江苏省阜宁中学2018-2019学年高一数学上学期期中试题
苏教版2018-2019学年高一(上)期中数学试卷(精品Word版,含答案解析)
2018-2019学年高一(上)期中数学试卷一.选择题:(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是正确的)1.已知全集U={x|x≥2},集合M={x|x≥3},则∁U M=()A.{x|2≤x≤3}B.{x|2≤x<3}C.{x|x≤3}D.{x|x<2}2..设集合M={x|2x>3},N={x|(x﹣1)(x+3)<0},则()A.M=N B.M⊆N C.N⊆M D.M∩N=∅3.下列函数是偶函数,且在(0,+∞)是增函数的是()A.f(x)=x2+2x B.f(x)=x﹣2C.f(x)=|x|D.f(x)=lnx4.已知函数f(x)=的定义域为R,则实数k的取值范围是()A.k≠0B.0≤k≤4C.0≤k<4D.0<k<45.已知函数f(x)为偶函数,当x∈[0,+∞)时,f(x)=x﹣1,则f(x)<0的解集是()A.(0,1)B.(﹣1,1)C.(﹣1,0)D.(﹣∞,﹣1)∪(0,1)6.若(a+1)<(3﹣2a),则a的取值范围是()A.()B.()C.()D.()7.若a<b<c,则函数f(x)=(x﹣a)(x﹣b)+(x﹣b)(x﹣c)+(x﹣c)(x﹣a)的两个零点分别位于区间()A.(a,b)和(b,c)内B.(﹣∞,a)和(a,b)内C.(b,c)和(c,+∞)内D.(﹣∞,a)和(c,+∞)内8.已知函数f(x)的定义域为(﹣1,1),则函数g(x)=f()+f(x﹣1)的定义域为()A.(1,2)B.(0,2)C.(0,1)D.(﹣1,1)9.已知a=2,b=log2,c=log23,d=log45.则()A.a>c<d>b B.b<a<c<d C.b<a<d<c D.c>a>d>b10.函数f(x)=log(x2﹣4x)的单调递增区间为()A.(﹣∞,2)B.(2,+∞)C.(﹣∞,4)D.(4,+∞)11.若方程x2﹣4|x|+3=m有四个互不相等的实数根,则m的取值范围是()A.(﹣∞,﹣1)B.(﹣1,3)C.(3,+∞)D.(﹣1.+∞)12.对于函数f(x)=(|x﹣2|+1)4,给出如下三个命题:①f(x+2)是偶函数;②f(x)在区间(﹣∞,2)上是减函数,在区间(2,+∞)上是增函数;③f(x)没有最小值.其中正确的个数为()A.1B.2C.3D.0二.填空题:(本题共4小题,每小题5分,共20分)13.函数y=的定义域为.14.函数f(x)=a+2(a>0且a≠1)的图象过定点;15.已知函数,则f(log23)=.16.已知函数f(x)=a(e x﹣e﹣x)+b+2,若f(lg3)=3,则f(lg)=.三.解答题:(本题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)计算下列各式:(1)(2)﹣(﹣9.6)0﹣(3)+(1.5)﹣2;(2)log3+lg25+lg4+7.18.(12分)已知集合A={x|x2﹣x﹣2<0},B={x|x2﹣(2a+1)x+a(a+1)<0},且B⊆A,求实数a的取值范围.19.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=2,f(x+1)﹣f(x)=2x﹣1(Ⅰ)求函数f(x)的解析式;(Ⅱ)当x∈[﹣1,2]时,求函数的最大值和最小值.(Ⅲ)若函数g(x)=f(x)﹣mx的两个零点分别在区间(﹣1,2)和(2,4)内,求m的取值范围.20.(12分)已知函数.(1)试判断f(x)的单调性,并证明你的结论;(2)若f(x)为定义域上的奇函数,求函数f(x)的值域.21.(12分)已知函数f(x)=log2x的定义域是[2,16].设g(x)=f(2x)﹣[f(x)]2.(1)求函数g(x)的解析式及定义域;(2)求函数g(x)的最值.22.(12分)定义在R上的函数y=f(x).对任意的a,b∈R.满足:f(a+b)=f(a)•f(b),当x>0时,有f(x)>1,其中f(1)=2.(1)求f(0),f(﹣1)的值;(2)判断该函数的单调性,并证明;(3)求不等式f(x+1)<4的解集.2018-2019学年黑龙江省哈师大附中高一(上)期中数学试卷参考答案与试题解析一.选择题:(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是正确的)1.已知全集U={x|x≥2},集合M={x|x≥3},则∁U M=()A.{x|2≤x≤3}B.{x|2≤x<3}C.{x|x≤3}D.{x|x<2}【分析】根据补集的定义,写出∁U M.【解答】解:全集U={x|x≥2},集合M={x|x≥3},则∁U M={x|2≤x<3}.故选:B.【点评】本题考查了补集的定义与应用问题,是基础题.2..设集合M={x|2x>3},N={x|(x﹣1)(x+3)<0},则()A.M=N B.M⊆N C.N⊆M D.M∩N=∅【分析】由2x>3,得x>log23,由(x﹣1)(x+3)<0,得﹣3<x<1即M=(log23,+∞),N=(﹣3,1),得M∩N=∅.【解答】解:∵2x>3∴x>log23,即M=(log23,+∞)又∵(x﹣1)(x+3)<0,∴﹣3<x<1∴N=(﹣3,1),又∵log23>1,∴M∩N=∅故选:D.【点评】本题考查了指数不等式与二次不等式的解法,属简单题.3.下列函数是偶函数,且在(0,+∞)是增函数的是()A.f(x)=x2+2x B.f(x)=x﹣2C.f(x)=|x|D.f(x)=lnx【分析】根据题意,依次分析选项,综合即可得答案.【解答】解:根据题意,依次分析选项:对于A,f(x)=x2+2x,不是偶函数,不符合题意;对于B,f(x)=x﹣2=,是偶函数,在(0,+∞)是减函数,不符合题意;对于C,f(x)=|x|=,是偶函数,且在(0,+∞)是增函数,符合题意;对于D,f(x)=lnx,不是偶函数,不符合题意;故选:C.【点评】本题考查函数的奇偶性与单调性的判断,关键是掌握常见函数的奇偶性与单调性,属于基础题.4.已知函数f(x)=的定义域为R,则实数k的取值范围是()A.k≠0B.0≤k≤4C.0≤k<4D.0<k<4【分析】根据f(x)的定义域为R,即可得出不等式kx2+kx+1≥0的解集为R,显然k=0时满足题意,而当k≠0时,则满足,解出k的范围即可.【解答】解:∵f(x)的定义域为R;∴不等式kx2+kx+1≥0的解集为R;①k=0时,1≥0恒成立,满足题意;②k≠0时,;解得0<k≤4;综上得,0≤k≤4.故选:B.【点评】考查函数定义域的概念及求法,以及一元二次不等式ax2+bx+c≥0的解集和判别式△取值的关系.5.已知函数f(x)为偶函数,当x∈[0,+∞)时,f(x)=x﹣1,则f(x)<0的解集是()A.(0,1)B.(﹣1,1)C.(﹣1,0)D.(﹣∞,﹣1)∪(0,1)【分析】由已知得f(x)在(﹣∞,0)单调递减,且f(﹣1)=0,结合简图易得结果.【解答】解:∵f(x)为偶函数,∴f(x)图象关于y轴对称,∵当x∈[0,+∞)时,f(x)=x﹣1,∴f(x)在[0,+∞)单调递增,且f(1)=0,∴f(x)在(﹣∞,0)单调递减,且f(﹣1)=0,∴f(x)<0的解集是(﹣1,1).故选:B.【点评】本题主要考查不等式的解法,利用函数的奇偶性和单调性之间的关系是解决本题的关键,综合考查函数性质的应用.6.若(a+1)<(3﹣2a),则a的取值范围是()A.()B.()C.()D.()【分析】用a=1排除A、D,由底数大于0,排除B.【解答】解:a=1时,2<1成立,排除A、D又3﹣2a>0得a<,排除B,故选:C.【点评】本题考查了其它不等式的解法,属基础题.7.若a<b<c,则函数f(x)=(x﹣a)(x﹣b)+(x﹣b)(x﹣c)+(x﹣c)(x﹣a)的两个零点分别位于区间()A.(a,b)和(b,c)内B.(﹣∞,a)和(a,b)内C.(b,c)和(c,+∞)内D.(﹣∞,a)和(c,+∞)内【分析】由函数零点存在判定定理可知:在区间(a,b),(b,c)内分别存在一个零点;又函数f(x)是二次函数,最多有两个零点,即可判断出.【解答】解:∵a<b<c,∴f(a)=(a﹣b)(a﹣c)>0,f(b)=(b﹣c)(b﹣a)<0,f (c)=(c﹣a)(c﹣b)>0,由函数零点存在判定定理可知:在区间(a,b),(b,c)内分别存在一个零点;又函数f(x)是二次函数,最多有两个零点,因此函数f(x)的两个零点分别位于区间(a,b),(b,c)内.故选:A.【点评】熟练掌握函数零点存在判定定理及二次函数最多有两个零点的性质是解题的关键.8.已知函数f(x)的定义域为(﹣1,1),则函数g(x)=f()+f(x﹣1)的定义域为()A.(1,2)B.(0,2)C.(0,1)D.(﹣1,1)【分析】根据f(x)的定义域,可看出,要使得函数g(x)有意义,则需满足,解出x的范围即可.【解答】解:∵f(x)的定义域为(﹣1,1);∴要使g(x)有意义,则;解得1<x<2;∴g(x)的定义域为(1,2).故选:A.【点评】考查函数定义域的概念及求法,已知f(x)定义域,求f[g(x)]定义域的方法.9.已知a=2,b=log2,c=log23,d=log45.则()A.a>c<d>b B.b<a<c<d C.b<a<d<c D.c>a>d>b【分析】直接利用对数的运算性质进行大小比较.