空间向量数乘运

合集下载

向量数乘运算及几何意义

向量数乘运算及几何意义
向量数乘在几何上表示对向量进行缩放和旋转。 当标量为正时,向量的长度和方向都会按照标量 的大小进行放大;当标量为负时,向量的长度和 方向都会按照标量的大小进行缩小。
总结向量数乘的应用
向量数乘在物理学、工程学、计算机图形学等领 域有着广泛的应用,例如在物理中描述速度和加 速度的变化,在工程中实现机器人的运动控制等 。
向量数乘运算及几何 意义
目录
CONTENTS
• 引言 • 向量数乘运算的定义和性质 • 向量数乘运算的几何意义 • 向量数乘运算的应用 • 结论
目录
CONTENTS
• 引言 • 向量数乘运算的定义和性质 • 向量数乘运算的几何意义 • 向量数乘运算的应用 • 结论
01
引言
01
引言
主题简介
向量数乘运算
机器人学
在机器人学中,向量数乘运算用于描述机器人的运动轨迹 和姿态。例如,通过标量积运算可以计算机器人的关节角 度和速度。
图形处理
在计算机图形学中,向量数乘运算用于描述图像的变换和 旋转。例如,通过将像素坐标向量进行数乘运算,可以实 现图像的缩放、旋转和平移等操作。
在工程中的应用
控制系统分析
在工程控制系统中,向量数乘运算用于分析系统的动态特 性。例如,通过标量积运算可以计算系统的传递函数和稳 定性。
其中u、v是向量。
零向量与任意向量数乘结果 仍为零向量,即0 * v = 0。
标量乘法的单位元是1,即1 * v = v。
03
向量数乘运算的几 何意义
03
向量数乘运算的几 何意义
向量数乘的几何表示
标量与向量的点乘
标量与向量点乘的结果是一个标量,表示向量在标量作用下的伸缩倍数。
标量与向量的叉乘

空间向量的数乘运算(收藏)

空间向量的数乘运算(收藏)
数乘后的模长为零,即得到零向量。
数乘运算与向量方向的关系
总结词
数乘运算不会改变向量的方向。
详细描述
对于任意非零向量$vec{a}$和实数$k$,当$k > 0$时,数 乘后的向量方向与原向量方向相同;当$k < 0$时,数乘后 的向量方向与原向量方向相反。特别地,当$k = 0$时,得 到零向量,没有方向可言。
在线性代数中的应用
矩阵运算
在矩阵运算中,数乘运算是一种基本的操作,它可以用来改 变矩阵的元素值,从而进行矩阵的加法、减法、乘法和转置 等操作。
向量运算
数乘运算可以用来改变向量的长度和方向,从而进行向量的 加法、减法、数乘等基本运算,是线性代数中向量运算的重 要基础。
04
空间向量数乘运算的注意 事项
03
空间向量数乘运算的应用
在物理中的应用
1 2 3
描述速度和加速度的方向变化
在物理中,速度和加速度都是空间向量,通过数 乘运算可以改变这些向量的模长和方向,从而描 述物体运动状态的变化。
解释电磁场中的洛伦兹力
在电磁学中,洛伦兹力是一个空间向量,可以通 过数乘运算来改变其大小和方向,以解释带电粒 子在磁场中的运动。
数乘运算在向量合成与分解中的应用
总结词
数乘运算在向量的合成与分解中具有广泛的应用,它 可以帮助我们更好地理解向量的性质和几何意义一,它在向量的合 成与分解中具有广泛的应用。通过数乘运算,我们可以 改变向量的长度和方向,从而更好地理解和操作向量。 在实际应用中,数乘运算可以帮助我们解决许多与向量 相关的几何问题,例如力的合成与分解、速度和加速度 的计算等。此外,数乘运算还可以与其他向量运算结合 使用,例如向量的点乘和叉乘,以解决更复杂的几何问 题。

