2020高考数学一轮复习第十二章推理与证明算法复数第三节数学归纳法课后作业理

合集下载

2020届高考数学一轮复习第12章推理与证明算法复数56复数课时训练文含解析

2020届高考数学一轮复习第12章推理与证明算法复数56复数课时训练文含解析

【课时训练】复 数一、选择题1.(2018佛山二检)已知a >0,b >0,且(1+a i)(b +i)=5i(i 是虚数单位),则a +b =( ) A. 2 B .2 2 C .2 D .4【答案】D【解析】由题意,得(1+a i)(b +i)=(b -a )+(1+ab )i =5i ,则⎩⎪⎨⎪⎧b -a =0,1+ab =5,又a >0,b >0,所以a =b =2,则a +b =4.2.(2018南昌一模)在复平面内,复数(1+3i)·i 对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】B【解析】复数(1+3i)i =-3+i 在复平面内对应的点为(-3,1),位于第二象限,故选B.3.(2018天津质检)已知i 为虚数单位,a ∈R ,如果复数2i -a1-i 是实数,则a 的值为( )A .-4B .2C .-2D .4【答案】D 【解析】∵2i -a 1-i=2i -a 1+i1-i1+i=2i -a 2-a2i =⎝ ⎛⎭⎪⎫2-a 2i -a 2,a ∈R ,∴2-a2=0.∴a =4.4.(2018安徽六安第一中学三模)设复数z =1+b i(b ∈R ),且z 2=-3+4i ,则z 的共轭复数z 的虚部为( )A .-2B .2iC .2D .-2i【答案】A【解析】由题意得z 2=(1+b i)2=1-b 2+2b i =-3+4i ,∴⎩⎪⎨⎪⎧1-b 2=-3,2b =4,∴b =2,故z =1+2i ,z =1-2i ,虚部为-2.故选A.5.(2018洛阳模拟)设i 是虚数单位,若复数(2+a i)i 的实部与虚部互为相反数,则实数a 的值为( )A .1B .2C .3D .4【答案】B【解析】因为(2+a i)i =-a +2i ,又其实部与虚部互为相反数,所以-a +2=0,即a =2.故选B.6.(2018南昌月考)z 是z 的共轭复数,若z +z =2,(z -z )i =2(i 为虚数单位),则z =( )A .1+iB .-1-iC .-1+iD .1-i【答案】D【解析】解法一 设z =a +b i ,a ,b 为实数,则z =a -b i. ∵z +z =2a =2,∴a =1.又(z -z )i =2b i 2=-2b =2,∴b =-1.故z =1-i. 解法二 ∵(z -z )i =2,∴z -z =2i =-2i.又z +z =2,∴(z -z )+(z +z )=-2i +2. ∴2z =-2i +2.∴z =1-i.7.(2018新乡、许昌、平顶山调研)复数z 1,z 2满足z 1=m +(4-m 2)i ,z 2=2c os θ+(λ+3sinθ)i(m ,λ,θ∈R ),并且z 1=z 2,则λ的取值范围是( )A .[-1,1]B.⎣⎢⎡⎦⎥⎤-916,1C.⎣⎢⎡⎦⎥⎤-916,7 D.⎣⎢⎡⎦⎥⎤916,7【答案】C【解析】由复数相等的充要条件可得⎩⎪⎨⎪⎧m =2c os θ,4-m 2=λ+3sin θ,化简,得4-4c os 2θ=λ+3sinθ,由此可得λ=-4c os 2θ-3sin θ+4=-4(1-sin 2θ)-3sin θ+4=4sin 2θ-3sin θ=4⎝ ⎛⎭⎪⎫sin θ-382-916,因为sin θ∈[-1,1],所以4sin 2θ-3sin θ∈⎣⎢⎡⎦⎥⎤-916,7.8.(2018湖北鄂州调研)已知复数z =1+2i 1-i ,则1+z +z 2+…+z 2 019=( )A .1+iB .1-iC .iD .0【答案】D【解析】z =1+2i 1-i =1+2i1+i 2=i ,∴1+z +z 2+…+z 2 019=1×1-z 2 0201-z=1-i2 0201-i=1-i4×5051-i=0.9.(2018广东六校联考)已知0<a <2,复数z 的实部为a ,虚部为1,则|z |的取值范围是( ) A .(1,5) B .(1,3) C .(1,5) D .(1,3)【答案】C【解析】由于复数z 的实部为a ,虚部为1,且0<a <2, 所以由|z |=1+a 2,得1<|z |< 5.10.(2018湖北武汉模拟)设复数z 1和z 2在复平面内的对应点关于坐标原点对称,且z 1=3-2i ,则z 1·z 2=( )A .-5+12iB .-5-12iC .-13+12iD .-13-12i【答案】A【解析】∵z 1=3-2i ,∴z 2=-3+2i.∴z 1·z 2=(3-2i)(-3+2i)=-5+12i.故选A.11.(2018郑州二次质检)定义运算⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,则符合条件⎪⎪⎪⎪⎪⎪z 1+i 21=0的复数z对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A【解析】由题意,得z ×1-2(1+i)=0,则z =2+2i 在复平面内对应的点为(2,2),位于第一象限,故选A.12.(2018皖西七校联考)若i 为虚数单位,已知a +b i =2+i 1-i (a ,b ∈R ),则点(a ,b )与圆x2+y 2=2的位置关系为( )A .在圆外B .在圆上C .在圆内D .不能确定【答案】A【解析】∵a +b i =2+i 1-i =2+i 1+i 2=12+32i ,∴⎩⎪⎨⎪⎧a =12,b =32,则a 2+b 2=52>2.∴点(a ,b )在圆x 2+y 2=2外.故选A.二、填空题13.(2018北京西城期末)已知集合M ={1,m,3+(m 2-5m -6)i},N ={-1,3},若M ∩N ={3},则实数m 的值为________.【答案】3或6【解析】∵M ∩N ={3},∴3∈M 且-1∉M .∴m ≠-1,3+(m 2-5m -6)i =3或m =3.∴m 2-5m -6=0且m ≠-1或m =3,解得m =6或m =3,经检验符合题意. 14.(2018河北唐山高三期末)已知i 是虚数单位,⎝ ⎛⎭⎪⎫1+i 1-i 8+⎝ ⎛⎭⎪⎫21-i 2 018=________.【答案】1+i. 【解析】原式=⎝⎛⎭⎪⎫1+i 1-i 8+⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫21-i 2 1 009=i 8+⎝ ⎛⎭⎪⎫2-2i 1 009=i 8+i 1 009=1+i 4×252+1=1+i.15.(2018天津实验中学期中)已知复数z =⎝ ⎛⎭⎪⎫c os θ-45+⎝ ⎛⎭⎪⎫sin θ-35i 是纯虚数( i 为虚数单位),则t a n ⎝⎛⎭⎪⎫θ-π4=________.【答案】-7【解析】因为c os θ-45=0,sin θ-35≠0⇒c os θ=45,sin θ=-35⇒t a n θ=-34,所以t a n ⎝⎛⎭⎪⎫θ-π4=-34-11-34=-7. 16.(2018山东滨州模拟)给出下列命题: ①若z ∈C ,则z 2≥0;②若a ,b ∈R ,且a >b ,则a +i>b +i ; ③若a ∈R ,则(a +1)i 是纯虚数;④若z =-i ,则z 3+1在复平面内对应的点位于第一象限. 其中正确的命题是______.(填上所有正确命题的序号) 【答案】④【解析】由复数的概念及性质,知①错误;②错误;若a =-1,则(a +1)i =0,③错误;z 3+1=(-i)3+1=i +1,④正确.。