【解答】解:∵0<a=2<20=1,b=log2<log21=0,c=log23>1,d=log45>1.且.∴b<a<d<c.故选:C.【点评】本题考查对数值的大小比较,考查对数的运算性质,是基础题.10.函数f(x)=log(x2﹣4x)的单调递增区间为()A.(﹣∞,2)B.(2,+∞)C.(﹣∞,4)D.(4,+∞)【分析】先求得函数的定义域,本提即求t=x2﹣4x在定义域内的增区间,再利用二次函数的性质得出结论.【解答】解:由函数f(x)=log(x2﹣4x),可得x2﹣4x>0,求得x<0,或x>4,故函数的定义域为{x|x<0,或x>4 },本题即求t=x2﹣4x在定义域内的增区间.再利用二次函数的性质可得t=x2﹣4x在定义域内的增区间为(4,+∞),故选:D.【点评】本题主要考查复合函数的单调性,对数函数、二次函数的性质,属于中档题.11.若方程x2﹣4|x|+3=m有四个互不相等的实数根,则m的取值范围是()A.(﹣∞,﹣1)B.(﹣1,3)C.(3,+∞)D.(﹣1.+∞)【分析】作出y=x2﹣4|x|+3的函数图象,根据图象得出m的范围.【解答】解:作出y=x2﹣4|x|+3的函数图象如图所示:∵程x2﹣4|x|+3=m有四个互不相等的实数根,∴直线y=m与y=x2﹣4|x|+3的函数图象有4个交点,∴﹣1<m<3.故选:B.【点评】本题考查了方程解的个数与函数图象的关系,属于中档题.12.对于函数f(x)=(|x﹣2|+1)4,给出如下三个命题:①f(x+2)是偶函数;②f(x)在区间(﹣∞,2)上是减函数,在区间(2,+∞)上是增函数;③f(x)没有最小值.其中正确的个数为()A.1B.2C.3D.0【分析】由奇偶性的定义可判断①;讨论x>2,x<2,求得f(x),以及导数,判断符号,即可判断②;由f(x)的单调性可判断③.【解答】解:函数f(x)=(|x﹣2|+1)4,设g(x)=f(x+2)=(|x|+1)4,g(﹣x)=g(x),可得g(x)是偶函数,故①正确;x>2时,f(x)=(x﹣1)4的导数为f′(x)=4(x﹣1)3>0;x<2时,f(x)=(3﹣x)4递,导数为f′(x)=4(x﹣3)3<0,可得f(x)在区间(﹣∞,2)上是减函数,在区间(2,+∞)上是增函数,故②正确;由②可得f(x)在x=2处取得最小值1,故③错误.故选:B.【点评】本题考查函数的奇偶性和单调性、最值的求法,考查导数的运用和奇偶性定义的应用,考查运算能力,属于基础题.二.填空题:(本题共4小题,每小题5分,共20分)13.函数y=的定义域为.【分析】函数y=有意义,可得0<5x﹣3≤1,解不等式即可得到所求定义域.【解答】解:函数y=有意义,可得,即为0<5x﹣3≤1,解得<x≤,则定义域为.故答案为:.【点评】本题考查函数的定义域的求法,注意运用对数的真数大于0,以及偶次根式被开方数非负,考查运算能力,属于基础题.14.函数f(x)=a+2(a>0且a≠1)的图象过定点(1,3);【分析】令幂指数等于零,求得x,y的值,可得函数的图象经过定点的坐标.【解答】解:对于函数f(x)=a+2(a>0且a≠1),令x2﹣2x+1=0,求得x=1,y =3,可得函数f(x)=a+2(a>0且a≠1)的图象过定点(1,3),故答案为:(1,3).【点评】本题主要考查指数函数的图象经过定点问题,属于基础题.15.已知函数,则f(log23)=.【分析】先判断出log23的范围,代入对应的解析式求解,根据解析式需要代入同一个式子三次,再把所得的值代入另一个式子求值,需要对底数进行转化,利用进行求解.【解答】解:由已知得,,且1<log23<2,∴f(log23)=f(log23+1)=f(log23+2)=f(log23+3)=f(log224)==.故答案为:.【点评】本题的考点是分段函数求值,对于多层求值按“由里到外”的顺序逐层求值,一定要注意自变量的值所在的范围,然后代入相应的解析式求解,此题利用了恒等式进行求值.16.已知函数f(x)=a(e x﹣e﹣x)+b+2,若f(lg3)=3,则f(lg)=1.【分析】f(lg3)=a(e lg3﹣e﹣lg3)+b+2=3,从而a(e lg3﹣e﹣lg3)+b=2,进而f(lg)=a(﹣)+g+3=﹣[a(e lg3﹣e﹣lg3)+b]+3,由此能求出结果.【解答】解:∵函数f(x)=a(e x﹣e﹣x)+b+2,f(lg3)=3,∴f(lg3)=a(e lg3﹣e﹣lg3)+b+2=3,∴a(e lg3﹣e﹣lg3)+b=2,∴f(lg)=a(﹣)+g+3=﹣[a(e lg3﹣e﹣lg3)+b]+3=﹣2+3=1.故答案为:1.【点评】本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.三.解答题:(本题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)计算下列各式:(1)(2)﹣(﹣9.6)0﹣(3)+(1.5)﹣2;(2)log3+lg25+lg4+7.【分析】(1)根据指数幂的运算性质计算即可,(2)根据对数的运算性质计算即可.【解答】解:(1)原式=﹣1﹣+=,(2)原式=﹣+lg100+2=﹣+2+2=.【点评】本题考查了指数幂和对数的运算性质,属于基础题18.(12分)已知集合A={x|x2﹣x﹣2<0},B={x|x2﹣(2a+1)x+a(a+1)<0},且B⊆A,求实数a的取值范围.【分析】先确定A、B,由B⊆A得,得﹣1≤a≤1.【解答】解:A={x|﹣1<x<2},B={x|a<x<a+1},∵B⊆A,∴,∴﹣1≤a≤1.【点评】本题考查的知识点是集合的包含关系判断及应用,集合关系中的参数问题,难度中档.19.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=2,f(x+1)﹣f(x)=2x﹣1(Ⅰ)求函数f(x)的解析式;(Ⅱ)当x∈[﹣1,2]时,求函数的最大值和最小值.(Ⅲ)若函数g(x)=f(x)﹣mx的两个零点分别在区间(﹣1,2)和(2,4)内,求m的取值范围.【分析】(Ⅰ)利用f(0)=2,f(x+1)﹣f(x)=2x﹣1,直接求出a、b、c,然后求出函数的解析式.(Ⅱ)利用二次函数的对称轴与区间的关系,直接求解函数的最值.(Ⅲ)利用g(x)的两个零点分别在区间(﹣1,2)和(2,4)内,列出不等式组,即可求出M的范围.【解答】(本小题满分14分)解:(Ⅰ)由f(0)=2,得c=2,又f(x+1)﹣f(x)=2x﹣1得2ax+a+b=2x﹣1,故解得:a=1,b=﹣2,所以f(x)=x2﹣2x+2.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(a,b,c各(1分),解析式1分)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)(Ⅱ)f(x)=x2﹣2x+2=(x﹣1)2+1,对称轴为x=1∈[﹣1,2],故f min(x)=f(1)=1,又f(﹣1)=5,f(2)=2,所以f max(x)=f(﹣1)=5.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)(Ⅲ)g(x)=x2﹣(2+m)x+2,若g(x)的两个零点分别在区间(﹣1,2)和(2,4)内,则满足﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)解得:.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(14分)【点评】本题考查二次函数的解析式的求法,二次函数的性质与最值的求法,零点判定定理的应用,考查计算能力.20.(12分)已知函数.(1)试判断f(x)的单调性,并证明你的结论;(2)若f(x)为定义域上的奇函数,求函数f(x)的值域.【分析】(1)f(x)是增函数,利用单调性的定义进行证明;(2)先求出a,再求函数f(x)的值域.【解答】解:(1)f(x)是增函数.证明如下:函数f(x)的定义域为(﹣∞,+∞),且,任取x1,x2∈(﹣∞,+∞),且x1<x2,则.∵y=2x在R上单调递增,且x1<x2,∴,∴f(x2)﹣f(x1)>0,即f(x2)>f(x1),∴f(x)在(﹣∞,+∞)上是单调增函数.(2)∵f(x)是定义域上的奇函数,∴f(﹣x)=﹣f(x),即对任意实数x恒成立,化简得,∴2a﹣2=0,即a=1.(也可利用f(0)=0求得a=1)∴,∵2x+1>1,∴,∴,∴.故函数f(x)的值域为(﹣1,1).【点评】本题考查函数的单调性与奇偶性,考查函数的值域,考查学生的计算能力,属于中档题.21.(12分)已知函数f(x)=log2x的定义域是[2,16].设g(x)=f(2x)﹣[f(x)]2.(1)求函数g(x)的解析式及定义域;(2)求函数g(x)的最值.【分析】第一步得到解析式和x的范围后注意整理;第二步换元时要注意新元的范围,为下面的函数求值域做好基础.【解答】解:(1)由题意可得g(x)=,且,进一步得:,且定义域为【2,8】,(2)令t=log2x,则t∈[1,3],h(t)=﹣t2+t+1,∵h(t)在【1,3】递减∴h(t)的值域为【h(3),h(1)】,即【﹣5,1】,∴当x=8时,g(x)有最小值﹣5,当x=2时,g(x)有最大值1.【点评】此题考查了求函数解析式的基础方法,确定定义域和换元需注意的地方,并综合考查了二次函数求最值,综合性较强,难度不大.22.