空间向量的数乘运算

空间向量的数乘运算
练1、已知A,B,C三点不共线,对平面ABC外的 任一点O,确定在下列条件下,M是否与A,B,C 三点共面:
1 1 1 ( 1 )O M O A O B O C ; 3 3 3 (2 )O M2 O AO BO C .
练2.已知点M在平面ABC内,并且对空间任意一点
1 1 O, , 则x的值为( ) O M x O A + O B + O C 3 3
充要条件是存在实数t,满足等式 若O P O A t A B
P B A
O P O A t a
其中向量 a 叫做直线 的方向向量 . l
a
( 或 A P t A B )
则A、B、P三点共线。
结 论 1 、 若 O Px O A y O B , xy 1 , A 、 B 、 P 三 点 共 线 .
复习
平面向量基本定理: 如果e1、e2是同一平面内两个不共线的向量, 那么对这一平面内的任意一个向量a,有且只有 一对实数λ1、λ2,使a=λ1e1+λ2e2. 其中不共线向量e1、e2叫做表示这一平面内 所有向量的一组基底.
空间中仍然成立 空 间 中 任 意 两 个 不 共 线 向 量 a , b , 那 么 向 量 p
A
1 ( a b) - c 2
B
a
c
b
G
1 ( a b c) 3
D
M C
练习: 在正方体ABCD-A’B’C’D’中,点E是面 AC’的中心,求下列各式中的x、y的值.
A
( 1 ) AC x ( AB BC CC )
' '
E C
D
B
' ( 2 ) AE AA x AB y AD

空间向量的数乘运算

空间向量的数乘运算

→ → → 证明】 【证明】 设AB = a,AD= b,AA1 = c. , , → 2 → 2→ 2 → ∵A1 E= 2ED1 = A1 D1 = AD= b, , 3 3 3 → 2→ 2 → 2 → → A1 F= FC = A1 C= (AC -AA1 ) 3 5 5 2 2 2 2 → → → = (AB +AD-AA1 )= a+ b- c. = + - 5 5 5 5 → → → ∴EF =A1 F-A1 E 2 4 2 2 2 = a- b- c= (a- b- c). - - = - - . 5 15 5 5 3 2 2 → → → → 又EB =EA1 +A1 A+AB =- b- c+ a= a- b- c, - + = - - , 3 3 → 2→ 所以 , , 三点共线. ∴EF = EB .所以 E, F, B 三点共线. 5
→ → 的中点.证明: 向量A 别为 BB1 和 A1 D1 的中点.证明: 向量 1 B、B1 C、 → EF 是共面向量. 是共面向量.
【思路点拨】 思路点拨】 利用向量共面的充要条件 或向量共面的定义来证明. 或向量共面的定义来证明.
【证明】 证明】 → → → → 法一: 法一:EF =EB +BA1 +A1 F 1→ 1 → → = B1 B-A1 B+ A1 D1 2 2 1 → → → BC)- = (B1 B+BC )-A1 B 2 1→ → = B1 C-A1 B. 2 → → → 由向量共面的充要条件知, 由向量共面的充要条件知,A1 B、B1 C、EF 是共面向 量.
例如: 例如:
r 3a
r a r −3a
显然,空间向量的数乘运算满足分配律 显然 空间向量的数乘运算满足分配律 及结合律
r r r r 即:λ(a +b) = λa + λb r r r a (λ + µ)= λa + µa r r λ(µa) = (λµ)a

空间向量的加减和数乘运算

空间向量的加减和数乘运算

分配律
$k(overset{longrightarrow}{a} + overset{longrightarrow}{b}) = koverset{longrightarrow}{a} + koverset{longrightarrow}{b}$。
单调性
当$k > 0$时,数乘会使向量增大;当$k < 0$时,数乘会使向量缩小。
在线性代数中,向量组的线性组合可以通过数乘运算来实现,从而研究向量组之间的关系。
向量组的线性组合
向量空间是由向量构成的集合,通过向量的加减和数乘运算可以研究向量空间的结构和性质。
向量空间
04
空间向量加减和数乘运算的注意事项
01
02
零向量的特殊性
零向量与任意向量数乘,结果仍然是零向量。
零向量与任意向量相加或相减,结果仍然是该任意向量。
解析
根据空间向量加法和减法的定义,$(overset{longrightarrow}{a} + overset{longrightarrow}{b}) + (overset{longrightarrow}{a} - overset{longrightarrow}{b})$的坐标等于两个向量的对应坐标相加和相减。即,$(overset{longrightarrow}{a} + overset{longrightarrow}{b}) + (overset{longrightarrow}{a} - overset{longrightarrow}{b}) = ( - 1 + 3,5 + ( - 1),2 + 4) = (2,4,6)$。
计算方法
根据定义,数乘的计算方法为将向量的每个分量分别乘以该实数。

空间向量的数乘运算

空间向量的数乘运算

空间向量的数乘运算
在线性代数中,空间向量的数乘运算是指将一个向量与一个实数(标量)相乘的操作。

数乘是向量运算中最基本的运算之一。

设向量为 v = [x1, x2, ..., xn],标量为 a。

向量 v 乘以标量 a 的数乘结果记作 av,计算方法如下:
av = [ax1, ax2, ..., a*xn]
即将向量 v 的每个分量与标量 a 相乘得到新的向量 av。

