【 毕业设计 毕业论文】物理专业 毕业论文 文献翻译 中英文对照 麦克斯韦方程组
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
外文资料翻译
麦克斯韦方程组
麦克斯韦方程组是英国物理学家麦克斯韦在19世纪建立的描述电场与磁场的四个基本方程。
方程组的微分形式,通常称为麦克斯韦方程。
在麦克斯韦方程组中,电场和磁场已经成为一个不可分割的整体。
该方程组系统而完整地概括了电磁场的基本规律,并预言了电磁波的存在。
麦克斯韦提出的涡旋电场和位移电流假说的核心思想是:变化的磁场可以激发涡旋电场,变化的电场可以激发涡旋磁场;电场和磁场不是彼此孤立的,它们相互联系、相互激发组成一个统一的电磁场。
麦克斯韦进一步将电场和磁场的所有规律综合起来,建立了完整的电磁场理论体系。
这个电磁场理论体系的核心就是麦克斯韦方程组。
麦克斯韦方程组在电磁学中的地位,如同牛顿运动定律在力学中的地位一样。
以麦克斯韦方程组为核心的电磁理论,是经典物理学最引以自豪的成就之一。
它所揭示出的电磁相互作用的完美统一,为物理学家树立了这样一种信念:物质的各种相互作用在更高层次上应该是统一的。
另外,这个理论被广泛地应用到技术领域。
历史背景
1845年,关于电磁现象的三个最基本的实验定律:库仑定律(1785年),安培—毕奥—萨伐尔定律(1820年),法拉第定律(1831-1845年)已被总结出来,法拉第的“电力线”和“磁力线”概念已发展成“电磁场概念”。
场概念的产生,也有麦克斯韦的一份功劳,这是当时物理学中一个伟大的创举,因为正是场概念的出现,使当时许多物理学家得以从牛顿“超距观念”的束缚中摆脱出来,普遍地接受了电磁作用和引力作用都是“近距作用”的思想。
1855年至1865年,麦克斯韦在全面地审视了库仑定律、安培—毕奥—萨伐尔定律和法拉第定律的基础上,把数学分析方法带进了电磁学的研究领域,由此导致麦克斯韦电磁理论的诞生。
积分形式
麦克斯韦方程组的积分形式:
这是1873年前后,麦克斯韦提出的表述电磁场普遍规律的四个方程。
其中:(1)描述了电场的性质。
在一般情况下,电场可以是库仑电场也可以是变化磁场
激发的感应电场,而感应电场是涡旋场,它的电位移线是闭合的,对封闭曲面的通量无贡献。
(2)描述了磁场的性质。
磁场可以由传导电流激发,也可以由变化电场的位移电流所激发,它们的磁场都是涡旋场,磁感应线都是闭合线,对封闭曲面的通量无贡献。
(3)描述了变化的磁场激发电场的规律。
(4)描述了变化的电场激发磁场的规律。
在没有场源的自由空间,即q=0, I=0,方程组就成为如下形式:
麦克斯韦方程组的积分形式反映了空间某区域的电磁场量(D、E、B、H)和场源(电荷q、电流I)之间的关系。
微分形式
麦克斯韦方程组微分形式:在电磁场的实际应用中,经常要知道空间逐点的电磁场量和电荷、电流之间的关系。
从数学形式上,就是将麦克斯韦方程组的积分形式化为微分形式。
利用矢量分析方法,可得:
注意:(1)在不同的惯性参照系中,麦克斯韦方程有同样的形式。
(2) 应用麦克斯韦方程组解决实际问题,还要考虑介质对电磁场的影响。
例如在各向同性介质中,电磁场量与介质特性量有下列关系:
在非均匀介质中,还要考虑电磁场量在界面上的边值关系。
在利用t=0时场量的初值条件,原则上可以求出任一时刻空间任一点的电磁场,即E(x,y,z,t)和B(x,y,z,t)。
科学意义
(一)经典场论是19世纪后期麦克斯韦在总结电磁学三大实验定律并把它与力学模型进行类比的基础上创立起来的。
但麦克斯韦的主要功绩恰恰是他能够跳出经典力学框架的束缚:
在物理上以"场"而不是以"力"作为基本的研究对象,在数学上引入了有别于经典数学的矢量偏微分运算符。
这两条是发现电磁波方程的基础。
这就是说,实际上麦克斯韦的工作已经冲破经典物理学和经典数学的框架,只是由于当时的历史条件,人们仍然只能从牛顿的经典数学和力学的框架去理解电磁场理论。
现代数学,H空间中的数学分析是在19世纪与20世纪之交的时候才出现的。
而量子力学的物质波的概念则在更晚的时候才被发现,特别是对于现代数学与量子物理学之间的不可分割的数学逻辑联系至今也还没有完全被人们所理解和接受。
从麦克斯韦建立电磁场理论到现在,人们一直以欧氏空间中的经典数学作为求解麦克斯韦方程组的基本方法。
(二) 我们从麦克斯韦方程组的产生,形式,内容和它的历史过程中可以看到:第一,物理对象是在更深的层次上发展成为新的公理表达方式而被人类所撑握,所以科学的进步不会是在既定的前提下演进的,一种新的具有认识意义的公理体系的建立才是科学理论进步的标志。
第二,物理对象与对它的表达方式虽然是不同的东西,但如果不依靠合适的表达方法就无法认识到这个对象的"存在"。
由此,第三,我们正在建立的理论将决定到我们在何种层次的意义上使我们的对象成为物理事实,,这正是现代最前沿的物理学所给我们带来的困惑。
(三) 麦克斯韦方程组揭示了电场与磁场相互转化中产生的对称性优美,这种优美以现代数学形式得到充分的表达。
但是,我们一方面应当承认,恰当的数学形式才能充分展示经验方法中看不到的整体性(电磁对称性),但另一方面,我们也不应当忘记,这种对称性的优美是以数学形式反映出来的电磁场的统一本质。
因此我们应当认识到应在数学的表达方式中"发现"或"看出" 了这种对称性,而不是从物理数学公式中直接推演出这种本质。
外文资料原文
Maxwell's equations
Maxwell's equations [1] is a British physicist Maxwell in the 19th century descri ption of the establishment of electric and magnetic fields of the four basic equation s.
