太原市2017~2018学年第一学期九年级期末考试数学试题(含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
太原市2017~2018学年第一学期九年级期末考试
数学试卷
说明:本试卷为闭卷笔答,不允许携带计算器,答题时间90分钟满分100分
一、选择题(本大题含10个小题,每小题3分,共30分)下列各题给出的四个选项中,只有一个符合要求,请将正确答案的字母代号填入相应的位置
1.一元二次方程x 2+4x=0的一根为x=0,另一根为
A.x=2
B.x=-2
C.x=4
D.x=-4 【答案】D
【解析】()2
1240400,4x x x x x x +=∴+=∴==-
2.若反比例函数2
y x
=的图象经过点(-2,m),那么m 的值为 A.1 B.-1 C 12D .-1
2
【答案】B
【解析】∵反比例函数2y x =
的图象经过点(-2,m)∴2
12
m m =
∴=-- 3.把一个正六棱柱如右图水平放置,一束水平方向的平行光线照射此正六棱柱时的正投影是
【答案】B
4.小明和小颖做“剪刀、石头、布”的游戏,假设他们每次出这三种手势的可能性相同,则在一次游戏中两人手势相同的概率是 A
13B 16C 19D 2
3
【答案】A 【解析】
共有9种等可能的结果,在一次游戏中两人手势相同有3种情况 ∴在一次游戏中两人手势相同的概率是
31
93
5.如图,△ABC 中,点D,E 分别在AB,AC 边上,DE//BC,若AD=2DB,则△ADE 与△ABC 的面积比为 A
23B 49C 25D 35
【答案】B
【解析】∵DE ∥BC ,∴△ADE ∽△ABC ,∴
=(
)2=(
23)2=49
6.下列四个表格表示的变量关系中,变量y 是x 的反比例函数的是
【答案】C
【解析】根据反比例函数的自变量与相应函数值的乘积是常数,可得答案
7.在平面直角坐标系中,将四边形OABC 四个顶点的横坐标、纵坐标分别乘-2,依次连接得到的四个点,可得到一个新四边形,关于所得四边形,下列说法正确的是
A 与原四边形关于x 轴对称 B.与原四边形关于原点位似,相似比为1:2 C.与原四边形关于原点中心对称 D.与原四边形关于原点位似,相似比为2:1 【答案】D
【解析】在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k 或-k.
8,股市规定:股每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停:当跌了原价的10%后,便不能再跌,叫做跌停,现有一支股票某天涨停,之后两天时间又跌回到涨停之前的价格.若这两天此股票股价的平均下跌率为x,则x 满足的方程是
A.(1+10%)(1-x)2=1
B.(1-10%)(1+x)2=1
C.(1-10%)(1+2x)=1
D.(1+10%)(1-2x)=1 【答案】A
【解析】(1+10%)(1-x)2=1;
9.如图是一个几何体的三视图,则该几何体可能是下列的
【答案】A
【注意】左视图左内右外
10.书画经装后更便于收藏,如图,画心ABCD 为长90cm 、宽30cm 的矩形,装裱后整幅画
为矩形A B C D '''',两矩形的对应边互相平行,且AB 与A'B 的距离、CD 与C D ''的距离都等于4cm.当AD 与A D ''的距离、BC 与B'C'距离都等于acm,且矩形ABCD ∽矩形A B C D ''''时,整幅书画最美观,此时,a 的值为
A.4
B.6
C.12
D.24 【答案】C
【解析】∵矩形ABCD ∽矩形A B C D ''''∴
9030
129023024
AB BC a A B B C a =∴=∴=''''++⨯ 二、填空题(本大题含5个小题,每小题2分,共10分)把结果直接填在横线上 11.反比例函数3
-y x
=的图象位于坐标系的第_________________象限 【答案】二、四
【解析】
当k>0时,两支曲线分别位于第一、三象限内,在图象所在的每一象限内,Y 随X 的增大而减小; 当k<0时,两支曲线分别位于第二、四象限内,在图象所在的每一象限内,Y 随X 的增大而增大;
两个分支无限接近x 和y 轴,但永远不会与x 轴和y 轴相交.