2020年高考数学一轮复习考点与题型总结:第十二章 复数、算法、推理与证明含答案

2020年高考数学一轮复习考点与题型总结:第十二章 复数、算法、推理与证明含答案

第十二章复数、算法、推理与证明第一节 数系的扩充与复数的引入一、基础知识1.复数的有关概念 (1)复数的概念:形如a +b i(a ,b ∈R )的数叫复数,其中a ,b 分别是它的实部和虚部.若b =0,则a +b i 为实数;若b ≠0,则a +b i 为虚数;若a =0且b ≠0,则a +b i 为纯虚数.一个复数为纯虚数,不仅要求实部为0,还需要求虚部不为0.(2)复数相等:a +b i =c +d i ⇔a =c 且b =d (a ,b ,c ,d ∈R ). (3)共轭复数:a +b i 与c +d i 共轭⇔a =c ,b =-d (a ,b ,c ,d ∈R ). (4)复数的模:向量OZ ―→的模r 叫做复数z =a +b i(a ,b ∈R )的模,记作|z |或|a +b i|,即|z |=|a +b i|=a 2+b 2. 2.复数的几何意义 (1)复数z =a +b i复平面内的点Z (a ,b )(a ,b ∈R ).复数z =a +b i (a ,b ∈R )的对应点的坐标为(a ,b ),而不是(a ,b i ).(2)复数z =a +b i(a ,b ∈R ) 平面向量OZ ―→.3.复数的运算(1)复数的加、减、乘、除运算法则设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ),则 ①加法:z 1+z 2=(a +b i)+(c +d i)=(a +c )+(b +d )i ; ②减法:z 1-z 2=(a +b i)-(c +d i)=(a -c )+(b -d )i ; ③乘法:z 1·z 2=(a +b i)·(c +d i)=(ac -bd )+(ad +bc )i ;④除法:z 1z 2=a +b i c +d i =(a +b i )(c -d i )(c +d i )(c -d i )=ac +bd c 2+d 2+bc -ad c 2+d 2i(c +d i ≠0).(2)复数加法的运算定律设z 1,z 2,z 3∈C ,则复数加法满足以下运算律:①交换律:z 1+z 2=z 2+z 1;②结合律:(z 1+z 2)+z 3=z 1+(z 2+z 3).二、常用结论(1)(1±i)2=±2i ,1+i 1-i =i ,1-i1+i=-i. (2)-b +a i =i(a +b i).(3)i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i(n ∈N *);i 4n +i 4n +1+i 4n +2+i 4n +3=0(n ∈N *). (4)z ·z =|z |2=|z |2,|z 1·z 2|=|z 1|·|z 2|,⎪⎪⎪⎪z 1z 2=|z 1||z 2|,|z n |=|z |n.考点一 复数的四则运算[典例] (1)(2017·山东高考)已知i 是虚数单位,若复数z 满足z i =1+i ,则z 2=( ) A .-2i B .2i C .-2D .2(2)(2019·山东师大附中模拟)计算:(2+i )(1-i )21-2i =( )A .2B .-2C .2iD .-2i[解析] (1)∵z i =1+i , ∴z =1+i i =1i +1=1-i.∴z 2=(1-i)2=1+i 2-2i =-2i.(2)(2+i )(1-i )21-2i =-(2+i )2i 1-2i =2-4i1-2i =2,故选A.[答案] (1)A (2)A[解题技法] 复数代数形式运算问题的解题策略(1)复数的加法、减法、乘法运算可以类比多项式的运算,可将含有虚数单位i 的看作一类同类项,不含i 的看作另一类同类项,分别合并即可.(2)复数的除法运算是分子、分母同乘以分母的共轭复数,即分母实数化,解题中要注意把i 的幂写成最简形式.[题组训练]1.(2019·合肥质检)已知i 为虚数单位,则(2+i )(3-4i )2-i =( )A .5B .5iC .-75-125iD .-75+125i解析:选A 法一:(2+i )(3-4i )2-i =10-5i2-i =5,故选A.法二:(2+i )(3-4i )2-i =(2+i )2(3-4i )(2+i )(2-i )=(3+4i )(3-4i )5=5,故选A.2.(2018·济南外国语学校模块考试)已知(1-i )2z =1+i(i 为虚数单位),则复数z 等于( )A .1+iB .1-iC .-1+iD .-1-i解析:选D 由题意,得z =(1-i )21+i =-2i1+i =-1-i ,故选D.3.已知复数z =i +i 2+i 3+…+i 2 0181+i ,则复数z =________.解析:因为i 4n +1+i 4n +2+i 4n +3+i 4n +4=i +i 2+i 3+i 4=0, 而2 018=4×504+2,所以z =i +i 2+i 3+…+i 2 0181+i =i +i 21+i =-1+i 1+i =(-1+i )(1-i )(1+i )(1-i )=2i2=i.答案:i考点二 复数的有关概念[典例] (1)(2019·湘东五校联考)已知i 为虚数单位,若复数z =a1-2i +i(a ∈R )的实部与虚部互为相反数,则a =( )A .-5B .-1C .-13D .-53(2)(2018·全国卷Ⅰ)设z =1-i1+i +2i ,则|z |=( )A .0 B.12 C .1D. 2[解析] (1)z =a 1-2i +i =a (1+2i )(1-2i )(1+2i )+i =a 5+2a +55i ,∵复数z =a1-2i +i(a ∈R )的实部与虚部互为相反数,∴-a 5=2a +55,解得a =-53.故选D.(2)∵z =1-i 1+i +2i =(1-i )2(1+i )(1-i )+2i = -2i 2+2i =i ,∴|z |=1.故选C. [答案] (1)D (2)C[解题技法] 紧扣定义解决复数概念、共轭复数问题(1)求一个复数的实部与虚部,只需将已知的复数化为代数形式z =a +b i(a ,b ∈R ),则该复数的实部为a ,虚部为b .(2)求一个复数的共轭复数,只需将此复数整理成标准的代数形式,实部不变,虚部变为相反数,即得原复数的共轭复数.复数z 1=a +b i 与z 2=c +d i 共轭⇔a =c ,b =-d (a ,b ,c ,d ∈R ).[题组训练]1.(2019·山西八校第一次联考)已知a ,b ∈R ,i 为虚数单位,若3-4i 3=2-b ia +i ,则a +b 等于( )A .-9B .5C .13D .9解析:选A 由3-4i 3=2-b i a +i ,得3+4i =2-b ia +i,即(a +i)(3+4i)=2-b i ,(3a -4)+(4a +3)i =2-b i ,则⎩⎪⎨⎪⎧ 3a -4=2,4a +3=-b ,解得⎩⎪⎨⎪⎧a =2,b =-11,故a +b =-9.故选A. 2.(2019·贵阳适应性考试)设z 是复数z 的共轭复数,满足z =4i1+i,则|z |=( ) A .2 B .2 2 C.22D.12解析:选B 法一:由z =4i1+i =4i (1-i )(1+i )(1-i )=2+2i ,得|z |=|z |=22+22=22,故选B.法二:由模的性质,得|z |=|z |=⎪⎪⎪⎪4i 1+i =|4i||1+i|=42=2 2.故选B.3.若复数z =a 2-a -2+(a +1)i 为纯虚数(i 为虚数单位),则实数a 的值是________. 解析:由于z =a 2-a -2+(a +1)i 为纯虚数,因此a 2-a -2=0且a +1≠0,解得a =2. 答案:2考点三 复数的几何意义[典例] (1)如图,在复平面内,复数z 1,z 2对应的向量分别是OA ―→,OB ―→,若zz 2=z 1,则z 的共轭复数z =( )A.12+32i B.12-32i C .-12+32iD .-12-32i(2)复数z =4i 2 018-5i1+2i (其中i 为虚数单位)在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限[解析] (1)由题意知z 1=1+2i ,z 2=-1+i ,故z (-1+i)=1+2i , 即z =1+2i -1+i =(1+2i )(1+i )(-1+i )(1+i )=1-3i 2=12-32i ,z =12+32i ,故选A.(2)z =4i 2 018-5i1+2i =4×i 2 016·i 2-5i (1-2i )(1+2i )(1-2i )=-4-5(2+i )5=-6-i ,故z 在复平面内对应的点在第三象限. [答案] (1)A (2)C[解题技法] 对复数几何意义的再理解(1)复数z 、复平面上的点Z 及向量OZ ―→相互联系,即z =a +b i(a ,b ∈R )⇔Z (a ,b )⇔OZ ―→.(2)由于复数、点、向量之间建立了一一对应的关系,因此可把复数、向量与解析几何联系在一起,解题时可运用数形结合的方法,使问题的解决更加直观.[题组训练]1.(2019·安徽知名示范高中联考)已知复数z 满足(2-i)z =i +i 2,则z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选B z =i +i 22-i =-1+i 2-i =(-1+i )(2+i )(2-i )(2+i )=-3+i 5=-35+15i ,则复数z 在复平面内对应的点为⎝⎛⎭⎫-35,15,该点位于第二象限.故选B.2.若复数z 满足|z -i|≤2(i 为虚数单位),则z 在复平面内所对应的图形的面积为________. 解析:设z =x +y i(x ,y ∈R ),由|z -i|≤2得|x +(y -1)i|≤2,所以x 2+(y -1)2≤ 2,所以x 2+(y -1)2≤2,所以z 在复平面内所对应的图形是以点(0,1)为圆心,以2为半径的圆及其内部,它的面积为2π.答案:2π3.已知复数z =2+a i1+2i ,其中a 为整数,且z 在复平面内对应的点在第四象限,则a 的最大值为________.解析:因为z =2+a i 1+2i =(2+a i )(1-2i )(1+2i )(1-2i )=2+2a +(a -4)i5,所以z 在复平面内对应的点为⎝⎛⎭⎫2+2a 5,a -45,所以⎩⎨⎧2+2a5>0,a -45<0,解得-1<a <4,又a 为整数,所以a 的最大值为3.答案:3[课时跟踪检测]1.(2019·广州五校联考)1+2i(1-i )2=( )A .-1-12iB .1+12iC .-1+12iD .1-12i解析:选C1+2i (1-i )2=1+2i -2i=(1+2i )i 2=-2+i 2=-1+12i ,选C.2.(2018·洛阳第一次统考)已知a ∈R ,i 为虚数单位,若a -i1+i 为纯虚数,则a 的值为( )A .-1B .0C .1D .2解析:选C ∵a -i 1+i =(a -i )(1-i )(1+i )(1-i )=a -12-a +12i 为纯虚数,∴a -12=0且a +12≠0,解得a =1,故选C.3.(2018·甘肃诊断性考试)如图所示,向量OZ 1―→,OZ 2―→所对应的复数分别为z 1,z 2,则z 1·z 2=( )A .4+2iB .2+iC .2+2iD .3+i解析:选A 由图可知,z 1=1+i ,z 2=3-i ,则z 1·z 2=(1+i)(3-i)=4+2i ,故选A.4.若复数z 1=4+29i ,z 2=6+9i ,其中i 是虚数单位,则复数(z 1-z 2)i 的实部为( ) A .-20 B .-2 C .4D .6解析:选A 因为(z 1-z 2)i =(-2+20i)i =-20-2i ,所以复数(z 1-z 2)i 的实部为-20.5.(2019·太原模拟)若复数z =1+m i1+i 在复平面内对应的点在第四象限,则实数m 的取值范围是( )A .(-1,1)B .(-1,0)C .(1,+∞)D .(-∞,-1)解析:选A 法一:因为z =1+m i 1+i =(1+m i )(1-i )(1+i )(1-i )=1+m 2+m -12i 在复平面内对应的点为⎝⎛⎭⎫1+m 2,m -12,且在第四象限,所以⎩⎨⎧1+m2>0,m -12<0,解得-1<m <1,故选A.法二:当m =0时,z =11+i =1-i (1+i )(1-i )=12-12i ,在复平面内对应的点在第四象限,所以排除选项B 、C 、D ,故选A.6.(2018·昆明高三摸底)设复数z 满足(1+i)z =i ,则z 的共轭复数 z =( ) A.12+12i B.12-12i C .-12+12iD .-12-12i解析:选B 法一:∵(1+i)z =i ,∴z =i1+i =i (1-i )(1+i )(1-i )=1+i 2=12+12i ,∴复数z 的共轭复数z =12-12i ,故选B.法二:∵(1+i)z =i ,∴z =i 1+i =2i2(1+i )=(1+i )22(1+i )=1+i 2=12+12i ,∴复数z 的共轭复数z =12-12i ,故选B.法三:设z =a +b i(a ,b ∈R ),∵(1+i)z =i ,∴(1+i)(a +b i)=i ,∴(a -b )+(a +b )i =i ,由复数相等的条件得⎩⎪⎨⎪⎧a -b =0,a +b =1,解得a =b =12,∴z =12+12i ,∴复数z 的共轭复数z =12-12i ,故选B.7.设复数z 满足i(z +1)=-3+2i(i 是虚数单位),则复数z 对应的点位于复平面内( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选A 由i(z +1)=-3+2i ,得z =-3+2i i -1=3i 2+2ii -1=2+3i -1=1+3i ,它在复平面内对应的点为(1,3),位于第一象限.8.已知复数z =m i1+i ,z ·z =1,则正数m 的值为( )A. 2 B .2 C.22D.12解析:选A 法一:z =m i 1+i =m i (1-i )(1+i )(1-i )=m 2+m 2i ,z =m 2-m 2i ,z ·z =m 22=1,则正数m =2,故选A.法二:由题意知|z |=|m i||1+i|=|m |2,由z ·z =|z |2,得m 22=1,则正数m =2,故选A.9.已知a ,b ∈R ,i 是虚数单位,若(1+i)(1-b i)=a ,则ab 的值为________.解析:因为(1+i)(1-b i)=1+b +(1-b )i =a ,所以⎩⎪⎨⎪⎧ 1+b =a ,1-b =0.解得⎩⎪⎨⎪⎧b =1,a =2,所以a b =2.答案:210.复数|1+2i|+⎝ ⎛⎭⎪⎫1-3i 1+i 2=________.解析:原式=12+(2)2+(1-3i )2(1+i )2=3+-2-23i2i =3+i -3=i.答案:i11.(2019·重庆调研)已知i 为虚数单位,复数z =1+3i2+i ,复数|z |=________.解析:法一:因为z =1+3i 2+i =(1+3i )(2-i )(2+i )(2-i )=5+5i5=1+i ,所以|z |=12+12= 2.法二:|z |=⎪⎪⎪⎪⎪⎪1+3i 2+i =|1+3i||2+i|=105= 2.答案: 212.已知复数z =3+i(1-3i )2,z 是z 的共轭复数,则z ·z =________.解析:∵z =3+i (1-3i )2=3+i-2-23i=3+i -2(1+3i )=(3+i )(1-3i )-2(1+3i )(1-3i )=23-2i -8=-34+14i ,∴z ·z =|z |2=316+116=14. 答案:1413.计算:(1)(-1+i )(2+i )i 3;(2)(1+2i )2+3(1-i )2+i ;(3)1-i (1+i )2+1+i (1-i )2; (4)1-3i (3+i )2. 解:(1)(-1+i )(2+i )i 3=-3+i-i=-1-3i.(2)(1+2i )2+3(1-i )2+i =-3+4i +3-3i 2+i =i2+i =i (2-i )5=15+25i.(3)1-i (1+i )2+1+i (1-i )2=1-i 2i +1+i -2i =1+i -2+-1+i2=-1.(4)1-3i (3+i )2=(3+i )(-i )(3+i )2=-i 3+i=(-i )(3-i )4=-14-34i.第二节 算法与程序框图一、基础知识1.算法(1)算法通常是指按照一定规则解决某一类问题的明确和有限的步骤.(2)应用:算法通常可以编成计算机程序,让计算机执行并解决问题.2.程序框图程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.3.三种基本逻辑结构(1)顺序结构定义由若干个依次执行的步骤组成程序框图(2)条件结构定义算法的流程根据条件是否成立有不同的流向,条件结构就是处理这种过程的结构程序框图(3)循环结构定义从算法某处开始,按照一定的条件反复执行某些步骤,反复执行的步骤称为循环体程序框图直到型循环结构先循环,后判断,条件满足时终止循环.当型循环结构先判断,后循环,条件满足时执行循环.三种基本逻辑结构的适用情境(1)顺序结构:要解决的问题不需要分类讨论.(2)条件结构:要解决的问题需要分类讨论.(3)循环结构:要解决的问题要进行许多重复的步骤,且这些步骤之间有相同的规律.考点一顺序结构和条件结构[例1](2019·沈阳质检)已知一个算法的程序框图如图所示,当输出的结果为0时,输入的实数x的值为()A.-3 B.-3或9C.3或-9 D.-3或-9[解析]当x≤0时,y=⎝⎛⎭⎫1x-8=0,x=-3;当x>0时,y=2-log3x=0,x=9.故x=-3或x=9,选2B.[答案] B[例2]某程序框图如图所示,现输入如下四个函数,则可以输出的函数为()A .f (x )=cos x x ⎝⎛⎭⎫-π2<x <π2,且x ≠0 B .f (x )=2x -12x +1C .f (x )=|x |xD .f (x )=x 2ln(x 2+1)[解析] 由程序框图知该程序输出的是存在零点的奇函数,选项A 、C 中的函数虽然是奇函数,但在给定区间上不存在零点,故排除A 、C.选项D 中的函数是偶函数,故排除D.选B.[答案] B[解题技法] 顺序结构和条件结构的运算方法(1)顺序结构是最简单的算法结构,语句与语句之间、框与框之间是按从上到下的顺序进行的.解决此类问题,只需分清运算步骤,赋值量及其范围进行逐步运算即可.(2)条件结构中条件的判断关键是明确条件结构的功能,然后根据“是”的分支成立的条件进行判断. (3)对于条件结构,无论判断框中的条件是否成立,都只能执行两个分支中的一个,不能同时执行两个分支.[题组训练]1.半径为r 的圆的面积公式为S =πr 2,当r =5时,计算面积的流程图为( )解析:选D 因为输入和输出框是平行四边形,故计算面积的流程图为D. 2.运行如图所示的程序框图,可输出B =______,C =______.解析:若直线x +By +C =0与直线x +3y -2=0平行,则B =3,且C ≠-2, 若直线x +3y +C =0与圆x 2+y 2=1相切,则|C |12+(3)2=1,解得C =±2,又C ≠-2,所以C =2. 答案:3 2考点二 循环结构考法(一) 由程序框图求输出(输入)结果[例1] (2018·天津高考)阅读如图所示的程序框图,运行相应的程序,若输入N 的值为20,则输出T 的值为( )A .1B .2C .3D .4[解析] 输入N 的值为20, 第一次执行条件语句,N =20, i =2,Ni=10是整数,∴T =0+1=1,i =3<5;第二次执行条件语句,N =20,i =3,N i =203不是整数,∴i =4<5;第三次执行条件语句,N =20,i =4,Ni =5是整数,∴T =1+1=2,i =5,此时i ≥5成立,∴输出T =2. [答案] B[例2] (2019·安徽知名示范高中联考)执行如图所示的程序框图,如果输出的n =2,那么输入的 a 的值可以为( )A .4B .5C .6D .7[解析] 执行程序框图,输入a ,P =0,Q =1,n =0,此时P ≤Q 成立,P =1,Q =3,n =1,此时P ≤Q 成立,P =1+a ,Q =7,n =2.因为输出的n 的值为2,所以应该退出循环,即P >Q ,所以1+a >7,结合选项,可知a 的值可以为7,故选D.[答案] D[解题技法] 循环结构的一般思维分析过程 (1)分析进入或退出循环体的条件,确定循环次数.(2)结合初始条件和输出结果,分析控制循环的变量应满足的条件或累加、累乘的变量的表达式. (3)辨析循环结构的功能. 考法(二) 完善程序框图[例1] (2018·武昌调研考试)执行如图所示的程序框图,如果输入的a 依次为2,2,5时,输出的s 为17,那么在判断框中可以填入( )A .k <n?B .k >n?C .k ≥n?D .k ≤n?[解析] 执行程序框图,输入的a =2,s =0×2+2=2,k =1;输入的a =2,s =2×2+2=6,k =2;输入的a =5,s =2×6+5=17,k =3,此时结束循环,又n =2,所以判断框中可以填“k >n ?”,故选B.[答案] B[例2] (2018·全国卷Ⅱ)为计算S =1-12+13-14+…+199-1100,设计了如图所示的程序框图,则在空白框中应填入( )A .i =i +1B .i =i +2C .i =i +3D .i =i +4[解析] 由题意可将S 变形为S =⎝⎛⎭⎫1+13+…+199-⎝⎛⎭⎫12+14+…+1100,则由S =N -T ,得N =1+13+…+199,T =12+14+…+1100.据此,结合N =N +1i ,T =T +1i +1易知在空白框中应填入i =i +2.故选B. [答案] B[解题技法] 程序框图完善问题的求解方法 (1)先假设参数的判断条件满足或不满足;(2)运行循环结构,一直到运行结果与题目要求的输出结果相同为止; (3)根据此时各个变量的值,补全程序框图.[题组训练]1.(2018·凉山质检)执行如图所示的程序框图,设输出的数据构成的集合为A ,从集合A 中任取一个元素a ,则函数y =x a ,x ∈[0,+∞)是增函数的概率为( )A.47B.45C.35D.34解析:选C 执行程序框图,x =-3,y =3;x =-2,y =0;x =-1,y =-1;x =0,y =0;x =1,y =3;x =2,y =8;x =3,y =15;x =4,退出循环.则集合A 中的元素有-1,0,3,8,15,共5个,若函数y =x a ,x ∈[0,+∞)为增函数,则a >0,所以所求的概率为35.2.(2019·珠海三校联考)执行如图所示的程序框图,若输出的n 的值为4,则p 的取值范围是( )A.⎝⎛⎦⎤34,78B.⎝⎛⎭⎫516,+∞C.⎣⎡⎭⎫516,78D.⎝⎛⎦⎤516,78解析:选A S =0,n =1;S =12,n =2;S =12+122=34,n =3;满足条件,所以p >34,继续执行循环体;S=34+123=78,n =4;不满足条件,所以p ≤78.输出的n 的值为4,所以34<p ≤78,故选A. 3.(2019·贵阳适应性考试)某程序框图如图所示,若该程序运行后输出的值是137,则整数a 的值为( )A .6B .7C .8D .9解析:选A 先不管a 的取值,直接运行程序.