(12分)定义在R上的函数y=f(x).对任意的a,b∈R.满足:f(a+b)=f(a)•f(b),当x>0时,有f(x)>1,其中f(1)=2.(1)求f(0),f(﹣1)的值;(2)判断该函数的单调性,并证明;(3)求不等式f(x+1)<4的解集.【分析】(1)根据题意,用特殊值法分析:令a=1,b=0,则f(1)=f(0)•f(1),可得f (0)的值,令a=1,b=﹣1,则f(0)=f(1)•f(﹣1),分析可得f(﹣1)的值;(2)任取x1,x2∈(﹣∞,+∞)且x1<x2,则有x2﹣x1>0,则f(x2﹣x1)>1,进而有f(x2)=f[(x2﹣x1)+x1]=f(x2﹣x1)•f(x1)>f(x1),结合单调性的定义分析可得结论;(3)根据题意,f(2)=f(1+1)=f(1)•f(1)=4,据此分析可得f(x+1)<4⇒f(x+1)<f(2)⇒x+1<2,解可得x的取值范围,即可得答案.【解答】解:(1)根据题意,对任意的a,b∈R,满足f(a+b)=f(a)•f(b);令a=1,b=0,则f(1)=f(0)•f(1),又由f(1)>1,则f(0)=1;令a=1,b=﹣1,则f(0)=f(1)•f(﹣1),又由f(1)=2,则;(2)f(x)在(﹣∞,+∞)上单调递增;任取x1,x2∈(﹣∞,+∞)且x1<x2,则有x2﹣x1>0,则f(x2﹣x1)>1,f(x2)=f[(x2﹣x1)+x1]=f(x2﹣x1)•f(x1)>f(x1),则f(x2)﹣f(x1)>0,即函数f(x)为增函数;(3)根据题意,f(2)=f(1+1)=f(1)•f(1)=4,则f(x+1)<4⇒f(x+1)<f(2)⇒x+1<2,解可得:x<1,即不等式的解集为(﹣∞,1).【点评】本题考查抽象函数的应用,涉及函数的奇偶性与单调性的证明与综合应用,注意用赋值法分析.。
2018-2019学年江苏省苏州市高一(上)期中数学试卷(解析版)
2018-2019学年江苏省苏州市高一(上)期中数学试卷一、选择题(本大题共6小题,共30.0分) 1. 关于以下集合关系表示不正确的是( )A. ⌀∈{⌀}B. ⌀⊆{⌀}C. ⌀∈N ∗D. ⌀⊆N ∗ 2. 不等式log 2x <12的解集是( )A. {x |0<x < 22} B. {x |0<x < 2} C. {x |x > 2} D. {x |x > 22} 3. 若函数f (x )的定义域为(1,2),则f (x 2)的定义域为( )A. {x |1<x <4}B. {x |1<x <C. {x |− 2<x <−1或1<x < 2}D. {x |1<x <2}4. 设函数f (x )= 2x ,x ≥13x−b ,x <1,若f (f (56))=4,则b =( ) A. 1B. 78C. 34D. 125. 设函数f (x )=ln (2+x )-ln (2-x ),则f (x )是( ) A. 奇函数,且在(0,2)上是增函数 B. 奇函数,且在(0,2)上是减函数 C. 偶函数,且在(0,2)上是增函数 D. 偶函数,且在(0,2)上是减函数6. 对二次函数f (x )=ax 2+bx +c (a 为非零整数),四位同学分别给出下列结论,其中有且只有一个结论是错误的,则错误的结论是( ) A. −1是f (x )的零点 B. 1是f (x )的极值点 C. 3是f (x )的极值 D. 点(2,8)在曲线y =f (x )上 二、填空题(本大题共8小题,共40.0分)7. 已知全集U ={-1,0,2,4},集合A ={0,2},则∁U A =______. 8. 求值:3−827=______. 9. 已知函数f (x )=(12)x (x ≥3)f (x +1)(x <3),则f (log 23)的值为______. 10. 已知偶函数f (x )在[0,2]内单调递减,若a =f (−1),b =f (log 0.514),c =f (lg 0.5),则a ,b ,c 之间的大小关系为______.(从小到大顺序)11.函数y =log 3(-x 2+x +6)的单调递减区间是______.12. 函数f (x )=ax |2x +a |在[1,2]上是单调减函数,则实数a 的取值范围为______.13.已知f (x )为R 上增函数,且对任意x ∈R ,都有f [f (x )-3x]=4,则f (2)=______.14. 已知函数f (x )= x 2−x +3,x ≤1x +2x ,x >1,设a ∈R ,若关于x 的不等式f (x )≥|x2+a |在R 上恒成立,则a 的取值范围是______三、解答题(本大题共6小题,共80.0分)15. (Ⅰ)已知a +a -1=3,求a 3+a −3a 4−a −4的值;(Ⅱ)化简计算:(lg 5)2+lg 2×lg 50(lg 2)+3lg 2×lg 5+(lg 5).16.记集合M={x|y=3−x+x−1},集合N={y|y=x2-2x+m}.(1)若m=3,求M∪N;(2)若M∩N=M,求实数m的取值范围.17.某商场将进价为2000元的冰箱以2400元售出,平均每天能售岀8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x 之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?18.已知函数f(x)=2x.x−1(1)求f(x)的定义域、值域利单调区间;(2)判断并证明函数g(x)=xf(x)在区间(0,1)上的单调性.19.已知二次函数f(x)满足f(2+x)=f(2-x),其图象开口向上,顶点为A,与x轴交于点B(-1,0)利C点,且△ABC的面积为18.(1)求此二次函数的解析式;(2)若方程f(x)=m(x-1)在区间[0,1]有解,求实数m的取值范围.20.已知a∈R,函数f(x)=log2(1+a).x(1)当a=5时,解不等式f(x)>0;(2)若关于x的方程f(x)-log2[(a-4)x+2a-5]=0的解集中恰好有一个元素,求a 的取值范围.(3)设a>0,若对任意t∈[1,1],函数f(x)在区间[t,t+1]上的最大值与最小值2的差不超过1,求a的取值范围.答案和解析1.【答案】C【解析】解:A:∅是{∅}中的元素,所以正确;B:∅,{∅}都是集合,又∅是任何集合的子集,所以正确;D:∅是任何集合的子集,所以正确.故选:C.∅对于集合{∅}来说具有两重性,即是元素本身又是集合,又∅是任何集合的子集,可得结果.本题考查是集合间的包含关系和元素与集合的属于关系,属基础题.2.【答案】B【解析】解:不等式可化为:log2 x<log2 2,∵2>1,∴0<x<,故选:B.将不等式右边化为以2为底的对数,利用对数函数的单调性可得.本题考查了对数不等的解法,属基础题.3.【答案】C【解析】解:∵f(x)的定义域为(1,2);∴f(x2)满足1<x2<2;∴;∴,或;∴f(x2)的定义域为.故选:C.根据f(x)的定义域为(1,2),即可得出f(x2)需满足1<x2<2,解出x的范围即可.考查函数定义域的概念及求法,已知f(x)定义域求f[g(x)]定义域的方法,绝对值不等式的解法.解:函数f(x)=,若f(f())=4,可得f()=4,若,即b≤,可得,解得b=.若,即b>,可得,解得b=<(舍去).故选:D.直接利用分段函数以及函数的零点,求解即可.本题考查函数的零点与方程根的关系,函数值的求法,考查分段函数的应用.5.【答案】A【解析】解:因为f(-x)=ln(2-x)-ln(2+x)=-f(x),所以f(x)为奇函数;因为y=ln(2+x)与y=-ln(2-x)在(0,2)内都是增函数,所以f(x)在(0,2)上是增函数.故选:A.由定义知f(x)为奇函数,由复合函数的单调性知f(x)在(0,2)上是增函数.本题考查了奇偶性和单调性的综合,属中档题.6.【答案】A【解析】解:可采取排除法.若A错,则B,C,D正确.即有f(x)=ax2+bx+c的导数为f′(x)=2ax+b,即有f′(1)=0,即2a+b=0,①又f(1)=3,即a+b+c=3②,又f(2)=8,即4a+2b+c=8,③由①②③解得,a=5,b=-10,c=8.符合a为非零整数.若B错,则A,C,D正确,则有a-b+c=0,且4a+2b+c=8,且=3,解得a∈∅,不成立;若C错,则A,B,D正确,则有a-b+c=0,且2a+b=0,且4a+2b+c=8,解得a=-不为非零整数,不成立;若D错,则A,B,C正确,则有a-b+c=0,且2a+b=0,且=3,解得a=-不为非零整数,不成立.故选:A.可采取排除法.分别考虑A,B,C,D中有一个错误,通过解方程求得a,判断是否为非零整数,即可得到结论.本题考查二次函数的极值、零点等概念,主要考查解方程的能力和判断分析的能力,属于中档题.7.【答案】{-1,4}【解析】解:全集U={-1,0,2,4},集合A={0,2},则∁U A={-1,4}.故答案为:{-1,4}.直接利用补集的定义,求出A的补集即可.本题考查补集的运算,补集的定义,考查基本知识的应用.8.【答案】-23【解析】解:原式=(-)=(-)=-,故答案为:-根据根式的性质即可化简.本题考查了根式的化简,属于基础题.9.【答案】112【解析】解:∵函数,∴f(log23)=f(log23+1)=f(log23+2)==×=.故答案为:.由函数,知f(log23)=f(log23+1)=f(log23+2)=,由此能求出其结果.