20XX苏教版版六年级数学下册素材期末复习:解决问题应用题经典题型带答案解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
20XX苏教版版六年级数学下册素材期末复习:解决问题应用题经典
题型带答案解析
一、苏教小学数学解决问题六年级下册应用题
1.下图,是用塑料薄膜覆盖的蔬菜大棚,长15米,横截面是一个直径2米的半圆。
(1)这个大棚的种植面积是多少平方米?
(2)覆盖在这个大棚上的塑料薄膜约有多少平方米?
(3)大棚内的空间约有多大?
解析:(1)2×15=30(平方米)
答:这个大棚的种植面积是30平方米。
(2)3.14×2×15÷2
=3.14×15
=47.1(m2)
3.14×()2=3.14(m2)
47.1+3.14=50.24(m2)
答:覆盖在这个大棚上的塑料薄膜约有50.24平方米。
(3)解:3.14×()2×15=47.1(立方米)
47.1÷2=23.55(立方米)
答:大棚内的空间约有23.55平方米。
【解析】【分析】(1)大棚的种植面积是长方形,长是15米,宽是2米,根据长方形面积公式计算;
(2)塑料薄膜的面积是一个整圆的面积,加上圆柱侧面积的一半,根据公式计算即可;(3)大棚内的空间是圆柱体积的一半,用底面积乘高再除以2即可求出空间的大小。
2.一种压路机滚筒,直径是1.2米,长3米,每分钟转10周,每分钟压路多少平方米?解析:14×1.2×3×10=113.04(平方米)
答:每分钟压路113.04平方米。
【解析】【分析】3.14×直径=滚筒的宽;滚筒的宽×长=滚动一周的面积;滚动一周的面积×10周= 每分钟压路面积。
3.一个近似圆锥的,高2.4m,底面周长31.4m,每立方米沙重1.7吨,如果用一辆载重8吨的车运输,多少次可以运完?
解析:解:×3.14×(31.4÷3.14÷2)2×2.4×1.7÷8
=×3.14×25×2.4×1.7÷8
=62.8×1.7÷8
=106.76÷8
=13(次)……2.76(吨)
所以需要13+1=14(次)。
答:如果用一辆载重8吨的车运输,14次可以运完。
【解析】【分析】圆锥的体积=×π×底面半径(底面周长÷π÷2)的平方×圆锥的高,再用圆锥的体积×每立方米沙重的吨数求出沙的总吨数,最后用沙的总吨数÷每辆车载沙的吨数,若商为整数则商为总共运送的次数;若有余数,则商+1为总共运送的吨数。
4.一种儿童玩具﹣陀螺(如图),上面是圆柱体,下面是圆锥体,经过测试,只有当圆柱
直径4厘米,高5厘米,圆锥的高是圆柱高的时,才能旋转时又稳又快,试问这个陀螺的体积是多大?(保留整立方厘米)
解析:解:圆柱体积:3.14×(4÷2)2×5
=3.14×4×5
=12.56×5
=62.8(立方厘米);
圆锥的体积: ×3.14×(4÷2)2×(5× ),
= ×3.14×4×3
=3.14×4
=12.56(立方厘米);
陀螺的体积:62.8+12.56=75.36(立方厘米)≈75(立方厘米);
答:这个陀螺的体积是75立方厘米。
【解析】【分析】根据题意可知,这个陀螺的体积=圆柱的体积+圆锥的体积,据此列式解答。
5.小军家离学校1千米,离图书馆2千米.他从家出发,走了15分钟,每分钟走64米.
(1)如果向东走,离学校还有多少米?