12.如图,两张宽均为3cm 的矩形纸条交又重叠在一起,重叠的部分为四边形 ABCD.若测得AB=5cm,则四边形ABCD 的周长为___________cm.
【答案】20 (第12题图) 【解析】过点A 作AE ⊥BC 于E ,AF ⊥CD 于F ,
∵两条纸条宽度相同,∴AE=AF .
∵AB ∥CD ,AD ∥BC ,∴四边形ABCD 是平行四边形.
∵S ▱ABCD =BC•AE=CD•AF.AE=AF .∴BC=CD ,∴四边形ABCD 是菱形.
∵菱形四边相等∴四边形ABCD 的周长为4AB=20
13.如图,正五边形ABCDE 的各条对角线的交点为M,N,P ,Q,R,它们分 别是各条对角线的黄金分割点,若AB=2,则MN 的长为_________ 【答案】35【解析】∵M 为线段AD 的黄金分割点,AM >DM ∴
51AM AD -=
35
DM DA -=同理可得
35
DN DB -=
∠MDN =∠ADB ∴MND ADB ∆∆ ∴MN DM AB DA =即352MN -=35MN =14新年期间,某游乐场准备推出幸运玩家抽奖活动,其规则是:在一个不透明的袋子里装有若干个红球和白球(每个球除颜色外都完全相同),参加抽奖的人随机摸一个球,若摸到红球,则可获赠游乐场通票一张.游乐场预估有300人参加抽奖活动,计划发放游乐场通票60张,则袋中红、白两种颜色小球的数量比应为______________ 【答案】1:4
【解析】设红球m 个,白球y 个,根据大量反复试验下频率稳定值即概率可得
60300m
m n
=+
化简得4m n =
∴袋中红、白两种颜色小球的数量比应为m:n=1:4 15.如图,点A,C 分别在反比例函数4
-
y x
= (x<0)与9y x = (x>0)的图象上,若四边形
OABC 是矩形,且点B 恰好在y 轴上,则点B 的坐标为______________ 【答案】136
) 【解析】如图,作AD ⊥x 轴,垂足为D ,CE ⊥x 轴,垂足为E. 约定49,,,A m C n m n ⎛⎫⎛⎫
-
⎪ ⎪⎝⎭⎝⎭
(m<0,n>0) 由k 字形结论可得AD OD OE CE =即4
9m
m n
n
-
-=化简得mn=-6
再根据平行四边形坐标特点相邻之和减相对可得0049
0B B x m n y m n =+-=⎧⎪
⎨=-+-⎪⎩
∴1366,6,66
6
B m n y =-===- ∴136
) 三、解答题(本大题含8个小题,共60分)解答时应写出必要的文字说明、演算步骤或推理过程 16.解下列方程:(每题4分,共8分) (1)x 2-8x+1=0; 解:移项得:x 2-8x=-1 配方得:x 2-8x+42=-1+42 即(x-4)2=15
直接开平方得4x -=
∴原方程的根为1244x x ==
D
(2)x(x-2)+x-2=0
解:提取公因式(x-2)得(x-2)(x+1)=0 ∴原方程的根为122,1x x ==-
17.(本题6分)
已知矩形ABCD,AE 平分∠DAB 交DC 的延长线于点E,过点E 作EF ⊥AB,垂足F 在边AB 的延长线上,求证:四边形ADEF 是正方形.