首先给变量S ,k 赋值,S =1,k =1,执行S =S +1k (k +1),得S =1+11×2,k =2;执行S =1+11×2+12×3,k =3;……继续执行,得S =1+11×2+12×3+…+1k (k +1)=1+⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1k -1k +1=2-1k +1,由2-1k +1=137得k =6,所以整数a =6,故选A.考点三 基本算法语句[典例] 执行如图程序语句,输入a =2cos 2 019π3,b =2tan 2 019π4,则输出y 的值是( )INPUT a ,b IF a<b THENy =a(a +b) ELSEy =a 2-b END IF PRINT y ENDA .3B .4C .6D .-1[解析] 根据条件语句可知程序运行后是计算y =⎩⎪⎨⎪⎧a (a +b ),a <b ,a 2-b ,a ≥b ,且a =2cos 2 019π3=2cos π=-2,b =2tan 2 019π4=2tan 3π4=-2.因为a ≥b ,所以y =a 2-b =(-2)2-(-2)=6, 即输出y 的值是6.[答案] C[变透练清]1. 执行如图所示的程序,输出的结果是________.i =11S =1DOS =S*ii =i -1LOOP UNTIL i<9PRINT S END解析:程序反映出的算法过程为 i =11⇒S =11×1,i =10; i =10⇒S =11×10,i =9; i =9⇒S =11×10×9,i =8;i =8<9退出循环,执行“PRINT S ”. 故S =990. 答案:9902.阅读如图所示的程序.a 的值是________. 解析:由题意可得程序的功能是计算并输出a =⎩⎪⎨⎪⎧2+a ,a >2,a ×a ,a ≤2的值, 当a >2时,由2+a =9得a =7; 当a ≤2时,由a 2=9得a =-3, 综上知,a =7或a =-3. 答案:-3或7[课时跟踪检测]1.(2019·湖北八校联考)对任意非零实数a ,b ,定义a *b 的运算原理如图所示,则(log222)*⎝⎛⎭⎫18-23=( )A .1B .2C .3D .4解析:选A 因为log222=3,⎝⎛⎭⎫18-23=4,3<4,所以输出4-13=1,故选A. 2.执行如图所示的程序框图,则输出的x ,y 分别为( )A .90,86B .94,82C .98,78D .102,74解析:选C 第一次执行循环体,y =90,s =867+15,不满足退出循环的条件,故x =90;第二次执行循环体,y =86,s =907+433,不满足退出循环的条件,故x =94;第三次执行循环体,y =82,s =947+413,不满足退出循环的条件,故x =98;第四次执行循环体,y =78,s =27,满足退出循环的条件,故x =98,y =78.3.(2018·云南民族大学附属中学二模)执行如图所示的程序框图,若输出的k 的值为6,则判断框内可填入的条件是( )A .s >12?B .s >710?C .s >35?D .s >45?解析:选B s =1,k =9,满足条件;s =910,k =8,满足条件;s =45,k =7,满足条件;s =710,k =6,不满足条件.输出的k =6,所以判断框内可填入的条件是“s >710?”.故选B.4.(2019·合肥质检)执行如图所示的程序框图,如果输出的k 的值为3,则输入的a 的值可以是( )A .20B .21C .22D .23解析:选A 根据程序框图可知,若输出的k =3,则此时程序框图中的循环结构执行了3次,执行第1次时,S =2×0+3=3,执行第2次时,S =2×3+3=9,执行第3次时,S =2×9+3=21,因此符合题意的实数a 的取值范围是9≤a <21,故选A.5.(2019·重庆质检)执行如图所示的程序框图,如果输入的x =0,y =-1,n =1,则输出x ,y 的值满足( )A .y =-2xB .y =-3xC .y =-4xD .y =-8x解析:选C 初始值x =0,y =-1,n =1,x =0,y =-1,x 2+y 2<36,n =2,x =12,y =-2,x 2+y 2<36,n =3,x =32,y =-6,x 2+y 2>36,退出循环,输出x =32,y =-6,此时x ,y 满足y =-4x ,故选C.6.(2018·南宁二中、柳州高中联考)执行如图所示的程序框图,若输出的结果s =132,则判断框中可以填( )A .i ≥10?B .i ≥11?C .i ≤11?D .i ≥12?解析:选B 执行程序框图,i =12,s =1;s =12×1=12,i =11;s =12×11=132,i =10.此时输出的s =132,则判断框中可以填“i ≥11?”.7.(2019·漳州八校联考)执行如图所示的程序,若输出的y 的值为1,则输入的x 的值为( )INPUT xIF x>=1 THEN y =x 2ELSEy =-x 2+1END IF PRINT y ENDA .0B .1C .0或1D .-1,0或1解析:选C 当x ≥1时,由x 2=1得x =1或x =-1(舍去);当x <1时,由-x 2+1=1得x =0.∴输入的x 的值为0或1.8.执行如图所示的程序框图,若输入的n =4,则输出的s =( )A.10 B.16C.20 D.35解析:选C执行程序框图,第一次循环,得s=4,i=2;第二次循环,得s=10,i=3;第三次循环,得s=16,i=4;第四次循环,得s=20,i=5.不满足i≤n,退出循环,输出的s=20.9.(2018·洛阳第一次统考)已知某算法的程序框图如图所示,则该算法的功能是()A.求首项为1,公差为2的等差数列的前2 018项和B.求首项为1,公差为2的等差数列的前2 019项和C.求首项为1,公差为4的等差数列的前1 009项和D.求首项为1,公差为4的等差数列的前1 010项和解析:选D由程序框图得,输出的S=(2×1-1)+(2×3-1)+(2×5-1)+…+(2×2 019-1),可看作数列{2n-1}的前2 019项中所有奇数项的和,即首项为1,公差为4的等差数列的前1 010项和.故选D.10.(2018·郑州第一次质量测试)执行如图所示的程序框图,若输出的结果是7,则判断框内m的取值范围是()A.(30,42] B.(30,42)C.(42,56] D.(42,56)解析:选A k=1,S=2,k=2;S=2+4=6,k=3;S=6+6=12,k=4;S=12+8=20,k=5;S=20+10=30,k=6;S=30+12=42,k=7,此时不满足S=42<m,退出循环,所以30<m≤42,故选A.11.(2019·石家庄调研)20世纪70年代,流行一种游戏——角谷猜想,规则如下:任意写出一个自然数n ,按照以下的规律进行变换,如果n 是奇数,则下一步变成3n +1;如果n 是偶数,则下一步变成n2.这种游戏的魅力在于无论你写出一个多么庞大的数字,最后必然会落在谷底,更准确地说是落入底部的4-2-1循环,而永远也跳不出这个圈子,下列程序框图就是根据这个游戏而设计的,如果输出的i 值为6,则输入的n 值为( )A .5或16B .16C .5或32D .4或5或32解析:选C 若n =5,执行程序框图,n =16,i =2;n =8,i =3;n =4,i =4;n =2,i =5;n =1,i =6,结束循环,输出的i =6.若n =32,执行程序框图,n =16,i =2;n =8,i =3;n =4,i =4;n =2,i =5;n =1,i =6,结束循环,输出的i =6.当n =4或16时,检验可知不正确,故输入的n =5或32,故选C.12.(2018·贵阳第一学期检测)我国明朝数学家程大位著的《算法统宗》里有一道闻名世界的题目:“一百馒头一百僧,大僧三个更无争.小僧三人分一个,大小和尚各几丁?”如图所示的程序框图反映了对此题的一个求解算法,则输出的n 的值为( )A .20B .25C .30D .35解析:选B 法一:执行程序框图,n =20,m =80,S =60+803=8623≠100;n =21,m =79,S =63+793=8913≠100;n =22,m =78,S =66+783=92≠100;n =23,m =77,S =69+773=9423≠100;n =24,m =76,S =72+763=9713≠100;n =25,m =75,S =75+753=100,退出循环.所以输出的n =25.法二:设大和尚有x 个,小和尚有y 个, 则⎩⎪⎨⎪⎧x +y =100,3x +13y =100,解得⎩⎪⎨⎪⎧x =25,y =75, 根据程序框图可知,n 的值即大和尚的人数,所以n =25.13.已知函数y =lg|x -3|,如图所示程序框图表示的是给定x 值,求其相应函数值y 的算法.请将该程序框图补充完整.其中①处应填________,②处应填________.解析:由y =lg|x -3|=⎩⎪⎨⎪⎧lg (x -3),x >3,lg (3-x ),x <3及程序框图知,①处应填x <3?,②处应填y =lg(x -3).答案:x <3? y =lg(x -3)14.执行如图所示的程序框图,若输入的N =20,则输出的S =________.解析:依题意,结合题中的程序框图知,当输入的N =20时,输出S 的值是数列{2k -1}的前19项和,即19(1+37)2=361.答案:36115.执行如图所示的程序框图,则输出的λ是________.解析:依题意,若λa +b 与b 垂直,则有(λa +b )·b =4(λ+4)-2(-3λ-2)=0,解得λ=-2;若λa +b 与b 平行,则有-2(λ+4)=4(-3λ-2),解得λ=0.结合题中的程序框图可知,输出的λ是-2.答案:-216.执行如图所示的程序框图,如果输入的x ,y ∈R ,那么输出的S 的最大值为________.解析:当条件x ≥0,y ≥0,x +y ≤1不成立时,输出S 的值为1,当条件x ≥0,y ≥0,x +y ≤1成立时,⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤1表输出S =2x +y ,下面用线性规划的方法求此时S 的最大值.作出不等式组示的平面区域如图中阴影部分所示,由图可知当直线S =2x +y 经过点M (1,0)时S 最大,其最大值为2×1+0=2,故输出S 的最大值为2.答案:2第三节 合情推理与演绎推理一、基础知识1.合情推理(1)归纳推理①定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳).②特点:由部分到整体、由个别到一般的推理.(2)类比推理①定义:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).②特点:由特殊到特殊的推理.类比推理的注意点在进行类比推理时要尽量从本质上去类比,不要被表面现象迷惑,如果只抓住一点表面现象的相似甚至假象就去类比,那么就会犯机械类比的错误.(3)合情推理归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理.合情推理的关注点(1)合情推理是合乎情理的推理.(2)合情推理既可以发现结论也可以发现思路与方向.2.演绎推理(1)演绎推理从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由一般到特殊的推理.↓演绎推理:常用来证明和推理数学问题,解题时应注意推理过程的严密性,书写格式的规范性.(2)“三段论”是演绎推理的一般模式,包括:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况做出的判断.二、常用结论(1)合情推理的结论是猜想,不一定正确;演绎推理在大前提、小前提和推理形式都正确时,得到的结论一定正确.(2)合情推理是发现结论的推理;演绎推理是证明结论的推理. 考点一 归纳推理考法(一) 与数字有关的推理[典例] 《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术.得诀自诩无所阻,额上坟起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”:223=223,3 38= 338,4 415=4415,5 524= 5524,…,则按照以上规律,若99n= 99n具有“穿墙术”,则n =( ) A .25 B .48 C .63 D .80[解析] 由223=223,338=338,4415=4415,5524= 5524,…, 可得若99n = 99n具有“穿墙术”,则n =92-1=80. [答案] D考法(二) 与式子有关的推理[典例] 已知f (x )=xe x ,f 1(x )=f ′(x ),f 2(x )=[f 1(x )]′,…,f n +1(x )=[f n (x )]′,n ∈N *,经计算:f 1(x )=1-x e x ,f 2(x )=x -2e x ,f 3(x )=3-xe x,…,照此规律,则f n (x )=________. [解析] 因为导数分母都是e x,分子为(-1)n(x -n ),所以f n (x )=(-1)n (x -n )e x .[答案] (-1)n (x -n )e x考法(三) 与图形有关的推理[典例] 分形几何学是数学家伯努瓦·曼德尔布罗在20世纪70年代创立的一门新的数学学科,它的创立为解决传统科学众多领域的难题提供了全新的思路.按照如图(1)所示的分形规律可得如图(2)所示的一个树形图.若记图(2)中第n 行黑圈的个数为a n ,则a 2 019=________.[解析] 根据题图(1)所示的分形规律,可知1个白圈分形为2个白圈1个黑圈,1个黑圈分形为1个白圈2个黑圈,把题图(2)中的树形图的第1行记为(1,0),第2行记为(2,1),第3行记为(5,4),第4行的白圈数为2×5+4=14,黑圈数为5+2×4=13,所以第4行的“坐标”为(14,13),同理可得第5行的“坐标”为(41,40),第6行的“坐标”为(122,121),….各行黑圈数乘2,分别是0,2,8,26,80,…,即1-1,3-1,9-1,27-1,81-1,…,所以可以归纳出第n 行的黑圈数a n =3n -1-12(n ∈N *),所以a 2 019=32 018-12.[答案] 32 018-12[题组训练]1.(2019·兰州实战性测试)观察下列式子:1,1+2+1,1+2+3+2+1,1+2+3+4+3+2+1,…,由以上可推测出一个一般性结论:对于n ∈N *,则1+2+…+n +…+2+1=________.解析:由1=12,1+2+1=4=22,1+2+3+2+1=9=32,1+2+3+4+3+2+1=16=42,…,归纳猜想可得1+2+…+n +…+2+1=n 2.答案:n 22.某种平面分形图如图所示,一级分形图是由一点出发的三条线段,长度均为1,两两夹角为120°;二级分形图是在一级分形图的每条线段的末端出发再生成两条长度为原来13的线段,且这两条线段与原线段两两夹角为120°,…,依此规律得到n 级分形图.则n 级分形图中共有________条线段.解析:分形图的每条线段的末端出发再生成两条线段, 由题图知,一级分形图有3=3×2-3条线段, 二级分形图有9=3×22-3条线段, 三级分形图中有21=3×23-3条线段, 按此规律n 级分形图中的线段条数a n =3×2n -3. 答案:3×2n -3考点二 类比推理[典例] 我国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一直角边为股,斜边为弦.若a ,b ,c 为直角三角形的三边,其中c 为斜边,则a 2+b 2=c 2,称这个定理为勾股定理.现将这一定理推广到立体几何中:在四面体O -ABC 中,∠AOB =∠BOC =∠COA =90°,S 为顶点O 所对面△ABC 的面积,S 1,S 2,S 3分别为侧面△OAB ,△OAC ,△OBC 的面积,则下列选项中对于S ,S 1,S 2,S 3满足的关系描述正确的为( )A .S 2=S 21+S 22+S 23B .S 2=1S 21+1S 22+1S 23C .S =S 1+S 2+S 3D .S =1S 1+1S 2+1S 3S 2=⎝⎛⎭⎫12BC ·AD 2=[解析] 如图,作OD ⊥BC 于点D ,连接AD ,则AD ⊥BC ,从而⎝⎛⎭⎫12OB ·OA 2+14BC 2·AD 2=14BC 2·(OA 2+OD 2)=14(OB 2+OC 2)·OA 2+ 14BC 2·OD 2=⎝⎛⎭⎫12OC ·OA 2+⎝⎛⎭⎫12BC ·OD 2=S 21+S 22+S 23. [答案] A[题组训练]1.给出下面类比推理(其中Q 为有理数集,R 为实数集,C 为复数集):①“若a ,b ∈R ,则a -b =0⇒a =b ”类比推出“a ,c ∈C ,则a -c =0⇒a =c ”;②“若a ,b ,c ,d ∈R ,则复数a +b i =c +d i ⇒a =c ,b =d ”类比推出“a ,b ,c ,d ∈Q ,则a +b 2=c +d 2⇒a =c ,b =d ”;③“a ,b ∈R ,则a -b >0⇒a >b ”类比推出“若a ,b ∈C ,则a -b >0⇒a >b ”; ④“若x ∈R ,则|x |<1⇒-1<x <1”类比推出“若z ∈C ,则|z |<1⇒-1<z <1”. 其中类比结论正确的个数为( ) A .1 B .2 C .3D .4解析:选B 类比结论正确的有①②.2.设等差数列{a n }的前n 项和为S n ,则S 3,S 6-S 3,S 9-S 6,S 12-S 9成等差数列.类比以上结论:设等比数列{b n }的前n 项积为T n ,则T 3,________,________,T 12T 9成等比数列.解析:等比数列{b n }的前n 项积为T n , 则T 3=b 1b 2b 3,T 6=b 1b 2…b 6,T 9=b 1b 2…b 9, T 12=b 1b 2…b 12,所以T 6T 3=b 4b 5b 6,T 9T 6=b 7b 8b 9,T 12T 9=b 10b 11b 12,所以T 3,T 6T 3,T 9T 6,T 12T 9的公比为q 9,因此T 3,T 6T 3,T 9T 6,T 12T 9成等比数列.答案:T 6T 3 T 9T 6考点三 演绎推理[典例] 数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2n S n(n ∈N *).证明:(1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列;(2)S n +1=4a n .[证明] (1)∵a n +1=S n +1-S n ,a n +1=n +2n S n ,∴(n +2)S n =n (S n +1-S n ),即nS n +1=2(n +1)S n . 故S n +1n +1=2·S nn ,(小前提)∴⎩⎨⎧⎭⎬⎫S n n 是以1为首项,2为公比的等比数列.(结论)(大前提是等比数列的定义) (2)由(1)可知S n +1n +1=4·S n -1n -1(n ≥2),∴S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1=4a n (n ≥2).(小前提) 又∵a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1,(小前提) ∴对于任意正整数n ,都有S n +1=4a n .(结论) [解题技法] 演绎推理问题求解策略(1)演绎推理是由一般到特殊的推理,常用的一般模式为三段论.(2)演绎推理的前提和结论之间有着某种蕴含关系,解题时要找准正确的大前提,一般地,若大前提不明确时,可找一个使结论成立的充分条件作为大前提.[题组训练]1.正弦函数是奇函数,f (x )=sin(x 2+1)是正弦函数,因此f (x )=sin(x 2+1)是奇函数,以上推理( ) A .结论正确 B .大前提不正确 C .小前提不正确D .全不正确解析:选C 因为f (x )=sin(x 2+1)不是正弦函数,所以小前提不正确.2.已知函数y =f (x )满足:对任意a ,b ∈R ,a ≠b ,都有af (a )+bf (b )>af (b )+bf (a ),试证明:f (x )为R 上的单调增函数.证明:设x 1,x 2∈R ,取x 1<x 2,则由题意得x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1), ∴x 1[f (x 1)-f (x 2)]+x 2[f (x 2)-f (x 1)]>0, (x 2-x 1)[f (x 2)-f (x 1)]>0,∵x 1<x 2,∴f (x 2)-f (x 1)>0,f (x 2)>f (x 1). ∴y =f (x )为R 上的单调增函数.考点四 逻辑推理问题[典例] (2019·安徽示范高中联考)某参观团根据下列要求从A ,B ,C ,D ,E 五个镇选择参观地点:①若去A 镇,也必须去B 镇;②D ,E 两镇至少去一镇;③B ,C 两镇只去一镇;④C ,D 两镇都去或者都不去;⑤若去E镇,则A,D两镇也必须去.则该参观团至多去了()A.B,D两镇B.A,B两镇C.C,D两镇D.A,C两镇[解析]假设去A镇,则也必须去B镇,但去B镇则不能去C镇,不去C镇则也不能去D镇,不去D镇则也不能去E镇,D,E镇都不去则不符合条件.故若去A镇则无法按要求完成参观.同理,假设不去A镇去B镇,同样无法完成参观.要按照要求完成参观,一定不能去B镇,而不去B镇的前提是不去A镇.故A,B两镇都不能去,则一定不能去E镇,所以能去的地方只有C,D两镇.故选C.[答案] C[解题技法] 逻辑推理问题求解的2种途径求解此类推理性试题,要根据所涉及的人与物进行判断,通常有两种途径:(1)根据条件直接进行推理判断;(2)假设一种情况成立或不成立,然后以此为出发点,联系条件,判断是否与题设条件相符合.[题组训练]1.数学老师给同学们出了一道证明题,以下四人中只有一人说了真话,只有一人会证明此题.甲:“我不会证明.”乙:“丙会证明.”丙:“丁会证明.”丁:“我不会证明.”根据以上条件,可以判断会证明此题的人是()A.甲B.乙C.丙D.丁解析:选A四人中只有一人说了真话,只有一人会证明此题,由丙、丁的说法知丙与丁中有一个人说的是真话,若丙说了真话,则甲必是假话,矛盾;若丁说了真话,则甲说的是假话,甲就是会证明的那个人,符合题意,故选A.2.(2019·大连模拟)甲、乙、丙、丁、戊和己6人围坐在一张正六边形的小桌前,每边各坐一人.已知:①甲与乙正面相对;②丙与丁不相邻,也不正面相对.若己与乙不相邻,则以下选项正确的是()A.若甲与戊相邻,则丁与己正面相对B.甲与丁相邻C.戊与己相邻D.若丙与戊不相邻,则丙与己相邻解析:选D由题意可得到甲、乙位置的示意图如图(1),因此,丙和丁的座位只可能是1和2,3和4,4和3,2和1,由己和乙不相邻可知,己只能在1或2,故丙和丁只能在3和4,4和3,示意图如图(2)和图(3),由此可排除B、C两项.对于A项,若甲与戊相邻,则己与丁可能正面相对,也可能不正面相对,排除A.对于D项,若丙与戊不相邻,则戊只能在丙的对面,则己与丙相邻,正确.故选D.。