(2)如果向北走,小军现在走到什么位置?(先列式计算,再用★在图上标注出来)
解析:(1)解:1千米=1000米
1000﹣64×15
=1000﹣960
=40(米)
答:如果向东走,离学校还有40米。
(2)解:2厘米:1千米
=2:100000
=1:50000
960米=96000厘米
96000× =1.92(厘米)
所以,如果向北走,小军的位置如图所示:
【解析】【分析】(1)先将单位进行换算,离学校还有的距离=小军家离学校的距离-小军已经走的距离,其中小军已经走的距离=小军每分钟走的速度×走的时间;
(2)先规定比例尺,即图上距离2厘米,实际距离1千米,那么比例尺=图上距离:实际距离,把小军已经走的距离进行单位换算,即960米=96000厘米,那么图上的距离=实际距离÷比例尺,据此作图即可。
6.小明调制了两杯蜂蜜水。
第一杯用了30毫升蜂蜜和360毫升水。
第二杯用了500毫升水,按照第一杯蜂蜜水中蜂蜜和水体积的比计算,第二杯应加入蜂蜜多少毫升?
解析:解:设第二杯应加入蜂蜜x毫升。
30:360=x:500
360x=30×500
360x=15000
x=15000÷360
x≈41.7
答:第二杯应加入蜂蜜41.7毫升。
【解析】【分析】第一杯中蜂蜜质量:水的质量=第二杯中蜂蜜质量:水质量,据此列比例,然后根据比例的基本性质和等式性质解比例。
7.在比例尺是1∶3000000的地图上,量得甲、乙两地相距18厘米,客车与货车分别从甲、乙两地同时相向而行,5小时相遇。
已知客车和货车的速度比是5∶4,问客车与货车的速度差是多少?
解析:解:18×3000000÷100000= 540千米
540÷5×( - )
= 108×
=12(千米)
答:客车与货车的速度差是12千米。
【解析】【分析】实际距离=图上距离×比例尺的倒数÷进率,客车与货车的速度差=速度和×(客车速度占比-货车速度占比),速度和=距离÷相遇时间。
8.一张长方形的铁皮(如图),剪下图中的阴影部分恰好可以做成一个油桶(接头处不算).这个油桶的容积是多少立方分米?
解析:解:设阴影部分中圆的直径为x分米,
x+x+3.14x=20.56
5.14x=20.56
x=4
阴影部分圆的半径为:4÷2=2(分米)
圆柱形油桶的容积为:3.14×22×4
=12.56×4
=50.24(立方分米)
答:做成油桶的容积是50.24立方分米。
【解析】【分析】观察图可知,小长方形的长是圆柱的底面周长,设阴影部分中圆的直径
为x分米,则长方形的长是3.14x分米,长方形的长+两个圆的直径=20.56,据此列方程可以求出圆的直径,也是圆柱的高,要求圆柱的容积,依据公式:V=πr2h,据此列式解答。
9.根据木棒左侧放棋子的数量和位置,想一想,在右侧的什么位置放几个棋子才能保证木棒平衡?共有几种方案?
解析:解:方案一:右侧位置1处放18个棋子;方案二:右侧位置2处放9个棋子;方案三:右侧位置3处放6个棋子;方案四:右侧位置6处放3个棋子;方案五:右侧位置9处放2个棋子;方案六:右侧位置18处放1个棋子。
共6种方案。
【解析】【分析】左边放棋子的个数×格数=右边放棋子的个数×格数。
6×3=18,那么右边放棋子的个数与格数的乘积是18,这样列举出所有方案即可。
10.一个圆锥形沙堆,底面周长是12.56米,高1.5米。
将这些沙铺在宽10米的道路上,铺 4厘米厚,可以铺多少米?
解析:解:半径:12.56÷3.14÷2
=4÷2
=2(米)
体积: ×3.14×22 ×1.5
=×3.14×4×1.5
=3.14×4×0.5
=12.56×0.5
=6.28(立方米)
4cm=0.04m
可以铺:
6.28÷10÷0.04
=0.628÷0.04
=15.7(米)
答:可以铺15.7米。
【解析】【分析】已知圆锥的底面周长,可以求出圆锥的底面半径,C÷π÷2=r,然后求出圆
锥的体积,V=πr2h,最后用圆锥沙堆的体积÷铺的宽度÷铺的厚度=铺的长度,据此列式解答。
11.会议大厅里有10根底面直径0.6米,高6米的圆柱形柱子,现在要刷上油漆,每平方米用油漆0.5千克,刷这些柱子要用油漆多少千克?
