⨯+ D .22865x ππ⨯=⨯⨯ 25.(2019·内蒙古赤峰市·中考真题)如图,小聪用一张面积为1的正方形纸片,按如下方式操作:
①将正方形纸片四角向内折叠,使四个顶点重合,展开后沿折痕剪开,把四个等腰直角三角形扔掉; ②在余下纸片上依次重复以上操作,当完成第2019次操作时,余下纸片的面积为( ).
A .20192
B .20181
2 C .201912 D .20201
2
26.(2019·四川南充市·中考真题)关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( ) A .9 B .8 C .5 D .4
27.(2019·辽宁朝阳市·中考真题)关于x ,y 的二元一次方程组2mx y n x ny m +=⎧⎨-=⎩的解是02x y =⎧⎨=⎩
,则m n +的值为( )
A .4
B .2
C .1
D .0
28.(2019·广西柳州市·中考真题)阅读(资料),完成下面小题.
(资料):如图,这是根据公开资料整理绘制而成的2004﹣2018年中美两国国内生产总值(GDP )的直方图及发展趋势线.(注:趋势线由Excel 系统根据数据自动生成,趋势线中的y 表示GDP ,x 表示年数)
依据(资料)中所提供的信息,可以推算出中国的GDP 要超过美国,至少要到( )
A.2052年B.2038年C.2037年D.2034年
29.(2019·江苏南通市·中考真题)已知a、b满足方程组
324
236
a b
a b
+=
⎧
⎨
+=
⎩
,则a+b的值为( )
A.2 B.4 C.-2 D.-4
30.(2019·广西贺州市·中考真题)已知方程组
23
25
x y
x y
+=
⎧
⎨
-=
⎩
,则26
x y
+的值是()
A.﹣2 B.2 C.﹣4 D.4
31.(2019·湖南永州市·中考真题)某公司有如图所示的甲、乙、丙、丁四个生产基地.现决定在其中一个基地修建总仓库,以方便公司对各基地生产的产品进行集中存储.已知甲、乙、丙、丁各基地的产量之比等于4:5:4:2,各基地之间的距离之比a:b:c:d:e=2:3:4:3:3(因条件限制,只有图示中的五条运输渠道),当产品的运输数量和运输路程均相等时,所需的运费相等.若要使总运费最低,则修建总仓库的最佳位置为()
A.甲B.乙C.丙D.丁
32.(2019·湖北荆门市·)已知实数,x y满足方程组
321
2
x y
x y
-=
⎧
⎨
+=
⎩
,则22
2
x y
-的值为()
A.1-B.1 C.3 D.3-
33.(2019·山东菏泽市·中考真题)已知
3
2
x
y
=
⎧
⎨
=-
⎩
是方程组
2
3
ax by
bx ay
+=
⎧
⎨
+=-
⎩
的解,则+
a b的值是()
A.﹣1 B.1 C.﹣5 D.5
二、填空题
34.(2021·湖南邵阳市·中考真题)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有共买物,
人出八,盈三;人出七,不足四.问人数、物价各几何?意思是:几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价值是多少?该问题中物品的价值是______钱.
35.(2021·江苏扬州市·中考真题)扬州雕版印刷技艺历史悠久,元代数学家朱世杰的《算学启蒙》一书曾刻于扬州,该书是中国较早的数学著作之一,书中记载一道问题:“今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天追上慢马?答:快马_______天追上慢马.
36.(2021·重庆中考真题)若关于x 的方程442
x a -+=的解是2x =,则a 的值为__________. 37.(2021·重庆中考真题)盲盒为消费市场注入了活力,既能够营造消费者购物过程中的趣味体验,也为商家实现销售额提升拓展了途径.某商家将蓝牙耳机、多接口优盘、迷你音箱共22个,搭配为A ,B ,C 三种盲盒各一个,其中A 盒中有2个蓝牙耳机,3个多接口优盘,1个迷你音箱;B 盒中蓝牙耳机与迷你音箱的数量之和等于多接口优盘的数量,蓝牙耳机与迷你音箱的数量之比为3:2;C 盒中有1个蓝牙耳机,3个多接口优盘,2个迷你音箱.经核算,A 盒的成本为145元,B 盒的成本为245元(每种盲盒的成本为该盒中蓝牙耳机、多接口优盘、迷你音箱的成本之和),则C 盒的成本为__________元.
