第三章 地质构造分析的力学基础
构造地质学——地质构造分析的力学基础
第三章地质构造分析的力学基础一、力和体力1、力:物体相互间的一种机械作用2、接触力:物体与物体间的作用力3、面力:作用在物体表面的接触力4、应力集中:接触面积与物体边界面积比量级很小时,即集中5、体力:非接触力作用在物体内部每一支点上时,为体力二、外力和内力1、外力:外界物体向研究物体施加的作用力2、内力:外力作用引起的物体内部各点之间的相互作用力三、应力、正应力、剪应力1、应力:在外力作用下,物体内任一截面单位面积上的受力大小2、正应力:垂直截面的应力,以σ表示3、剪应力:平行截面的应力,以τ表示四、主应力、主方向、主平面1、主应力:某一截面上只有正应力,没有剪应力时的正应力2、主方向:主应力的方向3、主平面:垂直于主应力的平面五、应力椭球体和应变椭球体1、应力椭球体:σ1—最大压(最小拉)应力轴;σ2—中间应力轴;σ3—最小压(最小拉)应力轴故:σ1>σ2>σ32、应变椭球体:A(X)—最大应变轴;B(Y)—中间应变轴;C(Z)—最小应变轴六、应力分析简介1、常见的应力状态:单轴应力状态:一个主应力不为零,其余两个均为零双轴应力状态:一个主应力为零,其余两个均不为零三轴应力状态:三个主应力均不为零,且σ1>σ2>σ32、二维应力状态分析(平面应力状态分析)若:有两轴主应力(σ1,σ2 )作用在斜截面(AB )上,且σ1>σ2,σ3 = 0;分析斜面(AB 面)上的应力状态。
规定:α—AB法线与σ1的夹角,AB线—AB 面的截线,单位长度(=1)∵AB = 1,∴OA = sin α, OB = cos α又∵σ= P / A , P = σA∴在OA 面上的正应力P2 = σ2 OA = σ2 sin α,在OB 面上的正应力P1 = σ1 OB = σ1 cos α(1)在垂直AB面上的力:为P1 和P2 的分力之和:即:Pn = P1n + P2n = P1 cosα+ P2 sinαAB面上的正应力:σα= P1 cosα+ P2 sinα= σ1 cosαcosα+ σ2 sinαsinα= σ1 cos 2 α+ σ2 sin 2ασ1 + σ2 σ1 - σ2= ————+ ————cos 2α(1)2 2(2)在平行AB面上的力:Pt = P1 sinα+ P2 cosαAB面上的剪应力:τα= σ1 cosαsinα+ σ2 sinαcosασ1 - σ2= ————sin2α(2)2讨论:由(1):当α= 0 时,cos 2α= 1;σα= σ1 (最大);σ2 不起作用说明:垂直该面的应力对该面作用最大平行该面的应力对该面无作用由(2):当α= 0 时,τα= 0当α= 90°时,τα= 0 (2 α= 180 °)当α= 45°时,τα达最大值(2 α= 90 °)σ1 - σ2即:τα= ————2说明:与主应力呈45 °的面上剪应力最大,易产生剪切面。
3地质构造分析的力学基础概论
第3章 地质构造分析的力学基础
内容:
1. 应力分析 2. 变形分析 3. 影响岩石力学性质与岩石变形 的因素
一、 变形和应变的概念
2. 构造应力场:地壳内一定范围内某一瞬时构造应 力状态的组合。
按规模分为:局部、区域、全球 按时间分为:现代、古代
2020/11/20
22
3. 构造应力场的表示 方法:应力轨迹(应力 迹线)
方向—主应力和剪应力 方向轨迹图
大小—应力等值线图
通常:最大主应力和 剪应力
2020/11/20
σ1
8
σ3 σ2
σ1
σ1
σ2
σ3
2. 主平面:S1, S2, S3 3. 主应力:
σ1≥σ2≥σ3。 4. 主应力轴:主应力σ1,σ2,σ3的方向线
5. 应力差(差异应力):σ1-σ3,能引起物体形态变化。
2020/11/20
9
6. 应力椭球:以s1, s2 , s3为主轴的椭球体
σ1>σ2>σ3,符号相同 直观表达物体受力状况。
2) 内力——物体内部质点之间的相互作用力
①固有内力:在没有外力作用时物体内质点间的相互作用 力,它保持物体的形状和状态
②附加内力:在外力作用下固有内力的改变量,它引起物 体不相关和状态的改变
附加内力常称为内力
2020/11/20
4
3. 应力—— 作用于单位面积上的内力
σ=P/A (or σ=dP/dA,当应力分布不均匀时) P―附加应力, A―截面积
13
τ
O
σ2=0
(σ1/2, 0)
(σ1, 0)
σ
D′
摩尔圆
2020/11/20
14
No地质构造分析力学基础
应力场通常以主应 力或剪应力方向和数值 的变化来表示.一般情况 把各连续点的最大主应 力和最小主应力方向或 剪应力方向连成相互正 交的曲线来定性地表示. 这些正交曲线就叫作主 应力轨迹,或称为应力迹 线或应力网络.
❖ 主平面、主应力、主应力轴、最大主应力σ1、中 间主应力σ2、最小主应力σ3、应力差的含义.应 力差与变形的关系.
❖ 应力场、构造应力场、应力轨迹、应力集中的含 义.
