专题5.3 三角函数的图象与性质 (精讲)(解析版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题5.3 三角函数的图象与性质
【考纲要求】
1. 理解正弦函数、余弦函数、正切函数的图象与性质,了解三角函数的周期性.
【知识清单】
知识点1.正弦、余弦、正切函数的图象与性质
正弦函数sin y x =,余弦函数cos y x =,正切函数tan y x =的图象与性质 性质
sin y x =
cos y x =
tan y x =
图象
定义域
R R
,2x x k k Z ππ⎧⎫
≠+∈⎨
⎬⎩⎭
值域
[]1,1-
[]1,1-
R
最值
当()
22
x k k Z π
π=+
∈时,
max 1
y =;
当()
22
x k k Z π
π=-
∈时

min 1y =-.
当()2x k k Z π=∈时,max 1y =;当()2x k k Z ππ=+∈时,
min 1y =-.
既无最大值,也无最小值
周期性


π
奇偶性 ()sin sin x x -=-,奇函数 ()cos cos x x -=偶函数
()tan tan x x -=-奇函数
知识点2.“五点法”做函数()sin y A x h ωϕ=++的图象 “五点法”作图:先列表,令30,
,,
,22
2
x π
π
ωϕππ+=,求出对应的五个的值和五个y 值,再根据求出的对应的五个点的坐标描出五个点,再把五个点利用平滑的曲线连接起来,即得到()sin y A x h ωϕ=++在一个周期的图象,最后把这个周期的图象以周期为单位,向左右两边平移,则得到函数
()sin y A x h ωϕ=++的图象.
【考点梳理】
考点一 三角函数的定义域和值域
【典例1】(2020·镇原中学高一期末)函数tan(
)4
y x π
=-的定义域是( )
A .,4x x x R π

⎫≠
∈⎨⎬⎩

B .,4x x x R π

⎫≠-
∈⎨⎬⎩

C .,,4x x k k Z x R π
π⎧

≠+∈∈⎨⎬⎩

D .3,,4x x k k Z x R ππ⎧

≠+
∈∈⎨⎬⎩

【答案】D 【解析】
函数的解析式即:tan 4y x π⎛⎫
=-- ⎪⎝

, 函数有意义,则:()4
2
x k k Z π
π
π-≠+
∈,
解得:()34
x k k Z π
π≠+
∈, 据此可得函数4y tan x π⎛⎫=- ⎪⎝⎭的定义域是3,,4x x k k Z x R ππ⎧⎫
≠+∈∈⎨⎬⎩⎭
.
本题选择D 选项.
【典例2】(2017新课标2)函数f (x )=sin 2x +√3cosx −34(x ∈[0,π
2])的最大值是__________. 【答案】1
【解析】化简三角函数的解析式,则f (x )=1−cos 2x +√3cosx −3
4=−cos 2x +√3cosx +1
4= −(cosx −
√32
)2
+1,由x ∈[0,π
2
]可得cosx ∈[0,1],当cosx =
√3
2
时,函数f(x)取得最大值1.
【规律方法】
1.三角函数定义域的求法
求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图象来求解. 2.三角函数值域的不同求法
(1)利用sin x 和cos x 的值域直接求;
(2)把所给的三角函数式变换成y =A sin(ωx +φ)的形式求值域; (3)把sin x 或cos x 看作一个整体,转换成二次函数求值域; (4)利用sin x ±cos x 和sin x cos x 的关系转换成二次函数求值域. 【变式探究】
1.(2020·新疆高三三模(理))f (x )=2sin ωx (0<ω<1),在区间0,
3π⎡⎤
⎢⎥⎣⎦
ω=________.
【答案】34
【解析】
函数f (x )的周期T =
2πω
, 因此f (x )=2sin ωx 在0,
πω⎡⎤
⎢⎥⎣⎦
上是增函数, ∵0<ω<1,∴0,
3π⎡⎤⎢⎥⎣⎦是0,πω⎡⎤
⎢⎥⎣⎦
的子集, ∴f (x )在0,
3π⎡⎤
⎢⎥⎣⎦
上是增函数,
∴3f π⎛⎫ ⎪⎝⎭2sin 3πω⎛⎫
⎪⎝⎭