数乘运算改变了向量的长度和方向,当 a > 0 时,数乘会拉长向量的长度,并保持方向不变;当 a < 0 时,数乘会拉长向量的长度,同时改变向量的方向;当 a = 0 时,数乘结果为零向量。

例如,对于向量 v = [2, -3, 4],标量 a = 3 进行数乘运算:
av = [32, 3(-3), 3*4]
= [6, -9, 12]
因此,数乘运算的结果是 av = [6, -9, 12]。

数乘运算在线性代数中广泛应用,它可以用于调整向量的大小、实现向量的平行移动等操作,同时也是计算矩阵乘法、向量内积、向量投影等许多重要运算的基础。

空间向量及其加减运算和数乘运算

空间向量及其加减运算和数乘运算

详细描述
向量减法满足交换律和结合律,即 $overset{longrightarrow}{AB} overset{longrightarrow}{CD} = overset{longrightarrow}{CD} overset{longrightarrow}{AB}$,并且 $(overset{longrightarrow}{AB} overset{longrightarrow}{CD}) overset{longrightarrow}{EF} = overset{longrightarrow}{AB} (overset{longrightarrow}{CD} + overset{longrightarrow}{EF})$。
总结词
向量加法是将两个向量首尾相接,然后由第一个向量的起点指向第二个向量的终点的向量。
详细描述
向量加法是向量运算中的基本运算之一,其定义是将两个向量首尾相接,然后由第一个向量的起点指向第二个向 量的终点的向量。在二维空间中,向量加法可以通过平行四边形的法则进行计算;在三维空间中,向量加法可以 通过三角形法则进行计算。
向量加法的几何意义
总结词
向量加法的几何意义是表示两个向量在空间中的相对位置关系。
详细描述
向量加法的几何意义可以理解为表示两个向量在空间中的相对位置关系。具体来说,如果有一个向量 $overset{longrightarrow}{AB}$和另一个向量$overset{longrightarrow}{CD}$,那么 $overset{longrightarrow}{AB} + overset{longrightarrow}{CD}$表示向量$overset{longrightarrow}{AB}$和向 量$overset{longrightarrow}{CD}$在空间中的相对位置关系。

空间向量的数乘运算

空间向量的数乘运算
D
A H E F B G C
7.练习1
空间四边形ABCD中,M,G分别 是BC,CD边的中点,化简:
A
1 (1) AB ( BC BD) 2 1 (2) AG ( AB AC ) 2
D G B M
C
7.练习1
1 (1) AB ( BC BD) (2) AG 1 ( AB AC ) 2 2 A
C x( AB BC CC )
' '
A B
E C
D
(2) AE AA x AB y AD
'
A B C
D
7.练习2 在正方体ABCD-A’B’C’D’中,点E是面
AC’的中心,求下列各式中的x,y的值.
(1) AC x( AB BC CC )
直线,对空间任意一点O, 点P在直线L上 ⇔ ∃t∈R, OP = OA + ta () 1 非零向量a叫做直线L的方向向量。 点P在直线L上 ⇔ ∃t∈R, OP = OA + tAB () 2
O

(1)、(2)都称为空间直线的向量表示式。 即:空间直线由空间一点及直线的方向向 量唯一确定
A L

a

B

P
4.例题1 问题;如图;已 知空间四边形 A B C D中, 向量AB = a, = b, = c,若M为BC的中点, AC AD G为ΔBCD的重心,试用a、 c表示下列向 b、 量:(1)DM (2) AG
A E B C D
A B C
D
5.共面向量
共面向量:平行于同一平面的向量,叫做共