本题考查函数的性质和应用,解题时要认真审题,仔细解答.10.【答案】b<a<c【解析】解:∵偶函数f(x)∴f(lg)=f(lg2),f(-1)=f(1),=2,∵lg2<1<2,f(x)在[0,2]内单调递减∴f(lg2)>f(1)>f(2)即c>a>b故答案为b<a<c先根据偶函数的性质将-1,,lg,化到[0,2]内,根据函数f(x)在[0,2]内单调递减,得到函数值的大小即可.本题主要考查了函数的单调性,以及函数的奇偶性和对数的运算性质,属于基础题.11.【答案】[1,3)2【解析】解:根据题意,函数y=log3(-x2+x+6)分解成两部分:f(U)=log2U为外层函数,U=-x2+x+6是内层函数.根据复合函数的单调性,可得若函数y=log2x单调增函数,则函数y=log3(-x2+x+6)单调递减区间就是函数y=-x2+x+6单调递减区间,∴U=-x2+x+6的单调递减区间是:[,+∞),考虑到函数的定义域,-x2+x+6>0,得x∈(-2,3).函数y=log3(-x2+x+6)的单调递减区间是:[,3).故答案为:[,3).欲求得函数y=log3(-x2+x+6)单调递减区间,将函数y=log3(-x2+x+6)分解成两部分:f(U)=log3U外层函数,U=-x2+x+6是内层函数.外层函数是指数函数,其底数大于1,是增函数,故要求内层函数是减函数时,原函数才为减函数.问题转化为求U=-x2+x+6的单调减区间,但要注意要保证U>0.一般地,复合函数中,当内层函数和外层函数一增一减时,原函数为减函数;当内层函数和外层函数同增同减时,原函数为增函数.12.【答案】{a|a>0或a=-4}【解析】解:根据题意,f(x)=ax|2x+a|=分3种情况讨论:①,当a=0时,f(x)=0,不符合题意;②,当a>0时,-<0,在区间[1,2]上,f(x)=ax(2x+a),且-<0,在[1,2]上为增函数,符合题意;③,当a<0时,->0,若f(x)在[1,2]上递增,必有,解可得a=-4;综合可得:a的取值范围为{a|a>0或a=-4};故答案为:{a|a>0或a=-4}.根据题意,f(x)=ax|2x+a|=,按a的取值分3种情况讨论函数f(x)的单调性,综合即可得答案.本题考查分段函数的单调性的判断,涉及参数的讨论,注意分析a的取值情况,属于基础题.13.【答案】10【解析】解:根据题意得,f(x)-3x为常数,设f(x)-3x=m,则f(m)=4,f(x)=3x+m;∴3m+m=4,易知该方程有唯一解,m=1;∴f(x)=3x+1;故答案为:10.因为f(x)是R上的增函数,所以若f(x)-3x不是常数,则f[f(x)-3x]便不是常数.而已知f[f(x)-3x]=4,所以f(x)-3x是常数,设f(x)-3x=m,所以f(m)=4,f (x)=3x+m,所以f(m)=3m+m=4,容易知道该方程有唯一解,m=1,所以f(x)=3x+1,所以便可求出f(2).考查对于单调函数,当自变量的值是变量时,函数值也是变量,单调函数零点的情况.14.【答案】-47≤a≤216【解析】解:函数f(x)=,当x≤1时,关于x的不等式f(x)≥|+a|在R上恒成立,即为-x2+x-3≤+a≤x2-x+3,即有-x2+x-3≤a≤x2-x+3,由y=-x2+x-3的对称轴为x=<1,可得x=处取得最大值为-;由y=x2-x+3的对称轴为x=<1,可得x=处取得最小值为,则-≤a≤;…①当x>1时,关于x的不等式f(x)≥|+a|在R上恒成立,即为-(x+)≤+a≤x+,即有-(x+)≤a≤+,由y=-(x+)≤-2=-2(当且仅当x=>1)取得最大值-2;由y=x+≥2=2(当且仅当x=2>1)取得最小值2.则-2≤a≤2;…②由①②可得,-≤a≤2;综上,a的取值范围是-≤a≤2.故答案为:-≤a≤2.根据题意,分段讨论x≤1和x >1时,关于x 的不等式f (x )≥|+a|在R 上恒成立,去掉绝对值,利用函数的最大、最小值求得a 的取值范围,再求它们的公共部分.本题考查了分段函数的应用问题,也考查了不等式恒成立问题,是难题. 15.【答案】解:(Ⅰ)∵a +a -1=3,∴a 2+a -2=(a +a -1)2-2=9-2=7,a -a -1=± (a −a −1)2=± (a +a −1)2−4=± 5.∴a 3+a −3a −a =(a +a −1)(a 2+a −2−1)(a−a −1)(a +a −1)(a 2+a −2)=a 2+a −2−1(a−a −1)(a 2+a −2),∴当a -a -1= 5时,a 3+a −3a −a=a 2+a −2−1(a−a )(a +a )=5×7=6 535, 当a -a -1=- 5时,a 3+a −3a 4−a−4=a 2+a −2−1(a−a )(a +a )=-5×7=-6 535. (Ⅱ)(lg 5)2+lg 2×lg 50(lg 2)+3lg 2×lg 5+(lg 5) =(lg 5)2+lg 2(lg 2+2lg 5)(lg 2+lg 5)[(lg 2)2−lg 2lg 5+(lg 5)2]+3lg 2×lg 5 =(lg 5+lg 2)2(lg 2+lg 5)2=1.【解析】(Ⅰ)推导出a 2+a -2=(a+a -1)2-2=9-2=7,a-a -1===.再由==,能求出结果.(Ⅱ)利用对数性质、运算法则、换底公式直接求解.本题考查指数式、对数式化简求值,考查指数、对数的性质及运算法则等基础知识,考查运算求解能力,是基础题.16.【答案】解:(1)∵集合M ={x |y = 3−x + x −1}=[1,3],又∵集合N ={y |y =x 2-2x +m },∴y =x 2-2x +m =(x -1)2+m -1, ∴N ={y |m -1≤y }=[m -1,+∞),当m =3时,N ={y |2≤y }=[2,+∞), ∴M ∪N =[1,+∞),所以m≤2.【解析】(1)将m=3代入求出集合M,N,进而可得M∪N;(2)若M∩N=M,可得M⊂N,结合M=[1,3],N=[m-1,+∞),可得答案.本题考查的知识点是集合的包含关系判断与应用,集合的运算,难度不大,属于基础题.17.【答案】解:(1)y=(2400-2000-x)(8+0.08x)=(400-x)(8+0.08x)=-0.08x2+24x+3200 (2)当y=4800时,-0.08x2+24x+3200=4800,解这个方程得x1=100,x2=200.∵若要使老百姓获得更多实惠,则x1=100不符合题意,舍去.答:若要使老百姓获得更多实惠,每台冰箱应降价200元.(3)由y=-0.08x2+24x+3200,当x=242×0.08=150时,y最大,最大为=-0.08×1502+24×150=5000 答:每台冰箱降价150元时,商场每天销售这种冰箱的利润最高,最高利润是5000元.【解析】(1)根据题意易求y与x之间的函数表达式.(2)已知函数解析式,设y=4800可从实际得x的值.(3)利用x=150,然后可求出y的最大值本题考查了二次函数的综合知识,求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法.借助二次函数解决实际问题.18.【答案】解:(1)由x-1≠0,得x≠1,所以f(x)的定义域为(-∞,1)∪(1,+∞),由f(x)=2xx−1=2(x−1)+2x−1=2+2x−1≠2,得f(x)的值域为(-∞,2)∪(2,+∞),f(x)的单调递减区间为(-∞,1)和(1,+∞)(2)g(x)在(0,1)上是减函数,证明如下:g(x)=xf(x)=2x2x−1,g′(x)=4x(x−1)−2x2(x−1)2=2x(x−2)(x−1)2,∵x∈(0,1),∴g′(x)<0,∴g(x)在(0,1)上是减函数.【解析】(1)分母不为0可求得定义域,f(x)变成2+后,利用≠0可求得值域,利用反比例函数的单调性可求得单调区间;(2)利用导函数的符号证明单调性.本题考查了函数的单调性及单调区间,属中档题.19.【答案】解:(1)∵二次函数f(x)=ax2+bx+c满足f(2+x)=f(2-x),∴函数的对称轴x=−b2a=2即b=-4a,∵图象开口向上,a>0,∵f(-1)=0,∴c=-5a∴f(x)=a(x2-4x-5=0),∴A(2,-9a)图象与x轴交于点B(-1,0),根据对称性可知C(5,0),∴BC=6,△ABC的面积为S=12×6×|-9a|=18.∴a=23,∴f(x)=23(x2-4x-5);(2)∵f(x)=23(x2-4x-5)=m(x-1)在区间[0,1]有解,即2x2-(3m+8)x+3m-10=0在区间[0,1]上有解,∵△=(3m+8)2-8(3m-10)=9m2+24m+144>0恒成立,∴g(x)=2x2-(3m+8)x+3m-10有两个零点,又g(x)在[0,1]上有零点,∴g(0)•g(1)≤0或g(0)≥0g(1)≥00<3m+84<1,∴m≥103或m∈∅,综上所述:实数m的取值范围时[103,+∞).【解析】(1)根据二次函数的对称轴为x=2,得b=-4a,开口向上得a>0,根据B(-1,0)得C(5,0),根据S△ABC=18得a=,从而可得f(x)=(x2-4x-5);(2)转化为g(x)=2x2-(3m+8)x+3m-10在[0,1]内有零点,利用二次函数的图象列式可求得:m≥.本题主要考查二次函数的对称轴,顶点与轴的交点和平面图形,函数的零点,二次方程实根的分布,属中档题.20.