解析:解:3.14×0.6×6×10×0.5
=1.884×6×10×0.5
=11.304×10×0.5
=113.04×0.5
=56.52(千克)
答:刷这些柱子要用油漆56.52千克。
【解析】【分析】根据题意可知,先求出1根圆柱形柱子的侧面积,依据公式:S=Ch,然后乘10,求出10根圆柱形柱子的侧面积,最后用每平方米用油漆的质量×要粉刷的面积=刷这些柱子要用油漆的质量,据此列式解答。
12.一个圆锥形沙堆,底面积是28.26m²,高是2.5m。
用这堆沙在10m宽的公路上铺2cm 厚的路面,能铺多少米?
解析:解:2cm=0.02m
28.26×2.5×÷10÷0.02
=22.5÷10÷0.02
=112.5(米)
答:能铺112.5米。
【解析】【分析】沙堆的体积是不变的,因此根据圆锥的体积公式计算出圆锥形沙堆的体积,然后用沙堆的体积除以公路的宽,再除以铺的厚度即可求出铺的长度。
13.学校组织篮球比赛,春明在这场篮球赛中一共投中10个球,因为他投中的球中有2分球,也有3分球,所以得到24分。
春明在这场篮球赛中投中的2分球和3分球各是多少个?
解析:解:设投中3分球x个,则2分球有(10-x)个。
3x+2(10-x)=24
3x+20-2x=24
x=24-20
x=4
10-4=6(个)
答:春明在这场篮球赛中投中的2分球有6个,3分球有4个。
【解析】【分析】此题属于鸡兔同笼问题,设投中3分球x个,则2分球有(10-x)个,根据得分是24分列出方程,解方程求出3分球的个数,进而求出2分球的个数即可。
14.下面的图象表示斑马和长颈鹿的奔跑情况。
(1)长颈鹿的奔跑路程与奔跑时间是否成正比例关系,为什么?
(2)估计一下,两种动物18分钟各跑多少千米?
(3)从图象上看,斑马跑得快还是长颈鹿跑得快,为什么?
解析:(1)解:20:25=0.8,4:5=0.8
答:长颈鹿的奔跑路程与奔跑时间成正比例关系,因为奔跑路程与奔跑时间的比值一定。
(2)解:估计长颈鹿18分钟跑14千米,斑马18分钟跑22千米。
(3)解:从图像上看,斑马跑得快,因为同样跑24千米,斑马用20分钟,长颈鹿用30分钟。
【解析】【分析】(1)写出长颈鹿奔跑的路程与时间的比,看比值是否相等,如果比值相等,二者就成正比例关系;
(2)先找出18分钟的时间,然后找出18分钟对应的路程即可确定二者各跑多少千米;(3)路程相同,谁用时少谁就跑得快。
15.一个底面半径是10厘米的圆柱体杯子中装有水,水里浸没一个底面半径是5厘米的圆锥体铅锤。
把铅锤从杯中取出后,杯里的水面下降了1厘米。
圆锥体铅锤的高是多少厘米?
解析:解:3.14×102×1÷÷(3.14×52)
=3.14×300÷3.14÷25
=300÷25
=12(厘米)
答:圆锥体的高是12厘米。
【解析】【分析】水面下降部分水的体积就是圆锥的体积,根据圆柱的体积公式计算出1
厘米高水的体积,也就是圆锥铅锤的体积。
圆锥的高=体积÷÷底面积,根据公式计算圆锥的高即可。
16.一节空心混凝土管道的内直径是60厘米,外直径是80厘米,长300厘米,浇制100节这种管道需要多少立方米的混凝土?