2020年高考数学(理)总复习:算法、复数、推理与证明(解析版)

2020年高考数学(理)总复习:算法、复数、推理与证明(解析版)

法三:∵ i( x+ yi) = 3+ 4i ∴ |i(x+ yi)| = |3+4i|
∴ |i||x+ yi|= 5,∴ |x+ yi|= 5. 法四:因为 i(x+ yi) = 3+ 4i,
所以- y+ xi =3+ 4i,
所以 x=4, y=- 3, 故 |x+ yi|= |4- 3i|= 42+ - 3 2= 5.
1- 2i
1- 2i 1+ 2i
A.
【答案】 A
【例 3】.已知 a∈ R,若 a+ 2i是纯虚数,则在复平面内,复数 4- i
位于 ( )
z= ai + i2018 所对应的点
A .第一象限 C.第三象限
B.第二象限 D .第四象限
【解析】
依题意, a4+-2ii=
a+ 2i 4- i
4+ i 4+ i
7
据图象可知, 线段 AB 总是位于 A、B 两点之间函数图象的上方, 因此有结论 ax1+ ax2> ax1+x2
2
2
成立.运用类比思想方法可知,若点 A(x1, sin x1)、 B(x 2, sin x2)是函数 y= sin x[ x∈(0 ,π )]
图象上的不同两点,则类似地有 ________成立.
π-
π 6(k∈
Z
)


z= sin
1 θ+ cos
- θ·i
1( 2
其中
i 是虚数单位
)是纯虚数.
”是 “θ=π6+ 2kπ”的必要不充分条
件.故选 B.
【答案】 B
题型二 程序框图
3
【题型要点】 解答程序框图问题的三个关注点 (1)弄清程序框图的三种基本结构,按指向执行直至结束. (2)关注输出的是哪个量,何时结束. (3) 解答循环结构问题时,要写出每一次的结果,防止运行程序不彻底,同时注意区分 计算变量与循环变量. 【例 4】执行如图所示的程序框图,输出的 n 为 ( )

高考数学一轮复习 第十二章 推理证明、算法、复数 第3讲 数学归纳法 理(2021年最新整理)

高考数学一轮复习 第十二章 推理证明、算法、复数 第3讲 数学归纳法 理(2021年最新整理)

2018版高考数学一轮复习第十二章推理证明、算法、复数第3讲数学归纳法理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高考数学一轮复习第十二章推理证明、算法、复数第3讲数学归纳法理)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高考数学一轮复习第十二章推理证明、算法、复数第3讲数学归纳法理的全部内容。

第3讲数学归纳法一、选择题1。

利用数学归纳法证明“1+a+a2+…+a n+1=错误!(a≠1,n∈N*)”时,在验证n=1成立时,左边应该是( )A 1B 1+aC 1+a+a2D 1+a+a2+a3解析当n=1时,左边=1+a+a2,故选C。

答案 C2.用数学归纳法证明命题“当n是正奇数时,x n+y n能被x+y整除",在第二步时,正确的证法是().A.假设n=k(k∈N+),证明n=k+1命题成立B.假设n=k(k是正奇数),证明n=k+1命题成立C.假设n=2k+1(k∈N+),证明n=k+1命题成立D.假设n=k(k是正奇数),证明n=k+2命题成立解析A、B、C中,k+1不一定表示奇数,只有D中k为奇数,k+2为奇数.答案D3.用数学归纳法证明1-错误!+错误!-错误!+…+错误!-错误!=错误!+错误!+…+错误!,则当n=k+1时,左端应在n=k的基础上加上( ).A.错误!B.-错误!C。

错误!-错误!D。

错误!+错误!解析∵当n=k时,左侧=1-错误!+错误!-错误!+…+错误!-错误!,当n=k+1时,左侧=1-错误!+错误!-错误!+…+错误!-错误!+错误!-错误!。

答案C4.对于不等式错误!〈n+1(n∈N*),某同学用数学归纳法的证明过程如下:(1)当n=1时,错误!〈1+1,不等式成立.(2)假设当n=k(k∈N*且k≥1)时,不等式成立,即错误!<k+1,则当n=k+1时,错误!=错误!〈错误!=错误!=(k+1)+1,所以当n=k+1时,不等式成立,则上述证法().A.过程全部正确B.n=1验得不正确C.归纳假设不正确D.从n=k到n=k+1的推理不正确解析在n=k+1时,没有应用n=k时的假设,故推理错误.答案D5.下列代数式(其中k∈N*)能被9整除的是( )A.6+6·7k B.2+7k-1C.2(2+7k+1) D.3(2+7k)解析 (1)当k=1时,显然只有3(2+7k)能被9整除.(2)假设当k=n(n∈N*)时,命题成立,即3(2+7n)能被9整除,那么3(2+7n+1)=21(2+7n)-36.这就是说,k=n+1时命题也成立.由(1)(2)可知,命题对任何k∈N*都成立.答案 D6.已知1+2×3+3×32+4+33+…+n×3n-1=3n(na-b)+c对一切n∈N*都成立,则a、b、c的值为().A.a=错误!,b=c=错误!B.a=b=c=错误!C.a=0,b=c=错误!D.不存在这样的a、b、c解析∵等式对一切n∈N*均成立,∴n=1,2,3时等式成立,即错误!整理得{3a-3b+c=1,,18a-9b+c=7,,81a-27b+c=34,解得a=错误!,b=c=错误!。

高考数学一轮复习 第十二章 推理与证明、算法初步、复数 第3讲 数学归纳法及其应用课件 理

高考数学一轮复习 第十二章 推理与证明、算法初步、复数 第3讲 数学归纳法及其应用课件 理

①当n=1时,已证命题成立. ②假设当n=k时命题成立,即x2k>x2k+2,易知xk>0,那么 x2k+2-x2k+4=1+1x2k+1-1+1x2k+3=(1+x2xk2+k+ 1)3-(x21k++1 x2k+3) =(1+1+x2k1x+21k)+2-(11++1xx22kk+3) =(1+x2k)(1+x2k+x12)k-(x21k++2 x2k+2)(1+x2k+3)>0, 即 x2(k+1)>x2(k+1)+2,也就是说,当 n=k+1 时命题也成立. 结合①和②知命题成立.
答案 (k2+1)+(k2+2)+(k2+3)+…+(k+1)2
考点一 用数学归纳法证明等式 【例 1】 用数学归纳法证明:
2×1 4+4×1 6+6×1 8+…+2n(21n+2)=4(nn+1)(n∈N*). 证明 (1)当 n=1 时, 左边=2×1×(12×1+2)=18, 右边=4(11+1)=18,左边=右边,所以等式成立.
1)(n∈N*).证明 ()当n=1时,等式左边=2,右边=21·1=2, ∴等式成立.
(2)假设当n=k(k∈N*)时,等式成立,即(k+1)(k+2)·…·(k+k) =2k·1·3·5·…·(2k-1). 当n=k+1时,左边=(k+2)(k+3)·…·2k·(2k+1)·(2k+2) =2·(k+1)(k+2)(k+3)·…·(k+k)·(2k+1) =2·2k·1·3·5·…·(2k-1)·(2k+1) =2k+1·1·3·5·…·(2k-1)(2k+1). 这就是说当n=k+1时,等式成立. 根据(1)(2)知,对n∈N*,原等式成立.
猜想 an 的表达式为________. 解析 当 n=2 时,13+a2=(2×3)a2,∴a2=3×1 5.当 n=3 时,13