【答案】解:(1)当a=5时,f(x)=log2(1x+5),由f(x)>0;得log2(1x+5)>0,即1x +5>1,则1x>-4,则1x+4=4x+1x>0,即x>0或x<-14,即不等式的解集为{x |x >0或x <-14}.(2)由f (x )-log 2[(a -4)x +2a -5]=0得log 2(1x +a )-log 2[(a -4)x +2a -5]=0. 即log 2(1x +a )=log 2[(a -4)x +2a -5],即1x +a =(a -4)x +2a -5>0,①则(a -4)x 2+(a -5)x -1=0,即(x +1)[(a -4)x -1]=0,②,当a =4时,方程②的解为x =-1,代入①,成立当a =3时,方程②的解为x =-1,代入①,成立 当a ≠4且a ≠3时,方程②的解为x =-1或x =1a−4,若x =-1是方程①的解,则1x +a =a -1>0,即a >1,若x =1a−4是方程①的解,则1x +a =2a -4>0,即a >2,则要使方程①有且仅有一个解,则1<a ≤2.综上,若方程f (x )-log 2[(a -4)x +2a -5]=0的解集中恰好有一个元素,则a 的取值范围是1<a ≤2,或a =3或a =4.(3)函数f (x )在区间[t ,t +1]上单调递减,由题意得f (t )-f (t +1)≤1,即log 2(1t +a )-log 2(1t +1+a )≤1,即1t +a ≤2(1t +1+a ),即a ≥1t -2t +1=1−t t (t +1)设1-t =r ,则0≤r ≤12,1−t t (t +1)=r (1−r )(2−r )=r r 2−3r +2, 当r =0时,r r −3r +2=0,当0<r ≤12时,r r −3r +2=1r +2−3,∵y =r +2r 在(0, 2)上递减,∴r +2r ≥12+4=92,∴r r 2−3r +2=1r +2r −3≤192−3=23,∴实数a 的取值范围是a ≥23.【解析】(1)当a=5时,解导数不等式即可.(2)根据对数的运算法则进行化简,转化为一元二次方程,讨论a的取值范围进行求解即可.(3)根据条件得到f(t)-f(t+1)≤1,恒成立,利用换元法进行转化,结合对勾函数的单调性进行求解即可.本题主要考查函数最值的求解,以及对数不等式的应用,利用换元法结合对勾函数的单调性是解决本题的关键.综合性较强,难度较大.。
江苏省阜宁中学2018-2019学年高三上学期第三次月考试卷数学含答案
江苏省阜宁中学2018-2019学年高三上学期第三次月考试卷数学含答案 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 阅读右图所示的程序框图,若8,10m n ==,则输出的S 的值等于( ) A .28 B .36 C .45 D .120 2. 若函数()()()()()1cos sin cos sin 3sin cos 412f x x x x x a x x a x =-++-+-在02π⎡⎤-⎢⎥⎣⎦,上单调递增,则实数的取值范围为( )A .117⎡⎤⎢⎥⎣⎦,B .117⎡⎤-⎢⎥⎣⎦,C.1(][1)7-∞-+∞,,D .[1)+∞, 3. 函数22()(44)log x x f x x -=-的图象大致为( )4. “1ab >”是“10b a>>”( ) A .充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件5. 给出下列命题:①多面体是若干个平面多边形所围成的图形;②有一个平面是多边形,其余各 面是三角形的几何体是棱锥;③有两个面是相同边数的多边形,其余各面是梯形的多面体是棱台.其中 正确命题的个数是( )A .0B .1C .2D .36. 函数()f x 在定义域R 上的导函数是'()f x ,若()(2)f x f x =-,且当(,1)x ∈-∞时,'(1)()0x f x -<,设(0)a f =,(2)b f =,2(log 8)c f =,则( )A .a b c <<B .a b c >>C .c a b <<D .a c b <<7. 如果点P 在平面区域220,210,20x y x y x y -+≥⎧⎪-+≤⎨⎪+-≤⎩上,点Q 在曲线22(2)1x y ++=上,那么||PQ 的最小值为( )A1 B1-C. 1 D1 8. 已知函数1)1(')(2++=x x f x f ,则=⎰dx x f 1)(( )A .67-B .67C .65D .65- 【命题意图】本题考查了导数、积分的知识,重点突出对函数的求导及函数积分运算能力,有一定技巧性,难度中等.9. 已知全集为R ,集合{}|23A x x x =<->或,{}2,0,2,4B =-,则()R A B =ð( )A .{}2,0,2-B .{}2,2,4-C .{}2,0,3-D .{}0,2,4 10.已知函数()cos()3f x x π=+,则要得到其导函数'()y f x =的图象,只需将函数()y f x =的图象( ) A .向右平移2π个单位 B .向左平移2π个单位 C. 向右平移23π个单位 D .左平移23π个单位11.如图所示,已知四边形ABCD 的直观图是一个边长为的正方形,则原图形的周长为( )A. B . C. D. 12.执行下面的程序框图,若输入2016x =-,则输出的结果为( )A .2015B .2016C .2116D .2048二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.已知向量,满足42=,2||=,4)3()(=-⋅+,则与的夹角为 .【命题意图】本题考查向量的数量积、模及夹角知识,突出对向量的基础运算及化归能力的考查,属于容易题. 14.若执行如图3所示的框图,输入,则输出的数等于 。
阜宁县第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案
阜宁县第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知点A (﹣2,0),点M (x ,y )为平面区域上的一个动点,则|AM|的最小值是( )A .5B .3C .2 D.2. 边长为2的正方形ABCD 的定点都在同一球面上,球心到平面ABCD 的距离为1,则此球的表面积为( ) A .3π B .5πC .12πD .20π3. 某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x 的值是( )A .2 B. C. D .34. 十进制数25对应的二进制数是( ) A .11001 B .10011 C .10101 D .100015. 已知函数f (x )=2x ,则f ′(x )=( ) A .2xB .2x ln2C .2x +ln2D.6. 已知复合命题p ∧(¬q )是真命题,则下列命题中也是真命题的是( ) A .(¬p )∨q B .p ∨q C .p ∧q D .(¬p )∧(¬q )7. △ABC 的内角A ,B ,C所对的边分别为,,,已知a =b =6A π∠=,则B ∠=( )111]A .4πB .4π或34πC .3π或23πD .3π8. 下面茎叶图表示的是甲、乙两个篮球队在3次不同比赛中的得分情况,其中有一个数字模糊不清,在图中以m 表示.若甲队的平均得分不低于乙队的平均得分,那么m 的可能取值集合为( )A .B .C .D .班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________9.已知f(x)=,g(x)=(k∈N*),对任意的c>1,存在实数a,b满足0<a<b<c,使得f(c)=f(a)=g(b),则k的最大值为()A.2 B.3 C.4 D.510.将函数的图象上所有的点向左平移个单位长度,再把图象上各点的横坐标扩大到原来的2倍,则所得的图象的解析式为()A.B.C.D.11.如图可能是下列哪个函数的图象()A.y=2x﹣x2﹣1 B.y=C.y=(x2﹣2x)e x D.y=12.一个空间几何体的三视图如图所示,其中正视图为等腰直角三角形,侧视图与俯视图为正方形,则该几何体的体积为()A.64 B.32 C.643D.323二、填空题13.设f(x)是定义在R上且周期为2的函数,在区间[﹣1,1]上,f(x)=其中a,b∈R.若=,则a+3b的值为.14.如图,在长方体ABCD﹣A1B1C1D1中,AB=5,BC=4,AA1=3,沿该长方体对角面ABC1D1将其截成两部分,并将它们再拼成一个新的四棱柱,那么这个四棱柱表面积的最大值为.15.设S n是数列{a n}的前n项和,且a1=﹣1,=S n.则数列{a n}的通项公式a n=.16.已知一个算法,其流程图如图,则输出结果是.17.小明想利用树影测量他家有房子旁的一棵树的高度,但由于地形的原因,树的影子总有一部分落在墙上,某时刻他测得树留在地面部分的影子长为1.4米,留在墙部分的影高为1.2米,同时,他又测得院子中一个直径为1.2米的石球的影子长(球与地面的接触点和地面上阴影边缘的最大距离)为0.8米,根据以上信息,可求得这棵树的高度是米.(太阳光线可看作为平行光线)18.已知函数,若∃x1,x2∈R,且x1≠x2,使得f(x1)=f(x2),则实数a的取值范围是.三、解答题19.如图,在直三棱柱ABC﹣A1B1C1中,AC=3,BC=4,AA1=4,AB=5,点D是AB的中点.(1)求证:AC⊥BC1;(2)求证:AC1∥平面CDB1.20.本小题满分10分选修45-:不等式选讲 已知函数2()log (12)f x x x m =++--. Ⅰ当7=m 时,求函数)(x f 的定义域;Ⅱ若关于x 的不等式2)(≥x f 的解集是R ,求m 的取值范围.21.如图,在三棱柱ABC ﹣A 1B 1C 1中,底面△ABC 是边长为2的等边三角形,D 为AB 中点. (1)求证:BC 1∥平面A 1CD ;(2)若四边形BCC1B 1是正方形,且A 1D=,求直线A 1D 与平面CBB 1C 1所成角的正弦值.22.已知函数,.(Ⅰ)求函数的最大值; (Ⅱ)若,求函数的单调递增区间.23.已知函数()f x =121x a +- (1)求()f x 的定义域.(2)是否存在实数a ,使()f x 是奇函数?若存在,求出a 的值;若不存在,请说明理由。