3当α=45º时,剪应力 τ=σ1/2最大;所以理想 剪裂角为45º;
σ-σ1/22+τ2=σ1/22
3-4
4 在任意2个相互垂直的截面上,正 应力之和恒等于主应力值σ1 ;
5 在任意2个相互垂直的截面上,剪 应力大小相等,方向相反.这称为 剪应力互等定律.故剪应力是成对 出现的.
σ-σ1/22+τ2=σ1/22
该圆称单轴应力状态的二维应力 莫尔圆,简称莫尔圆或应力圆.规定σ 轴自坐标原点O向右为正,代表压应力, 向左为负,代表张应力.
σ-σ1/22+τ2=σ1/22
3-4
应力莫尔圆表明: 1当α=0º时即截面垂直于挤压或
拉伸方向时,正应力σ=σ1最大, 剪应力τ=0;
2当α=90º时即截面平行于挤压 或拉伸方向时,正应力σ=0,剪 应力τ=0;
3-4
2、双轴应力状态的二维应力分析:
在任意截面上的正应力σ和剪应力τ的关系式为:
σ-σ1+σ2/22+τ2=σ1-σ2/22 3-5 也是一个圆的方程式,圆心坐标为σ1+σ2/2,0,圆的半径 为σ1-σ2/2 .该圆称为双轴受力状态的二维应力莫尔圆见徐 开礼版P32图3-8. 1当α=0º即截面垂直于σ1时,σ=σ1最大,τ=0; 其它方向的截面上,σ、τ值与σ1、σ2的大小和方向有关. 2当α=45º或-45º即截面为σ1、σ2平分面方向时,剪应力 τ=σ1-σ2/2最大为主应力差的一半.
构造地质学(3)地质构造分析的力学基础
• 屈服点
• 屈服极限
• 岩石在断裂前塑性变形应变达5—8%为中等韧性,超 过10%的材料性质为韧性,而脆性材料在弹性变形阶 段后,和断裂变形阶段前就没有或只有极小的塑性变 形(3—5%)
塑性变形的显微机制
• 由于岩石类型、围压条件、温度、应变速率和施加应力类型的不同,出现脆性到韧性的一系列变化现象, 在压缩和拉伸条件下,其变化有五种情况。
2. 剪应变: (1)定义:
角应变:变形前相互垂直的两条直线, 变形后其夹角偏离直角的量(ψ)
剪应变:角应变的正切( γ ) (2)应变量计算:γ= tgψ
(右偏为正;左偏为负)
应变轴的规定及与主应力轴之关系
• 通过变形物体内部任意点总可以截取这样一个 立方体,在其三个互相垂直的面上都只有线应 变而无剪应变,即只有伸长和缩短,这三个互 相垂直的面称为主应变面,三个主应变方向称 为主应变轴。并规定:最大伸长方向为最大应 变轴(A轴),最大缩短方向为最小应变轴(C 轴),介于两者之间为中间应变轴(B轴),B 轴方向既可是拉伸,也可以是缩短
3.2 变形分析
•3.2.1 变形和应变
• 物体受到力的作用后,其内部各点间相互位置 发生改变,称为变形。变形可以是体积的改变, 也可以是形状的改变,或二者均有改变。
• 物体变形的程度用应变来量度,即以其相对变 形来量度,应变所涉及的物体形态的变化,总 是与物体的两个状况有关—初态和始态,所以 下面所指的应变,只涉及到系统的两个特定的 状态。
A.平移;B.旋转;C.形变;D.体变
物体变形的泥巴实验
Brittle Deformation Ductile Deformation
M.S. Patterson
Fig. 10.7
构造地质学——地质构造分析的力学基础
结论: 在距主应力面45°的截面
上(即a=45°的截面上), 正应 力等于主应力的一半。剪应力 值也等于主应力的一半,并且 最大。在两垂直的截面 ( α=45° 和α=-45° )上剪 应力互等, 剪切方向相反。
结论: 在平行于单轴作用力的截
面上,既无正应力, 也无剪应力
一、 应力分析
(s1 - s2) cos2a /2 (7)
t= (s1 - s2) sin2a/2
(8)
一、 应力分析
结论: 在两个互相垂直的截面上的主应力之和为一常量, 且等 于二主应力之和 两个互相垂直的截面上的剪应力值大小相等, 剪切 方向相反, 这一关系称为剪应力互等定律 在与外力垂直的截面上, 存在最大主应力s1 , 剪应 力为零, 即没有剪应力 在与外力平行的截面上, 存在最小主应力s2, 剪应 力为零 在与外力呈45°的截面上, 正应力为二主应力之和 的一半, 剪应力为最大
1
3 2
一、 应力分析
(一)有关力的一些概念
1. 外力: 对于一个物体来说,另一个物体施加于这个物体的的 力称为外力。两种类型:
面力: 通过接触面作用于物体的力 体力: 物体内每一个质点都受到的力, 它不通过接触, 而 是相隔一定的距离相互作用, 如太空星球之间的吸引力, 物体 的重力等。 2. 内力: 物体内部各部分之间的相互作用力叫内力。两种类型: 固有内力: 一物体未受外力作用时, 其内部质点之间存在 的相互作用力, 这种相互作用力使各质点处于相对平衡状态, 从而使物体保持一定的形状, 这种力称为物体的固有内力. 附加内力: 物体受到外力作用时, 其内部各质点的相对位 置发生了变化, 它们之间的相互作用力也发生了变化, 这种物 体内部内力的改变量称为附加内力
北石油 构造地质学 第3章 地质构造力学基础
思考与讨论•确定二套岩层是否为不整合关系,研究区是否需要一定的面积?为什么?在一定的区域,不整合类型是否可以发生改变?它们反映了怎样的地质过程?不整合的类型在较大区域内是可以发生变化的拒绝学习,就是放弃自己!第3章地质构造分析的力学基础主要内容:1.应力分析(难点)2.变形分析(难点)3.影响岩石力学性质与岩石变形的因素?地质构造是岩石变形的产物。