ω=4
π, ∴ω=
34,故答案为3
4
.
2.(2019·伊美区第二中学高一月考)函数y =__________.
【答案】{}x |2(21),k x k k Z ππ<<+∈ 【解析】 由
12
0log sinx ≥得0<sin x ≤1,
由正弦函数图象得22,k x k k Z πππ<<∈+, 所以函数的定义域为{|22,}x k x k k Z πππ<<∈+
答案:{|22,}x k x k k Z πππ<<∈+
【总结提升】
在使用开平方关系sin α=±1-cos 2α和cos α=±1-sin 2α时,一定要注意正负号的选取,确定正负号的依据是角α所在的象限,如果角α所在的象限是已知的,则按三角函数在各个象限的符号来确定正负号;如果角α所在的象限是未知的,则需要按象限进行讨论. 考点二 三角函数的单调性
【典例3】(2020·海南枫叶国际学校高一期中)函数()f x =cos()x ωϕ+的部分图像如图所示,则()f x 的单调递减区间为( )
A .13
(,),44
k k k Z ππ-
+∈ B .13
(2,2),44
k k k Z ππ-
+∈ C .13
(,),44
k k k Z -
+∈ D .13
(2,2),44
k k k Z -
+∈ 【答案】D 【解析】
由五点作图知,1+42
{53+42π
ωϕπωϕ=
=,解得=ωπ,=4πϕ,所以()cos()4f x x ππ=+,令
22,4
k x k k Z π
ππππ<+
<+∈,解得124k -
<x <324k +,k Z ∈,故单调减区间为(124k -,3
24
k +),
k Z ∈,故选D.
【典例4】(2020·河南洛阳�高一期末(理))已知sin 33a =︒,cos55b =︒,tan 35c =︒则a ,b ,c ,的大小关系是( )
A .a b c <<
B .a c b <<
C .b a c <<
D .b c a <<
【答案】A 【解析】
因为cos55sin35sin33b a ==>=,且sin 35
tan 35sin 35cos35
c ==
>,
所以c b a >>. 故选:A .
【典例5】(2020·浙江柯城�衢州二中高三其他)已知函数()()2sin 0f x x ωω=>,则()f x 的最大值为________,若()f x 在区间,43ππ⎡⎤
-⎢⎥⎣⎦
上是增函数,则ω的取值范围是________.
【答案】2 30,2
⎛⎤ ⎥⎝

【解析】
因为函数()()2sin 0f x x ωω=>, 所以()[]2sin 2,2ω=∈-f x x , 所以()f x 的最大值为2,
因为()f x 在区间,43ππ⎡⎤
-⎢⎥⎣⎦
上是增函数,
所以,,4322πωπωππ⎡⎤⎡⎤
-
⊆-⎢⎥⎢⎥⎣⎦⎣⎦

所以423
2πω
ππωπ⎧-≥-⎪⎪⎨⎪≤⎪⎩,
解得30,2
ω⎛
⎤∈ ⎥⎝⎦
.
故答案为:(1). 2 (2). 30,2
⎛⎤ ⎥⎝

【规律方法】
1.求形如()sin y A x ωϕ=+或()cos y A x ωϕ=+ (其中A ≠0,0ω>)的函数的单调区间,可以通过解不等式的方法去解答,列不等式的原则是:①把“x ωϕ+ (0ω>)”视为一个“整体”;②A>0(A<0)时,所列不等式的方向与sin y x = (x R ∈),cos y x = (x R ∈)的单调区间对应的不等式方向相同(反).
2.当0ω<时,需要利用诱导公式把负号提出来,转化为sin()y A x ωϕ=---的形式,然后求其单调递增区间,应把x ωϕ--放在正弦函数的递减区间之内;若求其递减区间,应把x ωϕ--放在正弦函数的递增区间之内.
3.已知三角函数的单调区间求参数的取值范围的三种方法
(1)子集法:求出原函数的相应单调区间,由已知区间是所求某区间的子集,列不等式(组)求解. (2)反子集法:由所给区间求出整体角的范围,由该范围是某相应正、余弦函数的某个单调区间的子集,列不等式(组)求解. 【变式探究】
1.(2020·河北路北�开滦第一中学高一期末)在ABC 中,A B C >>,且2
C π
≠,则下列结论中正确的
是( ) A .tan tan A C <
B .tan tan A
C >
C .sin sin <A C
D .sin sin A C >
【答案】D 【解析】 若543,,12123124A B C πππππ=
====,由于02C A π<<<,则tan tan A C >,所以A 选项错误. 若74,,1212312
A B C ππππ=
===,则tan 0tan A C <<, 75sin sin
sin sin sin 121212
A C πππ
==>=,所以BC 选项错误. 在三角形ABC 中,大角对大边,由于A C >,所以a c >,由正弦定理得2sin 2sin R A R B >①,R 是三角形ABC 外接圆的半径.
由①得sin sin A C >.所以D 选项正确. 故选:D
2.(2019·涡阳县第九中学高一期末(文))已知函数()2sin 23f x x π⎛