38.(2021·重庆中考真题)方程2(3)6x -=的解是__________.
39.(2021·四川广安市·中考真题)若x 、y 满足2223
x y x y -=-⎧⎨+=⎩,则代数式224x y -的值为______. 40.(2021·浙江金华市·中考真题)已知2x y m
=⎧⎨=⎩是方程3210x y +=的一个解,则m 的值是____________. 41.(2021·四川凉山彝族自治州·中考真题)已知13x y =⎧⎨
=⎩是方程2ax y +=的解,则a 的值为___________. 42.(2021·浙江嘉兴市·中考真题)已知二元一次方程314+=x y ,请写出该方程的一组整数解_________.
43.(2021·四川遂宁市·中考真题)已知关于x ,y 的二元一次方程组235423x y a x y a +=⎧⎨+=+⎩
满足0x y ->,则a 的取值范围是____.
44.(2021·山东泰安市·中考真题)《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十,问甲、乙持钱各几何?”译文:“假设有甲乙二人,不知其钱包里有多少钱,若乙把自己一半的钱给甲,则甲的钱数为50;而甲把自己23
的钱给乙,则乙的钱数也能为50.问甲、乙各有多少钱?”设甲持钱数为x ,乙持钱数为y ,可列方程组为________.
45.(2020·辽宁朝阳市·中考真题)已知关于x 、y 的方程221255x y a x y a +=+⎧⎨
+=-⎩
的解满足3x y +=-,则a 的值为__________. 46.(2020·重庆中考真题)为刺激顾客到实体店消费,某商场决定在星期六开展促销活动.活动方案如下:在商场收银台旁放置一个不透明的箱子,箱子里有红、黄、绿三种颜色的球各一个(除颜色外大小、形状、质地等完全相同),顾客购买的商品达到一定金额可获得一次摸球机会,摸中红、黄、绿三种颜色的球可分别返还现金50元、30元、10元.商场分三个时段统计摸球次数和返现金额,汇总统计结果为:第二时段摸到红球次数为第一时段的3倍,摸到黄球次数为第一时段的2倍,摸到绿球次数为第一时段的4倍;第三时段摸到红球次数与第一时段相同,摸到黄球次数为第一时段的4倍,摸到绿球次数为第一时段的2倍,
三个时段返现总金额为2510元,第三时段返现金额比第一时段多420元,则第二时段返现金额为____元.
47.(2020·甘肃天水市·中考真题)已知1023a b +=,16343
a b +=,则+a b 的值为_________. 48.(2020·浙江绍兴市·中考真题)若关于x ,y 的二元一次方程组20x y A +=⎧⎨
=⎩的解为11
x y =⎧⎨=⎩,则多项式A 可以是_____(写出一个即可). 49.(2020·湖北中考真题)对于实数,m n ,定义运算2*(2)2m n m n =+-.若2*4*(3)a =-,则a =_____.
50.(2020·湖北随州市·中考真题)幻方是相当古老的数学问题,我国古代的《洛书》中记载了最早的幻方---九宫图.将数字1~9分别填入如图所示的幻方中,要求每一横行、每一竖行以及两条斜对角线上的数字之和都是15,则m 的值为______.
51.(2020·江苏无锡市·中考真题)我国古代问题:以绳测井,若将绳三折测之,绳多四尺,若将绳四折测
之,绳多一尺,井深几何?这段话的意思是:用绳子量井深,把绳三折来量,井外余绳四尺,把绳四折来量,井外余绳一尺,井深几尺?则该问题的井深是___________尺.
52.(2019·河北中考真题)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数. 示例:即4+3=7
则(1)用含x 的式子表示m =_____;(2)当y =﹣2时,n 的值为_____.
53.(2019·内蒙古呼和浩特市·中考真题)关于x 的方程211-20m mx m x +﹣(﹣)=如果是一元一次方程,则其
解为_____.
54.(2019·湖北鄂州市·中考真题)若关于x 、y 的二元一次方程组34355
x y m x y -=+⎧⎨+=⎩的解满足0x y +≤,则m 的取值范围是____.