江苏省阜宁中学2018-2019学年上学期期中高考数学模拟题
江苏省阜宁中学2018-2042学年上学期期中高考数学模拟题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知集合{}{2|5,x |y ,A y y x B A B ==-+===( )A .[)1,+∞B .[]1,3C .(]3,5D .[]3,5【命题意图】本题考查二次函数的图象和函数定义域等基础知识,意在考查基本运算能力.2. 已知复数z 满足(3+4i )z=25,则=( ) A .3﹣4iB .3+4iC .﹣3﹣4iD .﹣3+4i3. 设F 为双曲线22221(0,0)x y a b a b-=>>的右焦点,若OF 的垂直平分线与渐近线在第一象限内的交点到另一条渐近线的距离为1||2OF ,则双曲线的离心率为( )A .B .3C .D .3【命题意图】本题考查双曲线方程与几何性质,意在考查逻辑思维能力、运算求解能力、方程思想.4. 已知全集R U =,集合{|||1,}A x x x R =≤∈,集合{|21,}xB x x R =≤∈,则集合U AC B 为( )A.]1,1[-B.]1,0[C.]1,0(D.)0,1[- 【命题意图】本题考查集合的运算等基础知识,意在考查运算求解能力. 5. 设集合{}|||2A x R x =∈≤,{}|10B x Z x =∈-≥,则A B =( )A.{}|12x x <≤B.{}|21x x -≤≤C. {}2,1,1,2--D. {}1,2【命题意图】本题考查集合的概念,集合的运算等基础知识,属送分题.6. 椭圆22:143x y C +=的左右顶点分别为12,A A ,点P 是C 上异于12,A A 的任意一点,且直线1PA 斜率的取值范围是[]1,2,那么直线2PA 斜率的取值范围是( )A .31,42⎡⎤--⎢⎥⎣⎦ B .33,48⎡⎤--⎢⎥⎣⎦ C .1,12⎡⎤⎢⎥⎣⎦ D .3,14⎡⎤⎢⎥⎣⎦【命题意图】本题考查椭圆的标准方程和简单几何性质、直线的斜率等基础知识,意在考查函数与方程思想和基本运算能力.7. 某几何体的三视图如图所示,则该几何体的体积为( ) A .16163π-B .32163π-C .1683π-D .3283π-【命题意图】本题考查三视图、圆柱与棱锥的体积计算,意在考查识图能力、转化能力、空间想象能力. 8. 已知22(0)()|log |(0)x x f x x x ⎧≤=⎨>⎩,则方程[()]2f f x =的根的个数是( )A .3个B .4个C .5个D .6个9. 在等差数列{}n a 中,11a =,公差0d ≠,n S 为{}n a 的前n 项和.若向量13(,)m a a =,133(,)n a a =-, 且0m n ?,则2163n n S a ++的最小值为( )A .4B .3 C.2 D .92【命题意图】本题考查等差数列的性质,等差数列的前n 项和,向量的数量积,基本不等式等基础知识,意在考查学生的学生运算能力,观察分析,解决问题的能力.10.若等边三角形ABC 的边长为2,N 为AB 的中点,且AB 上一点M 满足CM xCA yCB =+, 则当14x y+取最小值时,CM CN ⋅=( ) A .6 B .5 C .4 D .3 11.已知向量(1,2)a =,(1,0)b =,(3,4)c =,若λ为实数,()//a b c λ+,则λ=( )A .14 B .12C .1D .2 12.定义在R 上的偶函数()f x 满足(3)()f x f x -=-,对12,[0,3]x x ∀∈且12x x ≠,都有 1212()()0f x f x x x ->-,则有( )A .(49)(64)(81)f f f <<B .(49)(81)(64)f f f << C. (64)(49)(81)f f f << D .(64)(81)(49)f f f <<二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.已知函数22tan ()1tan xf x x=-,则()3f π的值是_______,()f x 的最小正周期是______. 【命题意图】本题考查三角恒等变换,三角函数的性质等基础知识,意在考查运算求解能力.14.(﹣2)7的展开式中,x 2的系数是 .15.已知数列{}n a 中,11a =,函数3212()3432n n a f x x x a x -=-+-+在1x =处取得极值,则 n a =_________.16.曲线y =x 2+3x 在点(-1,-2)处的切线与曲线y =ax +ln x 相切,则a =________.三、解答题(本大共6小题,共70分。
江苏省阜宁中学高一数学上学期期中试题苏教版
高一上学期期中考试数学试题一、填空题1. 若{1,2},{2,3}M N ==,则=M N I .2. 已知幂函数y =f (x )的图象经过点(,则()4f =_______.3. 已知2log 0.3a =,3.02=b ,则,a b 的大小关系是 .(用“<”连接)4. 已知21,0()1,0x x f x x x ⎧+≥=⎨-+<⎩,则((1))f f -= .5. 函数y=lnx+2x-6的零点的个数为 .6. 定义在R 上的奇函数)(x f ,当0<x 时, 1()1f x x =+,则)21(f 等于 . 7. 若函数()()()log 1401a f x x a a =-+>≠且的图象过定点(),m n ,则log m n = . 8. 若函数()2212013y mx m x =+-+是偶函数,且是[]2,5上为增函数,则m = .9. 已知32a bA ==,且12a b1+=,则A 的值是 . 10. 已知a 是实数,函数f (x )=x 2-ax +1在区间 (0,1)与(1,2)上各有一个零点,则a 的取值范围是________.11. 若函数()()221f x x ax b a =-+>的定义域和值域都是[]1,a ,则实数b = . 12. 直线1y =-的图像与曲线2y x x a =-+的图像有四个不同的交点,则实数a 的取值范围是 .13. 如果()f x 的图象关于()0,0对称,而且在区间()0,+∞为增函数,又()20f -=,那么不等式()10xf x -<的解集为 .14. 对于函数()y f x =,如果存在区间[],m n ,同时满足下列条件:(1))(x f 在[],m n 上是单调的;(2)当定义域是[],m n 时,)(x f 的值域也是[],m n ,则称[],m n 是该函数的“和谐区间”。
若函数()=a f x a a x+11-(>0)存在“和谐区间”,则实数a 的取值范围是 . 二、解答题15. (本小题满分14分)(1)计算4log 32log 84+;(2)设,3log 2=x 求222222x xx x----的值.17. (本小题满分14分) 已知奇函数1()41x f x a =++. (1)求a 的值;(2)讨论()f x 的单调性,并加以证明;(3)解不等式(21)(23)0f x f x -+->. 。
江苏省盐城市阜宁中学2018-2019学年高一上学期期中考试数学试题含答案