=+
⎪⎝

.求()f x 的单调增区间; 【答案】5,1212k k ππππ⎡⎤-+⎢
⎥⎣⎦
,k Z ∈. 【解析】
因为sin y x =在区间2,2,22k k k Z ππππ⎡⎤
-
++∈⎢⎥⎣⎦
上单调递增,
所以222,232k x k k πππ
-
+π≤+≤+π∈Z ,解得5,1212
k x k k Z ππππ-≤≤+∈ 所以()f x 的单调增区间为5,1212k k ππππ⎡

-
+⎢⎥⎣

,k Z ∈. 【总结提升】
1.对正弦函数、余弦函数单调性的两点说明
(1)正弦函数、余弦函数在定义域R 上均不是单调函数,但存在单调区间.
(2)由正弦函数、余弦函数的最小正周期为2π,所以任给一个正弦函数、余弦函数的单调区间,加上2k π,(k ∈Z)后,仍是单调区间,且单调性相同. 2.对正弦函数、余弦函数最值的三点说明
(1)明确正、余弦函数的有界性,即|sin x |≤1,|cos x |≤1.
(2)函数y =sin x ,x ∈D ,(y =cos x ,x ∈D )的最值不一定是1或-1,要依赖函数定义域D 来决定. (3)形如y =A sin(ωx +φ)(A >0,ω>0)的函数最值通常利用“整体代换”,即令ωx +φ=Z ,将函数转化为y =A sin Z 的形式求最值.
3.正切函数单调性的三个关注点 (1)正切函数在定义域上不具有单调性.
(2)正切函数无单调递减区间,有无数个单调递增区间,在(-π2,π2),(π2,3
2π),…上都是增函数.
(3)正切函数的每个单调区间均为开区间,不能写成闭区间,也不能说正切函数在(-π2,π2)∪(π2,3π
2)∪…上
是增函数.
考点三 三角函数的周期性
【典例6】(2018年全国卷Ⅲ文)函数f(x)=tanx
1+tan 2x 的最小正周期为( ) A. π
4
B. π
2
C. π
D. 2π
【答案】C 【解析】
由已知得f (x )=tanx 1+tan 2x
=
sinx
cosx 1+(sinx cosx
)
2=sinxcosx =1
2
sin2x
f(x)的最小正周期T =
2π2

故选C.
【规律方法】
1.求三角函数的周期的方法
(1)定义法:使得当x 取定义域内的每一个值时,都有()()f x T f x +=.利用定义我们可采用取值进行验证的思路,非常适合选择题;
(2)公式法:()sin()f x A x ωϕ=+和()cos()f x A x ωϕ=+的最小正周期都是2||
T πω=
,()tan()f x A x ωϕ=+的周期为T π
ω
=
.要特别注意两个公式不要弄混; (3)图象法:可以画出函数的图象,利用图象的重复的特征进行确定,一般适应于不易直接判断,但是能够容易画出函数草图的函数;
(4)绝对值或平方对三角函数周期性的影响:一般说来,某一周期函数解析式加绝对值或平方,其周期性是:弦减半、切不变.既为周期函数又是偶函数的函数自变量加绝对值,其周期性不变,其它不定. 如
x y x y sin ,sin 2==的周期都是π, 但sin y x =cos x +的周期为
2
π
,而1|2sin(3)|,|2sin(3)2|626
y x y x ππ
=-+=-+,|tan |y x =的周期不变.
2.使用周期公式,必须先将解析式化为或
的形式;正弦余弦函
数的最小正周期是
,正切函数的最小正周期公式是
;注意一定要注意加绝对值.
3.对称与周期:正弦曲线、余弦曲线相邻的两个对称中心、相邻的两条对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是四分之一个周期;正切曲线相邻两个对称中心之间的距离是半个周期. 【变式探究】
已知函数y =12sin x +1
2|sin x |.
(1)画出函数的简图;
(2)这个函数是周期函数吗?如果是,求出它的最小正周期. 【答案】(1)见解析;(2)是,2π.
【解析】
(1)y =12sin x +1
2
|sin x |
=⎩
⎪⎨⎪