解析: 300厘米=3米
60÷2=30(厘米)=0.3(米)
80÷2=40(厘米)=0.4(米)
3.14×(0.4×0.4-0.3×0.3)×3×100=3.14×0.07×300=65.94(立方米)
答:浇制100节这种管道需要65.94立方米的混凝土。
【解析】【分析】空心混凝土管道的底面积×高=一节的体积;一节的体积×100节=浇制100节这种管道需要的混凝土体积。
17.请你制作一个无盖圆柱形水桶,有以下几种型号的铁皮可供搭配选择。
(1)你选择的材料是________号和________号。
(2)你选择的材料做成的水桶最多能装水多少千克?(1升水重1千克)
解析:(1)2;3
(2)解:我选择2号与3号,制作成水桶的底面直径是4分米,高是5分米,
3.14×(4÷2)²×5
=3.14×2²×5
=3.14×4×5
=12.56×5
=62.8(立方分米)
62.8立方分米=62.8升
62.8×1=62.8(千克)
答:我选择的材料做成的水桶最多能装水62.8千克。
【解析】【解答】解:(1)2号的周长:3.14×4=12.56(分米);4号的周长:3.14×3=9.42(分米),所以可以选择2号与3号、或者1号与4号,可以制作一个无盖圆柱形水桶。
【分析】(1)圆柱的侧面沿高展开是一个长方形,这个长方形的长等于圆柱的底面周长,宽等于圆柱的高,由此可以判断选择2号与3号、或者1号与4号,可以制作一个无盖圆柱形水桶;
(2)圆柱的体积=底面积×高,然后把立方分米换算成升,最后圆柱的容积×平均每升水的质量=做成的水桶最多能装水的质量。
18.如图,小明家鱼缸内的假山体积为4dm3,缸内水深3dm。
小明准备给鱼缸换水,找来了一个圆柱形水桶来装缸内排出的水。
算一算,当缸内水排完时,桶内水深多少?(桶内底面积是8dm2,高是4.5dm)
解析:解:(4.8×2.5×3-4)÷8=4(dm)
答:桶内水深4dm。
【解析】【分析】根据长×宽×高计算出鱼缸里水和假山的总体积再减去假山的体积即可求出水的体积,再利用水的体积除以桶的底面积即可得出桶内水深多少米。
19.看图完成下面各题。
(1)学校距市政府800m,这幅图的比例尺是________。
(2)欢欢家在市政府西偏北30°的方向上,距市政府1.2km,请在图中用“ ”标出来。
(3)从欢欢家沿幸福路向南直行可到人民路,请你在图中画出幸福路。
解析:(1)1:32000
(2)1.2km=120000cm
120000×=3.75(cm),作图如下:
(3)
【解析】【解答】(1)学校到市政府的图上距离是2.5cm。
800m=80000cm
2.5:80000=1:32000
故答案为:1:32000.
【分析】(1)量出市政府到学校的图上距离,图上距离÷实际距离=比例尺。
(2)先计算欢欢家在市政府的图上距离,图上距离=实际距离×比例尺。
西偏北30°就是从西向北旋转30°方向。
(3)从欢欢家向南画一条垂直于人民路的直线表示幸福路。
20.如图,一个酒瓶里面深24厘米,底面内径是16厘米,瓶里酒高15厘米。
把酒瓶塞紧后,使其瓶口向下倒立,这时酒高19厘米,酒瓶容积是多少毫升?
解析:解:3.14××(24-19+15)
=3.14××20
=3.14×64×20
=200.96×20
=4019.2(毫升)
答:酒瓶容积是4019.2毫升。
【解析】【分析】酒瓶的底面积×(正放时酒的高度+酒瓶的高度-倒放时酒的高度)=酒瓶的容积。
21.用弹簧秤称物体,称3千克的物体,弹簧长11.5厘米;称4千克的物体,弹簧长12厘米。
称6千克的物体时,弹簧长多少厘米?
解析:解:弹簧原长x厘米。
解得x=10
6×(11.5-10)÷3=3(厘米)
3+10=13(厘米)
答:弹簧长13厘米。
【解析】【分析】设弹簧原长x厘米,根据等量关系,第一次称的物体质量:(第一次弹簧长-弹簧原长)=第二次称的物体质量:(第二次弹簧长-弹簧原长);称6千克物体时弹簧长=物体质量×(第一次弹簧长-弹簧原长)÷第一次称的物体质量。
22.某店主委托运输公司运1000只水晶摆件,商定每只水晶摆件运费0.4元,如果损坏一只,不但不给运费,还要赔偿损失5.1元。
结果运输公司获得运费372.5元。
运输公司损坏了多少只水晶摆件?