空间向量的数乘运算 课件

空间向量的数乘运算 课件

问题 2 向量共线在几何中有什么应用? 答案 利用向量共线可以证明几何中的两直线平行和 三点共线问题.证明两直线平行要先证明两直线上的向
量 a,b 平行,还要证明直线上有一点不在另一条直线 上;证明三点 A、B、C 共线,只需证明存在实数 λ,使 A→B=λB→C或A→B=λA→C即可.
例 2 如图所示,在正方体 ABCD—A1B1C1D1 中,E 在 A1D1 上,且A→1E=2E→D1,F 在对 角线 A1C 上,且A→1F=23F→C.
(2)要证明 a∥α,只需在 a 上取向量 a,证明 a 可以用平面 α 内两个不共线向量线性表示且说明 a 上有一点不在 α 内.
问题 5 已知 A、B、M 三点不共线,对于平面 ABM 外的
任一点 O,确定在下列各条件下,点 P 是否与 A、B、M
一定共面? (1)O→B+O→M=3O→P-O→A;(2)O→P=4O→A-O→B-O→M. 解 (1)原式可变形为O→B=O→P+(O→P-O→A)+(O→P-O→M) =O→P-P→A-P→M,即P→B=O→B-O→P=-P→A-P→M.
答案 λ>0 时,λa 和 a 方向相同;λ<0 时,λa 的方向和 a 方向相反;λa 的长度是 a 的长度的|λ|倍.
问题 2 空间向量的数乘运算满足哪些运算律? 答案 空间向量的数乘运算满足分配律及结合律: 分配律:λ(a+b)=λa+λb, 结合律:λ(μa)=(λμ)a.
例 1 设 A 是△BCD 所在平面外的一点,G 是△BCD 的重
共线. 3.共面向量
(1)共面向量的概念
平行于__同___一__个__平__面___的向量,叫做共面向量.
(2)三个向量共面的充要条件 若两个向量 a,b 不共线,则向量 p 与向量 a,b 共面的充要 条件是存在惟一的有序实数对(x,y),使___p_=__x_a_+ ___yb_____.

空间向量的数乘运算

空间向量的数乘运算

三、共面向量:
1.平行于同一平面的向量,叫做共面向量.
b
d
c
a
注意:空间任意两个向量是共面的,但空间 任意三个向量 既可能共面,也可能不共面
那么什么情况下三个向量共面呢?
e
2
a
e1
由平面向量基本定理知,如果 e1, 么e是对2 平于面这内一的平两面个内不的共任线意的向向量量,,a有那
且只有一对实数
在有序实数对x,y使AP xAB aB
对空间任一点O,有 OP OA xAB y AC ③
bC
p
P
A aB
填空:
O
OP (1_-_x_-_y_)OA (__x__)OB (__y__)OC
由此可判断空间任意四点共面
共面向量定理的剖析
如果两个向量 a,b 不共线,
★ 向量c与向量a,b共面(性质)存y,在使唯一c=的x一a+对y实b数x,
例2 (课本例)已知 ABCD ,从平面AC外一点O引向量
OE kOA,OF kOB,OG kOC,OH kOD
求证:①四点E、F、G、H共面;
②平面AC//平面EG.
证明:∵四边形ABCD为
O
① ∴AC AB AD
(﹡)
EG OG OE kOC kOA
k(OC OA) kAC
b
+
c
)
C ∴MN= MA+AN
= 1(-a + b + c )
3
小结
共线向量
共面向量
定义 向量所在直线互相平 平行于同一平面的向量,
行或重合
定理
a // b (b 0)
a
b
叫做共面向量.

空间向量的数乘运算

空间向量的数乘运算
(2)OP xOA yOB其中x y 1
巩固练习2
已知空间中三点 A, B, P共线,O为空间中任意一点,
OP 1 OA xOB,则x 3
2 3
共面向量:平行于同一个平面的向量,叫做共面向量.
探究2 : (1)对空间任意两个不共线的向量a与b, 如果
p xa yb

AD)

AD1

1 2
AC
D1 A1
C1 B1
AD1 AO OD1
D
C
O
ABBiblioteka 探 究1 :(1)对空间任意两个向量a与b,如果a b
a与b有 什 么 位 置 关 系?
(2)反过来, a与b有什么位置关系时, a b?
b
a 2b
共线
a 3b
知识点二 空间向量共线定理
那么向量p与向量 a, b有什么位置关系?
(2)反过来,向量p与向量a与b有什么位置关系时 ,
p xa yb
共面
知识点三 空间向量共面定理
如果两个向量a, b不共线,那么向量p与向量a, b共面 的充要条件是存在惟一的有序实数对(x, y),使
p xa yb
注意: 向量a, b不共线
OP xOA yOB zOC(其中x y z 1) P, A, B,C四点共面.
小结2
判断空间任意四点P, A, B,C共面方法:
(1)AP xAB yAC
(2)OP xOA yOB zOC(其中x y z 1)
例1 已知A, B,C三点不共线,对于平面ABC外的任一点O,
kOC kOA. k AC 同理,EF k AB, EH k AD, EF EH k(AB AD)