高考数学一轮复习 第十二章 推理与证明、算法、复数 12.3 数学归纳法学案 理

高考数学一轮复习 第十二章 推理与证明、算法、复数 12.3 数学归纳法学案 理

§12.3数学归纳法考纲展示►1.了解数学归纳法的原理.2.能用数学归纳法证明一些简单的数学命题.考点1 用数学归纳法证明等式数学归纳法的定义及框图表示(1)定义:证明一个与正整数n有关的命题,可按下列步骤进行:①证明当n取第一个值n0(n0∈N*)时命题成立,这一步是归纳奠基.②假设n=k(k≥n0,k∈N*)时命题成立,证明当________时命题也成立,这一步是归纳递推.完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.(2)框图表示:答案:(1)②n=k+1[典题1] 用数学归纳法证明:12×4+14×6+16×8+…+12n2n+2=n4n+1(n∈N*).[证明] (1)当n=1时,左边=12×1×2×1+2=18,右边=141+1=18, 左边=右边,所以等式成立. (2)假设n =k (k ∈N *)时等式成立,即有 12×4+14×6+16×8+ (12)2k +2=k4k +1,则当n =k +1时,12×4+14×6+16×8+…+12k 2k +2+12k +1[2k +1+2]=k 4k +1+14k +1k +2=k k +2+14k +1k +2=k +124k +1k +2=k +14k +2=k +14k +1+1. 所以当n =k +1时,等式也成立.由(1)(2)可知,对于一切n ∈N *等式都成立.[点石成金] 用数学归纳法证明恒等式时应注意的问题 (1)明确初始值n 0的取值并验证n =n 0时等式成立.(2)由n =k 证明n =k +1时,弄清左边增加的项,且明确变形目标. (3)掌握恒等变形常用的方法:①因式分解;②添拆项;③配方法.考点2 用数学归纳法证明不等式[典题2] 用数学归纳法证明:1+122+132+…+1n 2<2-1n (n ∈N *,n ≥2).[证明] (1)当n =2时,1+122=54<2-12=32,命题成立.(2)假设n =k 时命题成立,即 1+122+132+…+1k 2<2-1k. 当n =k +1时,1+122+132+…+1k 2+1k +12<2-1k+1k +12<2-1k +1kk +1=2-1k+1k -1k +1=2-1k +1,命题成立.由(1)(2)知,原不等式在n ∈N *,n ≥2时均成立. [点石成金] 用数学归纳法证明不等式应注意的两个问题(1)当遇到与正整数n 有关的不等式证明时,应用其他办法不容易证,则可考虑应用数学归纳法.(2)用数学归纳法证明不等式的关键是由n =k 成立,推证n =k +1时也成立,证明时用上归纳假设后,可采用分析法、综合法、作差(作商)比较法、放缩法等证明.已知数列{a n },当n ≥2时,a n <-1,又a 1=0,a 2n +1+a n +1-1=a 2n ,求证:当n ∈N *时,a n+1<a n .证明:(1)当n =1时,∵a 2是a 22+a 2-1=0的负根, ∴a 2<a 1.(2)假设当n =k (k ∈N *)时,a k +1<a k , ∵a 2k +1-a 2k =(a k +2-a k +1)(a k +2+a k +1+1),a k +1<a k ≤0,∴a 2k +1-a 2k >0, 又a k +2+a k +1+1<-1+(-1)+1=-1, ∴a k +2-a k +1<0,∴a k +2<a k +1, 即当n =k +1时,命题成立. 由(1)(2)可知,当n ∈N *时,a n +1<a n .考点3 观察——归纳——猜想——证明[考情聚焦] 通过近几年的高考试题分析,“观察——归纳——猜想——证明”的思维模式成为高考命题的热点之一.从考查题型看,数学归纳法常与数列、函数等知识结合在一起考查,常以解答题的形式出现,具有一定的综合性和难度,属中高档题.主要有以下几个命题角度: 角度一与数列的通项公式或前n 项和有关的证明[典题3] 已知数列{a n }的前n 项和S n 满足:S n =a n 2+1a n-1,且a n >0,n ∈N *.(1)求a 1,a 2,a 3,并猜想{a n }的通项公式; (2)证明通项公式的正确性. (1)[解] 当n =1时,由已知,得a 1=a 12+1a 1-1,则a 21+2a 1-2=0.∴a 1=3-1(a 1>0).当n =2时,由已知,得a 1+a 2=a 22+1a 2-1,将a 1=3-1代入并整理得a 22+23a 2-2=0. ∴a 2=5-3(a 2>0).同理可得a 3=7- 5. 猜想a n =2n +1-2n -1(n ∈N *).(2)[证明] ①由(1)知,当n =1,2,3时,通项公式成立. ②假设当n =k (k ≥3,k ∈N *)时,通项公式成立, 即a k =2k +1-2k -1. 由于a k +1=S k +1-S k =a k +12+1a k +1-a k 2-1a k, 将a k =2k +1-2k -1代入上式, 整理得a 2k +1+22k +1a k +1-2=0, ∴a k +1=2k +3-2k +1, 即n =k +1时通项公式成立.由①②可知,对所有n ∈N *,a n =2n +1-2n -1都成立.[点石成金] “归纳——猜想——证明”的基本步骤是“观察——归纳——猜想——证明”.高中阶段与数列结合的问题是最常见的问题.角度二 证明存在性问题[典题4] 设a 1=1,a n +1=a 2n -2a n +2+b (n ∈N *). (1)若b =1,求a 2,a 3及数列{a n }的通项公式;(2)若b =-1,问:是否存在实数c 使得a 2n <c <a 2n +1对所有n ∈N *成立?证明你的结论. [解] 解法一:(1)a 2=2,a 3=2+1, 再由题设条件知,(a n +1-1)2=(a n -1)2+1. 从而{(a n -1)2}是首项为0,公差为1的等差数列, 故(a n -1)2=n -1,即a n =n -1+1(n ∈N *). (2)设f (x )=x -12+1-1,则a n +1=f (a n ). 令c =f (c ),即c =c -12+1-1,解得c =14.下面用数学归纳法证明命题:a 2n <c <a 2n +1<1.当n =1时,a 2=f (1)=0,a 3=f (0)=2-1, 所以a 2<14<a 3<1,结论成立.假设n =k 时结论成立, 即a 2k <c <a 2k +1<1.易知f (x )在(-∞,1]上为减函数, 从而c =f (c )>f (a 2k +1)>f (1)=a 2, 即1>c >a 2k +2>a 2.再由f (x )在(-∞,1]上为减函数,得c =f (c )<f (a 2k +2)<f (a 2)=a 3<1.故c <a 2k +3<1,因此a 2(k +1)<c <a 2(k +1)+1<1. 这就是说,当n =k +1时结论成立.综上,符合条件的c 存在,其中一个值为c =14.解法二:(1)a 2=2,a 3=2+1,可写为a 1=1-1+1,a 2=2-1+1,a 3=3-1+1.因此猜想a n =n -1+1. 下面用数学归纳法证明上式: 当n =1时结论显然成立.假设n =k 时结论成立,即a k =k -1+1. 则a k +1=a k -12+1+1=k -1+1+1=k +1-1+1.这就是说,当n =k +1时结论成立. 所以a n =n -1+1(n ∈N *). (2)设f (x )=x -12+1-1,则a n +1=f (a n ).先证:0≤a n ≤1(n ∈N *).① 当n =1时,结论明显成立. 假设n =k 时结论成立,即0≤a k ≤1. 易知f (x )在(-∞,1]上为减函数, 从而0=f (1)≤f (a k )≤f (0)=2-1<1.即0≤a k +1≤1.这就是说,当n =k +1时结论成立,故①成立. 再证:a 2n <a 2n +1(n ∈N *).②当n =1时,a 2=f (1)=0,a 3=f (a 2)=f (0)=2-1,有a 2<a 3,即n =1时②成立. 假设n =k 时,结论成立,即a 2k <a 2k +1,由①及f (x )在(-∞,1]上为减函数,得a 2k +1=f (a 2k )>f (a 2k +1)=a 2k +2, a 2(k +1)=f (a 2k +1)<f (a 2k +2)=a 2(k +1)+1.这就是说,当n =k +1时②成立, 所以②对一切n ∈N *成立. 由②得a 2n < a 22n -2a 2n +2-1, 即(a 2n +1)2<a 22n -2a 2n +2, 因此a 2n <14.③又由①②及f (x )在(-∞,1]上为减函数,得f (a 2n )>f (a 2n +1),即a 2n +1>a 2n +2,所以a 2n +1> a 22n +1-2a 2n +1+2-1, 解得a 2n +1>14.④综上,由②③④知,存在c =14使a 2n <c <a 2n +1对一切n ∈N *成立.[点石成金] 利用数学归纳法可以探索与正整数n 有关的未知问题、存在性问题,其基本模式是“归纳——猜想——证明”,即先由合情推理发现结论,然后经逻辑推理即演绎推理论证结论的正确性.[方法技巧] 1.数学归纳法的两个步骤相互依存,缺一不可有一无二,是不完全归纳法,结论不一定可靠;有二无一,第二步就失去了递推的基础. 2.利用归纳假设的技巧在推证n =k +1时,可以通过凑、拆、配项等方法用上归纳假设.此时既要看准目标,又要掌握n =k 与n =k +1之间的关系.在推证时,分析法、综合法、反证法等方法都可以应用.[易错防范] 1.数学归纳法证题时初始值n 0不一定是1.2.推证n =k +1时一定要用上n =k 时的假设,否则不是数学归纳法.课外拓展阅读 归纳、猜想、证明[典例] [2016·江西九江模拟]设数列{a n }的前n 项和为S n ,并且满足2S n =a 2n +n ,a n >0(n∈N *).(1)猜想{a n }的通项公式,并用数学归纳法加以证明; (2)设x >0,y >0,且x +y =1,证明:a n x +1+a n y +1≤2n +2.[审题视角] (1)将n =1,2,3代入已知等式得a 1,a 2,a 3,从而可猜想a n ,并用数学归纳法证明.(2)利用分析法,结合x >0,y >0,x +y =1,利用基本不等式可证. (1)[解] 分别令n =1,2,3,得 ⎩⎪⎨⎪⎧2a 1=a 21+12a 1+a 2=a 22+22a 1+a 2+a 3=a 23+3,∵a n >0,∴a 1=1,a 2=2,a 3=3. 猜想:a n =n . ∵2S n =a 2n +n ,①当n ≥2时,2S n -1=a 2n -1+(n -1).② ①-②,得2a n =a 2n -a 2n -1+1, 即a 2n =2a n +a 2n -1-1.(ⅰ)当n =2时,a 22=2a 2+12-1,∵a 2>0,∴a 2=2. (ⅱ)假设当n =k (k ≥2)时,a k =k ,那么当n =k +1时,a 2k +1=2a k +1+a 2k -1=2a k +1+k 2-1,∴[a k +1-(k +1)][a k +1+(k -1)]=0, ∵a k +1>0,k ≥2,∴a k +1+(k -1)>0, ∴a k +1=k +1.即当n =k +1时也成立.∴a n =n (n ≥2). 显然n =1时,也成立, 故对于一切n ∈N *,均有a n =n . (2)[证明] 要证nx +1+ny +1≤2n +2,只要证nx +1+2nx +1ny +1+ny +1≤2(n +2). 即n (x +y )+2+2n 2xy +nx +y +1≤2(n +2),将x +y =1代入,得2n 2xy +n +1≤n +2, 即只要证4(n 2xy +n +1)≤(n +2)2, 即4xy ≤1.∵x >0,y >0,且x +y =1, ∴xy ≤x +y 2=12,即xy ≤14,故4xy ≤1成立,所以原不等式成立. [答题模板]第1步:寻找特例a 1,a 2,a 3等. 第2步:猜想a n 的公式.第3步:转换递推公式为a n 与a n -1的关系. 第4步:用数学归纳法证明a n .①验证递推公式中的第一个自然数n =2. ②推证a k +1的表达式为k +1. ③补验n =1,说明对于n ∈N *成立. 第5步:分析法证明.[方法点睛] (1)利用数学归纳法可以探索与正整数n 有关的未知问题、存在性问题,其基本模式是“归纳——猜想——证明”,即先由合情推理发现结论,然后经逻辑推理即演绎推理论证结论的正确性.(2)为了正确地猜想a n ,首先准确求出a 1,a 2,a 3的值.(3)证明n =k 到n =k +1这一步时,忽略了假设条件去证明,造成不是纯正的数学归纳法.如本题:∵2S n -1=a 2n -1+n -1,∴2(S n -S n -1)=a 2n -a 2n -1+1,推导a n 与a n -1的递推关系,再推出a n ,则不是数学归纳法.(4)本题第(2)问中的不等式证明不是关于n 的不等式,由x +y =1来推证,则不能称为数学归纳法.。

高考数学一轮复习 第十二章 复数、算法、推理与证明 第3讲 合情推理与演绎推理课件 理

高考数学一轮复习 第十二章 复数、算法、推理与证明 第3讲 合情推理与演绎推理课件 理

12/11/2021
第二十九页,共五十页。
3.分形几何学是数学家伯努瓦·曼德尔布罗在 20 世纪 70 年代创立的一门新的数学学 科,它的创立为解决传统科学众多领域的难题提供了全新的思路.按照如图(1)所示的分 形规律可得如图(2)所示的一个树形图.若记图(2)中第 n 行黑圈的个数为 an,则 a2 018= ________.
一、知识梳理 1.推理 (1)定义:根据一个或几个已知的___判_断__(p_à_nd_u来àn) 确定一个新的__判_断__(_pà_nd_u_àn的) 思维过程. (2)分类:推理__合__演__情绎__(__h推é__q__理ín__ɡ)__推__理__
12/11/2021
第四页,共五十页。
(2)每组角的分母恰好等于右边两个相邻正整数因数的和.因此答案为43n(n+1). 【答案】 (1)C (2)43n(n+1)
12/11/2021
第二十页,共五十页。
角度三 与不等式有关的推理 已知 x∈(0,+∞),观察下列各式:x+1x≥2,x+x42=x2+x2+x42≥3,x+2x73=x3+
12/11/2021
第二十五页,共五十页。
1.《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术.得诀自诩无所
阻,额上坟起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”:2 23=
223,3 38= 338,4 145= 具有“穿墙术”,则 n=
4145,5
254=
5254,则按照以上规律,若 8
猜想 an 的表达式是
()
A.an=3n-1
B.an=4n-3
C.an=n2
D.an=3n-1
解析:选 C.a2=a1+3=4,a3=a2+5=9,a4=a3+7=16,a1=12,a2=22,a3=32,a4 =42,猜想 an=n2.