解析:解:(0.4×1000-372.5)÷(5.1+0.4)
=(400-372.5)÷5.5
=27.5÷5.5
=5(只)
答:运输公司损坏了5只水晶摆件。
【解析】【分析】首先假设运输1000只水晶摆件一件也没有破损,则,运输公司应该获得的运费=每只水晶摆件运费×水晶摆件总数;然后计算水晶摆件破损数,水晶摆件破损数=(运输公司应该获得的运费-实际获得运费)÷(每只水晶摆件的运费+损失一件水晶摆件的赔偿费)。
23.甲、乙两个筑路队人数的比是7:3,如果从甲队派30人到乙队,则两队的人数比就成了3:2。
甲、乙两个筑路队原来各有多少人?(用比例解)
解析:设甲筑路队原来有7x人,则乙筑路队原来有3x人。
(7x-30):(3x+30)=3:2
2(7x-30)=3(3x+30)
14x-60=9x+90
14x-9x=90+60
5x=150
x=30,
所以7x=210;3x=90。
答:甲筑路队原来各有210人、乙筑路队原来有90人。
【解析】【分析】设甲筑路队原来有7x人,则乙筑路队原来有3x人。
根据“ 如果从甲队派30人到乙队,则两队的人数比就成了3:2 ”可列出方程(7x-30):(3x+30)=3:2,根据比例的基本性质(在比例里,两个外项的积等于两个内项的积。
)即可求出x的值,进一步即可得出7x与3x的值。
24.某学校安排学生宿舍,如果每间住12人,那么有34人没有宿舍;如果每间住14人,则空出4间宿舍。
那么有多少间宿舍?有学生多少人?
解析:解:宿舍:(14×4+34)÷(14-12)=45(间)
学生:45×12+34=574(人)或(45-4)×14=574(人)
答:那么有45间宿舍,有学生574人。
【解析】【分析】此题按鸡兔同笼的思路分析:如果每间住14人,就会空出4间宿舍;据此求出4间宿舍如果都住满的人数;如果每间住12人,就会有34人没有宿舍住;据此求出总人数差;再求出每间宿舍人数差;总人数差除以每间宿舍人数差就是宿舍数;最后求出总人数。
25.为了测量一个空瓶子的容积,一个学习小组进行了如下实验。
①测量出整个瓶子的高度是22厘米;
②测量出瓶子圆柱形部分的内直径是6厘米;
③给瓶子里注入一些水,把瓶子正放时,测量出水的高度是5厘米;
④把瓶盖拧紧,将瓶子倒置放平,无水部分是圆柱形,测量出无水部分圆柱的高度是12厘米。
(1)要求这个瓶子的容积,上面记录中的哪些信息是必须有的?________(填实验序号)(2)请根据选出的信息,求出这个瓶子的容积。
解析:(1)②③④
(2)3.14×()2×(5+12)
=28.26×17
=480.42(立方厘米)
=480.42(ml)
答:这个瓶子的容积为480.42ml。
【解析】【分析】(1)因为要求的是瓶子的容积,而瓶子上面部分不是圆柱体部分,所以不需要直到整个瓶子的高度,而剩下的几个条件都需要;
(2)瓶子的容积=πr2×(正放水的高度+倒放无水部分的高度),据此代入数据作答即可。
26.在一个圆柱形的储水箱里,把一段底面半径是5厘米的圆柱形钢材全部放入水中,水面就上升9厘米;把钢材竖着拉出水面8厘米后,水面就下降4厘米。
钢材的体积是多少?
解析:解:水箱的底面积为:
5×5×3.14×8÷4
=628÷4
=157(平方厘米)
钢材的体积为:157×9=1413(立方厘米)。
答:钢材的体积是1413立方厘米。
【解析】【分析】拉出水面8厘米时,下降部分的水的体积就等于半径5厘米、高为8厘米的圆柱的体积,由此可以得出下降4厘米的水的体积为5×5×3.14×8=628立方厘米。
根据圆柱的体积公式即可求得水箱的底面积;然后用水箱的底面积乘水面上升的高度即可求出
钢材的体积。
27.在一个底面积是706.5平方厘米的圆锥容器里盛满酒精,把这些酒精以每分钟157立方厘米的速度向一个底面积为471平方厘米的圆柱形里注入,1小时后,圆锥里的酒精全部流完,圆锥容器高多少厘米?圆柱形里的酒精液面高多少厘米?