空间向量的数乘运算

空间向量的数乘运算

O C
D BA OC OD OE c p OB
作 AB // b, BD // a, BC // c
xa yb zc
然后证唯一性
注:空间任意三个不共面向量都可以构成空
间的一个基底.如: a , b, c
即,P、A、B、C四点共面。
∴ OP OA y(OB OA) z(OC OA) ∴ AP y AB z AC
B、 C 共面. ∴点 P 与 A 、
17
试证明:对于不共线的三点 A 、 B、 C 和平面 ABC 外的 一点 O ,空间一点 P 满足关系式 OP xOA yOB zOC ,则 点 P 在平面 ABC 内的充要条件是 x y z 1 . 证明:⑴充分性 ∵ OP xOA yOB zOC (1 z)OA 可变形为 OP y yOB zOC , ∴ OP OA y(OB OA) z(OC OA) ∴ AP yAB z AC
(2)首尾相接的若干向量若构成一个封闭图 形,则它们的和为零向量。 A1 A2 A2 A3 A3 A4 An A1 0
6
空间向量的加减法
C a
+
b
B
b
O
A
a
OB OA AB CA OA OC
A
D
F
B
E
C
10
共面向量:平行于同一平面的向量,叫做共面向量.
a
O
A

空间向量及其加减、数乘运算

空间向量及其加减、数乘运算

A1C , BD1, DB1 .
D1
C1
A1C AB AD AA1
Hale Waihona Puke A1B1BD1 AA1 AD AB
DB1 AB AA1 AD
D
C
始点相同的三个不共A面向量之和,B 等于以 这三个向量为棱的平行六面体的以公共始 点为始点的对角线所示向量
向量的数乘运算
在平面上,实数 与向量 a 的乘积 a 仍然是一个向量,
(C)若 OP OA t AB ,则P、A、B不共线
(D)若 OP OA AB ,则P、A、B共线
4.已知点M在平面ABC内,并且对平面ABC外任意一点
O,OM
xOA

1 3
OB +
1 3
OC
, 则x的值为(
1
D
)
( A)1
(B) 0
(C)3 (D)
3
已知平行六面体ABCD-A1B1C1D1,MC=2AM,A1N=2ND,
O
O
a a
b +c
A
CA
C
bBc
bBc
空间向量加法结合律
(a O b) c a (b c)O
a
a
b +c
A b
B
C c
A b
C Bc
D1 A1
C1 B1
a
D
C
A
B
平行六面体:平行四边形ABCD按向量a 平移到
A1B1C1D1的轨迹所形成的几何体.记做ABCD-A1B1C1D1
已知平行六面体ABCD-A1B1C1D1,用 AB, AD, AA1 表示
在一的有序实数组x, y, z 使 p xa yb zc .

3.1.2空间向量数乘运算

3.1.2空间向量数乘运算
=kO→C-kO→A=kA→C=k(A→B+A→D)=k(O→B-O→A+O→D-O→A) =O→F-O→E+O→H-O→E=E→F+E→H.
由向量共面的充要条件知 E,F,G,H 四点共面.
研一研·问题探究、课堂更高效
因此E→G=O→G-O→E =kO→C-kO→A=kA→C =k(A→B+A→D)=k(O→B-O→A+O→D-O→A) =O→F-O→E+O→H-O→E=E→F+E→H. 由向量共面的充要条件知 E,F,G,H 四点共面.
是对只平于有面这一内一对的平实两面数个内1 不的,2共任使线意的 向a 向 量 量a1e,1,那有2么e且2
如果空间向量
p
与两不共线向量
a
,b

面,那么可将三个向量平移到同一平面 ,则
有 p x yb
反果过p来 ,x对空y间b,任那意么两向个量不p共与线向的量向a量 ,
小结 证明三个向量共面(或四点共面),需利用共面向量定 理,证明过程中要灵活进行向量的分解与合成,将其中一 个向量用另外两个向量进行表示.
跟踪训练 3 如图所示,已知矩形 ABCD 和
矩形 ADEF 所在的平面互相垂直,点 M, N 分别在对角线 BD,AE 上,且 BM=13BD, AN=13AE.求证:向量M→N,C→D,D→E共面.

a
a // b(b 0)
b (b 0)

a b (b 0) 性质 a // b (b 0) 判定
由此可判断空间中两直线平行或三点共线问题
如图,l 为经过已知点A且平行已知非零向量 a
的直线, 若点P是直线l上任意一点,则