高考数学一轮复习 第十二章 推理与证明、算法、复数 12.4 复数 文

高考数学一轮复习 第十二章 推理与证明、算法、复数 12.4 复数 文

【步步高】(江苏专用)2017 版高考数学一轮复习 第十二章 推理与 证明、算法、复数 12.4 复数 文1.复数的有关概念(1)定义:形如 a+bi(a,b∈R)的数叫做复数,其中 a 叫做实部,b 叫做虚部.(i 为虚数单位)(2)分类:满足条件(a,b 为实数)a+bi 为实数⇔b=0复数的分类a+bi 为虚数⇔b≠0a+bi 为纯虚数⇔a=0 且 b≠0(3)复数相等:a+bi=c+di⇔a=c 且 b=d(a,b,c,d∈R).(4)共轭复数:a+bi 与 c+di 共轭⇔a=c,b=-d(a,b,c,d∈R).(5)模:向量→OZ的模叫做复数 z=a+bi 的模,记作|a+bi|或|z|,即|z|=|a+bi|= a2+b2(a,b∈R).2.复数的几何意义复数 z=a+bi 与复平面内的点 Z(a,b)及平面向量O→Z=(a,b)(a,b∈R)是一一对应法则.3.复数的运算(1)运算法则:设 z1=a+bi,z2=c+di,a,b,c,d∈R.(2)几何意义:复数加减法可按向量的平行四边形或三角形法则进行. 如图给出的平行四边形 OZ1ZZ2 可以直观地反映出复数加减法的几何意义, 即O→Z=O→Z1+O→Z2,Z→1Z2=O→Z2-O→Z1. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)方程 x2+x+1=0 没有解.( × ) (2)复数 z=a+bi(a,b∈R)中,虚部为 bi.( × ) (3)复数中有相等复数的概念,因此复数可以比较大小.( × ) (4)原点是实轴与虚轴的交点.( √ ) (5)复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的 模.( √ )1.(2015·安徽改编)设 i 是虚数单位,则复数(1-i)(1+2i)=__________. 答案 3+i 解析 (1-i)(1+2i)=1+2i-i-2i2=1+i+2=3+i. 2.(2015·课标全国Ⅰ改编)已知复数 z 满足(z-1)i=1+i,则 z=__________. 答案 2-i 解析 由(z-1)i=1+i,两边同乘以-i,则有 z-1=1-i,所以 z=2-i. 3.在复平面内,复数 6+5i,-2+3i 对应的点分别为 A,B.若 C 为线段 AB 的中点,则点 C 对应的复数是________________________. 答案 2+4i 解析 ∵A(6,5),B(-2,3),∴线段 AB 的中点 C(2,4), 则点 C 对应的复数为 z=2+4i. 4.已知 a,b∈R,i 是虚数单位.若 a+i=2-bi,则(a+bi)2=__________. 答案 3-4i 解析 ∵a,b∈R,a+i=2-bi,∴a=2,b=-1, ∴(a+bi)2=(2-i)2=3-4i.5.(教材改编)已知(1+2i) z =4+3i,则 z=________.答案 2+i解析∵ z =41+ +32ii=4+3i 1+2i∴z=2+i.1-2i 1-2i=10-5 5i=2-i,题型一 复数的概念例 1 (1)设 i 是虚数单位.若复数 z=a-31-0i(a∈R)是纯虚数,则 a 的值为________.(2)已知 a∈R,复数 z1=2+ai,z2=1-2i,若zz12为纯虚数,则复数zz12的虚部为________. (3) 若 z1 = (m2 + m + 1) + (m2 + m - 4)i(m∈R) , z2 = 3 - 2i , 则 “m = 1” 是 “z1 = z2” 的 ____________条件.答案 (1)3 (2)1 (3)充分不必要解析 (1)z=a-31-0i=a-(3+i)=(a-3)-i,由 a∈R,且 z=a-31-0i为纯虚数知 a=3.(2)由zz12=21+ -a2ii=2+ai 1+2i 52-2a 4+a = 5 +5i是纯虚数,得a=1,此时zz12=i,其虚部为 1.(3)由mm22+ +mm+ -14= =-3,2, 解得 m=-2 或 m=1, 所以“m=1”是“z1=z2”的充分不必要条件. 引申探究1.对本例(1)中的复数 z,若|z|= 10,求 a 的值.解 若|z|= 10,则(a-3)2+1=10,∴|a-3|=3,∴a=0 或 a=6.2.在本例(2)中,若zz12为实数,则 a=________. 答案 -4 解析 若zz12为实数,则4+5 a=0.∴a=-4. 思维升华 解决复数概念问题的方法及注意事项(1)复数的分类及对应点的位置都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可.(2)解题时一定要先看复数是否为 a+bi(a,b∈R)的形式,以确定实部和虚部.(1)若复数 z=(x2-1)+(x-1)i 为纯虚数,则实数 x 的值为________. (2)(2014·浙江改编)已知 i 是虚数单位,a,b∈R,则“a=b=1”是“(a+bi)2=2i”的________________条件.答案 (1)-1 (2)充分不必要解析 (1)由复数 z 为纯虚数,得x2-1=0, x-1≠0,解得 x=-1. (2)当 a=b=1 时,(a+bi)2=(1+i)2=2i;当(a+bi)2=2i 时,得a2-b2=0, ab=1,解得 a=b=1 或 a=b=-1,所以“a=b=1”是“(a+bi)2=2i”的充分不必要条件.题型二 复数的运算命题点 1 复数的乘法运算例 2 (1)(2015·湖北改编)i 为虚数单位,i607 的共轭复数为________.(2)(2015·北京改编)复数 i(2-i)=________.答案 (1)i (2)1+2i解析 (1)方法一 i607=i4×151+3=i3=-i,其共轭复数为 i.方法二 i607=ii608=i4×i152=1i=-i,其共轭复数为 i.(2)i(2-i)=2i-i2=1+2i.命题点 2 复数的除法运算例3(1)(2015·湖南改编)已知1-i z2=1+i(i 为虚数单位),则复数 z=________.(2)(11+ -ii)6+2+ 3-3i=________. 2i答案 (1)-1-i (2)-1+i解析(1)由1-i z2=1+i,知 z=1-i 1+i22i=-1+i=-1-i.(2)原式=[1+i 22]6+2+ 3i3+ 2i3 2+ 2 2=i6+6+2i+3i- 56=-1+i.命题点 3 复数的运算与复数概念的综合问题例 4 (1)(2015·天津)i 是虚数单位,若复数(1-2i)(a+i)是纯虚数,则实数 a 的值为________. (2)(2014·江苏)已知复数 z=(5+2i)2(i 为虚数单位),则 z 的实部为________.答案 (1)-2 (2)21解析 (1)(1-2i)(a+i)=a+2+(1-2a)i,由已知,得 a+2=0,1-2a≠0,∴a=-2. (2)因为 z=(5+2i)2=25+20i+(2i)2=25+20i-4=21+20i,所以 z 的实部为 21.命题点 4 复数的综合运算例 5 (1)(2014·安徽)设 i 是虚数单位,z 表示复数 z 的共轭复数.若 z=1+i,则zi+i· z=________.(2)若复数 z 满足(3-4i)z=|4+3i|,则 z 的虚部为________.答案 (1)2 (2)45解析(1)∵z=1+i,∴zz 1+i -i2+i =1-i,i= i = i =1-i,z ∴i+i·z=1-i+i(1-i)=(1-i)(1+i)=2.(2)设 z=a+bi,故(3-4i)(a+bi)=3a+3bi-4ai+4b=|4+3i|,所以33ba-+44ab= =05, , 解得 b=45. 思维升华 复数代数形式运算问题的常见类型及解题策略 (1)复数的乘法.复数的乘法类似于多项式的四则运算,可将含有虚数单位 i 的看作一类同类 项,不含 i 的看作另一类同类项,分别合并即可. (2)复数的除法.除法的关键是分子分母同乘以分母的共轭复数,解题中要注意把 i 的幂写成 最简形式. (3)复数的运算与复数概念的综合题,先利用复数的运算法则化简,一般化为 a+bi(a,b∈R) 的形式,再结合相关定义解答. (4)复数的运算与复数几何意义的综合题.先利用复数的运算法则化简,一般化为 a+bi(a, b∈R)的形式,再结合复数的几何意义解答. (5)复数的综合运算.分别运用复数的乘法、除法法则进行运算,要注意运算顺序,要先算乘 除,后算加减,有括号要先算括号里面的.z (1)(2015·山东改编)若复数 z 满足1-i=i,其中 i 为虚数单位,则 z=________.(2)11+ -ii2 016=________.(3)-2 1+23+3ii+1-2i2016=________.答案 (1)1-i (2)1 (3)1+iz 解析 (1)∵1-i=i,∴ z =i(1-i)=i-i2=1+i, ∴z=1-i. (2)11+-ii21 008=11+ -22ii+ +ii221 008=1.(3)原式=i 1+2 3i 1+2 3i+1-2i21 008=i+-22i1 008=i+i1 008=i+i4×252=1+i.题型三 复数的几何意义例 6 (1)(2014·重庆改编)实部为-2,虚部为 1 的复数所对应的点位于复平面的第________象限.答案 二解析 由题意可得复数 z=-2+i,故在复平面内对应的点为(-2,1),在第二象限.(2)如图所示,平行四边形 OABC,顶点 O,A,C 分别表示 0,3+2i,-2+4i,试求:①A→O、B→C所表示的复数;②对角线→CA所表示的复数;③B 点对应的复数.解 ①A→O=-→OA,∴A→O所表示的复数为-3-2i.∵B→C=A→O,∴→BC所表示的复数为-3-2i.②C→A=O→A-O→C,∴→CA所表示的复数为(3+2i)-(-2+4i)=5-2i.③O→B=O→A+A→B=O→A+O→C,∴O→B所表示的复数为(3+2i)+(-2+4i)=1+6i,即 B 点对应的复数为 1+6i.思维升华 因为复平面内的点、向量及向量对应的复数是一一对应的,要求某个向量对应的复数时,只要找出所求向量的始点和终点,或者用向量相等直接给出结论即可.(1)如图,在复平面内,点 A 表示复数 z,则图中表示 z 的共轭复数的点是 ________.答案 B解析 表示复数 z 的点 A 与表示 z 的共轭复数的点关于 x 轴对称,∴B 点表示 z .(2)已知 z 是复数,z+2i、2-z i均为实数(i 为虚数单位),且复数(z+ai)2 在复平面内对应 的点在第一象限,求实数 a 的取值范围. 解 设 z=x+yi(x、y∈R), ∴z+2i=x+(y+2)i,由题意得 y=-2. ∵2-z i=x2--2ii=15(x-2i)(2+i) =15(2x+2)+15(x-4)i, 由题意得 x=4.∴z=4-2i. ∵(z+ai)2=(12+4a-a2)+8(a-2)i, 根据条件,可知12+4a-a2>0,8 a-2 >0, 解得 2<a<6, ∴实数 a 的取值范围是(2,6).23.解决复数问题的实数化思想典例 (14 分)已知 x,y 为共轭复数,且(x+y)2-3xyi=4-6i,求 x,y.思维点拨 (1)x,y 为共轭复数,可用复数的基本形式表示出来;(2)利用复数相等,将复数问题转化为实数问题.规范解答解 设 x=a+bi (a,b∈R), 则 y=a-bi,x+y=2a,xy=a2+b2,[3 分] 代入原式,得(2a)2-3(a2+b2)i=4-6i,[5 分]根据复数相等得4-a23=4a,2+b2 =-6,[7 分]解得ab= =11, , 或ab= =-1,1, 故所求复数为或ab= =- 1,1,或ab= =- -11, .[10 分]x=1+i, y=1-i,或xy= =11- +ii, ,或xy= =- -11+ -ii, ,或xy= =- -11- +ii,.[14 分]温馨提醒 (1)复数问题要把握一点,即复数问题实数化,这是解决复数问题最基本的思想方法.(2)本题求解的关键是先把 x、y 用复数的基本形式表示出来,再用待定系数法求解.这是常用的数学方法.(3)本题易错原因为想不到利用待定系数法,或不能将复数问题转化为实数方程求解.[方法与技巧] 1.复数的代数形式的运算主要有加、减、乘、除及求低次方根.除法实际上是分母实数化的 过程. 2.复数 z=a+bi(a,b∈R)是由它的实部和虚部唯一确定的,两个复数相等的充要条件是复 数问题转化为实数问题的主要方法.对于一个复数 z=a+bi(a,b∈R),既要从整体的角度 去认识它,把复数看成一个整体,又要从实部、虚部的角度分解成两部分去认识. 3.在复数的几何意义中,加法和减法对应向量的三角形法则,其方向是应注意的问题,平移 往往和加法、减法相结合. [失误与防范] 1.判定复数是实数,仅注重虚部等于 0 是不够的,还需考虑它的实部是否有意义. 2.两个虚数不能比较大小. 3.注意复数的虚部是指在 a+bi(a,b∈R)中的实数 b,即虚部是一个实数.A 组 专项基础训练 (时间:30 分钟)1.(2015·福建改编)若(1+i)+(2-3i)=a+bi(a,b∈R,i 是虚数单位),则 a,b 的值分 别等于__________. 答案 3,-2 解析 ∵(1+i)+(2-3i)=3-2i=a+bi,∴a=3,b=-2.2.设 z=1+1 i+i,则|z|=________.答案2 2解析∵z=1+1 i+i=1-i 1+i 1-i+i=1-2 i+i=12+12i,∴|z|=122+122=2 2. 3.(2015·课标全国Ⅱ改编)若 a 为实数,且(2+ai)(a-2i)=-4i,则 a=________. 答案 0 解析 因为 a 为实数,且(2+ai)(a-2i)=4a+(a2-4)i=-4i,得 4a=0 且 a2-4=-4, 解得 a=0. 4.若 i 为虚数单位,图中复平面内点 Z 表示复数 z,则表示复数1+z i的点是________.答案 H解析 由题图知复数 z=3+i,∴1+z i=31+ +ii=3+i 1+i1-i 1-i=4-22i=2-i.∴表示复数1+z i的点为 H.5.(2014·江西改编) z 是 z 的共轭复数,若 z+ z =2,(z- z )i=2(i 为虚数单位),则z=__________. 答案 1-i解析 方法一 设 z=a+bi,a,b 为实数,则 z =a-bi.∵z+ z =2a=2,∴a=1.又(z- z )i=2bi2=-2b=2,∴b=-1.故 z=1-i.方法二∵(z-z)i=2,∴z-z2 =i=-2i.又 z+ z =2,∴(z- z )+(z+ z )=-2i+2,∴2z=-2i+2,∴z=1-i.6.(2015·江苏)设复数 z 满足 z2=3+4i(i 是虚数单位),则 z 的模为________.答案 5解析 ∵z2=3+4i,∴|z|2=|3+4i|=5,即|z|= 5. 7.若31+-bii=a+bi(a,b 为实数,i 为虚数单位),则 a+b=________.答案 3解析31+-bii=3+bi 21+i=12[(3-b)+(3+b)i]=3-2 b+3+2 bi.a=3-2 b, ∴3+2 b=b,解得ab= =03,. ∴a+b=3.8.复数(3+i)m-(2+i)对应的点在第三象限内,则实数 m 的取值范围是________. 答案 m<23 解析 z=(3m-2)+(m-1)i,其对应点(3m-2,m-1)在第三象限内,故 3m-2<0 且 m-1<0, ∴m<23.-1+i 2+i9.计算:(1)i3;1+2i 2+3 1-i(2)2+i;1-i1+i(3) 1+i 2+ 1-i 2;1- 3i(4).3+i 2-1+i 2+i -3+i解 (1)i3= -i =-1-3i.1+2i 2+3 1-i -3+4i+3-3i(2)2+i=2+ii i 2-i 1 2 =2+i= 5 =5+5i.1-i1+i 1-i 1+i 1+i -1+i(3) 1+i 2+ 1-i 2= 2i +-2i= -2 + 2 =-1.1- 3i (4) 3+i 2=3+i -i 3+i 2-i-i3-i13==3+i4=-4- 4 i.10.复数z 1=3a +5+(10-a 2)i ,z 2=21-a +(2a -5)i ,若z 1+z 2是实数,求实数a 的值. 解 z 1+z 2=3a +5+(a 2-10)i +21-a +(2a -5)i =⎝⎛⎭⎪⎫3a +5+21-a +[(a 2-10)+(2a -5)]i =a -13a +5a -1+(a 2+2a -15)i. ∵z 1+z 2是实数,∴a 2+2a -15=0,解得a =-5或a =3.又(a +5)(a -1)≠0,∴a ≠-5且a ≠1,故a =3.B 组 专项能力提升(时间:20分钟)11.复数z 1,z 2满足z 1=m +(4-m 2)i ,z 2=2cos θ+(λ+3sin θ)i(m ,λ,θ∈R ),并且z 1=z 2,则λ的取值范围是____________.答案 ⎣⎢⎡⎦⎥⎤-916,7 解析 由复数相等的充要条件可得⎩⎪⎨⎪⎧ m =2cos θ,4-m 2=λ+3sin θ,化简得4-4cos 2θ=λ+3sin θ,由此可得λ=-4cos 2θ-3sin θ+4=-4(1-sin 2θ)-3sin θ+4=4sin 2θ-3sin θ=4⎝ ⎛⎭⎪⎫sin θ-382-916,因为sin θ∈[-1,1],所以4sin 2θ-3sin θ∈⎣⎢⎡⎦⎥⎤-916,7. 12.设f (n )=⎝⎛⎭⎪⎫1+i 1-i n +⎝ ⎛⎭⎪⎫1-i 1+i n (n ∈N *),则集合{f (n )}中元素的个数为________. 答案 3解析 f (n )=⎝ ⎛⎭⎪⎫1+i 1-i n +⎝ ⎛⎭⎪⎫1-i 1+i n =i n +(-i)n , f (1)=0,f (2)=-2,f (3)=0,f (4)=2,f (5)=0,…,∴集合中共有3个元素.13.已知复数z =x +y i ,且|z -2|=3,则y x的最大值为________.答案 3 解析 ∵|z -2|=x -22+y 2=3, ∴(x -2)2+y 2=3.由图可知⎝ ⎛⎭⎪⎫y x max =31= 3.14.设a 是实数,若复数z =a 1-i +1-i 2(i 为虚数单位)在复平面内对应的点在直线x +y =0上,则a 的值为________.答案 0解析 ∵z =a 1+i 2+1-i 2=a +12+a -12i , ∴依题意得a +12+a -12=0,∴a =0.15.若1+2i 是关于x 的实系数方程x 2+bx +c =0的一个复数根,则b =________,c =_________.答案 -2 3解析 ∵实系数一元二次方程x 2+bx +c =0的一个虚根为1+2i ,∴其共轭复数1-2i 也是方程的根.由根与系数的关系知, ⎩⎨⎧ 1+2i +1-2i =-b ,1+2i 1-2i =c ,∴b =-2,c =3. 16.若虚数z 同时满足下列两个条件:①z +5z是实数;②z +3的实部与虚部互为相反数. 这样的虚数是否存在?若存在,求出z ;若不存在,请说明理由.解 这样的虚数存在,z =-1-2i 或z =-2-i.设z =a +b i(a ,b ∈R 且b ≠0),z +5z =a +b i +5a +b i=a +b i +5a -b i a 2+b 2=⎝ ⎛⎭⎪⎫a +5a a 2+b 2+⎝ ⎛⎭⎪⎫b -5b a 2+b 2i. ∵z +5z 是实数,∴b -5b a 2+b2=0. 又∵b ≠0,∴a 2+b 2=5.①又z +3=(a +3)+b i 的实部与虚部互为相反数,∴a +3+b =0.②由⎩⎪⎨⎪⎧ a +b +3=0,a 2+b 2=5,解得⎩⎪⎨⎪⎧ a =-1,b =-2,或⎩⎪⎨⎪⎧ a =-2,b =-1,故存在虚数z,z=-1-2i或z=-2-i.。