55.(2019·四川眉山市·中考真题)已知关于x ,y 的方程组21254
x y k x y k +=-⎧⎨
+=+⎩的解满足x +y =5,则k 的值为_____. 56.(2019·四川内江市·中考真题)若,,x y z 为实数,且2421
x y z x y z +-=⎧⎨
-+=⎩,则代数式2223x y z -+的最大值是_____. 57.(2019·湖北中考真题)2017年,随州学子尤东梅参加《最强大脑》节目,成功完成了高难度的项目挑战,展现了惊人的记忆力.在2019年的《最强大脑》节目中,也有很多具有挑战性的比赛项目,其中《幻圆》这个项目充分体现了数学的魅力.如图是一个最简单的二阶幻圆的模型,要求:①内、外两个圆周上的四个数字之和相等;②外圆两直径上的四个数字之和相等,则图中两空白圆圈内应填写的数字从左到右依次为______和______.
三、解答题
58.(2021·湖南邵阳市·中考真题)为庆祝中国共产党成立100周年,某校计划举行“学党史·感党恩”知识竞答活动,并计划购置篮球、钢笔、笔记本作为奖品.采购员刘老师在某文体用品购买了做为奖品的三种物品,回到学校后发现发票被弄花了,有几个数据变得不清楚,如图.
请根据图所示的发票中的信息,帮助刘老师复原弄花的数据,即分别求出购置钢笔、笔记本的数量及对应的金额.
59.(2021·江苏扬州市·中考真题)已知方程组
27
1
x y
x y
+=
⎧
⎨
=-
⎩
的解也是关于x、y的方程4
ax y
+=的一个解,求
a的值.
60.(2021·四川泸州市·中考真题)某运输公司有A 、B 两种货车,3辆A 货车与2辆B 货车一次可以运货90吨,5辆A 货车与4辆B 货车一次可以运货160吨.(1)请问1辆A 货车和1辆B 货车一次可以分别运货多少吨?(2)目前有190吨货物需要运输,该运输公司计划安排A 、B 两种货车将全部货物一次运完(A 、B 两种货车均满载),其中每辆A 货车一次运货花费500元,每辆B 货车一次运货花费400元.请你列出所有的运输方案,并指出哪种运输方案费用最少.
61.(2021·重庆中考真题)对于任意一个四位数m ,若千位上的数字与个位上的数字之和是百位上的数字与十位上的数字之和的2倍,则称这个四位数m 为“共生数”例如:3507m =,因为372(50)+=⨯+,所以3507是“共生数”:4135m =,因为452(13)+≠⨯+,所以4135不是“共生数”;
(1)判断5313,6437是否为“共生数”?并说明理由;
(2)对于“共生数”n ,当十位上的数字是千位上的数字的2倍,百位上的数字与个位上的数字之和能被9整除时,记()3n F n =
.求满足()F n 各数位上的数字之和是偶数的所有n .
62.(2021·四川眉山市·中考真题)解方程组3220021530x y x y -+=⎧⎨
+-=⎩
63.(2021·浙江台州市·中考真题)解方程组:
24
1 x y
x y
+=⎧
⎨
-=-⎩
64.(2021·江苏苏州市·中考真题)解方程组:
34
23 x y
x y
-=-⎧
⎨
-=-⎩
.
65.(2020·辽宁大连市·中考真题)某化肥厂第一次运输360吨化肥,装载了6节火车车厢和15辆汽车;第二次运输440吨化肥,装载了8节火车车厢和10辆汽车.每节火车车厢与每辆汽车平均各装多少吨化肥?
66.(2020·江苏镇江市·中考真题)(算一算)如图①,点A、B、C在数轴上,B为AC的中点,点A表示﹣3,点B表示1,则点C表示的数为,AC长等于;
(找一找)如图②,点M、N、P、Q中的一点是数轴的原点,点A、B﹣1,Q 是AB的中点,则点是这个数轴的原点;
(画一画)如图③,点A、B分别表示实数c﹣n、c+n,在这个数轴上作出表示实数n的点E(要求:尺规作图,不写作法,保留作图痕迹);
(用一用)学校设置了若干个测温通道,学生进校都应测量体温,已知每个测温通道每分钟可检测a个学生.凌老师提出了这样的问题:假设现在校门口有m个学生,每分钟又有b个学生到达校门口.如果开放3个通道,那么用4分钟可使校门口的学生全部进校;如果开放4个通道,那么用2分钟可使校门口的学生全部进校.在这些条件下,a、m、b会有怎样的数量关系呢?
