三年级下册数学试题-奥数习题讲练:第十四讲 逻辑推理(含解析)全国通用

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十四讲逻辑推理
在有些问题中,条件和结论中不出现任何数和数字,也不出现任何图形,因而,它既不是一个算术问题,也不是一个几何问题.也有这样的题目,表面看来是一个算术或几何问题,但在解决它们的过程中却很少用到算术或几何知识.
所有这些问题的解决,需要我们深入地理解条件和结论,分析关键所在,找到突破口,由此入手,进行有根有据的推理,做出正确的判断,最终找到问题的答案.这类问题我们称它为逻辑推理.
暑假精讲
【例1】如图,请问数字1和2的对面是几?
分析:由图知,1的对面不是4和6;也不可能是2和3,所以只能是5.
同理2的对面是6.
【例2】甲乙丙三人分别说了下面三句话,请你从他们所说的话判定谁说假话?甲说:“乙在说谎.”乙说:“丙在说谎.”丙说:“甲和乙都在说谎.”
分析:假设甲没说谎,那么乙说谎,也就是丙没有说谎,这样丙所言“甲和乙都在说谎”属实,所以甲一定说谎.故乙说:“丙在说谎.”属实,所以丙也说谎,即甲和丙两人都说谎.
【例3】编号是1,2,3,4的四位同学参加了学校的110米栏比赛,获得了全校的前四名.1号说:“3号比我先到终点.”得第三名的同学说:“1号不是第四名.”而另一位同学说:“我们的号码与我们所得的名次都不相同.”你能说出他们的名次吗?
分析:得第三名的同学说:“1号不是第四名.”推知:1号是第一或二名,又1号说:“3号比我先到终点.”说明1号是第二名,3号是第一名. 而另一位同学说:“我们的号码与我们所得的名次都不相同.”所以4号是第三名,第四名是2号.
【例4】李波、顾锋、刘英三位老师共同担负六年级某班的语文、数学、政治、体育、音乐和图画六门课的教学,每人教两门.已知:(1)顾锋最年轻;(2)李波喜欢与体育老师、数学老师交谈;(3)体育老师和图画老师都比政治老师年龄大;(4)顾锋、音乐老师、语文老师经常一起去游泳;(5)刘英与语文老师是邻居.问:各人分别教哪两门课程?
分析:由(1)(3)(4)推知顾锋教数学和政治;由(2)推知刘英教体育;由(3)(5)推知李波教图画、语文.李波教语文、图画,顾锋教数学、政治,刘英教音乐、体育.
【例5】四个小朋友宝宝、星星、强强和乐乐在院子里踢足球,一阵响声,惊动了正在读书的陆老师,陆老师跑出来查看,发现一块窗户玻璃被打破了.陆老师问:“是谁打破了玻璃?”宝宝说:“是星星无意打破的.”星星说:“是乐乐打破的.”乐乐说:“星星说谎.”强强说:“反正不是我打破的.”如果只有一个孩子说了实话,那么这个孩子是谁?是谁打破了玻璃?
分析:因为星星和乐乐说的正好相反,所以必是一对一错,我们可以逐一假设检验.假设星星说得对,即玻璃窗是乐乐打破的,那么强强也说对了,这与“只有一个孩子说了实话”矛盾,所以星星说错了.假设乐乐说对了,按题意其他孩子就都说错了.由强强说错了,推知玻璃是强强打破的.宝宝、星星确实都说错了.符合题意.所以是强强打破了玻璃.
【例6】小刚在纸条上写了一个四位数,让小明猜.小明问:“是603l吗?”小刚说:“猜对了1个数字,且位置正确.”小明问:“是5672吗?”小刚说:“猜对了2个数字,但位置都不正确.”小明问:“是4796吗?”小刚说:“猜对了4个数字,但位置都不正确.”根据以上信息,可以推断出小刚所写的四位数多少?
分析:由两人的第3次问答可知小刚所写的四位数是由数字4,7,9,6组成的.因为数字6在603l中出现,所以据小刚的第1次回答知四位数的千位数字就是6.又数字7在5672和4796中均出现过,且小刚说其位置均不正确,所以7应该出现在个位.数字9在4796中出现,但它的位置也不正确,所以9只能在百位,进而4是十位数字.综上所述,所求的四位数是6947.
【例7】甲、乙、丙每人有两个外号,人们有时以“数学博士”、“短跑健将”、“跳高冠军”、“小画家”、“大作家”和“歌唱家”称呼他们.此外:(1)数学博士夸跳高冠军跳得高;(2)跳高冠军和大作家常与甲一起去看电影;(3)短跑健将请小画家画贺年卡;(4)数学博士和小画家很要好;(5)乙向大作家借过书;(6)丙下象棋常赢乙和小画家.你知道甲、乙、丙各有哪两个外号吗?
分析:由(2)知,甲不是跳高冠军和大作家;由(5)知,乙不是大作家;由(6)知,丙、乙都不是小画家.由此可得到下表:
因为甲是小画家,所以由(3)(4)知甲不是短跑健将和数学博士,推知甲是歌唱家.因为丙是大作家,所以由(2)知丙不是跳高冠军,推知乙是跳高冠军.因为乙是跳高冠军,所以由(1)知乙不是数学博士.将上面的结论依次填入上表,便得到下表:
所以,甲是小画家和歌唱家,乙是短跑健将和跳高冠军,丙是数学博士和大作家.