届高考数学一轮复习第十二章推理与证明算法复数第三节数学归纳法课件理31共36页

届高考数学一轮复习第十二章推理与证明算法复数第三节数学归纳法课件理31共36页
届高考数学一轮复习第 十二章推理与证明算法 复数第三节数学归纳法
课件理31
6、纪律是自由的第一条件。——黑格 尔 7、纪律是集体的面貌,集体的声音, 集体的 动作, 集体的 表情, 集体的 信念。 ——马 卡连柯
8、我们现在必须完全保持党的纪律, 否则一 切都会 陷入污 泥中。 ——马 克思 9、学校没有纪律便如磨坊没有水。— —夸美 纽斯

10、一个人应该:活泼而守纪律,天 真而不 幼稚, 勇敢而 鲁莽, 倔强而 有原则 ,热情 而不冲 动,乐 观而不 盲目。 ——马 克思
66、节制使快乐增加并使享受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴斯 泰洛齐 68、决定一个人的一生,以及整个命运 的,只 是一瞬 之间。 ——歌 德 69、懒人无法享受休息之乐。——拉布 克 70、浪费时间是一桩大罪过。——卢梭

高考数学一轮复习第十二章推理与证明算法复数第三节数学归纳法课后作业理(1).doc

高考数学一轮复习第十二章推理与证明算法复数第三节数学归纳法课后作业理(1).doc

【创新方案】2017届高考数学一轮复习 第十二章 推理与证明、算法、复数 第三节 数学归纳法课后作业 理[全盘巩固]一、选择题1.已知f (n )=1n +1n +1+1n +2+…+1n 2,则( )A .f (n )中共有n 项,当n =2时,f (2)=12+13B .f (n )中共有n +1项,当n =2时,f (2)=12+13+14C .f (n )中共有n 2-n 项,当n =2时,f (2)=12+13D .f (n )中共有n 2-n +1项,当n =2时,f (2)=12+13+142.某个命题与自然数n 有关,若n =k (k ∈N *)时命题成立,那么可推得当n =k +1时该命题也成立,现已知n =5时,该命题不成立,那么可以推得( )A .n =6时该命题不成立B .n =6时该命题成立C .n =4时该命题不成立D .n =4时该命题成立3.用数学归纳法证明不等式1+12+14+…+12n -1>12764(n ∈N *)成立,其初始值至少应取( )A .7B .8C .9D .104.凸n 边形有f (n )条对角线,则凸n +1边形的对角线的条数f (n +1)为( ) A .f (n )+n +1 B .f (n )+n C .f (n )+n -1 D .f (n )+n -25.利用数学归纳法证明“(n +1)(n +2) …·(n +n )=2n×1×3×…×(2n -1),n ∈N *”时,从“n =k ”变到“n =k +1”时,左边应增乘的因式是( )A .2k +1B .2(2k +1) C.2k +1k +1 D.2k +3k +1二、填空题6.用数学归纳法证明1+12+13+…+12n -1<n (n ∈N ,且n >1),第一步要证的不等式是________________.7.用数学归纳法证明“当n 为正奇数时,x n +y n能被x +y 整除”,当第二步假设n =2k -1(k ∈N *)命题为真时,进而需证n =________时,命题亦真.8.用数学归纳法证明1+2+3+…+n 2=n 4+ n 22,则当n =k +1时左端应在n =k 的基础上加上的项为______________________________________.三、解答题9.求证:1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n (n ∈N *).10.用数学归纳法证明:1+122+132+…+1n 2<2-1n(n ∈N *,n ≥2). [冲击名校]1.平面内有n 条直线,最多可将平面分成f (n )个区域,则f (n ) 的表达式为( ) A .n +1 B .2n C.n 2+n +22D .n 2+n +12.在数列{a n }中,a 1=13,且S n =n (2n -1)a n ,通过求a 2,a 3,a 4,猜想a n 的表达式为( )A.1n -n + B.12nn +C.1n -n +D.1n +n +3.用数学归纳法证明不等式1n +1+1n +2+…+1n +n >1324的过程中,由n =k 推导n =k +1时,不等式的左边增加的式子是____________.4.已知函数f (x )=13x 3-x ,数列{a n }满足条件:a 1≥1,a n +1≥f ′(a n +1),试比较11+a 1+11+a 2+11+a 3+…+11+a n与1的大小,并说明理由.答 案 [全盘巩固]一、选择题1.解析:选D 由f (n )可知,共有n 2-n +1项,且n =2时,f (2)=12+13+14.2.解析:选C 因为当n =k (k ∈N *)时命题成立,则当n =k +1时,命题也成立.现已知n =5时,命题不成立,故n =4时命题也不成立.3.解析:选B 左边=1+12+14+…+12n -1=1-12n1-12=2-12n -1,代入验证可知n 的最小值是8.4.解析:选C 边数增加1,顶点也相应增加1个,它与和它不相邻的n -2个顶点连接成对角线,原来的一条边也成为对角线,因此,对角线增加n -1条.5.解析:选B 当n =k (k ∈N *)时, 左式为(k +1)(k +2) ·…·(k +k );当n =k +1时,左式为(k +1+1)·(k +1+2)·…·(k +1+k -1)·(k +1+k )·(k +1+k +1),则左边应增乘的式子是k +k +k +1=2(2k +1).二、填空题6.解析:当n =2时,左边为1+12+122-1=1+12+13,右边为2.故应填1+12+13<2.答案:1+12+13<27.解析:n 为正奇数,假设n =2k -1成立后,需证明的应为n =2k +1时成立. 答案:2k +18.解析:当n =k 时左端为1+2+3+…+k +(k +1)+(k +2)+…+k 2, 则当n =k +1时,左端为1+2+3+…+k 2+(k 2+1)+(k 2+2)+…+(k +1)2, 故增加的项为(k 2+1)+(k 2+2)+…+(k +1)2. 答案:(k 2+1)+(k 2+2)+…+(k +1)2三、解答题9.证明:(1)当n =1时,左边=1-12=12,右边=11+1=12,左边=右边,等式成立. (2)假设n =k (k ∈N *)时等式成立,即1-12+13-14+…+12k -1-12k =1k +1+1k +2+…+12k, 则当n =k +1时,⎝ ⎛⎭⎪⎫1-12+13-14+…+12k -1-12k +⎝ ⎛⎭⎪⎫12k +1-12k +2 =⎝ ⎛⎭⎪⎫1k +1+1k +2+…+12k +⎝ ⎛⎭⎪⎫12k +1-12k +2=1k +2+1k +3+…+12k +1+12k +2. 即当n =k +1时,等式也成立.综合(1),(2)可知,对一切n ∈N *,等式成立.10.证明:(1)当n =2时,1+122=54<2-12=32,命题成立.(2)假设n =k (k ≥2,且k ∈N *)时命题成立,即 1+122+132+…+1k 2<2-1k. 当n =k +1时,1+122+132+…+1k 2+1k +2<2-1k+1k +2<2-1k +1kk +=2-1k +1k -1k +1=2-1k +1,命题也成立. 综合(1),(2)知原不等式在n ∈N *,n ≥2时均成立.[冲击名校]1.解析:选C 1条直线将平面分成1+1个区域;2条直线最多可将平面分成1+(1+2)=4个区域;3条直线最多可将平面分成1+(1+2+3)=7个区域;…;n 条直线最多可将平面分成1+(1+2+3+…+n )=1+n n +2=n 2+n +22个区域.2.解析:选C 由a 1=13,S n =n (2n -1)a n 求得a 2=115=13×5,a 3=135=15×7,a 4=163=17×9.猜想a n =1n -n +.3.解析:不等式的左边增加的式子是12k +1+12k +2-1k +1=1k +k +,故填1k +k +.答案:1k +k +4.解:∵f ′(x )=x 2-1,且a n +1≥f ′(a n +1), ∴a n +1≥(a n +1)2-1.∵函数g (x )=(x +1)2-1在[1,+∞)上是增函数. 于是由a 1≥1,得a 2≥(a 1+1)2-1≥22-1, 进而a 3≥(a 2+1)2-1≥24-1>23-1, 由此猜想:a n ≥2n-1.下面用数学归纳法证明这个猜想: ①当n =1时,a 1≥21-1=1,结论成立;②假设n =k (k ≥1且k ∈N *)时结论成立,即a k ≥2k-1.当n =k +1时,由g (x )=(x +1)2-1在区间[1,+∞)上是增函数知a k +1≥(a k +1)2-1≥22k-1≥2k +1-1,即n =k +1时,结论也成立.由①②知,对任意n ∈N *,都有a n ≥2n-1. 即1+a n ≥2n,∴11+a n ≤12n ,∴11+a 1+11+a 2+11+a 3+…+11+a n ≤12+122+123+…+12n =1-⎝ ⎛⎭⎪⎫12n<1.。