岩石变形是在外力作用下,内部质点发生位移的结果。
要深入研究构造发生、发展的规律及其形成机制,需要学习和了解有关岩石变形的力学基础知识。
本节要点1)基本概念:应力、正应力、剪应力、主应力、应力椭球、应力摩尔园、构造应力场。
2)应力摩尔圆的地质意义。
(一)外力、内力和应力1、外力:另一物体所施加的力2、内力:物体内部质点之间的相互作用力3、应力:单位面积上的内力σ=P/A•正应力:垂直于作用面的应力(压为正,拉为负,与材料力学规定相反)•剪应力:平行于作用面的应力(逆时针为正,顺时针为负)(二)应力椭球和应力状态1、主平面(或主应力面):弹性力学证明,任何受力物体内部总能找到三个相互垂直的面,其上只有正应力而无剪应力(S 1、S2、S 3)2、主应力:主平面上的正应力σ1(最大)≥σ2(中间) ≥σ3(最小)3、主应力轴方向或主应力方向σ2σ1σ3σ1σ2σ35、应力椭球:以σ1,σ2,σ3 为主轴的椭球体,直观地表示物体的受力状况。
6、应力椭圆:应力椭球的三个主切面σ1≥σ2≥σ3(三)二维应力分析―应力摩尔圆1、二维应力分析—单轴压缩σα=P / Aα=P / Acosα=σ1cosασ=σαcosα=σ1 cos2ατ=σαsinα=σ1sinαcosα2、二维应力分析—双轴压缩P 1P 1(四)构造应力场、应力轨迹和应力集中1. 应力场:受力物体内部各点瞬时应力状态组合–均匀应力场:各点应力状态相同–非均匀应力场2. 构造应力场:地壳内一定范围内某一瞬时构造应力状态的组合。
第三章 地质构造分析的力学基础
岩石变形的5种方式
应变度量
线应变(e)
(物体内某方向单位长度的改变量)
泊松比为正值,且不超过0.5
应变度量
剪应变()
(相互垂直的两条直线变形后它们之间直角的改变量的正切函数)
a
b
d
e
=tgψ
ψ-变形后偏离直角的量 右行(顺时针)剪切为正
c
f
左图中的单位圆变成了右图中的椭圆,其长、短轴的线应变和化石 的剪应变为:
断层端点、拐点、 交叉点比较容易造成 应力集中。
第三章
地质构造分析的力学基础
第一节 应力分析 第二节 变形分析 第三节 影响岩石力学性质与岩石变形的因素
第二节 变形分析
应变的概念、度量 均匀/非均匀变形 应变椭球体 递进变形:共轴/非共轴递进变形
一、变形与应变
变形——物体受力后内部质点之间相互位置发生 变化(形状、体积改变) 拉伸 挤压 剪切 弯曲 扭转 应变——是物体变形程度(大小)的度量 应变<1-3%——小变形 应变>1-3%——大变形(有限变形)
第一节 应力分析
应 力 应力状态和应力椭球体
二维应力分析
应力场、应力轨迹、应力集中
一、外力、内力和应力
面力——通过物体接触面传递的力,也称作表 面力。 体力——物体内部所有质点都受到的力,如重 力、吸引力。 内力——同一物体内部各部分之间的相互作用 力。
外 力
应力——在内力均匀分布的情况下,作用于单 位面积上的内力。
三轴应力状态 —— 三个主应力都不等于0
σ1≥σ2≥σ3,一般应力状态
当σ1=σ2=σ3时,为均压,称作静水压力或流 体静压力。这种状态只引起物体体积变化,不 改变其形状。
地质构造分析的力学基础讲义课件
第一节 应力
一、应力概念 二、主应力、主应力面和主应力轴
第二节 应力状态分析
一、单轴应力状态分析 二、双轴应力状态的二维分析 *三、应力状态的三维分析 四、应力集中
第三节 构造应力场
(一)、利用共轭(剪)节理测定σ1、σ2、σ3方位 (二)、利用构造缝合线测定σ1方位 *(三)、利用张节理测定σ3方位
Y σy
τy τyx τz
zy
σ τzx
z
τxy
σx
τxz X
Z
2020年11月
σ3 σ2
σ1
σ1
σ2
σ3
图3-3 作用于单元体的三个主应力
13
•
三个主应力一般不相等,有最大主应力
(最差σ1或大)、差主中(应异间力)应主与力应最。力小(σ主2)、应最力小之主差应(σ1力-(σσ33))称之应分,力
2020年11月
σ
n m
p
图3-2 截面上 一点的应力
τ
8
•
合应力的法向分量称为正应力
(σ),也称直应力,地质学中以正值
(σ>0)表示挤压力,以负值(σ<0)
表示拉张力;切向分量称为剪应力
(τ), 当其有使物体反时钟转动的趋
势时取正值,有顺时针转动趋势时
取负值。
2020年11月
9
应力单位及其换算
2020年11月
1
第一节 应力
• 一、应力概念
• (一)外力、内力和应力
力是物体间的相互作用,这种作用 主要表现为改变物体的运动状态,包括 改变物体的形状、大小、位置和运动速 度等等。力对于物体的效应决定于力的 大小、方向和作用点三个因素,通称为 力的三要素。把力的大小和方向同时加 以考虑的量称为矢量,故力可以合成和 分解。
第三章地质构造分析的力学基础
第三章地质构造分析的力学基础地质构造是指地球表面上的各种地貌和地质现象,包括山脉、峡谷、断层、盆地等。
地质构造的形成与地球内部的力学作用密切相关,力学是研究物体运动和变形的学科,而地质构造的形成也是地球的运动和变形的结果。
因此,地质构造分析的力学基础对于地质学研究具有重要意义。
地质构造分析的力学基础主要包括地壳力学、板块构造理论和断裂力学。
