分数阶微积分 英文

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分数阶微积分英文
Fractional Calculus
Fractional calculus is a branch of mathematical analysis that studies derivatives and integrals of non-integer orders. It generalizes the traditional integer-order calculus by allowing differentiation and integration of non-integer orders.
The concept of fractional calculus dates back to the 17th century, but it wasn't until the late 19th and early 20th centuries that it began to attract significant attention from mathematicians and scientists. The theory of fractional calculus has found applications in various fields, including physics, engineering, biology, and finance.
One of the key concepts in fractional calculus is the fractional derivative. In traditional calculus, the derivative of a function gives the rate of change of the function with respect to its independent variable. In fractional calculus, the derivative of a function of non-integer order is defined using the concept of fractional difference. This allows for the generalization of the derivative to non-integer orders, which has proven to be useful in modeling phenomena such as
viscoelasticity and diffusion processes.
Similarly, the fractional integral generalizes the concept of traditional integration to non-integer orders. The fractional integral of a function can be interpreted as a generalization of the area under the curve of the function to non-integer orders. This concept has been used in the study of anomalous diffusion and other non-local phenomena.
Fractional calculus has also led to the development of fractional differential equations, which are equations involving fractional derivatives of unknown functions. These equations have been used to model a wide range of physical phenomena, such as the behavior of viscoelastic materials, the dynamics of complex systems, and the control of fractional order systems.
In recent years, fractional calculus has gained renewed interest due to its potential applications in emerging fields such as fractional-order control systems and fractional-order signal processing. Researchers and engineers are exploring the use of fractional calculus to develop new methods for controlling and processing signals in a more efficient and effective manner.
In conclusion, fractional calculus is a powerful and
versatile mathematical tool that extends the traditional concepts of calculus to non-integer orders. Its applications in various scientific and engineering disciplines make it an important area of study with significant potential for future developments.
分数阶微积分
分数阶微积分是数学分析的一个分支,研究非整数阶的导数和积分。

它通过允许非整数阶的微分和积分来推广传统的整数阶微积分。

分数阶微积分的概念可以追溯到17世纪,但直到19世纪末和20世纪初,它才开始吸引数学家和科学家的重视。

分数阶微积分的理论在物理学、工程学、生物学和金融学等各个领域都有应用。

分数阶微积分中的一个关键概念是分数阶导数。

在传统微积分中,函数的导数给出了函数相对于其自变量的变化率。

在分数阶微积分中,函数的非整数阶导数是利用分数差分的概念来定义的。

这允许将导数推广到非整数阶,这在建模粘弹性和扩散过程等现象中被证明是有用的。

同样,分数阶积分将传统积分的概念推广到非整数阶。

函数的分数阶积分可以解释为将函数曲线下的面积推广到非整数阶。

这个概念已经在研究异常扩散和其他非局部现象中使用。

分数阶微积分还导致了分数阶微分方程的发展,这些方程涉及未知函数的分数阶导数。

这些方程已被用来模拟各种物理现象,如粘弹性材料的行为、复杂系统的动力学以及分数阶系统的控制。

近年来,由于在分数阶控制系统和分数阶信号处理等新兴领域的潜在应用,分数阶微积分再次引起了人们的兴趣。

研究人员和工程师正在探索使用分数阶微积分来开发控制和处理信号的新方法,以更有效地进行控制和处理信号。

总之,分数阶微积分是一个强大而多才多艺的数学工具,它将传统微积分的概念推广到非整数阶。

它在各种科学和工程学科中的应用使其成为一个重要的研究领域,具有未来发展的重要潜力。

相关文档
最新文档