解析:解:1小时=60分钟,157×60=9420(立方厘米),圆锥的高:h=9420×3÷706.5=28260÷706.5=40(厘米),
圆柱的高:h=9420÷471=20(厘米)
答:圆锥容器高40厘米,圆柱形里的酒精液面高20厘米。
【解析】【分析】先求出酒精的体积,根据公式圆锥的高=圆锥的体积×3÷底面积即可求出圆锥容器的高;根据圆柱的高=体积÷底面积即可求出圆柱形里的酒精液面的高。
28.用如图的一张长方形的铁皮做成一个圆柱形的油桶,求这个油桶的容积是多少立方分米,做这个油桶至少需要多少平方分米铁皮?(接头处和厚度不计)
解析:解:设圆的直径为d分米,则:
3.14d+d=2
4.84
4.14d=24.84
d=6
所以r=d÷2=3;h=2d=12
容积:3.14×32×12
=3.14×9×12
=339.12(立方分米)
表面积=3.14×32×2+3.14×6×12
=56.52+226.08
=282.6(平方分米)
答:油桶的容积为339.12立方分米,做这个油桶至少需要282.6平方分米铁皮。
【解析】【分析】设圆的直径是d,大长方形的长是24.84分米,等于小长方形的长加上圆的直径d,小长方形的宽等于两个等圆直径之和,也就是2d,也就是圆柱的高,小长方形是圆柱侧面展开图,所以长应等于圆周长πd=3.14d,根据“大长方形的长等于圆的周长与直径的和”求出圆的直径,进而求出圆柱的高,由于没说铁皮厚度,所以油桶的容积就是圆柱体积,根据“圆柱的体积=πr2h”和“圆柱的表面积=2πr2+2πrh”进行解答即可。
29.蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀。
现有三种小虫共18只,有118条腿和20对翅膀。
每种小虫各有几只?
解析:解:蜘蛛:(118-18×6)÷(8-6)=5(只)
蝉:[(18-5)×2-20]÷(2-1)=6(只)
蜻蜓:18-5-6=7(只)
答:蝉6只,蜻蜓7只。
【解析】【分析】解答鸡兔问题一般采用假设法。
先假设全是蜻蜓和蝉,蜘蛛只数=(总腿数-总头数×6)÷腿数差;
再假设全部是蜻蜓,蝉的只数=(蜻蜓和蝉总数×每只蜻蜓翅膀数-实有翅膀数)÷翅膀差;蜻蜓数量=总数-蜘蛛只数-蝉的只数。
30.如图是一个饮料瓶的示意图,饮料瓶的容积是625mL,里面装有一些饮料。
将这个瓶子正放时,饮料高10cm,倒放时,空余部分的高是2.5cm,求瓶内的饮料为多少mL?
解析:解:625mL=625cm3
625÷(10+2.5)×10
=625÷12.5×10
=50×10
=500(cm3)
500cm3=500mL
答:瓶内的饮料为500mL.
【解析】【分析】饮料体积=底面积×高,底面积=瓶子的体积÷(10+2.5)。
31.一个正方体玻璃容器内盛有水,水面高度为12厘米,从内测出玻璃容器的棱长为20厘米。
在这个容器中竖直放入一个底面积为80平方厘米、高30厘米的圆柱形铁块,这时水面高度是多少厘米?
解析:解:20×20×12÷(20×20-80)
=4800÷320
=15(厘米)
答:水面高度是15厘米。
【解析】【分析】放入圆柱形铁块后水的底面积就容器的底面积减去铁块的底面积,用水的体积除以放入铁块后水的底面积即可求出此时水面的高度。
32.在学校篮球比赛中,李军2分球加3分球共投进8个,共得19分,他2分球和3分球各投进多少个?