地壳力学研究地球外强大的应力、应变和物质的变形行为,它是地球科学研究的重要组成部分。
板块构造理论认为地球上的岩石圈被划分为数十个板块,各个板块之间以不同的速度运动,并在板块边界产生各种地质构造。
断裂力学研究地壳中各种断裂的形成和演化,以及断层对地壳的作用。
板块构造理论是地理学和地球物理学的一项重要理论成果。
它认为地球上的岩石圈分为数十个板块,这些板块以不同的速度相对运动,产生了各种地质构造。
板块边界是地壳和上层岩石圈的相对运动相互作用的地方,是地震、火山等地质灾害的主要发生地点。
板块构造理论的提出和发展,对于地壳演化的研究具有重要意义,也为我们认识地球的内部运动提供了重要的依据。
断裂力学是研究地壳中各种断裂的形成和演化规律的学科。
断裂是地壳中岩石断裂的带状区域,主要由岩石受到应力作用而发生的断裂破裂引起。
断裂破裂是地壳形变的重要表现形式,它不仅能改变地壳的形态和构造,还能引起地震的发生。
断裂力学的研究对于地质构造的形成和演化有着重要的理论价值和实际应用价值。
综上所述,地质构造分析的力学基础对于地球科学的研究和地质学的发展具有重要意义。
地质构造的形成与地球内部的力学作用密不可分,地壳力学、板块构造理论和断裂力学是研究地质构造分析的重要理论和方法。
通过对地质构造的力学基础的研究,我们可以更好地认识地球的内部运动和地质构造的形成和演化,对于预测和防治地质灾害、勘探矿产资源等具有重要的指导意义。
因此,加强地质构造的力学基础研究,对于地球科学的发展和地质学的进步具有重要意义。
构造-04第三章地质构造分析的力学基础
内力:
固有内力:在没有外力作用时物体内质点间的相互 作用力,它保持物体的形状和状态
附加内力:在外力作用下固有内力的改变量,它引 起物体形状和状态的变化。
附加内力常称为内力。
外力和内力的相对性—尺度
整理ppt
4
第一节 应力与应力状态 3、应力
截面M-N上的平均应力: Pm=P/ A,其中P为作用 在面积 A上的内力。
整理ppt
17
一、二维应力分析—单轴应力状态
1-1、单轴应力状态分析(公式法):s1不为0 , 而其它主应力是0。
整理ppt
18
一、二维应力分析—
1-2单轴应力状态的特点
上述公式适用于挤压和拉伸,但拉伸为负
当时,=-01时<c,osc2os2<1=,1,ss<=ss11。;当介于0和90之间
应力的分解
A0
当截面与应力方
向不垂直时,合PLeabharlann σP 应力可分解为垂
直于作用面的正
Aα σα
应力和平行于作 用面的剪应力。
A0 α τ σn
特别注意:应力与 作用面密切相关
整理ppt
7
第一节 应力与应力状态
3、应力
正应力
Aα σα
A0 α
σn
正应力也称作直应 力,以σ或σn表示。
σ =σα cosα
点O附近的应力(合应力): P=lim P/ A=dP/dA (A0)
整理ppt
O
I II
O
5
第一节 应力与应力状态 3、应力
应力的单位:
力/面积—牛顿/米2(N/m 2)—即帕斯卡 (Pa)
应力的性质:
应力为一个矢量,有大小、方向,可以 合成和分解
05-地质构造分析的力学基础
Pe=Pc-Pf
二、影响岩石力学行为的主要因素
3)孔隙流体压力
Pe=Pc-Pf
降低岩 石的强 度,增 加岩石 的脆性
二、影响岩石力学行为的主要因素
4)时间:
• 应变速率
Yule 大理岩,围压 50MPa, 温度500°C 应变速率降低,岩石的强 度降低,韧性增加,易发 生韧性变形
第三章 地质构造分析的力学 基础
•应力 •应变
•岩石的力学性质与岩石的破裂
应 变——变形与应变
变形:地壳内岩石受到应力作用,内部各个 质点经受了位移,从而使岩石的初始形状、 方位或位置发生改变,这种改变通常称为变 形。
变形的基本方式包括:拉伸、挤压、剪切、 弯曲和扭转。
变形是由应变度量的。应变可以是长度变化 (线应变)、角度变化(角应变)或体积变 化(体应变)。
令直线与坐标横轴夹角为,则:f=tg 。其中称为内 摩擦角。有: = 0 + ntg
三、岩石的破裂
2)岩石破裂理论:库仑剪切破裂线在低围压时
基本上为直线;说明和0基本上不变。
库仑-纳维叶破坏准则
三、岩石的破裂
2)岩石破裂理论:莫尔包络线——高围压
莫尔破坏准则
围压降低时, 角变 大和0变小;围压升 高时, 角变小和0 变大。
L0
L1
b1
b0
e = (L1 - L0 )/ L0
e — 伸长为正;缩短为负
第三节 有关应变的几个基本概念
—2)长度比:变形后线段长度与变形前线段长 度之比。 s=L/L0=( L0 + L )/L0=1+e • 3) 平方长度比(): = s2=(1+e)2
3地质构造分析的力学基础
双轴应力状态的应力莫尔圆
二、应力莫尔圆
2.三轴应力状态
一般利用与三个主应力轴分别平行的三对特殊截
面上的应力状态来分析三轴应力状态。实际上是
把三轴状态转化为三对双轴状态。
最大剪应力作用面
2
3
3
1
3 2
2 1
三轴应力状态立体图及其二维应力莫尔圆
在三轴应力 状态下,最 大剪应力仍 作用在与最 1 大主应力轴 1呈45和 135的截面 上。
0 p 2p
圆孔
3p
孔
圆孔
0 p 3p 5p
应力矢量比例尺
圆孔孔壁上切向正应力的分布 四个特殊点的切向正应力
思考题
1. 面力、体力、外力、内力、正应力和剪 应力的含义是什么?