sin x ,x ∈[2k π,2k π+π]k ∈Z ,0,x ∈[2k π-π,2k πk ∈Z . 函数图象如图所示.
(2)由图象知该函数是周期函数,其图象每隔2π重复一次,则函数的周期是2π.
【特别提醒】
最小正周期是指使函数重复出现的自变量x 要加上的最小正数,是对x 而言,而不是对ωx 而言.. 考点四 三角函数的奇偶性
【典例7】(2018届辽宁省丹东市测试(二))设f(x)=sin(ωx +φ)(ω>0),若f(π
4)=1,则函数y =f(π
4−x) A. 是奇函数 B. 的图象关于点(π
2,0)对称 C. 是偶函数 D. 的图象关于直线x =π
2对称 【答案】C 【解析】
由题意得f(π
4
)=sin (
ωπ4
+φ)=1,

ωπ4
+φ=π2+2kπ,k ∈Z .
∴y =f(π
4−x)=sin[ω(π
4−x)+φ]=sin(ωπ4
+φ−ωx)=sin(π
2+2kπ−ωx)
=sin(π
2−ωx)=cosωx , ∴函数y =f(π
4−x)为偶函数.
故选C . 【规律方法】
1. 一般根据函数的奇偶性的定义解答,首先必须考虑函数的定义域,如果函数的定义域不关于原点对称,则函数一定是非奇非偶函数;如果函数的定义域关于原点对称,则继续求;最后比较

的关系,如果有=
,则函数是偶函数,如果有
=-,则函数是奇函数,否则是非奇
非偶函数.
2. 如何判断函数()f x ωϕ+的奇偶性:根据三角函数的奇偶性,利用诱导公式可推得函数()f x ωϕ+的奇偶性,常见的结论如下:
(1)若sin()y A x ωϕ=+为偶函数,则有()2
k k Z π
ϕπ=+
∈;若为奇函数则有()k k Z ϕπ=∈;
(2)若cos()y A x ωϕ=+为偶函数,则有()k k Z ϕπ=∈;若为奇函数则有()2
k k Z π
ϕπ=+∈;
(3)若tan()y A x ωϕ=+为奇函数则有()k k Z ϕπ=∈. 【变式探究】
(浙江省2019届高考模拟卷(二))函数y =(cos2x )•ln |x |的图象可能是( )
A .
B .
C .
D .
【答案】A 【解析】
由题意得函数f(x)=(cos2x )•ln |x |的定义域为(−∞,0)∪(0,+∞),
∵f (−x )=[cos (−2x )]•ln |−x |=(cos2x )•ln |x |=f(x), ∴函数f(x)为偶函数,
∴函数图象关于y 轴对称,故排除C,D . 又当x ∈(0,1)时,f (x )<0, 因此可排除B . 故选A . 【特别提醒】
利用定义判断与正切函数有关的一些函数的奇偶性时,必须要坚持定义域优先的原则,即首先要看f(x)的定义域是否关于原点对称,然后再判断f(-x)与f(x)的关系. 考点五 三角函数的对称性
【典例8】(2018年江苏卷)已知函数的图象关于直线
对称,则的值是
________. 【答案】
【解析】
由题意可得,所以,因为,所以
【规律方法】
函数的对称性问题,往往先将函数化成sin )y A x B ωϕ=++(的形式,其图象的对称轴是直线
,凡是该图象与直线的交点都是该图象的对称中心, 关键是记住三角函数
的图象,根据图象并结合整体代入的基本思想即可求三角函数的对称轴与对称中心. 【变式探究】
)(2
Z k k x ∈+
=+π
πϕωB y =
(2021·广西钦州一中高三开学考试(理))关于函数()1
cos cos f x x x
=+有如下四个命题: ①()f x 的图像关于y 轴对称. ②()f x 的图像关于原点对称. ③()f x 的图像关于直线2
x π
=
对称.
④()f x 的图像关于点,02π⎛⎫
⎪⎝⎭
对称. 其中所有真命题的序号是__________. 【答案】①④ 【解析】
对于①,()f x 定义域为,2x x k k Z π
π⎧⎫

