《等边三角形的性质》教案 (公开课)2022年北师大版数学下册

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2课时 等边三角形的性质
1.进一步学习等腰三角形的相关性质,
了解等腰三角形两底角的角平分线(两腰上的高,中线)的性质;
2.学习等边三角形的性质,并能够运用其解决问题.(重点、难点)
一、情境导入
我们欣赏以下两个建筑物(如图),图中的三角形是什么样的特殊三角形?这样的三角形我们是怎样定义的,有什么性质?
二、合作探究 探究点一:等腰三角形两底角的平分线(两腰上的高、中线)的相关性质
如图,在△ABC 中,AB =AC ,CD
⊥AB 于点D ,BE ⊥AC 于点E ,求证:DE ∥BC .
证明:因为AB =AC ,所以∠ABC =∠ACB .又因为CD ⊥AB 于点D ,BE ⊥AC 于点E ,所以∠AEB =∠ADC =90°,所以∠ABE =∠ACD ,所以∠ABC -∠ABE =∠ACB -∠ACD ,所以∠EBC =∠DCB .在△BEC 与△CDB 中,⎩⎪⎨⎪
⎧∠BEC =∠CDB ,∠EBC =∠DCB ,BC =CB ,

以△BEC ≌△CDB ,所以BD =CE ,所以AB -
BD =AC -CE ,即AD =AE ,所以∠ADE =∠AED .又因为∠A 是△ADE 和△ABC 的顶角,所以∠ADE =∠ABC ,所以DE ∥BC .
方法总结:等腰三角形两底角的平分线相等,两腰上的中线相等,两腰上的高相等. 探究点二:等边三角形的相关性质 【类型一】 利用等边三角形的性质求角度
如图,△ABC 是等边三角形,E
是AC 上一点,D 是BC 延长线上一点,连接BE ,DE .假设∠ABE =40°,BE =DE ,求∠CED 的度数.
解析:因为△ABC 三个内角为60°,∠ABE =40°,求出∠EBC 的度数,因为BE =DE ,所以得到∠EBC =∠D ,求出∠D 的度数,利用外角性质即可求出∠CED 的度数.
解:∵△ABC 是等边三角形,∴∠ABC =∠ACB =60°,∵∠ABE =40°,∴∠EBC =∠ABC -∠ABE =60°-40°=20°.∵BE =DE ,∴∠D =∠EBC =20°,∴∠CED =∠ACB -∠D =40°.
方法总结:等边三角形是特殊的三角形,它的三个内角都是60°,这个性质常常应用在求三角形角度的问题上,所以必须熟练掌握.
【类型二】 利用等边三角形的性质证明线段相等
如图:等边△ABC 中,D 是AC
的中点,E 是BC 延长线上的一点,且CE =CD ,DM ⊥BC ,垂足为M ,求证:BM =EM .
解析:要证BM =EM ,由题意证△BDM ≌△EDM 即可.
证明:连接BD ,∵在等边△ABC 中,D 是AC 的中点,∴∠DBC =12∠ABC =1