l
//
a
知存在唯一的t,

向量数乘运算

向量数乘运算
在进行向量运算时,应注意数乘运算的 优先级,避免因优先级错误导致结果错 误。
VS
详细描述
在数学表达式中,应遵循先乘除后加减的 原则。在进行向量运算时,数乘作为乘法 运算的一种,应优先于加法和减法进行。 因此,在复杂的数学表达式中,应特别注 意数乘运算的优先级,确保运算顺序的正 确性。
理解数乘运算的实际意义
总结词
理解数乘运算的实际意义对于正确应用向量 数乘至关重要。
详细描述
数乘在物理和工程领域有着广泛的应用,如 速度和加速度的缩放、力的放大或缩小等。 理解数乘运算在具体问题中的应用背景和意 义,有助于正确理解和应用数乘运算,避免 出现错误或偏差。在进行向量数乘运算时, 应结合具体问题,深入理解数乘运算的实际
向量数乘运算
CONTENTS 目录
• 向量数乘运算的定义 • 向量数乘运算的几何意义 • 向量数乘运算的代数性质 • 向量数乘运算的应用 • 向量数乘运算的注意事项
CHAPTER 01
向量数乘运算的定义
标量与向量的数乘
标量与向量的数乘
标量与向量相乘时,标量会与向量的每个分量相乘,得到新的向量。
总结词
数乘和点乘是两种不同的运算,具有不同的数学意义和性质 ,容易混淆。
详细描述
数乘是指向量与标量的乘法,结果仍为向量,其长度或模发 生变化,方向可能改变。点乘则是向量的内积,结果为标量 ,表示两向量的夹角和大小关系。在进行向量数乘运算时, 应明确区分这两种运算,避免混淆。
注意数乘运算的优先级
总结词
CHAPTER 03
向量数乘运算的代数性质
数乘运算的结合律
总结词
数乘运算满足结合律,即对于任意标量$k_1, k_2$和向量$vec{a}$,有$(k_1 k_2) vec{a} = k_1 (k_2 vec{a}) = (k_2 vec{a}) k_1$。

空间向量的数乘运算

空间向量的数乘运算

33
B
D
C
习题答案
1. (1)AD; (2)AF; (3) EF
2. (2)x=1; (2)x=y=1/2; (3) x=y=1/2;
3. Q
C
P
AB R
S
O
H四点共面.
课堂小结
1.空间向量的数乘运算. 2.空间向量的数乘运算的运算律.
满足分配律及结合律.
3.共线向量与共面向量
共线向量
共面向量
定义 向量所在直线互相平 平行于同一平面的向量,
行或重合. 定理
a//b(a 0)
叫做共面向量.
a λb
ab p
共面
p xα yb
5.共线向量基本定理的推论
对于空间任意一点像O,点P在直 线l上的充要条件是存在实数t,使其中 向量a叫做直线l的方向向量
OP = OA + ta.
(1)
在l上取AB=a,则(1)式可化为
P B a
A
OP = (1- t)OA + t OB.
(2)
说明: (1),(2)都叫做空间直线的向量 O
参数表示式.由此可知,空间任意直线由
BC 3CD ,则(A)AD AB BD
A.
AD 1 AB 4 AC 33
B. AD 1 AB 4 AC
AB 4 BC 3
AB 4 ( AB) 3
33
C. AD 4 AB 1 AC
1 AB 4 AC 33
A
33
D. AD 4 AB 1 AC
空间一点及直线的方向向量唯一确定.
知识要点
6.共面向量定义:平行于同一平面的向量,叫做共面向

空间向量的数乘运算

空间向量的数乘运算

OE = k OA, = k OB, OF OD。 OE = k OC, = k OD。 OH
由于四边形ABCD是平行四边形, 是平行四边形 由于四边形
所以
AC = AB + AD.
D
O
C B
H
G
E
F
空间向量的数乘运算
O
因此
EG = OG OE = k OC k OA
D B H
C
G
= k AC = k( AB + AD )
求证:E,F,G,H四点共面 四点共面 求证
分析: 分析 点共面, 欲证E 点共面, 欲证E,F,G,H四
O
D B H
C
EH EF EG共面。 只需证明 , , 共面。 AD AB AC 下面我们利用 , , 共面来证明。 共面来证明。
E
G
F
空间向量的数乘运算
证明: 证明 因为
所以
OE OF OG OH = = = = k, OA OB OC OD

都称为空间直线的向量表示式。 ①、②都称为空间直线的向量表示式。 即:空间直线由空间一点及直线的方向向 量唯一确定
A L
r a
B
P
空间向量的数乘运算
什么是共面向量?
平行于同一平面的向量,叫做共面向量。 平行于同一平面的向量,叫做共面向量。
空间中任意两个向量总是共面的 空间中任意两个向量总是共面的.但三个 两个向量总是共面 向量就不一定.那么,如何判断三个向量是否 向量就不一定.那么,如何判断三个向量是否 共面呢? 共面呢?
空间向量的数乘运算
向量 b p 空间任意不共线的两个 a, 如果 = xa + yb , p a b有什么位置关系? 那么向量与向量 , 有什么位置关系? 反过来,向量 a, 反过来, p 与 b有什么位置关系时,有 xa + yb 有什么位置关系时,p = ?