+∈⎨⎬⎩

,显然关于原点对称, 且()()()()11cos cos cos cos x x x f x f x x
=-=-+
+=-,所以()f x 的图象关于y 轴对称,命题①正确;
对于②,5
32
f π⎛⎫= ⎪⎝⎭,532
f π⎛⎫-= ⎪⎝⎭,则33f f ππ⎛⎫⎛⎫
-= ⎪ ⎪⎝⎭⎝⎭,所以()f x 的图象不关于原点对称,命题②
错误;
对③,532f π⎛⎫= ⎪⎝⎭,2532f π⎛⎫=- ⎪
⎝⎭,则233
f f ππ
⎛⎫⎛⎫≠ ⎪ ⎪⎝⎭⎝⎭
,所以()f x 的图象不关于2x π
=对称,命题③错误;
对④,
1sin 2sin f x x x π⎛⎫
-=+ ⎪⎝⎭,1sin 2sin f x x x π⎛⎫
+=-- ⎪⎝⎭

则22f x f x ππ⎛⎫
⎛⎫
-=-+
⎪ ⎪⎝⎭⎝⎭
,命题④正确. 故答案为:①④. 【特别提醒】
1.求y =Asin(ωx +φ)或y =Acos(ωx +φ)函数的对称轴或对称中心时,应把ωx +φ作为整体,代入相应的公式中,解出x 的值,最后写出结果.
2.正切函数图象的对称中心是(k π
2,0)而非(k π,0)(k ∈Z ).
考点六 三角函数的图象和性质的应用
【典例9】(2020·甘肃高一期末)设函数()sin 23f x x π⎛

=+
⎪⎝

,则下列结论 ①()f x 的图像关于直线3
x π
=对称
②()f x 的图像关于点,04π⎛⎫
⎪⎝⎭
对称 ③()f x 的图像向左平移
12
π
个单位,得到一个偶函数的图像
④()f x 的最小正周期为π,且在06π⎡⎤⎢⎥⎣⎦
,上为增函数
其中正确的序号为________.(填上所有正确结论的序号) 【答案】③ 【解析】 对于①,因为f (
3π)=sin π=0,所以3x π
=不是对称轴,故①错; 对于②,因为f (
4π)=sin 5162π=,所以点,04π⎛⎫
⎪⎝⎭
不是对称中心,故②错; 对于③,将把f (x )的图象向左平移
12
π
个单位,得到的函数为 y =sin[2(x 12
π+)3π+]=sin (2x 2π
+)=cos2x ,所以得到一个偶函数的图象;
对于④,因为若x ∈[0,6π],则22333x πππ≤+≤,所以f (x )在[0,6
π]上不单调,故④错;
故正确的结论是③ 故答案为③.
【典例10】(2019·涡阳县第九中学高一期末(文))设函数()sin(2)(0)f x x ϕπϕ=+-<<,()y f x =的图像的一条对称轴是直线8
x π
=.
(1)求ϕ;
(2)求函数()y f x =在0,
2π⎡⎤
⎢⎥⎣⎦
的值域.
【答案】(1)34π
-;(2)⎡-⎢⎣⎦
.
【解析】 (1)因为8x π
=
是函数()y f x =的图像的对称轴,所以sin 218πϕ⎛⎫
⨯+=± ⎪⎝⎭
. 所以
4
2
k π
π
ϕπ+=+
,k Z ∈,得4
k π
ϕπ=+
,又0πϕ-<<,
所以1k =-时,34
πϕ=-
. (2)由(1)可得3()sin(2)4f x x π=-
,0,2x π⎡⎤∈⎢⎥⎣⎦
, 令t =324x π-
,0,2x π⎡⎤∈⎢⎥⎣⎦,则t ∈3,44ππ⎡⎤
-
⎢⎥⎣
⎦,
则sin ,y t =t ∈3,44ππ⎡⎤
-
⎢⎥⎣⎦,根据正弦函数的图象得[1,2
y ∈- 【典例11】(2020·陕西省汉中中学(理))已知函数()2sin()1(0)6
f x x π
ωω=-->的周期是π.
(1)求()f x 的单调递增区间; (2)求()f x 在[0,
]2
π
上的最值及其对应的x 的值.
【答案】(1)(),63k k k Z ππππ⎡⎤
-
++∈⎢⎥⎣⎦
;(2)当0x =时,()min 2f x =-;当3x π=时,()max 1f x =.
【解析】
(1)解:∵2T π
πω
=
=,∴2ω=,
又∵0>ω,∴2ω=,∴()2sin 216f x x π⎛