解析:解:2分球:(3×8-19)÷(3-2)=5(个)
3分球:8-5=3(个)
答:2分球投进5个,3分球投进3个。
【解析】【分析】本题先假设全是3分球,然后根据出现的分数差,可推算出2分球的个数。
2分球的个数=(共投进8个×3-实际得分)÷分数差,3分球的个数=共投进8个-2分球的个数。
33.有40位同学在14张乒乓球桌上同时进行单打或双打比赛(单打一张桌上2个人,双
打一张桌上4个人)。
进行单打和双打比赛的乒乓球桌各有几张?
解析:解:双打:(40-14×2)÷(4-2)=6(张)
单打:14-6=8(张)
答:进行单打乒乓球桌有6张,进行双打比赛的乒乓球桌有8张。
【解析】【分析】这是一道鸡兔同笼问题,解答此类问题一般采用假设法,假设全是一种动物(如全是“鸡”或全是“兔”,然后根据出现的腿数差,可推算出某一种的头数。
本题先假设全是单打,双打桌数=(总人数-单打一张桌上2个人×总桌数)÷一桌单双打人数的差,据此解答即可。
34.小明为了测量出一只乌龟的体积,按如下的步骤进行了一个实验:①小明找来一个圆柱形玻璃水杯,量得底面周长是25.12厘米;②在玻璃杯中装入一定量的水,量得水面的高度是10厘米;③将乌龟放入水中完全浸没,再次测量水面的高度是12厘米。
如果玻璃的厚度忽略不计,这只乌龟的体积大约是多少立方厘米?
解析:解:圆柱形玻璃水杯的底面半径是:25.12÷3.14÷2=4(厘米)
圆柱形玻璃水杯的底面积:3.14×4×4=50.24(平方厘米)
水的体积:50.24×10=502.4(立方厘米)
水增加的体积:50.24×(12-10)=100.48(立方厘米)
答:这只乌龟的体积大约是100.48立方厘米。
【解析】【分析】底面周长÷π÷2=底面半径;底面积=π×底面半径的平方;水的体积=底面积×高;水增加的体积=底面积×水增加的高度;水增加的体积就是这只乌龟的体积。
35.近年来,中国的建筑行业蓬勃发展,基建事业不断发展。
2020年1月份新冠肺炎疫情爆发,医院床位紧张。
1月23日,由中建三局牵头,武汉建工、武汉市政、汉阳市政等企业参建在武汉知音湖畔5万平方米的滩涂坡地上,指挥7500名建设者和近千台机械设备,承诺用十天时间建成一所可容纳1000张床位的救命医院——火神山医院。
9天的时间,一座医院平地而起,第10天就开始启用,与疫情赛跑,与时间博弈,火神山医院的建立,是“中国速度"的又一个奇迹。
在施工现场有一个圆锥形石子堆,底面周长为12.56米,高是18分米,用这些石子铺满一条长16米、宽3米的地面,能铺多厚?
解析:解:18分米=1.8米
12.56÷3.14÷2=2(米)
3.14×22×1.8×÷16÷3
=3.14×4×0.6÷16÷3
=3.14×2.4÷16÷3
=7.536÷16÷3
=0.157(米)
答:能铺0.157米厚。
【解析】【分析】用圆锥的底面周长除以3.14再除以2即可求出底面半径,然后根据圆锥的体积公式计算出石子的体积,再根据长方体的体积公式用石子的体积除以地面的长再除以地面的宽即可求出能铺的厚度。
36.儿童节,爸爸送给高兴一个圆锥形的玩具(如图)。
如果要用一个长方体的盒子包装
它,这个盒子的表面积至少多少平方厘米?