江苏省盐城市阜宁中学2018-2019学年高一上学期期中考试数学试题一、填空题:本大题共14小题,每小题5分,共计70分.1.已知集合{}3,2,1,0,1-=U ,{}3,2,1-=A ,则U A =ð ▲ . 2.函数)1lg(2)(x x x f -++=的定义域是 ▲ .3.已知函数21,0,(),0x x f x x x ì-?ï=í<ïî,则=-))2((f f ▲ .4.已知函数x x x f 2)(2-=,其定义域为{}2,1,0,1-,则函数的值域为 ▲ .(用集合表示)5.若函数2()2(1)2f x x a x =+-+在区间()4,∞-上单调递减,那么实数a 的取值范围是▲ .6.已知幂函数αx x f =)(的图象过点)22,2(,则=)4(f ▲ . 7.已知m x m x x f +-+=)2()(2为偶函数,则=m ▲ .8.324138625271log --+的值为 ▲ . 9.函数)1,0(21≠>+=-a a a y x 的图象必经过定点 ▲ .10.若553.03.0,3.0log ,5===c b a ,则c b a ,,的大小关系为 ▲ . (用“<”号连结)11.已知函数3log )(3-+=x x x f 的零点所在区间是()1,+k k ,则整数=k ▲ . 12.设,,R ∈a b c ,函数1)(35++-=cx bx ax x f ,若7)3(=-f ,则=)3(f ▲ . 13.已知函数)(x f 是定义在R 上的偶函数,且在()0,∞-上是增函数,又0)2(=f ,则不等式0)1(<+x xf 的解集为 ▲ .14.设函数x x x f 2)(2+-=,则满足12)(2++≤at t x f 对所有的∈x [-1,1]及∈a [-1,1]都成立的t 的取值范围是 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)(1)设集合{}31≤≤-=x x A ,{}11+≤≤-=m x m x B ,若B B A = ,试求实数m 的取值范围;(2)已知全集=R U ,集合{}24>-<=x x x A 或,集合⎭⎬⎫⎩⎨⎧≤=22)21(xx B ,求(U A ð)B .16.(本小题满分14分)不用计算器,求下列各式的值:(1)3827--124()25-+212-(-)+π0; (2)165lg 4lg 325lg 21++.17.(本小题满分14分)已知函数()()=-R ∈f x x x a x 且0)4(=f . (1)求a 的值;(2)在如图所示的平面直角坐标系中,画出函数)(x f 的图象,并根据图象指出)(x f 的单调递增区间;(3)若关于x 的方程02)(=-m x f 有三个不相等的实数根,求实数m 的取值范围.18.(本小题满分16分)已知121)(--=xax f 是奇函数,其中a 为常数. (1)写出)(x f 定义域,并求a 的值;(2)判断)(x f 的单调性,并用定义证明你的结论.19.(本小题满分16分)某计算机生产厂家,上年度生产计算机的投入成本为5000元/台,出厂价为6000元/台,年销售量为10000台.为适应市场需求,计划在本年度提高产品档次,适度增加投入成本,若每台计算机投入成本的增长率为)10(<<x x ,则出厂价的增长率为x 75.0,同时预计销售量的增长率为x 6.0.(1)分别写出本年度的每台计算机的生产成本、出厂价、年销售量、本年度预计的年利润y (元)与投入成本的增长率x 的关系式;(2)要使本年度的年利润最大,求投入成本的增长率x 的值;(3)为使本年度的年利润不低于上年度,问投入成本的增长率x 应在什么范围内?20.(本小题满分16分)已知函数1log )(log )(2422++=x b x a x f ,b a ,为常数,0)21(=f ,且)(x f 的最小值为0. (1)求)(x f 的表达式;(2)若函数12log )()(2++-=m x m x f x F 有两个零点,且一个在区间(21,41)上,另一个在区间(1,21)上,求实数m 的取值范围; (3)设函数xk x f x g 2log 1)()(-+=,是否存在实数k ,使)(x g 在[]8,4是单调函数,若存在,求出实数k 的取值范围;若不存在,说明理由.【参考答案】一、填空题 1.{}1,0 2. [-2,1)3.34.{}3,0,1- 5. (3,-∞-] 6.21 7. 2 8.479. (1,3)10. a c b <<11.212.-513.()()+∞-,10,3 14. 2-≤t 或0=t 或 2≥t二、解答题15.解:(1) 由B B A = 知,A B ⊆,⎩⎨⎧≤+-≥-∴3111m m ,解得,20≤≤m .(2){}24>-<=x x x A 或 ,∴∁A U {}24≤≤-=x x , 又⎭⎬⎫⎩⎨⎧-≥=23x x B ,∴(∁A U )B =⎭⎬⎫⎩⎨⎧≤≤-223x x . 16.解:(1)原式142523++--=1=; (2)原式=16lg 5lg 2lg 35lg 2122-++⨯2lg 45lg 2lg 65lg -++= 22lg 25lg 2=+=.17.解:(1)由0)4(=f ,即044=-⨯a ,4=∴a .(2)()⎩⎨⎧<-≥-=-=4,44),4(4)(x x x x x x x x x f ,即()⎪⎩⎪⎨⎧<+--≥--=4,424,4)2()(22x x x x x f ,]2,,),4[+∞. (3)方程02)(=-m x f 有三个不相等的实数根, 即m x f 2)(=有三个不相等的实数根,即函数)(x f y =的图象与直线m y 2=有三个不同交点, 所以20420<<⇒<<m m . 18. 解:(1)由0012≠⇒≠-x x,即定义域为),0()0,(+∞-∞ ,12)1(2121)(-+-=--=xx x a a x f , )(x f 为奇函数, )()(x f x f -=-∴对任意),0()0,(+∞-∞∈ x 成立,即12)1(212)1(2-+--=-+---x x x x a a ,亦即12)1(2212)1(1-+--=-⋅+-xx x x a a , )1(22)1(1+-=+-∴a a x x ,即0)12)(2(=-+x a 在),0()0,(+∞-∞ 恒成立, 202012-=⇒=+∴≠-a a x .(2) 由(1)知, 12211221)(-+=---=x x x f , )(x f 在),0(+∞上为单调减函数,)(x f 在)0,(-∞上也为单调减函数.证明:设任意),0(,21+∞∈x x ,且21x x <,)12)(12()22(2122122)()(21122121---=---=-x x x x x x x f x f ,022,012,012,0122121>->->-∴<<x x x x x x , 0)()(21>-∴x f x f ,故)(x f 在),0(+∞上为单调减函数,同理可证, )(x f 在)0,(-∞上也为单调减函数.19. 解:(1)由题意,本年度每台计算机的生产成本为)1(5000x +, 出厂价为)75.01(6000x +,销售量为)6.01(10000x +,本年度的年利润[])6.01(10000)1(5000)75.01(6000x x x y +⋅+-+=, 即:()10)103(1026<<++-⋅=x x x y .(2)由()10)103(1026<<++-⋅=x x x y ,当61)30(210=-⨯-=x 时,y 有最大值,即要使本年度的年利润最大,投入成本的增长率x 的值为61. (3)由)50006000(10000-≥y ,3100310)103(102726≤≤⇒≤-⇒≥++-⋅x x x x x , 又10<<x ,310≤<∴x , 即投入成本的增长率x 的范围为(31,0]. 20. 解:(1)1log )(log )(222++=x b x a x f ,1()=0-+1=02∴f a b ,,即1+=a b (1), 若0=a ,1log )(2+=x x f ,函数无最小值,故0≠a ,又且)(x f 的最小值为0 ,必须有⎪⎩⎪⎨⎧=->04402ab a a (2),由(1)(2)得,2,1==b a ,从而1log 2)(log )(222++=x x x f .(2)由012log )()(2=++-=m x m x f x F 得,022log )2()(log 222=++-+m x m x , 令x u 2log =,则方程022)2(2=++-+m u m u 有两个不等根,且分别在区间()1,2--、()0,1-上,设22)2()(2++-+=m u m u u h ,所以3121022)0(02221)1(022244)2(-<<-⇒⎪⎩⎪⎨⎧>+=<+++-=->+++-=-m m h m m h m m h , 即m 的取值范围(31,21--). (3)2log log log 11log 2)(log )(222222++=-+++=xkx x k x x x g []8,4∈x ,令x t 2log =,则[]3,2,2∈++=t tkt y ,设任意[]3,2,21∈t t 且21t t <,则21212121))((t t k t t t t y y --=-,①当0≤k 时, 021<-y y ,[]3,2,2∈++=∴t tkt y 为单调递增函数, ②当0>k 时, 由于9421<<t t , 故当4≤k 时,021<-y y ,则2++=tkt y 在[]3,2为单调递增函数, 当9≥k 时,021>-y y ,则2++=tkt y 在[]3,2为单调递减函数, 综合得,k 的取值范围是4≤k 或9≥k .。
江苏省盐城市阜宁县2023-2024学年高一上学期期中数学试卷
江苏省盐城市阜宁县2023-2024学年高一上学期期中数学试
卷
学校:___________姓名:___________班级:___________考号:___________
一、单选题
二、多选题
A .方程()()0f g x =有且仅有6个根
B .方程
C .方程()()0f f x =有且仅有4个根
D .方程()()0g g x =有且仅有4个根
三、填空题
四、解答题
(1)将S 表示为x 的函数,并写出x 的取值范围;(2)当AB 为多长时,S 取得最大值?并求出最大值.
21.已知函数()2
23
f x x kx =++(1)若不等式()0f x <在()0,2x ∈有解,求k 的取值范围;
(2)若不等式()0f x <的解集为M ,集合()1,2N =,若“x ∈N ”是“x M ∈”的充分条件,求k 的取值范围.