=-
- ⎪⎝

, ∵2222
6
2
k x k π
π
π
ππ-
+≤-≤
+,k Z ∈,
∴222233
k x k π
π
ππ-
+≤≤
+,k Z ∈, ∴6
3
k x k π
π
ππ-
+≤≤
+,k Z ∈,
∴()f x 的单调递增区间为(),63k k k Z ππππ⎡⎤
-
++∈⎢⎥⎣⎦
(2)解:∵02
x π≤≤
,∴02x ≤≤π,∴52666x πππ
-≤-≤,
∴1sin 2126x π⎛
⎫-
≤-≤ ⎪⎝
⎭, ∴12sin 226x π⎛

-≤-
≤ ⎪⎝

, ∴22sin 2116x π⎛⎫
-≤-
-≤ ⎪⎝

, 当0x =时,()min 2f x =-, 当226x ππ-
=,即3
x π
=时,()max 1f x =
【规律方法】
1.求形如y =a sin x +b 的函数的最值或值域时,可利用正弦函数的有界性(-1≤sin x ≤1)求解.
2.对于形如y =A sin(ωx +φ)+k (Aω≠0)的函数,当定义域为R 时,值域为[-|A |+k ,|A |+k ];当定义域为某个给定的区间时,需确定ωx +φ的范围,结合函数的单调性确定值域.
3.求形如y =a sin 2x +b sin x +c ,a ≠0,x ∈R 的函数的值域或最值时,可以通过换元,令t =sin x ,将原函数转化为关于t 的二次函数,利用配方法求值域或最值,求解过程中要注意正弦函数的有界性.
4.求形如y =a sin x +b
c sin x +
d ,ac ≠0的函数的值域,可以用分离常量法求解;也可以利用正弦函数的有界性建立
关于y 的不等式反解出y .
综上可知,求与三角函数有关的函数的值域(或最值)的常用方法有:(1)借助于正弦函数的有界性、单调性求解;
(2)转化为关于sin x 的二次函数求解.注意求三角函数的最值对应的自变量x 的值时,要考虑三角函数的周期性. 【变式探究】
1.(2020·山东潍坊�高一期末)若函数()tan (0)4f x x πωω⎛⎫
=+
> ⎪⎝

的最小正周期为π,则( ) A .(2)(0)5f f f π⎛⎫
>>-
⎪⎝⎭
B .(0)(2)5f f f π⎛⎫
>>-
⎪⎝⎭
C .(0)(2)5f f f π⎛⎫
>-
> ⎪⎝⎭
D .(0)(2)5f f f π⎛⎫
-
>> ⎪⎝⎭
【答案】C 【解析】
由题意,函数()tan (0)4f x x πωω⎛⎫
=+
> ⎪⎝

的最小正周期为π, 可得
w
π
π=,解得1w =,即()tan()4
f x x π
=+

令,2
4
2
k x k k Z π
π
π
ππ-
+<+
<
+∈,即3,44
k x k k Z ππ
ππ-
+<<+∈, 当1k =时,
54
4
x π
π<<
,即函数()f x 在5(,)44ππ
上单调递增, 又由4(0)(),()()(
)5
5
5
f f f f f π
π
π
ππ=-
=-
+=, 又由425ππ>
>,所以(0)(2)5f f f π⎛⎫
>-> ⎪⎝⎭
. 故选:C.
2.(2020·陕西新城�西安中学高三月考(文))设0a <,若不等式22cos (1)cos 0x a x a -+-+≥对于任意的x ∈R 恒成立,则a 的取值范围是__________. 【答案】2a ≤- 【解析】
令cos [1,1]t x =∈- ,则不等式22()(1)0f t t a t a =---≤ 对[1,1]t ∈- 恒成立,因此
22
(1)00,02(1)020f a a a a f a a -≤⎧-≤⎧⇒<∴≤-⎨⎨≤--≤⎩⎩
3.(2020·上海高三专题练习)函数3sin 1
()sin 2
x f x x -=
+的最大值是____,最小值是_________.
【答案】
2
3
4- 【解析】
3(sin 2)77
()3sin 2sin 2
x f x x x +-=
=-++
sin [1,1]x
[]sin 21,3x ∴+∈
11,1sin 23x ⎡⎤

∈⎢⎥+⎣⎦
777,sin 23x ⎡
⎤∴-
∈--⎢⎥+⎣⎦
7234,sin 23x ⎡⎤
∴-
∈-⎢⎥+⎣⎦
即max 2
()3
f x =
,min ()4f x =- 故答案为:
2
3
;4- 【总结提升】
比较三角函数值大小的步骤:①异名函数化为同名函数;②利用诱导公式把角化到同一单调区间上;③利用函数的单调性比较大小.。

相关文档
最新文档