Equations of differential form, commonly referred to as Maxwell's equations. In Maxwell's equations, the electric and magnetic fields has become an indivisible who le. The system of equations and complete overview of the basic law of electromag netic fields, and predicted the existence of electromagnetic waves.
Maxwell made the vortex electric field and displacement current hypothesis of the c ore idea is: the changing magnetic field can stimulate vortex electric field, electric f ield changes the magnetic field can stimulate scroll; electric and magnetic fields ar e not isolated, they are interlinked and mutually stimulate the formation of a unifor m electromagnetic field. Maxwell further electric and magnetic fields together all the laws, the establishment of a complete theoretical system of electromagnetic fields.
The electromagnetic field is the core of the theoretical system of Maxwell's equ ations.
Maxwell's equations in electromagnetism the position, as Newton's laws of motio n in mechanics, like the position. To Maxwell's equations at the core of the electro magnetic theory, classical physics is the most proud achievements. It reveals the p erfect unification of the electromagnetic interaction, for the physicist to establish su ch a belief: the interaction of various substances at a higher level should be unifie d. In addition, this theory has been widely used in technical fields.
Historical background
In 1845, with regard to electromagnetic phenomena of the three basic experimental laws: Coulomb's law (1785), Amp - Biot - Savart Law (1820), Faraday's law (in 1831-1845) has been summed up, Faraday the "power line" and "magnetic line of force" concept has developed into "the concept of electromagnetic fields."
Field emergence of the concept, but also a credit to Maxwell, which was then the physics of a great initiative, because it is the emergence of the concept of field, so that at the time many physicists from Newton to be "ultra-distance concept," a way out of the shackles of generally accepted the role of electromagnetic and gravitational effects are "short-range effect" thinking.
From 1855 to 1865, Maxwell comprehensively examined in the Coulomb's law, Ampere - Biot - Savart law and Faraday's Law, based on the mathematical analysis methods into the electromagnetic field of study, leading to Maxwell's electromagnetic theory birth.