22.已知关于x 的不等式22(23)(1)10(R)k k x k x k --+++>∈的解集为M ;(1)若R M =,求k 的取值范围;
(2)若存在两个不相等负实数,a b ,使得(,)(,)M a b =-∞⋃+∞,求实数k 的取值范围;(3)是否存在实数k ,满足:“对于任意*N n ∈,都有n M ∈;对于任意的Z m -∈,都有
m M ∉”,若存在,求出k 的值,若不存在,说明理由.。
江苏省盐城中学高一上学期期中考试(数学).doc
江苏省盐城中学高一上学期期中考试(数学)试卷说明:本卷由两部分组成,其中第Ⅰ卷为必做题,第Ⅱ卷为选做题.同学们完成第Ⅱ卷时首先要根据要求作出选择.答卷时间为1,满分150分.填空题将正确答案填入答题纸的相应横线上.........,.解答题请在答题纸...指定区域....内作答,解答时应写出文字说明、证明过程或演算步骤. 第Ⅰ卷(必做题,共105分)一、填空题(共11小题,每小题5分,共计55分) 1.若集合}2,1{=M ,}4,2{=N ,则=⋃N M __ ______2. 2log 的值为=__ _____3. 函数()f x =)2(f ____ ______4. 函数)10)(1(log <<-=a x y a 的定义域为5. 设{}2,1,0,1,2α∈--,则使幂函数y x α=的定义域为R 且为偶函数的α的值为 6. 函数12-=x y ,)4,0[∈x 的值域为7. 比较大小3.0log 2.0___ ____5.0log 2.0 (填“<”、“>”或“=”)8. 把函数xy 3=的图象向左平移1个单位,再向上平移2个单位得到的函数解析式为___ ___ 9. 已知函数()y f x =是R 上的奇函数,且0x >时,x x f lg )(=,则)100(-f 的值为 10. 已知偶函数()f x 在区间[0,)+∞单调递增,则满足)1(-x f <1()3f 的x 取值范围是 11. 若函数0()(>--=a a x a x f x且)1≠a 有两个零点,则实数a 的取值范围是 . 二.解答题(本部分共4小题,共计50分)15. (本题满分12分)求值:(1) (2)2lg 2lg5lg 201+-()16. (本题满分12分)已知函数21121)(-+=xx f . (1)若0)(>x f ,求实数x 的取值范围;(2)判断函数)(x f 的奇偶性,并说明理由.17. (本题12分)已知函数⎩⎨⎧>-≤=)1(2)1()(2x x x x x f ,试解答下列问题:(1)求((2))f f -;(2)画出函数的图象;(3)求方程1()2f x x =的解.18. (本题14分)商场销售某一品牌的羊毛衫,销售数量是羊毛衫标价的一次函数,标价越高,购买人数越少。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年秋学期高一年级期中学情调研数 学 试 题一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.已知集合{}3,2,1,0,1-=U ,{}3,2,1-=A ,则U A =ð ▲ . 2.函数)1lg(2)(x x x f -++=的定义域是 ▲ .3.已知函数21,0,(),0x x f x x x ì-?ï=í<ïî,则=-))2((f f ▲ .4.已知函数x x x f 2)(2-=,其定义域为{}2,1,0,1-,则函数的值域为 ▲ .(用集合表示)5.若函数2()2(1)2f x x a x =+-+在区间()4,∞-上单调递减,那么实数a 的取值范围是▲ .6.已知幂函数αx x f =)(的图象过点7.已知m x m x x f +-+=)2()(28 9的图象必经过定点 ▲ .c b a ,,的大小关系为 ▲ . (用“<”号连结)()1,+k k ,则整数=k ▲ . 1++cx ,若7)3(=-f ,则=)3(f ▲ . ()0,∞-上是增函数,又0)2(=f ,则不等式0)1(<+x xf 的解集为 ▲ .14.设函数x x x f 2)(2+-=,则满足12)(2++≤at t x f 对所有的∈x [-1,1]及∈a [-1,1]都成立的t 的取值范围是 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)(1)设集合{}31≤≤-=x x A ,{}11+≤≤-=m x m x B ,若B B A = ,试求实数m 的取值范围;(2)已知全集R U =,集合{}24>-<=x x x A 或,集合⎭⎬⎫⎩⎨⎧≤=22)21(x x B ,求(U A ð)B .π0;17.(本小题满分14分)已知函数()R x a x x x f ∈-=)(且0)4(=f . (1)求a 的值;(2)在如图所示的平面直角坐标系中,画出函数)(x f 的图象,并根据图象指出)(x f 的单调递增区间;(3)若关于x 的方程02)(=-m x f 有三个不相等的实数根,求实数m 的取值范围.18.(本小题满分16分)已知121)(--=x ax f 是奇函数,其中a 为常数. (1)写出)(x f 定义域,并求a 的值;(2)判断)(x f 的单调性,并用定义证明你的结论.19.(本小题满分16分)某计算机生产厂家,上年度生产计算机的投入成本为5000元/台,出厂价为6000元/台,年销售量为10000台.为适应市场需求,计划在本年度提高产品档次,适度增加投入成本,若每台计算机投入成本的增长率为)10(<<x x ,则出厂价的增长率为x 75.0,同时预计销售量的增长率为x 6.0.(1)分别写出本年度的每台计算机的生产成本、出厂价、年销售量、本年度预计的年利润y (元)与投入成本的增长率x 的关系式;(2)要使本年度的年利润最大,求投入成本的增长率x 的值;(3)为使本年度的年利润不低于上年度,问投入成本的增长率x 应在什么范围内?20.(本小题满分16分)1log 242+x b ,b a ,为常数,0)21(=f ,且)(x f 的最小12++m x 有两个零点,且一个在区间(21,41)上,另m 的取值范围; k ,使)(x g 在[]8,4是单调函数,若存在,求出实数k 的取值范围;若不存在,说明理由.高一数学参考答案一、填空题 1.{}1,0 2. [-2,1) 3.34.{}3,0,1- 5. (3,-∞-] 6.21 7. 2 8.47 9. (1,3)10. a c b <<11.212.-513.()()+∞-,10,314. 2-≤t 或0=t 或 2≥t解析:易求得, ∈x [-1,1],1)(max =x f ,转化为1122≥++at t 对∈a [-1,1]恒成立,即为022≥+at t (1) 对∈a [-1,1]恒成立, 当0=t 时,显然成立,当0>t 时, a t a t 202-≥⇒≥+, 2≥∴t ,当0<t 时, a t a t 202-≤⇒≤+, 2-≤∴t , 综合,得 2-≤t 或0=t 或2≥t . (法2:亦可把(1)式的左边看作关于a 的一次函数,略) 二、解答题15.解:(1) 由B B A = 知,A B ⊆ ……………2分⎩⎨⎧≤+-≥-∴3111m m ……………5分解得,20≤≤m ………………7分 (2){}24>-<=x x x A 或 ∴∁A U {}24≤≤-=x x ……………9分 又⎭⎬⎫⎩⎨⎧-≥=23x x B ……………12分∴(∁A U )B =⎭⎬⎫⎩⎨⎧≤≤-223x x ……………14分 16.解:(1)原式142523++--= ………………4分 1= ………………7分 (2)原式=16lg 5lg 2lg 35lg 2122-++⨯ ………………11分 2lg 45lg 2lg 65lg -++= ………………13分 22lg 25lg 2=+= ………………14分 17.解:(1)由0)4(=f ,即044=-⨯a ………………1分4=∴a(2)()⎩⎨⎧<-≥-=-=4,44),4(4)(x x x x x x x x x f即()⎪⎩⎪⎨⎧<+--≥--=4,424,4)2()(22x x x x x f ………………5分 作出图象(如图) ………………8分由图象可知,)(x f 的单调递增区间为]2,(-∞,),4[+∞ …………10分 注:如果写成(,2),(4,)-∞+∞不扣分. (3)方程02)(=-m x f 有三个不相等的实数根, 即m x f 2)(=有三个不相等的实数根,即函数)(x f y =的图象与直线m y 2=有三个不同交点, ………………12分 如图,20420<<⇒<<m m . ………………14分18. 解:(1)由0012≠⇒≠-x x即定义域为),0()0,(+∞-∞ ………………1分x ),0()0,(+∞-∞∈ x 成立 ………………3分 ………………5分 …………6分…………8分)(x f 在),0(+∞上为单调减函数,)(x f 在)0,(-∞上也为单调减函数…………9分证明:设任意),0(,21+∞∈x x ,且21x x <)12)(12()22(2122122)()(21122121---=---=-x x x x x x x f x f …………11分022,012,012,0122121>->->-∴<<x x x x x x0)()(21>-∴x f x f …………13分故)(x f 在),0(+∞上为单调减函数 …………14分同理可证, )(x f 在)0,(-∞上也为单调减函数. …………16分 19. 解:(1)由题意,本年度每台计算机的生产成本为)1(5000x +,出厂价为)75.01(6000x +,销售量为)6.01(10000x +, ………………3分本年度的年利润[])6.01(10000)1(5000)75.01(6000x x x y +⋅+-+=即:()10)103(1026<<++-⋅=x x x y ………………6分(2)由()10)103(1026<<++-⋅=x x x y当61)30(210=-⨯-=x 时,y 有最大值,即要使本年度的年利润最大,投入成本的增长率x 的值为61. ……………10分 (3)由)50006000(10000-≥y ………………12分3100310)103(102726≤≤⇒≤-⇒≥++-⋅x x x x x ………………14分又10<<x ,310≤<∴x 即投入成本的增长率x 的范围为(31,0]. ………………16分20. 解:(1)1log )(log )(222++=x b x a x f 010)21(=+-∴=b a f 即1+=a b (1) ……………1分若0=a ,1log )(2+=x x f ,函数无最小值,故0≠a ……………2分又且)(x f 的最小值为0 ,必须有⎪⎩⎪⎨⎧=->04402ab a a (2) ……………3分由(1)(2)得,2,1==b a从而1log 2)(log )(222++=x x x f ……………5分 (2)由012log )()(2=++-=m x m x f x F 得,022log )2()(log 222=++-+m x m x ……………6分令x u 2log =,则方程022)2(2=++-+m u m u 有两个不等根,且分别在区间()1,2--、()0,1-上, ……………7分设22)2()(2++-+=m u m u u h ,所以3121022)0(02221)1(022244)2(-<<-⇒⎪⎩⎪⎨⎧>+=<+++-=->+++-=-m m h m m h m m h 即m 的取值范围(31,21--) ……………10分 (3)2log log log 11log 2)(log )(222222++=-+++=xkx x k x x x g []8,4∈x令x t 2log =,则[]3,2,2∈++=t tkt y ……………12分 设任意[]3,2,21∈t t 且21t t <,则21212121))((t t k t t t t y y --=- ……………13分①当0≤k 时, 021<-y y[]3,2,2∈++=∴t tkt y 为单调递增函数 ……………14分 ②当0>k 时, 由于421<<t t 故当4≤k 时,021<-y y 在[]3,2为单调递增函数, 当9≥k 时,021>-y y ,则2++=tt y 在[]3,2为单调递减函数………15分 综合得,k 的取值范围是4≤k 或9≥k . ………………16分。