【解析】∵矩形ABCD ∴∠D=∠DAB=90°,∵EF ⊥AB ∴∠F=90° ∴四边形ADEF 是矩形 ∵∠D=90°∴ED ⊥DA
∵AE 平分∠DAB ,EF ⊥AB ∴ED=EF ∴四边形ADEF 是正方形 18.(本题9分)
花园的护栏由木杆组成,小明以其中三根等高的木杆为观测对象,研究它们影子的规律图1,图2中的点A,B,C 均为这三根木杆的俯视图(点A,B,C 在同一直线上) (1)图1中线段AD 是点A 处的木杆在阳光下的影子,请在图1中画出表示另外两根木杆同一时刻阳光下的影子的线段;
(2)图2中线段AD,BE 分别是点A,B 处的木杆在路灯照射下的影子,其中DE ∥AB,点O 是路灯的俯视图,请在图2中画出表示点C 处木杆在同一灯光下影子的线段;
(3)在(2)中,若O,A 的距离为2m,AD=2.4m,OB=1.5m,则点B 处木杆的影子线段BE 的长为___________m
【解析】(1)如图1,线段BE,CF 即为所求(太阳光是平行光,考查平行投影)
(2)如图2,线段CG 即为所求;(考查点投影) ⑶1.8 ∵DE//AB ∴
OA OB OD OE =即
2 1.5
1.82
2.4 1.5OA OB BE m OA OD OB BE BE
=∴=∴=++++ 19.(本题6分)
王叔叔计划购买一套商品房,首付30万元后,剩余部分用贷款并按“等额本金”的形式偿还,即贷款金额按月分期还款,每月所还贷款本金数相同,设王叔叔每月偿还贷款本金y 万元,x 个月还清,且y 是x 的反比例函数,其图象如图所示 (1)求y 与x 的函数关系式;
(2)王叔叔购买的商品房的总价是__________万元;
(3)若王叔叔计划每月偿还贷款本金不超过2000元,则至少需要多少个月还清?
【解析】(1)设y 与x 之间的函数关系式为k
y x
= (k ≠0). 根据题意,得点(120,0.5)在k y x =的图象上,∴0.5120k
=解得k=60
∴y 与x 之间的函数关系式为60
y x
= (x>0)
(2)90;
∵王叔叔每月偿还贷款本金y 万元,x 个月还清∴贷款金额xy=60万元 ∴王叔叔购买的商品房的总价为首付与贷款金额的和即30+60=90(万元) (3)2000元=0.2万元 根据题意,得y=0.2,x=300
由图,y ≤2000的图像位于Ⅱ区域即x ≥
300
Ⅱ
0.2
∴至少需要300个月还清.
20.(本题6分)
新年联欢会,班里组织同学们进行才艺展示,如图所示的转盘被等分成四个扇形,每个扇
形区域代表一项才艺:1-唱歌;2-舞蹈;3-朗诵;4-演奏.每名同学要随机转动转盘两
次,转盘停止后,根据指针指向的区域确定要展示的两项内容(若两次转到同一区域或分
割线上,则重新转动,直至得出不同结果).求小明恰好展示“唱歌”和“演奏”两项才艺
的概率.
【解析】转动转盘两次所有可能出现的结果列表如下:
由列表可知共有12种结果,每种结果出现的可能性相同
小明恰好展示“唱歌”和“演奏”才艺的结果有2种:(1, 4),(4,1)
所以小明恰好展示“唱歌”和“演奏”才艺的概率是21
.
126
21.(本题6分)
为了弘扬山西地方文化,我省举办了“第三届山西文化博览会”,博览会上一种文化商品的进价为30元/件,售价为40元/件,平均每天能售出600件.调查发现,售价在40元至60元范围内,这种商品的售价每上涨1元,其每天的销售量就减少10件,为使这种商品平均每天的销售利润为10000元,这种商品的售价应定为多少元?