空间向量的数乘运算

空间向量的数乘运算
D
B
M
G C
4.例题1
已知平行六面体ABCD-A1B1C1D1, 求满足下列各式的x的值。 (3) + AB1 + AD1 = xAC1 AC 解(3) AC+ AB1 + AD1 :
=(AD + AB)+(AA1 + AB)+(AA1 + AD) A1 = 2(AD + AB + AA1 ) = 2AC1
运 算 律
加法交换律 a b b a 加法结合律 加法交换律 a b b a 加法结合律
(a b) c a (b c) 数乘分配律 k (a b) k a+k b
(a b) c a (b c) 数乘分配律 k (a b) k a+k b
OP xOA yOB z OC (其 中x y z 1) 的 点P与 点A, B , C是 否 共 面 ?
OP xOA yOB zOC且x y z 1 OP (1 y z )OA yOB zOC
OP OA y(OB OA ) z(OC OA )
a
不共线,则向量p与向量 a, b 共面的充要条 件是存在实数对 x, y 使 p xa yb.
要条件是存在有序实数对x,y使
共面向量定理:如果两个向量 a, b 推论:空间一点P位于平面ABC内的充
OP=xAB+yAC
或对空间任一点O,有
OP=OA+xAB+yAC
空间向量的数乘运算
思考: 已 知 空 间 任 意 一 点和 不 共 线 的 三 点, B , C , 满 足 向 量 关 系 式 O A

空间向量的数乘运算 课件

空间向量的数乘运算  课件

AA1
1 2
(B1A1
B1C1
)
AA1
1 2
(BA
BC)
AA1
1 2
(-AB
AD)
c 1 (-a b) 2
-1 a 1 b c. 22
方法二:BM BA AA1 A1M
-AB
AA1
1 2
(A1B1
A1D1
(AB
AD)
-a c 1 (a b) 2
-1 a 1 b c. 22
而利用p xa y与b a,bp共面则不需要a,b不共线的条件. 向量共面的充要条件是处理向量共面问题的主要依据.
A1A AB
2bca 3
a
2 b c, 3
EF 2所EB以, E,F,B三点共线.
5
类型 三 空间向量共面定理的理解应用 【典型例题】 1.已知A,B,M三点不共线,对于平面ABM外任意一点O, 则(1)、(2)两个条件可以确定点P与点A,B,M一定共面的 是__________.(填序号)
(3)空间向量共面的其他判定方法. 三个非零向量a,b,c,其中无两者共线,那么它们共面的充要条 件是存在三个非零实数l,m,n,使la+mb+nc=0.
类型 一 空间向量的数乘运算 【典型例题】 1.如图,在平行六面体ABCD-A1B1C1D1中,M为A1C1与B1D1的交 点.若 AB a,AD b,AA1 c,则下列向量中与BM相等的向量 是( )
提示:(1)正确.若p=x a+y b,则p与a,b共面是正确的,是由 共面向量基本定理得到的. (2)不正确.当a,b共线,而p与a,b不共线时,p=x a+y b是不 成立的. (3)正确.是共面向量的充要条件. (4)不正确.当 MA,MB共线,而 MP与MA,MB不共线时, MP xMA yMB不成立. 答案:(1)√ (2)× (3)√ (4)×

_空间向量的数乘运算

_空间向量的数乘运算
D A H E B G C
F
在三棱锥O-ABC中,点M是△ABC的重心, u u u r 1u u u r u u u r u u u r 求证: .+ O M = ( O A + O B O C )
3
O
A M B D
C
小结作业
1.向量平行、共面与直线平行、共面是 不同的概念,共线向量通过平移可以移 到同一条直线上,共面向量通过平移可 以移到同一个平面上.
2.空间向量共线定理与平面向量共线定 理是一致的,空间向量共面定理是平面 向量基本定理的拓展,是判断空间向量 是否共面的理论依据.
3.利用空间向量共线定理和共面定理, 可以解决立体几何中的共点、共线、共 面和平行等问题,这是一种向量方法.
点P在直线l上
Û
a
A
P
l B
u u u r u u u r r ?O PO At + a u u u r u u u r u u u r O ? O PO A + t A B u u u r u u u r u u u ru u u r ? O P O A + t ( O B O A ) u u u r u u u r u u u r ? O P ( 1) t O A + t O B
u u u ru u u r u u u r u u u r ? O P O A = x A B + y A C
O
u u u r u u u r u u u r u u u r ? O P ( 1 -x y ) O A + x O B + y O C
C P
A
B
P在平面 ABC内(四点共面的证明) (2)OP OA x AB y AC (3)OP xOA yOB zOC ( x y z 1)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间向量数乘运
————————————————————————————————作者:————————————————————————————————日期:
2
3 高二数学导学案 编号 31 执笔 审核 授课人 授课时间: 班级: 姓名: 学号: 小组: 评价:
课题:空间向量的数乘运算 【学习目标】1、了解共线或平行向量的概念,掌握表示方法;理解共线向
量定理及其推论;2、了解向量与平面平行、共面向量的意义,掌握向
量与平面平行的表示方法;理解共面向量定理及其推论;掌握点在已知
平面内的充要条件;会用上述知识解决立几中有关的简单问题.
【学习重点】点在已知平面内的充要条件.对点在已知平面内的充要条件
的理解与运用. 【知识链接】向量共线的充要条件,向量共面基本定理。