2. 单轴、双轴和三轴应力状态的应力莫尔 圆各有何特点?
3. 哪些因素可以在岩石中引起应力集中?
平面应力状态的应力莫尔圆
二、应力莫尔圆
1.双轴应力状态的特点
(1)剪应力互等定律:两个相互垂直的截面上 受到的剪应力大小相等,符号相反;
(2)两个相互垂直的截面 上受到的正应力之和不变,
T A( , )
等于1+2;
N
O
(3)最大剪应力作用在与
C2
M
B
最大主应力呈45和135的
A
两个截面上。
最大剪应力迹线
附加侧向张力的简单剪切光弹实验获得的应力轨迹图示
三、应力场、应力轨迹与应力集中
应力集中又称应力扰动,是材料或岩块内部的局部不均匀性 和不连续性在岩体内部造成应力场局部变化的现象。
孔
无圆孔的均匀应力场 圆孔造成的主应力迹线扰动
三、应力场、应力轨迹与应力集中
第三章地质构造分析的力学基础
2.按时间分 按时间分
古构造应力场(分析推断得出) 古构造应力场(分析推断得出)
现代构造应力场(仪器测出) 现代构造应力场(仪器测出)
第二节
一、变形和应变 1.概念: 1.概念 概念:
变形分析
变形定义:物体受到外力作用后,内部质点之间发生位 变形定义:物体受到外力作用后, 致使物体的形态 体积发生变化的现象 形态或 发生变化的现象。 移,致使物体的形态或体积发生变化的现象。
应力椭圆: 应力椭圆:沿三个主应力平面切割椭球体所获得的三个 椭圆。 椭圆。 应力椭圆面: 应力椭圆面:每个平面的中的二维应力矢量就构成了一 个应力椭圆面。(也称为主平面) 。(也称为主平面 个应力椭圆面。(也称为主平面) 物体的空间应力状态 物体的空间应力状态根据应力椭球体分为: 空间应力状态根据应力椭球体分为: 三轴应力状态:指三个主应力值均不为零的状态。 三轴应力状态:指三个主应力值均不为零的状态。 双轴应力状态:指两个主应力值不为零,另一个主应 双轴应力状态:指两个主应力值不为零,另一个主应 力值为零的状态。 单轴应力状态:指两个主应力值为零(σ 单轴应力状态:指两个主应力值为零(σ1或σ3),另一 个主应力值不为零的状态。
其他几个概念: 其他几个概念:
主应力轴:每对主应力(正 主应力轴:每对主应力( 应力)作用的方向线。 应力)作用的方向线。 主平面:主应力的作用的面。 主平面:主应力的作用的面。 六个截面) (六个截面)
2.应力椭球体: 2.应力椭球体: 应力椭球体
当 σ1﹥ σ2﹥ σ3 并且符号相 同时,可据σ 同时,可据σ1、 σ2和σ3为半 径作一个椭球体,代表该点 的全应力状态。 应力椭球体:以σ1、 σ2和σ3 应力椭球体: 为半径所作椭球体。 为半径所作椭球体。
第三章地质构造分析的力学基础
无圆孔的均匀应力场 圆孔造成的主应力迹线扰动
圆孔附近的应力场扰动
2p p 0 0 p 2p
3p
圆孔
3p
孔
圆孔
圆孔孔壁上切向正应力的分布
0 p 3p 5p
应力矢量比例尺
四个特殊点的切向正应力
2.应力
在物体内部某截面(如图中n面)上的某点(如
图中m点)处截取一微小面积F,设其上的作用力
为P,则将
p
lim P dP P F0 F dF
称为n截面上m点处的应力,也可 n
以称为m点处n截面上的应力。
m
应力p是矢量,可以分解为垂直
于截面n的正应力()和平行于截
面n的剪应力()。
正应力挤压为正,拉伸为负。
应力场可用应力轨迹来表示,应力轨迹又称应ቤተ መጻሕፍቲ ባይዱ迹线、
应力网络,是定性地表示主应力和最大剪应力作用方位的
曲线。
=2.5MPa
3
1
=2.5MPa
剪应力迹线
主应力迹线
最大剪应力迹线
附加侧向张力的简单剪切光弹实验获得的应力轨迹图示
应力集中
应力集中又称应力扰动,是由于岩块或地块内 部的局部不均匀性和不连续性,在岩体内部造成应 力场局部 变化的现 象。
3.一点的应力状态
地块中某一点处的应力一般是不能用一个简单的矢量 来表示的。
以考察点为中心,总是可以截取一个体积趋于零的立
方体,该立方体的六个表面上只有正应力而没有剪应力作
用。这六个表面上受到 的三对正应力称之为该
2 3
点处的主应力,按照大
1
小分别用1、2和3表
1
1
示。
3
2
3.一点的应力状态
第三章地质构造分析的力学基础
τ=
s1cosa sina = 1/2s1 sin2a (3-3)
分析(3-2),(3-3)式有如下特点: 1.从(3-2)式中 : 当a=0°cos2a=1 则
第三章
地质构造分析的力学基础
σ= σ 1 τ