解:设这种商品的涨价x元,根据题意,得
(40-30+x )(600-10x )=10000
即(10+x )(60-x )=1000 ()()106070(205070,20501000)x x ++-=+=⨯= 解得x 1=10,x 2=40
∴售价为40+10=50或40+40=80
∵售价在40元至60元范围内∴售价应定为50元 答:售价应定为50元. 22.(本题12分)综合与实践: 问题情境:
如图1,矩形ABCD 中,BD 为对角线,
AD
k AB
= ,且k>1.将△ABD 以B 为旋转中心,按顺时针方向旋转,得到△FBE(点D 的对应点为点E,点A 的对应点为点F),直线EF 交直线AD 于点G
(1)在图1中连接AF,DE,可以发现在旋转过程中存在一个三角形始终与△ABF 相似,这个三角形是_______,它与△ABF 的相似比为______(用含k 的式子表示); 【答案】(1)△2
1:1k + 【解析】本题考查子母牵手模型 由旋转性质可得△ABD ≌△FBE ∴BA=BF,BD=BE ,∠ABD=∠FBE ∴
,AB BF
ABF DBE BD BE
=∠=∠∴△ABF ∽△DBE ∵AD
k AB =∴△DBE 与△ABF 相似比为21
BD k AB
+=数学思考:
(2)如图2,当点E 落在DC 边的延长线上时,点F 恰好落在矩形ABCD 的对角线BD 上,此时k 的值为______
【解析】由旋转性质可得△ABD ≌△FBE
G
E
F
D C
B
A B
∴BD=BE ,AD=FE ∵矩形ABCD ∴AD=BC ∴EF=BC
∵BD FE DE BC = (等面积转换) ∴BD=DE ∴等边三角形BDE
∴
tan 60AD
AB
== 实践探究
(3)如图3,当点E 恰好落在BC 边的延长线上时,求证:CE=FG; 【解析】(首推方法2) 方法1:常规法 设EF 与BD 交于点O
由旋转性质可得△ABD ≌△FBE ∴∠ADB=∠FEB,BD=BE,AD=FE,
∵四边形ABCD 是矩形,AD//BC,AD=BC ∴∠ADB=∠DBC,∠FEB=∠EGD ∠ADB=∠EGD,∠FEB=∠DBC OD= OG, OE=OB
OD+OB=OG+OE,即BD=GE ∵BD=BE ∴BE= EG
∵CE= BE- BC, GF= GE- EF, E 且BC= AD=FF ∴CE= GE 方法2面积法
由旋转性质可得△ABD ≌△FBE ∴∠BAD=∠BFE,BA=BF,AD=FE, ∵四边形ABCD 是矩形,AD//BC,AB=DC ∴BDE BGE S S BE DC GE BF ∆∆=∴= ∵BA=BF, AB=DC ∴DC=BF ∴BE=GE
∵CE= BE- BC, GF= GE- EF, E 且BC= AD=FF ∴CE= GE (4)当k=
4
3
时,在△ABD 绕点B 旋转的过程中,利用图4探究下面的问题
O
G
D
A B
F G
D
A B
F
请从A,B 两题中任选一题作答,我选择 A:当AB 的对应边FB 与AB 垂直时,直接写出DG
AB
的值. 【答案】1733
或 【解析】如图
B:当AB 的对应边FB 在直线BD 上时,直接写出DG AB
的值 【答案】51063
或
【解析】如图 情况1:
425
cos 52
55236
AD FD m ADB GD m BD GD GD m
DG AB m ∠=
=∴=∴=∴==
情况2:
48cos 105101033AD FD m
ADB GD m BD GD GD DG m AB m ∠=
=∴=∴=∴==
23.(本题12分)
如图1,平面直角坐标系中,△OAB 的顶点A,B 的坐标分别为(-2,4)、(-5,0).将△OAB 沿OA 翻折,点B 的对应点C 恰好落在反比例函数k
y x
=
(k ≠0)的图象上
4m
3m
3m
G
2m
3m
3m
E
F
D
C 4m
3m
5m
3m
E
D
A
C
B
G
(1)判断四边形OBAC 的形状,并证明. 【解析】(1)四边形OBAC 是菱形 证明:过点A 作AE ⊥x 轴于点E
∵A(-2,4)∴ OE=2, AE=4 ∵B(-5,0)∴BE= OB- OE= 3 在Rt △ABE 中,由勾股定理得22AE BE +=5
∴ AB= BO
∵△AOB 沿AO 折叠,点B 的对应点是点C ∴AB= AC, OB= OC ∴AB= OB= AC = OC. ∴四边形OBAC 是菱形 (2)直接写出反比例函数k
y x
