二元一次方程组练习题100道
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二元一次方程组练习题100道
二元一次方程组练题100道(卷一)(范围:代数:二元一次方程组)
一、判断
1.判断以下方程组是否是方程组y5=26的解:
x-3y=1
x+2y=3
改写:判断以下方程组是否是方程组y=5/26的解:
x-3y=1
x+2y=3
2.判断以下方程组是否是方程3x-2y=13的一个解:
y=1-x
3x+2y=5
改写:判断以下方程组是否是方程3x-2y=13的一个解:
y=1-x
3x+2y=5
3.由两个二元一次方程组成方程组一定是二元一次方程组。
改写:错误,没有必要改写。
4.判断以下方程组是否可以转化为(2y-3)x+6y=-27x+8:
2y-3x=4
5x+3y=2
改写:判断以下方程组是否可以转化为(2y-3)x+6y=-
27x+8:
2y-3x=4
5x+3y=2
5.若(a^2-1)x^2+(a-1)x+(2a-3)y=0是二元一次方程,则a的
值为±1.
改写:若(a^2-1)x^2+(a-1)x+(2a-3)y=0是二元一次方程,则a的值为±1.
6.若x+y=0,且|x|=2,则y的值为2.
改写:若x+y=0,且|x|=2,则y的值为-2.
7.判断以下方程组是否有唯一的解,若有,则m的值为m≠-5:
mx+my=m-3x
4x+10y=8
改写:判断以下方程组是否有唯一的解,若有,则m的值为m≠-5:
mx+my=m-3x
4x+10y=8
8.判断以下方程组是否有无数多个解:
x+y=2
3x+y=6
改写:判断以下方程组是否有无数多个解:
x+y=2
3x+y=6
9.判断以下方程是否有5组整数解:
x+y=5
x|<5.|y|<5
改写:判断以下方程是否有5组整数解:
x+y=5
5<x<5.-5<y<5
10.判断以下方程组是否是方程x+5y=3的解,反过来方程x+5y=3的解:
3x-y=1
x+5y=3
改写:判断以下方程组是否是方程x+5y=3的解,反过来方程x+5y=3的解:
3x-y=1
x+5y=3
11.若|a+5|=5,a+b=1,则a的值为-2.
改写:若|a+5|=5,a+b=1,则a的值为-2.
12.在方程4x-3y=7里,如果用x的代数式表示y,则
x=7+3y/4.
改写:在方程4x-3y=7里,如果用x的代数式表示y,则x=7+3y/4.
二、选择:
13.任何一个二元一次方程都有无数多个解。
改写:任何一个二元一次方程都有(D)无数多个解。
14.一个两位数,它的个位数字与十位数字之和为6,符合条件的两位数的个数有8个。
改写:一个两位数,它的个位数字与十位数字之和为6,符合条件的两位数的个数的个数有(D)8个。
15.若以下方程组的解都是正数,那么a的取值范围是a>-4.
改写:若以下方程组的解都是正数,那么a的取值范围是(B)a>-4.
16.若以下方程组的解是方程3x+2y=34的一组解,那么m 的值为3.
改写:若以下方程组的解是方程3x+2y=34的一组解,那么m的值是(D)3.
59、甲和乙在A地,丙在B地,他们同时出发。
甲和乙同向而行,丙与甲、乙相向而行。
甲每分钟走100米,乙每分
钟走110米,丙每分钟走125米。
如果丙在遇到乙10分钟后又遇到甲,求A、B两地之间的距离。
60、有两个比50大的两位数,它们的差是10.大数的10倍与小数的5倍的和是一个两位数。
求原来的这两个两位数。
参考答案:
1.59题答案:AB两地之间的距离为750千米。
2.60题答案:原来的两个数是59和69.
其他题目:
1.4x=4,y=1.
2.x=2.
3.XXX。
4.a=3,b=1.
5.a=2,b=1.
6.x=3,y=-1.
7.x=1,y=1.
8.x=1/2,y=1/2.
9.x=3,y=-2.
10.x=-1/2,y=3/2.
11.x=1/2,y=-1/2.
12.x=-3/2,y=1/2.
13.D。
14.B。
15.C。
16.A。
17.C。
18.A。
19.C。
20.A。
21.A。
22.B。
23.B。
24.A。
25.7,8,9.
26.2.
27.x=5y+12.
28.4a=3b。
29.a=1,b=2.
30.1.
31.3,-4.
32.20.
33.m=162.
XXX是大于或等于3的奇数。
35.4:3,7:9.
36.删除。
XXX。
38.y=2a/(a+2)。
39.x=3,y=-1.
40.x=1,y=1/5.
41.x=1,y=2.
42.x=1/2,y=1.
43.y=6.
XXX,z=1.
45.x=2,y=-1,z=0.
46.y=2,z=-2.
47.x=8,y=23.
48.a=-149,11x^2-30x+19.
49.删除。
50.a=1.
51.a=3,b=±35.
52.删除。
53.m>-4,m=-3,-2.
54.(x,y)=(-1,9)或(5,9)。
1.是否存在整数m,使得2x+9=2-(m-2)x在整数范围内有解?你能找到几个m的值?你能求出相应的x的解吗?
解析:将方程变形为(m-2)x+2x=-9,即(m-2+2)x=-9,得到
x=-9/(m-2)。
因此,要使方程在整数范围内有解,必须满足m-
2+2的约数能够整除9.根据这个条件,我们可以列出m-2+2的约数:1.3.9.-1.-3.-9.因此,m的值可以是3.4.10.0.-1.-7.当m=3时,x=-3;当m=4时,x=-1;当m=10时,x=-1/4;当m=0时,方程无解;当m=-1时,x=9;当m=-7时,x=1.
2.x+y=25,y的值是否是方程组2x-y=8的解?
解析:将y=25-x代入方程2x-y=8中,得到2x-(25-x)=8,
即3x=33,解得x=11.将x=11代入方程x+y=25中,得到y=14.因此,y=14是方程组2x-y=8的解。
3.填空题:
1) 4-2x+4-3y=4;
2) -10;
3) 3;
4) 1.
4.解答题:
1) 解析:根据题目条件,得到方程组:x=-2
y=3
将x=-2代入方程x-ky=1中,得到-2-3k=1,解得k=-1.因此,方程组的解为(x,y,k)=(-2,3,-1)。
2) 解析:根据题目条件,得到方程组:
x=1
y=-11/22
将x=1代入方程2x-ky=4中,得到2+k=4,解得k=2.因此,方程组的解为(x,y,k)=(1,-11/22,2)。