若a=0°—90°间 cos2a<1 则 < 1 结论:在与主应力方向垂直的截面上正应力值最大
三、岩石变形的阶段 岩石是具有弹、塑、粘、脆等性状的,地应力是如何支 配着变形的发生与发展呢?通过实验分析得到其岩石变形进 化序列如下: (一)弹性变形和阶段 变形程度与外力大小呈正比。 遵循胡克定律σ=E·
ε
应
力
应
变
曲
线
岩石的纯粹弹性变形在 地壳中不易留下变形的痕迹, 因此研究地质构造无直接意 义,但在地震、物探、工程 建筑等诸方面具有重要意义。 如坑道里常发生的岩爆, 就是弹性回跳所致。
2.从(3-3)式中: 当a=0°时, sin2a=0 则 =0 结论:在与主应力方向呈垂直的截面上无剪应力作用 当a=45°或135°时, sin2a=1 则
σσ
τ =½σ
1
结论:在主应力 1呈45°交角的截面上剪应力最大其值为 1的一半 这个剪切面是呈对称出现的,所以在野外常见共轭剪节理存在,就是这个 道理。 当a大于或小于45°, sin2a<1,
图3-1作用于单元体的三个主应力(σ1、σ2、σ3) 及三个主平面( S1、 S2、 S3)
第三章
地质构造分析的力学基础
Ⅱ、应力椭球体 当主应力σ1>σ2>σ3时,可按一点的主应力矢量为半径作出一 个椭球体称为应力椭球体。 物体中一点的空间应力状态可依应力 椭球体的形状分为以下: 1.三轴应力状态(空间) 自然界中最普遍的 σ1>σ2>σ3≠0 2.双轴应力状态 (平面) σ1>σ2 >σ3=0(双轴压缩) σ1>σ2 =0>σ3 (单面应力) 3.单轴应力状态(线状) 即σ1 >σ2 =σ3=0 地质工作者在一般情形下,对地质构 造现象的分析中,多采用此法,化繁 为简,抓住最初步的规律。如今后要 三轴应力椭球体透视图(A) 讲的褶皱的形成,地堑的形成机制。 和椭球体每一主平面(B)
构造地质学03章-地质构造分析的力学基础分解
地质构造的力学分析是建立在现代固体变形理论和流
变学理论基础上,应用弹性、塑性、强度、流变理论,对野 外所见各种构造进行分析。是认识构造的重要途径。
2018/10/23
构造地质学-李强
5
一、外力、内力和应力
1. 外力:一物体作用(施加)在另一物体上的力
①面力:
②体力:重力、磁力 2. 内力:物体内部质点之间的相互作用力 ①固有内力-自然状态粒子力 ②附加内力-派生粒子力
的形态(一般指初始状态或未变形的状态)之间的差别就
是物体在该时刻的应变。应变1-3%-小变形;应变>1-3 %-大变形(有限变形)。
挤压
拉伸
剪切
2018/10/23
构造地质学-李强
25
3. 均匀变形和非均匀变形 均匀变形-物体内部各部分的变形性质、方向、大小均相同
特征:变形前的平面、直线变形后仍保持平面和直线
也不能恢复原状。在应力-应变图上,从B点开始,受力
物体进入塑性变形阶段,过B点后,曲线显著弯曲,当 达到C点后,曲线变成近水平状态,这意味着即使载荷 增加很少,甚至没有增加载荷的情况下,变形也会显 著增加,此时岩石抵抗变形的能力很弱,这种现象称
为屈服或塑性流变,C点为屈服点,对应该点的应力值
σγ称屈服极限。过C点后应力缓慢增加,一直到D点,
变形前相互平行的平面和直线变形后仍平行 非均匀变形-物体内部各部分变形性质、方向、大小不一致 特征:变形前的平面、直线变形后不再是平面和直线 变形前相互平行的平面和直线变形后不再平行
2018/10/23
构造地质学-李强
26
均匀变形-变形物体内各 点的应变特征相同。
非均匀变形-变形物体内各 点的应变特征发生不同的 变化。
第03章_构造地质学-地质构造分析的力学基础
2020/11/8
精品课件
9
(二) 应力状态和应力椭球
3.常见的几种应力状态:
1) 单轴 压缩:σ1﹥σ2=σ3=0 拉伸:σ1=σ2=0﹥σ3
2) 双轴 压缩:σ1﹥σ2﹥σ3=0 平面: σ1﹥σ2=0﹥σ3
3) 三轴:σ1≧σ2≧σ3 σ1=σ2=σ3﹥0:静水压力(只引起物体体积变化)
3. 应力:σ=P/A (or σ=dP/dA)
P―附加内力, A―截面积
1) 正应力:σ=dN/dA (压为“+”,拉为“-”) 2) 剪应力:τ=dT/dA (逆时针为“+”,顺时针为
“-”)
-
+
dT dT
2020/11/8
精品课件
dA
M
dN
dT dP
6
(二) 应力状态和应力椭球
1. 弹性力学证明:任何受力物体内部总是能 够找到三个相互垂直的面,其上只有正应力而 无剪应力.