解析:解:6×6×2+6×10×4
=72+240
=312(平方厘米)
答:这个盒子的表面积至少312平方厘米。
【解析】【分析】盒子的底面边长至少是6cm,高至少是10cm,根据长方体表面积公式计算盒子的表面积即可。
37.张华家有一只底面直径40厘米、深50厘米的圆柱形无盖水桶,这只水桶盛满了水,把水倒入长40厘米、宽30厘米、高50厘米的长方体玻璃鱼缸内,水会溢出吗?请用喜欢的方式解答,(水桶和鱼缸的厚度都忽略不计)
解析:解:水的体积=3.14×(40÷2)2×50
=3.14×400×50
=62800(立方厘米)
鱼缸体积=40×30×50=60000(立方厘米)
因为62800>60000,所以水会溢出。
【解析】【分析】圆柱的体积=π×底面半径的平方×高,长方体的体积=长×宽×高,代入数值分别计算出体积,再将两个数值进行比较即可得出答案。
38.一台压路机的前轮是圆柱形,轮宽2米,半径0.6米.前轮转动一周,轧路的面积是多少平方米?
解析:解:3.14×0.6×2×2
=3.14×2.4
=7.536(平方米)
答:轧路的面积是7.536平方米。
【解析】【分析】前轮转动一周,轧路的面积就是求圆柱的侧面积,圆柱的侧面积=底面周长×高;底面周长=2×π×半径。
39.用a,h分别表示面积为96平方厘米的平行四边形的底和高。
(1)请完成下表,并回答问题。
a/cm123468122448
h/cm96
(3)h与a成什么关系?为什么?
(4)当平行四边形的底为15厘米时,高是多少厘米?
解析:(1)解:填表如下:
a/cm123468122548
h/cm964832241912842
(3)解:因为底×高=平行四边形的面积(一定),所以平行四边形底和高成反比例。
(4)解:15h=96
h=96÷15=6.4
答:高是6.4厘米。
【解析】【分析】(1)平行四边形的面积=底×高,据此计算填表即可;
(2)根据表中数据的走向作答即可;
(3)如果xy=k(k为常数,x,y≠0),那么x和y成反比例;平行四边形的面积=底×高,平行四边形的面积一定,那么平行四边形底和高成反比例;
(4)平行四边形的高=平行四边形的面积÷底,据此作答即可。
40.我们都知道:圆的周长与直径的比值就是圆周率。
它是一个无限不循环小数,用字母π表示。
但你未必知道“圆方率”,就让我们一起来探索吧!
【探索】把一个棱长a厘米的正方体削成一个最大的圆柱体。
求这个圆柱体与正方体体积和表面积比。
(计算涉及圆周率,直接用π表示)
解析:解:体积:圆柱体的体积:π·()2·a=πa3;正方体的体积:a3;
圆柱体与正方体的体积比:πa3:a3=π:4。
表面积:圆柱体的表面积:2·π· ·a+π·()2×2=πa2,正方体的表面积:6a2
圆柱体与正方体的表面积比:πa2:6a2=π:4。
答:这个圆柱体和正方体体积和表面积的比都是π:4。
【解析】【分析】圆柱的底面直径与正方体的棱长相等。
圆柱的表面积=底面积×2+侧面
积,圆柱的体积=底面积×高,正方体表面积=棱长×棱长×6,正方体体积=棱长×棱长×棱长,根据公式分别用字母表示,然后写出相应的比并化成最简整数比即可。
41.某城市,医院在学校的正南方向500米处,电影院在医院的北偏东60°方向1000米处,请用1:20000的比例尺将医院和电影院的位置画在下面,并求出学校到电影院大约有多少米。
解析:解:500米=50000厘米,1000米=100000厘米,50000×=2.5(厘米),
100000×=5(厘米),如图:
4.2÷=84000(厘米)=840(米)
答:学校到电影院大约有840米。
【解析】【分析】把实际距离都换算成厘米,然后用实际距离乘比例尺分别求出图上距离;图上的方向是上北下南、左西右东,根据图上的方向、夹角的度数和图上距离确定医院的位置,再确定电影院的位置。
测量出学校到电影院的图上距离,然后用图上距离除以比例尺求出学校到电影院的实际距离即可。
42.一个圆柱高8厘米,如果它的高增加2厘米,那么它的表面积增加25.12平方厘米,求原来圆柱的表面积是多少平方厘米?
解析:解:底面周长:25.12÷2=12.56(厘米)
底面半径:12.56÷3.14÷2
=4÷2
=2(厘米)
两个底面积和:3.14×22×2。