60°=30°,∠ACB =60°.∵CE =CD ,∴
∠CDE =∠E .∵∠ACB =∠CDE +∠E ,∴∠E =30°,∴∠DBC =∠E =30°.∵DM ⊥BC ,∴∠DMB =∠DME =90°,在△DMB 和△DME 中,⎩⎪⎨⎪
⎧∠DMB =∠DME ,∠DBM =∠E ,DM =DM ,∴△
DME ≌△DMB .∴BM =EM .
方法总结:证明线段相等可利用三角形全等得到.还应明白等边三角形是特殊的等腰三角形,所以等腰三角形的性质完全适合等边三角形.
【类型三】 等边三角形的性质与全等
三角形的综合运用
△ABC 为正三角形,点M 是边BC
上任意一点,点N 是边CA 上任意一点,且
BM =CN ,BN 与AM 相交于Q 点,求∠BQM 的度数.
解析:先根据条件利用SAS 判定△ABM ≌△BCN ,再根据全等三角形的性质求得∠AQN =∠ABC =60°.
解:∵△ABC 为正三角形,∴∠ABC =∠C =∠BAC =60°,AB =BC .在△AMB 和△BNC 中,∵⎩⎪⎨⎪
⎧AB =BC ,∠ABC =∠C ,BM =CN ,∴△AMB ≌
△BNC (SAS),
∴∠BAM =∠CBN ,∴∠BQM =∠ABQ +∠BAM =∠ABQ +∠CBN =∠ABC =60°.
方法总结:等边三角形与全等三角形的综合运用,一般是利用等边三角形的性质探究三角形全等.
三、板书设计
1.等腰三角形两底角的平分线(两腰上的高、中线)的相关性质
等腰三角形两底角的平分线相等; 等腰三角形两腰上的高相等; 等腰三角形两腰上的中线相等. 2.等边三角形的性质
等边三角形的三个内角都相等,并且每个角都等于60°.
本节课让学生在认识等腰三角形的根底上,进一步认识等边三角形.学习等边三角形的定义、性质.让学生在探索图形特征以及相关结论的活动中,进一步培养空间观念,锻炼思维能力.让学生在学习活动中,进一步产生对数学的好奇心,增强动手能力和创新意识.
第2课时平行四边形的判定定理1
1.掌握“一组对边平行且相等的四边形是平行四边形〞的判定方法;(重点) 2.平行四边形性质定理与判定定理的综合应用.(难点)
一、情境导入
我们已经知道,如果一个四边形是平行四边形,那么它就具有如下的一些性质:1.两组对边分别平行且相等;
2.两组对角分别相等;
3.两条对角线互相平分.
那么,怎样判定一个四边形是否是平行四边形呢?当然,我们可以根据平行四边形的原始定义:两组对边分别平行的四边形是平行四边形加以判定.那么是否存在其他的判定方法呢?
二、合作探究
探究点一:一组对边平行且相等的四边形是平行四边形
,如图E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF ∥BE,四边形ABCD是平行四边形吗?请说明理由.
解析:首先根据条件证明△AFD≌△CEB,可得到AD=CB,∠DAF =∠BCE,可证出AD∥CB,根据一组对边平行且相等的四边形是平行四边形可证出结论.
解:四边形ABCD是平行四边形,证明:∵DF∥BE,∴∠AFD=∠CEB,又∵AF=CE、DF=BE,∴△AFD≌△CEB(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四边形ABCD是平行四边形.
方法总结:此题主要考查了平行四边形的判定,以及三角形全等的判定与性质,解题的关键是根据条件证出三角形全等.
探究点二:平行四边形的判定定理与性质的综合应用
【类型一】利用性质与判定证明
如图,四边形ABCD是平行四边形,BE⊥AC于点E ,DF⊥AC于点F.
(1)求证:△ABE≌△CDF;
(2)连接BF、DE,试判断四边形BFDE 是什么样的四边形?写出你的结论并予以证明.
解析:(1)根据“AAS〞可证出△ABE≌△CDF;(2)首先根据△ABE≌△CDF得出AE=FC,BE=DF,再利用得出△ADE≌△BCF,进而得出DE =BF,即可得出四边形BFDE是平行四边形.
(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.∴∠BAC=∠DCA.∵BE⊥AC于E,DF⊥AC于F,∴∠AEB=∠DFC=90°.在△ABE和△CDF
中,
⎩⎪

⎪⎧
∠DFC=∠BEA,
∠FCD=∠EAB,
AB=CD,
∴△ABE≌△
CDF(AAS);
(2)解:四边形BFDE是平行四边形,理由如下:∵△ABE≌△CDF,∴AE=FC,
BE =DF ,∵四边形ABCD 是平行四边形,∴AD =CB ,AD ∥CB .∴∠DAC =∠BCA .在△ADE 和△CBF 中,
⎩⎪⎨⎪
⎧AD =BC ,∠DAE =∠BCF ,AE =FC ,
∴△ADE ≌△CBF ,∴DE =BF ,∴四边形BFDE 是平行四边形.
方法总结:平行四边形对边相等,对角相等,对角线互相平分及它的判定,是我们证明直线的平行、线段相等、角相等的重要方法,假设要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形到达上述目的.
【类型二】 利用性质与判定计算
如图,六边形ABCDEF 的六个内
角均为120°,且CD =2cm ,BC =8cm ,AB =8cm ,AF =5cm.试求此六边形的周长.
解析:由∠A =∠B =∠C =∠D =∠E =∠F =120°,联想到它们的邻补角(即外角)均为60°,如果能够组成三角形的话,那么必为等边三角形.事实上,设BC 、ED
的延长线交于点N ,那么△DCN 为等边三角形.由∠E =120°,∠N =60°,可知EF ∥BN .同理可知ED ∥AB ,于是从平行四边形入手,找出解题思路.
解:延长ED 、BC 交于点N ,延长 EF 、BA 交于点M .∵∠EDC =∠BCD =120°,∴∠NDC =∠NCD =60°.∴∠N =60°.同理,∠M =60°.∴△DCN 、△FMA 均为等边三角形.∴∠E +∠N =180°.同理∠E +∠M =180°.∴EM ∥BN ,EN ∥MB .∴四边形EMBN 是平行四边形.∴BN =EM ,MB =EN .∵CD =2cm ,BC =8cm ,AB =8cm ,AF =5cm ,∴CN =DN =2cm ,AM =FM =5cm.∴BN =EM =8+2=10(cm),MB =EN =8+5=13(cm).∴EF +F A +AB +BC +CD +DE =EF +FM +AB +BC +DN +DE =EM +AB +BC +EN =10+8+8+13=39(cm),∴此六边形的周长为39cm.
方法总结:解此题的关键是作辅助线,将“不规那么〞的六边形变成“规那么〞的平行四边形,从而利用平行四边形的知识来解决.
三、板书设计
一组对边平行且相等的四边形是平行四边形
本节课,学习了平行四边形的两种判定方法,对整个课堂的学习过程进行反思,能够促进理解,提高认识水平,从而促进数学观点的形成和开展,更好地进行知识建构,实现良性循环.。

相关文档
最新文档