? s1
2020/11/8
精品课件
20
(三) 二维应力分析―摩尔圆图解法
3. 八种应力状态的二维应力摩尔圆特征
1)静水拉伸 2)一般拉伸
3)单轴拉伸
4)拉伸压缩
5)纯剪应力 6)单轴压缩
7)一般压缩
8)静水压缩
2020/11/8
精品课件
21
(四) 三维应力分析
1. 三维应力
2020/11/8
①该受力物体的应力摩尔圆.
②求出法线与σ1成30°交角的斜面上的正应力和剪应 力的值.
③求出与σ1成20°夹角斜面上的正应力和剪应力的值.
τ
P1
a
n P1=s1A0
a
A0 A1
构造地质学第三讲:构造分析的力学基础
5 cos2a=0 4 sa = (s1 + s2)/2 在(8)中代入a=45° 5 sin2a/2 4 ta= tmax
一、 应力分析
(四) 图解法求应力-----应力摩尔圆
1. 应力摩尔圆的数学模型: 从双轴应力状态的应力公式 sa =(s1 + s2)/2+ (s1 - s2) cos2a /2 ta= (s1 - s2) sin2a/2 可以看出, 当受力方式一定, 应力s 就成为角度a的函数, 为了得出应 力摩尔圆公式,先将公式中a消去. 为此移项得: sa - (s1 + s2)/2= (s1 - s2) cos2a /2 ta -0 = (s1 - s2) sin2a/2 等式两端平方得: [sa - (s1 + s2)/2]2 =[(s1 - s2) cos2a /2] 2 (ta -0 ) 2 = [(s1 - s2) sin2a/2] 2 公式二式相加得: [sa - (s1 + s2)/2]2 + (ta -0 ) 2 = [(s1 - s2) /2]2 比较圆数学方程 (x -a) 2 +(y -b) 2 =r 可知此即应力摩尔圆的圆 数学方程式。
(二) 应力状态和应力椭球体
1. 应力状态: 点的应力状态: 过物体中某一点的 各个不同方向截面上的应力情况 截取包含该点的一个小单元体,一 个正六面体来研究. 如单元体选择在六 个面上只有正应力的作用, 而无剪应力 的作用,这六个面上的正应力叫做主 应力。 若单元体六个截面上的三对主应力 的值都相等时, 称为等应力状态, 在这 种应力状态下, 物体只发生体积膨胀或 收缩的变化而不会产生形态变化(畸变). 当单元体六个截面上的三对主应力不 都相等时, 单元体截面上存在最大主应 力s1, 中间主应力s2和最小主应力s3, 这 种应力状态可导致物体形态变化(畸变), 其中s1-s3 之值称为应力差。 微小单元体六个截面上的三对主应 力, 每对主应力作用方向线叫做主应力 轴, 主应力所作用的截面称为主应力面 或主平面
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因为AB=1(单位长 ( 因为 度), OA=sinα , α OB=cosα 所以 α P1 =σ1cosα σ α P2 =σ2sinα α
垂直于AB截面的作用力为 截面的作用力为: 则,垂直于 截面的作用力为: Pn = P1 cosα + P2 sinα α α 因为 AB=1 所以该截面上的 正应力σ 正应力σα 为 σα= Pn / AB = P1 cosα + P2 sinα α α = σ1cosα cosα +σ2sinα sinα α α σ α α 或 σα= (σ1+σ2) / 2 σ σ + (σ1-σ2) / 2×cos2α (1) σ σ × α
应力莫尔圆
应力莫尔圆的物理意义是: 应力莫尔圆的物理意义是 物理意义 (1)当α=0°时, σα=σ1,τα= 0; ) ° σ ; (2)当α=90°时,σα=σ2,τα= 0; ) ° σ ; 最大值, (3)当α=45°或135°时,τα= 最大值, ) ° ° 为 (σ1-σ2) / 2; σ σ ; (4)当σ1=σ2,τ= 0时,为均压无剪应 ) σ 时 三维状态中, 力;在 三维状态中,当σ1= σ2 = σ3 为静水压力. 时,为静水压力.