爱思考的小华想到了数轴,如图④,他将4分钟内需要进校的人数m+4b记作+(m+4b),用点A表示;将2分钟内由4个开放通道检测后进校的人数,即校门口减少的人数8a记作﹣8a,用点B表示.
①用圆规在小华画的数轴上分别画出表示+(m+2b)、﹣12a的点F、G,并写出+(m+2b)的实际意义;
②写出a、m的数量关系:.
67.(2020·湖北黄石市·中考真题)我国传统数学名著《九章算术》记载:“今有牛五、羊二,直金十九两;牛二、羊五,直金十六两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值19两银子;2头牛、5只羊,值16两银子,问每头牛、每只羊分别值银子多少两?”
根据以上译文,提出以下两个问题:(1)求每头牛、每只羊各值多少两银子?(2)若某商人准备用19两银子买牛和羊(要求既有牛也有羊,且银两须全部用完),请问商人有几种购买方法?列出所有的可能.
68.(2020·四川凉山彝族自治州·中考真题)解方程:
221
1
23
x x
x
---=-
69.(2020·山西中考真题)2020年5月份,省城太原开展了“活力太原·乐购晋阳”消费暖心活动,本次活动中的家电消费券单笔交易满600元立减128元(每次只能使用一张)某品牌电饭煲按进价提高50%后标价,若按标价的八折销售,某顾客购买该电饭煲时,使用一张家电消费券后,又付现金568元.求该电饭煲的进价.
70.(2020·浙江杭州市·中考真题)以下是圆圆解方程
13
23
+-
-
x x
=1的解答过程.
解:去分母,得3(x+1)﹣2(x﹣3)=1.
去括号,得3x+1﹣2x+3=1.
移项,合并同类项,得x=﹣3.
圆圆的解答过程是否有错误?如果有错误,写出正确的解答过程.
71.(2019·湖南娄底市·中考真题)某商场用14500元购进甲、乙两种矿泉水共500箱,矿泉水的成本价与销售价如表(二)所示:
求:(1)购进甲、乙两种矿泉水各多少箱?(2)该商场售完这500箱矿泉水,可获利多少元?
72.(2019·吉林中考真题)问题解决:糖葫芦一般是用竹签串上山楂,再蘸以冰糖制作而成.现将一些山楂分别串在若干根竹签上.如果每根竹签串5个山楂,还剩余4个山楂;如果每根竹签串8个山楂,还剩余7根竹签.这些竹签有多少根?山楂有多少个?
反思归纳: 现有a 根竹签,b 个山楂.若每根竹签串c 个山楂,还剩余d 个山楂,则下列等式成立的是________(填写序号)⑴bc d a +=;⑵ac d b +=;⑶ac d b -=.
73.(2019·湖南张家界市·中考真题)阅读下面的材料:
按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项.排在第一位的数称为第一项,记为1a ,排在第二位的数称为第二项,记为2a ,依此类推,排在第n 位的数称为第n 项,记为n a .所以,数列的一般形式可以写成:1a ,2a ,3a ,…,n a .
一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,那么这个数列叫做等差数列,
这个常数叫做等差数列的公差,公差通常用d 表示.如:数列1,3,5,7,…为等差数列,其中1a 1=,
2a 3=,公差为3a 2=.根据以上材料,解答下列问题:
(1)等差数列5,10,15,…的公差d 为______,第5项是______.
(2)如果一个数列1a ,2a ,3a ,…,n a …,是等差数列,且公差为d ,那么根据定义可得到:21a a =d -,32a a d -=,43a a d -=,…,n n 1a a d --=,….
所以21a =a +d ,()3211a a d a d d a 2d =+=++=+,()4311a a d a 2d d a 3d =+=++=+,……, 由此,请你填空完成等差数列的通项公式:n 1a =a +(______)d .
(3)4041-是不是等差数列5-,7-,9-…的项?如果是,是第几项?。