=(k ≠0)的表达式. 【答案】12y x
=
【解析】20(5)3,4004C A O B C A O B x x x x y y y y =+-=-+--==+-=+-= ∴C (3,4)
∵C 恰好落在反比例函数k y x =
的图象上∴4123
k
k =∴=∴12y x = (3)如图2,将△OAB 沿y 轴向下平移得到△OA'B',设平移的距离为m(0<m<4),平移过程中△O'A'B'与△OAB 重叠部分的面积为S.探究下列问题
请从A,B 两题中任选一题作答,我选择___________ A:若点B 的对应点B’恰好落在反比例函数k
y x
=
(k ≠0)的图象上,求m 的值,并直接写出此时S 的值
【解析】连接BB’
△OAB 沿y 轴向下平移得到△OA’B', BB’∥y 轴,BB’=m
∵B(-5,0)∴点B'的横坐标为-5将x=-5代入12
y x
=.得y=-2.4 B'(-5,-2,4),BB’=2.4,即m=2.4 B:若S=
1
2
OAB S ∆,求m 的值; 【解析】连接AA ′并延长AA’交x 轴于点H,设A'B',A’O′交OB 于点M,N 则AA ′=m,
由平移可知∠MAN=∠BAO,AH ⊥OB,A’M∥AB, ∴△A’MN ∽△ABO
2
122
A MN ABO S A H A H S AH AH '''⎛⎫==∴= ⎪
⎝⎭ AH=4,∴22A H '=∴AA’=AH -A’H=4-22即m=4-22(4)如图3,连接BC,交AO 于点D,点P 是反比例函数k
y x
= (k ≠0)的图象上的一点, 请从A,B 两题中任选一题作答,我选择____________
A:在x 轴上是否存在点Q,使得以点O,D,P ,Q 为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的平行四边形的顶点P ,Q 的坐标;若不存在,说明理由; 【答案】存在,点P 与Q 的坐标如下:
P 1(6,2)与Q 1(7,0); P 2(6,-2)与Q 2(-7,0); P 3(-6,-2)与Q 3(-7,0);
【解析】由题意D 为AO 中点∵A(-2,4) ∴D (-1,2)设Q (t ,0),P (12,
m m
) OP 为对角线:()01612
7002
Q O P D Q O P D x x x x t m m t y y y y m ⎧=+-∴=+--=⎧⎪
⇒⎨⎨==+-∴=+-⎩⎪⎩
∴P 1(6,2)与Q 1(7,0) OD 为对角线:0(1)161270202P O D Q P O D Q x x x x m t t
m t y y y y m =+-∴=+--=--⎧=⎧⎪
⇒⎨⎨
=-=+-∴=+-=⎩⎪⎩
∴P 2(6,-2)与Q 2(-7,0);
PD 为对角线:(1)0
6127020Q P D O Q P D O x x x x t m m t y y y y m =+-∴=+--⎧=-⎧⎪
⇒⎨⎨
=-=+-∴=+-⎩⎪⎩
∴P 3(-6,-2)与Q 3(-7,0) B:在坐标平面内是否存在点Q,使得以点A,O,P ,Q 为顶点的四边形是矩形?若存在,直接写出所有满足条件的点Q 的坐标;若不存在,说明理由
【答案】存在,点Q 的坐标如下
()()
()12344,22664,10,5,(262,64)Q Q Q Q ----
【解析】先求P 点坐标,分别过O 、A 作直线交12
y x
=于 P 1,P 2,P 3,P 4
设P 2P 4所在直线为y=kx ,P 2(m ,n )∴n=mk 由A(-2,4)易得tan ∠1=tan ∠2=1
2
则12n k m =
= 直线12y x =
与12y x =联立解得2626
66
x x y y ⎧⎧==-⎪⎪⎨⎨==-⎪⎪⎩⎩∴((2426,6,26,6P P -- 222260262Q A P O x x x x =+-=-+=,2246064Q A P O y y y y =+-=+=
∴()
22664Q 同理4(262,64)Q -- 设P 1P 3所在直线为1
2
y x =
+b 将A(-2,4)代入可得b=5 1
52y x =
+与12y x =联立解得122,16x x y y =-=⎧⎧⎨⎨=-=⎩⎩
∴()()132,6,12,1P P --
()112024Q P O A x x x x =+-=+--=116042Q P O A y y y y =+-=+-=∴()14,2Q
同理()310,5Q --。