【例8】学校新来了一位老师,五个学生分别听到如下的情况:(1)是一位姓王的中年女老师,教语文课;(2)是一位姓丁的中年男老师,教数学课;(3)是一位姓刘的青年男老师,教外语课;(4)是一位姓李的青年男老师,教数学课;(5)是一位姓王的老年男老师,教外语课.他们每人听到的四项情况中各有一项正确.问:真实情况如何?
分析:姓刘的老年女老师,教数学.假设是男老师,由(2)(3)(5)知,他既不是青年、中年,也不是老年,矛盾,所以是女老师.再由(1)知,她不教语文,不是中年人.假设她教外语,由(3)(5)知她必是中年人,矛盾,所以她教数学.由(2)(4)知她是老年人,由(3)知她姓刘.
【例9】甲乙丙丁四人进行羽毛球双打比赛,其中已知:①甲比乙年轻:②丁比他的两个对手年龄都大;③甲比他的伙伴年龄大:④甲与乙的年龄差距要比丙与丁的年龄差距要大一些.则甲的伙伴是谁?年龄最大的人是谁?
分析:丙,丙.由条件①甲比乙年轻,可知甲的年龄小于乙的年龄;再由条件③甲比他的伙伴年龄大,可知甲的伙伴只能是丁或丙.而实际上丁不可能是甲的伙伴,否则甲、乙、丙3人的年龄顺序就为丁<甲<乙,这样丁就找不到两个对手都比他年轻,与条件②矛盾.因此,甲的伙伴只能是丙,故甲与丙搭档,而乙与丁搭档.根据上述的推理,我们可以得到甲、乙、丙三人的年龄大小顺序为:丙<甲<乙.再结合条件②,我们可以推断出甲、乙、丙、丁4人的年龄顺序应该是:丙<甲<乙<丁或丙<甲<丁<乙.实际上前一种情况是不可能的,否则甲、乙的年龄差距要比丁、丙的差距小,这与条件④不符,故4人的年龄顺序为丙<甲<丁<乙.年龄最大者为乙.
【例10】在一次数学竞赛中,A,B,C,D,E五位同学分别得了前五名(没有并列同一名次的),关于各人的名次大家作出了下面的猜测:A说:“第二名是D,第三名是B.”B说:“第二名是C,第四名是E.”C说:“第一名是E,第五名是A.”D说:“第三名是C,第四名是A.”E 说:“第二名是B,第五名是D.”结果每人都只猜对了一半,他们的名次如何?
分析:第1名是E,第2名是C,第3名是B,第4名是A,第5名是D.
【附1】现有甲乙两个队比赛,甲队有A、B、C三名队员,乙队有X、Y、Z三名队员,从之
前的比赛情况是:A能胜Y,Y能胜C,C能胜Z.但在第一轮比赛中他们都没有相遇,
请问在附加内容
第一轮比赛中谁与谁“过招”?
分析:由题意知,C不与Y、Z相遇,则C只能与X相遇;Y不与A、C相遇,则Y只能与B相遇,所以A只能与Z相遇.
【附2】在每四年一次的世界杯足球赛上,四支球队A、B、C、D,已知:A队两胜一负,B队两胜一和,C队医胜两负,请问D队成绩如何?
分析:A、B、C、D一共需赛6场,而每场比赛只有胜、负或者平局两种情况.已知A、B、C三队共获5场胜利、1场平局,所以D除了一场平局外不可能再有胜局,所以D是两负一和.
【附3】根据条件判断旅游团去了A、B、C、D、E中的哪几个地方?
(1)如果去A,就必须去B;(2)D、E两地至少去一地;(3)B、C两地只能去一地;(4)C、E两地要去都去,要不去都不去;(5)若去D,则A、E两地必须去.
分析:从(3)入手,分别假设去B或C:(3)若去B则不能去C,(4)也不能去E,(2)只能去D.(5)必须去A、E,与不能去E矛盾.所以不能去B.假设去C:(4)必去E,(2)需去D,(5)必须去A、E,(1)去A必须去B,与(3)B、C不能同去矛盾,所以不能去D.综上只能去C、E.
大显身手
1.甲乙丙三人中只有一人会开汽车.甲说:“我会开.”乙说:“我不会开.”丙说:“甲不会开.”三人中只有一人说真话.请问谁会开车?
分析:如果甲说真话,那么乙也说真话,矛盾.如果乙说真话,那么甲说假话,丙说真话,矛盾.所以只能是丙说真话,只有乙会开车.
2.甲乙丙三人参加完田径比赛的100米跑后,甲说:“我第一.”乙说:“我第二.”丙说:“我不是第一.”已知三人中有一人说假话.请问谁第一?谁第二?谁第三?
分析:如果丙说的是假话,丙应该第一,那么甲说自己第一就矛盾.所以丙不可能说假话,那么丙肯定不是第一,显然乙不是第一,所以甲第一,乙说假话.所以甲第一、丙第二、乙第三.
3.甲乙丙丁四人,乙的身高不是最高,但比甲、丁高,甲比丁高.请你按从高到矮排列.
分析:乙不是最高,但比甲、丁高,甲乙也不可能是最高,所以丙是最高.乙比甲丁高,其次是乙,又已知甲比丁高,所以再次是甲,因此从高到矮是丙、乙、甲、丁.
成长故事
智者说:“如何才能在工作上获得100%的成功?”
我们使用26个字母来玩一个游戏.
A=1分,B=2分,依此类推,Z=26分.
有人说:“知识应该可以吧?”而KNOWLEDGE这个词加起来只有96分.
又有人说:“辛劳的工作可以吗?”但HARDWORK这个词加起来也只有98分.那么大地怎么才能达到100%的成功呢?
答案是:ATTITUDE(态度).。

相关文档
最新文档