2.2 应力莫尔圆 2 + (2)2 得: 由上述(1) 由上述 2 + (τ )2 (σα -(σ1+σ2) / 2 ) σ σ σ τα 2 = ((σ1-σ2) / 2) (3) σ σ (3)式为 : 以 σ 为横坐 式为: 式为 标轴和τ 标轴和τ为纵坐标的直角坐 标系中的一个圆的方程式, 标系中的一个圆的方程式 , 这个圆称为应力莫尔圆. 这个圆称为应力莫尔圆. 应力莫尔圆
第三章
地质构造分析中的力学基础
第一节 应 力
一,力和应力 1.力,可分为 外力和内力: 面力 外力 体力 内力 附加内力 固有内力
外力:从外部施加于一个物体的力称外力. 面力:岩块间的相互作用力,通过其接触面而 传递,由于是作用于物体表面的力,如挤压力,拉 张力,因而称面力. 体力:不必通过直接接触即可从外部连续作用 于物体内部各质点上的力,如重力,惯性力,与物 体内部质量有关,因而称体力. 内力 :同一物体内部各部分之间的相互作用力. 固有内力:物体内部各质点间的相互作用力. 可使质点处于相对平衡状态,并保持一定形状的力. 附加内力:在外力作用下,引起物体内部内力 的改变量,称为附加内力,简称内力.
三,三维空间上的应力分析和应力莫尔圆
几种三维应力状态的莫尔圆:A.单轴压应力,B.静水压力, C.三轴压应力,D.双轴压应力,E.平面应力,F.纯剪应力
四,应变椭球体:以三个应变主轴半径作出的椭球体. 应变椭球体:以三个应变主轴半径作出的椭球体.
第二节
应力场
一,应力场与构造应力场 概念:物体内各点的应力状态在物体内占据的空间的总和,称 为应力场 . 构造应力场 :由构造作用形成的应力场,又称地应力场. 非构造应力场:由非构造作用形成的应力场. 均匀应力场:各点应力状态相同的应力场 . 非均匀应力场:各点应力状态不相同的应力场 . 定常应力场:不随时间变化的应力场. 非定常应力场:随时间而变化的应力场. 古应力场:在地史时期作用的应力场. 现今应力场:现今作用的应力场.
平行于AB面的剪切作用力 t 为 平行于 面的剪切作用力P 面的剪切作用力 Pt =P1 sinα - P2 cosα α α 则,剪应力为 τα = Pt / AB = σ1 cosα sinα α α -σ2sinα sinα α α = (σ1-σ2) / 2×sin2α (2) σ σ × α 从(2)式可得: 式可得: 式可得 α ° 当2α = 90°时,τα为最大 所以,最大剪应力作用面与σ 所以,最大剪应力作用面与σ1 和σ2轴 的夹角为45° 的夹角为 °.
应力场的图示(应力轨迹线:由各点主应力方向连成的轨迹线.) 应力场的图示(应力轨迹线:由各点主应力方向连成的轨迹线.)
二,应力场的扰动:地块内部不均匀和不连续性,可造成应力 应力场的扰动:地块内部不均匀和不连续性, 场的局部变化, 场的局部变化,这种包括应力迹线偏移和应力值的局部集中 或变 异现象即为应力场的扰动. 异现象即为应力场的扰动.
�
2,应力:内力的强度以应力表示,单位面积上的内力称为应 ,应力:内力的强度以应力表示, 应力可分为正应力 剪应力. 正应力和 力.应力可分为正应力和剪应力. lim P = dP F dF = P
国际单位:帕斯卡(Pa)
dN:正应力σ ,垂直于某截面的力.地质上以压应 力为正来表示. dT:剪应力τ,平行于某截面的力. 逆时针转动为正.
2. 二维应力分析和应力莫尔圆 2.1 二维应力分析 对于在以σ 为横坐标, 对于在以 σ 1 为横坐标 , σ 2 为纵坐标的直角坐标系中的任一 单位斜截面AB, 单位斜截面 , 假设其法线与 横坐标σ 的夹角为α 横坐标 σ 1 的夹角为 α , 并沿该坐 标轴方向受到双向挤压应力σ 标轴方向受到双向挤压应力σ 1和 的作用,那么, σ 2的作用,那么, 在这个截面上 把应力σ 把应力σ 1和σ 2 分别转换成平行于 坐标轴的作用力P 则有: 坐标轴的作用力 1和P2,则有:
二,一点的应力分析 1.点的应力状态的应力分量 σx τyx τzx τxy σy τzy τxz τyz
σz
其中有τxy= τyx,τxz= τzx , τyz=τzy,变为6个分量.这6个分量 决定了一点的应力状态.一点的应力状态,是过该点所有截面上 应力的总和.
2.主应力,主方向, 2.主应力,主方向,主平面 主应力 主应力,以σ1,σ2, 当剪应力分量为0时,此时的正应力称为 主应力 σ3来表示,且 σ1> σ2> σ3. 主应力的方向称为 应力主方向(主应力轴的方向). 应力主方向 主方向( ). 主平面( 主应力对应 的截面称为 主平面(主应力面). ). 3. 常见应力状态 (1)当3个主应力中有两个为0时(σ1>σ2=σ3=0,单轴压缩; σ1=σ2=0>σ3单轴拉伸),称为单轴应力; 单轴应力; 单轴应力 (2)当有1个为0时,称为 双轴应力 双轴应力或 平面应力 (σ1>σ2>σ3=0,双轴压缩;σ1>σ2=0>σ3 ,平面应力状态) (3)当3个主应力都不为0时(σ1≥σ2≥σ3),称为三轴应力 三轴应力 4.在平面应力状态下,σm=1/2(σ1+ σ2), σm 称为静水应力 静水应力 偏斜应力: 偏斜应力: σ1- σm σ2-σm σ3-σm (压力差) 其中静水应力引起体积变化,偏斜应力引起形状变化.