Integral form
Maxwell's equations of the integral form:
This is a before and after 1873, the formulation of Maxwell's electromagnetic field to the universal law of the four equations.
Of which: (1) describes the nature of the electric field. Under normal circumstances, the electric field could be the Coulomb electric field can also be stimulated by changes in the magnetic field induced electric field, and the induced electric field is the vortex field, and its line of electric displacement is closed on the closure of non-contribution to the flux surface.(2) describes the nature of the magnetic field. Magnetic field can be excited by conduction current, but also by changes in the electric field created by the displacement current, which are the magnetic vortex field, magnetic induction lines are closed lines, closed surfaces of non-contribution to the flux.
(3) describes the changes in the law of magnetic field excitation.
(4) describes the changes in the law of magnetic field excitation.
Field source in the absence of free space, that is, q = 0, I = 0, equations become the following forms:
Maxwell's equations form the points of a region of space reflects the amount of electromagnetic fields (D, E, B, H) and field source (charge q, current I) relationship.
Differential form
Differential form of Maxwell's equations: in the practical application of electromagnetic fields often need to know point by point in space and the electromagnetic charge and current relationship. From the mathematical form, is the integral Maxwell's equations for the differential form formal. The use of vector analysis methods available:
Note: (1) in different inertial frames of reference, the Maxwell's equations have the same form.
(2) the application of Maxwell's equations to solve practical problems, we must also consider the impact of media on the electromagnetic field. For example, in isotropic media, the volume of electromagnetic field and dielectric properties of the relationship between the volume of any of the following:
In the non-uniform medium, we must also consider the volume of electromagnetic field in the interface of the boundary value relations. In the use of t = 0 the initial amount of pm conditions, in principle, for a time as any point of the electromagnetic field of space, that is, E (x, y, z, t) and B (x, y, z, t).
Scientific significance
(A) the classical field theory is Maxwell in the late 19th century summed up the law of electromagnetism and the three experiments with the mechanical model based on an analogy with the creation. However, Maxwell's main achievements is that he can just jump out of the shackles of the framework of classical mechanics: in the physical in order to "market" rather than "force" as the basic object of study in mathematics is different from classical mathematics the introduction of the vector partial differential operator Fu. That is found the basis of electromagnetic wave equation. This means that, in fact, Maxwell has been to break through the classical physics and classical mathematical framework, but, because of the historical conditions at that time, it is still only available from Newton's classical mathematics and mechanics to understand the framework of electromagnetic theory.
Modern Mathematics, H space in the mathematical analysis is in the 19th century and at the turn of the 20th century when it appears. Quantum mechanics and the concept of matter waves at the time was later found, especially for modern mathematics and quantum physics an integral between the mathematical logic Contact has also not yet completely been understood and accepted. Maxwell electromagnetic theory from the establishment to now, there has been a Euclidean space to the classical mathematical solution of Maxwell's equations as the basic method.
(B) We know from Maxwell's equations have the form, content and the course of its history can be seen: first, the physical object is in a deeper sense
of Justice to develop a new expression of support by human hands, so scientific progress will not be established under the premise of evolution, with a new understanding of the meaning of the axiom system is a sign of the progress of scientific theories. Second, the physical object and its expression is different, but if we do not rely on the expression of appropriate methods will not be able to recognize that the object "exist." Because of this, the third, we are the establishment of the theory will determine what level of our sense of the object so that we become a physical fact, this is the forefront of modern physics gives us the confusion.
(C) Maxwell's equations revealed the transformation between electric and magnetic fields generated by the symmetry of the beautiful, the beautiful form of modern mathematical expression fully. However, on the one hand, we should recognize that form of appropriate mathematical methods in order to fully demonstrate the experience of a whole do not see (electromagnetic symmetry), but on the other hand, we should not forget that this is a beautiful symmetry in mathematics reflected in the form of the unified nature of the electromagnetic field. Therefore, we should recognize that in mathematical expression of "found" or "see" such a symmetry, rather than from the physical mathematical formula directly onto the performance of this nature.。