向量b 与非零向量a 共线的充要条件是有且只有一个实数λ,
使 。

平面向量基本定理:如果e 1、e 2是同一平面内两个
不共线的向量,那么对这一平面内的任意一个向量a ,有且只有一对实数λ1、λ2,使 .其中不共线向量e 1、e 2叫做表示这一平面内所有向量的一组 。

【学习流程】
■ 自主学习
1.定义:与平面向量一样,如果表示空间向量的有向线段所在的直线互相平
行或重合,则这些向量叫做 或 .a 平行于b 记
作 . 2、与平面向量一样,实数 与空间向量a r 的乘积a r 仍然是一个向
量.
备 注
(教师复备栏及学生笔记)
4 ⑴当 时,a r 与向量a r 的方向相同;
⑵当 时,a r 与向量a r 的方向相反;
⑶当 时,a r 是零向量.
3、空间向量的数乘运算满足分配律及结合律
分配律
结合律 4、如果l 为经过已知点A 且平行于已知非零向量a 的直线,那么对
于任意一点O ,点P 在直线l 上的充要条件是存在实数t 满足等式 或
5;如果两个向量a 、b 不共线,则向量p 与向量a 、b 共面的充要条
件是 。

6. 共面向量定理的推论是:空间一点P 在平面MAB 内的充要条件是存在有序实数对x ,y ,使得MP xMA yMB u u u u r u u u u r u u u u r ,① 或对于空间任意一定点O ,有 OP OM xMA yMB u u u r u u u u r u u u u r u u u u r 可推出
∴(1)OP x y OM xOA yOB u u u u r u u u u u r u u u u r u u u u r 是P 、M 、A 、B 四点
共面的充要条件.
■ 合作探究:
例1如图,已知平行四边形ABCD,从平
面AC 外一点O 引向量 OE=kOA , OF=kOB ,
OG=kOC , OH=kOD ,求证:四点E 、F 、G 、
H 共面.
(1)OP t OA tOB u u u r u u u r u u u r
5
【达标测评】
1.下列命题中正确的是( )
A .若a 与共线b ,b 与c 共线,则a 与c 共线
B .向量c 、b 、a
共面即它们所在的直线共面 C .相反向量共线
D .若b a //,则存在唯一的实数,使b a
2、非零向量21,e e 不共线,若21e e k 与21e k e 共线,则k =______.
3、已知A 、B 、C 三点不共线,对平面ABC 外任一点O ,有
OC OB OA OM 3
13131 ,则A 、B 、C 、M ______(共面、不共面) 4、空间四边形ABCD 中,,,,c AD b BC a AB 则 CD ( )
A .c b a B.c b a C .c b a D .c b a
5、平行六面体OABC -O ′A ′B ′C ′中,设,,,c O O b OC a OA G 为BC ′的中点,用a ,b ,c 表示向量OG ,则OG =( )
A .c b a 2
121 B .
c b a 2121 C .c b a 2121 D .c b a 2121 6、已知平行六面体ABCD -A 1B 1C 1D 1,若,3211C C z BC y AB x AC 则x +y +z =( )
6 A .1 B .6
7 C .65 D .3
2 7、如图,空间四边形OABC 中,G 、H 分别是△ABC 、△OBC 的重心,D 为BC 的中点,设c OC b OB a OA ,,,试用向量c b a ,,表示向量OG 和GH .
8、在空间四边形ABCD 中,点M 、G 分别是BC 、CD 边的中点,化简
【知识小结】1、共线的充要条件 2、共面的充要条件
【自主反思】
)(2
1 )2()(2
1 )1(AC AB AG BD BC AB
7。

相关文档
最新文档