2020高考数学一轮复习第十二章推理与证明算法复数第一节合情推理与演绎推理课后作业理

2020高考数学一轮复习第十二章推理与证明算法复数第一节合情推理与演绎推理课后作业理

【2019最新】精选高考数学一轮复习第十二章推理与证明算法复数第一节合情推理与演绎推理课后作业理一、选择题1.观察(x2)′=2x,(x4)′=4x3,(cos x)′=-sin x,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=( ) A.f(x) B.-f(x) C.g(x) D.-g(x)2.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=( )A.121 B.123 C.231 D.2113.在平面几何中有如下结论:正三角形ABC的内切圆面积为S1,外接圆面积为S2,则=,推广到空间可以得到类似结论:已知正四面体P­ABC的内切球体积为V1,外接球体积为V2,则=( )A. B. C. D.1274.(2016·陕西商洛期中)对于任意的两个实数对(a,b)和(c,d),规定:(a,b)=(c,d),当且仅当a=c,b=d;运算为:(a,,d)=(ac-bd,bc+ad);运算为:(a,,d)=(a+c,b+d),设p,q∈R,若,q)=(5,0),则,q)=( )A.(4,0) B.(2,0) C.(0,2) D.(0,-4)5.(2016·西安五校联考)已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个“整数对”是( )A.(7,5) B.(5,7) C.(2,10) D.(10,1)二、填空题6.观察下列不等式:52-22≥2×,5-245-35≥×3,42-3298-28≥×5,93-23910-510≥2×75,95-55……由以上不等式,可以猜测:当a>b>0,s、r∈N*时,有≥________.7.(2016·日照模拟)对于实数x,[x]表示不超过x的最大整数,观察下列等式:[ ]+[ ]+[ ]=3,[ ]+[ ]+[ ]+[ ]+[ ]=10,[ ]+[ ]+[ ]+[ ]+[ ]+[ ]+[ ]=21,……按照此规律第n个等式的等号右边的结果为________.8.如果函数f(x)在区间D上是凸函数,那么对于区间D内的任意x1,x2,…,xn,都有≤f.若y=sin x在区间(0,π)上是凸函数,那么在△ABC中,sin A+sin B+sin C的最大值是________.三、解答题9.定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{an}是等和数列,且a1=2,公和为5.求:(1)a18的值;(2)该数列的前n项和Sn.10.在Rt△ABC中,AB⊥AC,AD⊥BC于D,求证:=+.在四面体ABCD中,类比上述结论,你能得到怎样的猜想?并说明理由.1.(2016·太原模拟)某单位安排甲、乙、丙三人在某月1日至12日值班,每人4天.甲说:我在1日和3日都有值班;乙说:我在8日和9日都有值班;丙说:我们三人各自值班的日期之和相等.据此可判断丙必定值班的日期是( )A.2日和5日 B.5日和6日C.6日和11日 D.2日和11日2.如图,将平面直角坐标系中的格点(横、纵坐标均为整数的点)按如下规则标上数字标签:原点处标0,点(1,0)处标1,点(1,-1)处标2,点(0,-1)处标3,点(-1,-1)处标4,点(-1,0)处标5,点(-1,1)处标6,点(0,1)处标7,依此类推,则标签为2 0132的格点的坐标为( )A.(1 006,1 005)B.(1 007,1 006)C.(1 008,1 007)D.(1 009,1 008)3.设函数f(x)=(x>0),观察:f1(x)=f(x)=,f2(x)=f(f1(x))=,f3(x)=f(f2(x))=,f4(x)=f(f3(x))=,……根据以上事实,由归纳推理可得:当n∈N*且n≥2时,fn(x)=f(fn-1(x))=________.4.(2016·淄博模拟)如图所示的三角形数阵叫“莱布尼茨调和三角形”,它是由整数的倒数组成的,第n行有n个数且两端的数均为(n≥2),每个数是它下一行左右相邻两数的和,如=+,=+,=+,则第7行第4个数(从左往右)为________.5.对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f′(x)是函数y=f(x)的导数,f″(x)是f′(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y =f(x)的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.若f(x)=x3-x2+3x -,请你根据这一发现,(1)求函数f(x)=x3-x2+3x -的对称中心;(2)计算f +f +f +f +…+f.答 案一、选择题1.解析:选D 由所给函数及其导数知,偶函数的导函数为奇函数,因此当f(x)是偶函数时,其导函数应为奇函数,故g(-x)=-g(x).2.解析:选B 法一:由a +b =1,a2+b2=3,得ab =-1,代入后三个等式中符合,则a10+b10=(a5+b5)2-2a5b5=123.法二:令an =an +bn ,则a1=1,a2=3,a3=4,a4=7,…,得an +2=an +an +1,从而a6=18,a7=29,a8=47,a9=76,a10=123.3.解析:选D 正四面体的内切球与外接球的半径之比为1∶3,故=.4.解析:选B 由,q)=(5,0)得 ⎩⎪⎨⎪⎧ p -2q =5,2p +q =0⇒⎩⎪⎨⎪⎧ p =1,q =-2, 所以,q)=,-2)=(2,0).5.解:选B 依题意,把“整数对”的和相同的分为一组,不难得知第n 组中每个“整数对”的和均为n +1,且第n 组共有n 个“整数对”,这样的前n 组一共有个“整数对”,注意到<60<,因此第60个“整数对”处于第11组(每个“整数对”的和为12的组)的第5个位置,结合题意可知每个“整数对”的和为12的组中的各对数依次为:(1,11),(2,10),(3,9),(4,8),(5,7),…,因此第60个“整数对”是(5,7).二、填空题6.解析:由已知不等式可知,≥2×=×2-1,≥×3=×5-2,≥×5=×8-3,≥2×75=×10-5,故猜想当a>b>0,s 、r∈N*时,≥s-r.答案:s -r7.解析:因为[ ]+[ ]+[ ]=1×3,[ ]+[ ]+[ ]+[ ]+[ ]=2×5,[ ]+[ ]+[ ]+[]+[ ]+[ ]+[ ]=3×7,……,以此类推,第n 个等式的等号右边的结果为n(2n +1),即2n2+n.答案:2n2+n8.解析:由题意知,凸函数满足 ++…+n ≤f,又y =sin x 在区间(0,π)上是凸函数,则sin A +sin B +sin C≤3sin=3sin =. 答案:332三、解答题9.解:(1)由等和数列的定义,数列{an}是等和数列,且a1=2,公和为5,易知a2n -1=2,a2n =3(n =1,2,…),故a18=3.(2)当n 为偶数时,Sn =a1+a2+…+an=(a1+a3+…+an -1)+(a2+a4+…+an)=2+2+…++3+3+…+3n 2个3 =n ;当n 为奇数时,Sn =Sn -1+an =(n -1)+2=n -.综上所述,Sn =⎩⎪⎨⎪⎧ 52n ,n 为偶数,52n -12,n 为奇数.10解:如图所示,由射影定理AD2=BD·DC,AB2=BD·BC,AC2=BC·DC,∴=1BD·DC ==.又BC2=AB2+AC2,∴==+.猜想,在四面体ABCD中,AB、AC、AD两两垂直,AE⊥平面BCD,则=++.证明:如图,连接BE并延长交CD于F,连接AF.∵AB⊥AC,AB⊥AD,∴AB⊥平面ACD.∵AF⊂平面ACD,∴AB⊥AF.在Rt△ABF中,AE⊥BF,∴=+.∵AB⊥平面ACD,∴AB⊥CD.∵AE⊥平面BCD,∴AE⊥CD.又AB与AE交于点A,∴CD⊥平面ABF,∴CD⊥AF.∴在Rt△ACD中=+,∴=++.1.解析:选C 这12天的日期之和S12=(1+12)=78,甲、乙、丙各自的日期之和是26.对于甲,剩余2天日期之和22,因此这两天是10日和12日,故甲在1日,3日,10日,12日有值班;对于乙,剩余2天日期之和是9,可能是2日,7日,也可能是4日,5日,因此丙必定值班的日期是6日和11日.2.解析:选B 因为点(1,0)处标1=12,点(2,1)处标9=32,点(3,2)处标25=52,点(4,3)处标49=72,依此类推得点(1 007,1 006)处标2 0132.故选B.3.解析:根据题意知,分子都是x,分母中的常数项依次是2,4,8,16,…,可知fn(x)的分母中常数项为2n,分母中x的系数为2n-1,故fn(x)=f(fn-1(x))=.答案:x-+2n4.解析:设第n行第m个数为a(n,m),由题意知a(6,1)=,a(7,1)=,∴a(7,2)=a(6,1)-a(7,1)=-=,a(6,2)=a(5,1)-a(6,1)=-=,a(7,3)=a(6,2)-a(7,2)=-=,a(6,3)=a(5,2)-a(6,2)=-=,∴a(7,4)=a(6,3)-a(7,3)=-=.答案:11405.解:(1)f′(x)=x2-x+3,f″(x)=2x-1,由f″(x)=0,即2x-1=0,解得x=.f=×3-×2+3×-=1.由题中给出的结论,可知函数f(x)=x3-x2+3x-的对称中心为.(2)由(1),知函数f(x)=x3-x2+3x-的对称中心为,所以f+f=2,即f(x)+f(1-x)=2.故f+f=2,f+f=2,f+f=2,……f+f=2,所以f+f+f+…+f=×2×2 016=2 016.。

高考数学一轮复习第十二章推理与证明、算法初步、复数第3讲数学归纳法及其应用练习理

高考数学一轮复习第十二章推理与证明、算法初步、复数第3讲数学归纳法及其应用练习理

【创新设计】(江苏专用)2017版高考数学一轮复习 第十二章 推理与证明、算法初步、复数 第3讲 数学归纳法及其应用练习 理基础巩固题组 (建议用时:40分钟)一、填空题1.在数列{a n }中,已知a 1=1,当n ≥2时,a n -a n -1=2n -1,依次计算a 2,a 3,a 4后,猜想a n 的表达式是________.解析 计算出a 1=1,a 2=4,a 3=9,a 4=16.可猜a n =n 2. 答案 a n =n 22.某个命题与正整数有关,如果当n =k (k ∈N *)时该命题成立,那么可以推出n =k +1时该命题也成立.给出以下说法:①n =4时该命题成立;②n =4时该命题不成立;③n ≥5,n ∈N *时该命题都成立;④可能n 取某个大于5的整数时该命题不成立.现已知n =5时该命题成立,那么上述说法正确的序号是________.解析 显然①,②错误,由数学归纳法原理知③正确,④错. 答案 ③3.已知{a n }满足a n +1=a 2n -na n +1,n ∈N *,且a 1=2.则a 2=________,a 3=________,a 4=________,猜想a n =________. 答案 3 4 5 n +14.用数学归纳法证明“当n 为正奇数时,x n+y n能被x +y 整除”,当第二步假设n =k (k ∈N *)命题为真时,进而需证n =________时,命题亦真.解析 n 为正奇数,假设n =k 成立后,需证明的应为n =k +2时成立. 答案 k +25.用数学归纳法证明不等式1n +1+1n +2+…+12n >1324(n >2)的过程中,由n =k 到n =k +1时,不等式的左边________(填序号). ①增加了一项:12(k +1);②增加了两项:12k +1,12(k +1);③增加了两项:12k +1,12(k +1),又减少了一项:1k +1;④增加了一项:12(k +1),又减少了一项:1k +1.解析 当n =k 时,左边=1k +1+1k +2+…+12k,n =k +1时,左边=1k +2+1k +3+…+12k +12k +1+12k +2. 答案 ③6.(2015·九江模拟)已知f (n )=1+12+13+…+1n (n ∈N *),经计算得f (4)>2,f (8)>52,f (16)>3,f (32)>72,则其一般结论为________.解析 因为f (22)>42,f (23)>52,f (24)>62,f (25)>72,所以当n ≥2时,有f (2n)>n +22.故填f (2n )>n +22(n ≥2,n ∈N *).答案 f (2n)>n +22(n ≥2,n ∈N *)7.已知f (n )=1n +1n +1+1n +2+…+1n 2,给出以下说法:①f (n )中共有n 项,当n =2时,f (2)=12+13;②f (n )中共有n +1项,当n =2时,f (2)=12+13+14;③f (n )中共有n 2-n 项,当n =2时,f (2)=12+13;④f (n )中共有n 2-n +1项,当n =2时,f (2)=12+13+14.则上述说法正确的序号是________. 答案 ④8.(2015·济南模拟)已知数组⎝ ⎛⎭⎪⎫12,⎝ ⎛⎭⎪⎫12,21,⎝ ⎛⎭⎪⎫13,22,31,⎝ ⎛⎭⎪⎫14,23,32,41,…,⎝⎛⎭⎪⎫1n ,2n -1,3n -2,…,n -12,n 1,….记该数组为:(a 1),(a 2,a 3),(a 4,a 5,a 6),…,则a 200=________.解析 通过观察数组可以发现,第n 组数中共有n 个数,每个数的分子与分母的和等于n +1,又因为1+2+…+19=190<200,故a 200应该是第20组中的第10个数,故应为1011.答案1011二、解答题9.(2016·南京质检)数列{2n-1}的前n 项组成集合A n ={1,3,7, (2)-1}(n ∈N *),从集合A n 中任取k (k =1,2,3,…,n )个数,其所有可能的k 个数的乘积的和为T k (若只取一个数,规定乘积为此数本身),记S n =T 1+T 2+…+T n .例如:当n =1时,A 1={1},T 1=1,S 1=1;当n =2时,A 2={1,3},T 1=1+3,T 2=1×3,S 2=1+3+1×3=7.(1)求S 3;(2)猜想S n ,并用数学归纳法证明.解 (1)当n =3时,A 3={1,3,7},T 1=1+3+7=11,T 2=1×3+1×7+3×7=31,T 3=1×3×7=21,所以S 3=11+31+21=63. (2)由S 1=1=21×22-1,S 2=7=23-1=22×32-1, 猜想S n =2n (n +1)2-1,下面用数学归纳法证明:①易知当n =1时成立;②假设当n =k 时,S k =2k (k +1)2-1,则当n =k +1时,S k +1=T 1+T 2+…+T k +1=[T 1′+(2k +1-1)]+[T 2′+(2k +1-1)T 1′]+[T 3′+(2k +1-1)T 2′]+…+(2k +1-1)T k ′(其中T i ′(i =1,2,…,k )为n =k 时所有可能的k 个数的乘积的和T k )=(T 1′+T 2′+T 3′+…+T k ′)+(2k +1-1)+(2k +1-1)·(T 1′+T 2′+T 3′+…+T k ′)=S k +(2k +1-1)+(2k +1-1)S k =2k +1·⎝ ⎛⎭⎪⎫2k (k +1)2-1+(2k +1-1)=2k +1·2k (k +1)2-1=2(k +1)(k +2)2-1,即当n =k +1时,S k +1=2(k +1)(k +2)2-1成立.综合①②知,对任意的n ∈N *,S n =2n (n +1)2-1成立.所以S n =2n (n +1)2-1.10.(2016·苏、锡、常、镇一模)圆周上有n 个固定点,分别为A 1,A 2,…,A n (n ∈N *,n ≥2),在每一个点上分别标上1,2,3中的某一个数字,但相邻的两个数字不相同,记所有的标法总数为a n . (1)写出a 2,a 3,a 4的值;(2)写出a n 的表达式,并用数学归纳法证明. 解 (1)a 2=6,a 3=6,a 4=18.(2)a n =2n+2·(-1)n(n ∈N *,n ≥2).(*) 证明如下:①当n =2时,a 2=6,符合(*)式. ②假设当n =k 时,(*)式成立, 即a k =2k+2·(-1)k成立,那么当n =k +1时,因为A 1有3种标法,A 2有2种标法,…,A k 有2种标法, 若A k +1仅与A k 不同,则有2种标法:一种与A 1数不同,符合要求,有a k +1种;一种与A 1数相同,不符合要求,但相当于k 个点的标法总数,有a k 种,则有3×2k=a k +1+a k ,所以a k +1=-a k +3×2k=-2k-2·(-1)k+3×2k=2k +1+2·(-1)k +1,所以n =k +1时,(*)式也成立,由①②知(*)式成立, 即a n =2n +2·(-1)n (n ∈N *,n ≥2).能力提升题组 (建议用时:25分钟)11.用数学归纳法证明2n>2n +1,n 的第一个取值应是________. 解析 ∵n =1时,21=2,2×1+1=3,2n>2n +1不成立;n =2时,22=4,2×2+1=5,2n >2n +1不成立; n =3时,23=8,2×3+1=7,2n >2n +1成立.∴n 的第一个取值应是3. 答案 312.(2015·北京东城区调研)设S 1=12,S 2=12+22+12,…,S n =12+22+32+…+(n -1)2+n 2+(n -1)2+…+22+12,用数学归纳法证明S n =n (2n +1)3时,第二步从“k ”到“k +1”应添加的项为________.解析 由S 1,S 2,…,S n 可以发现由n =k 到n =k +1时,中间增加了两项(k +1)2+k 2(n ,k ∈N *).答案 (k +1)2+k 213.设平面内有n 条直线(n ≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f (n )表示这n 条直线交点的个数,则f (4)=________;当n >4时,f (n )=________(用n 表示).解析 f (3)=2,f (4)=f (3)+3=2+3,f (5)=f (4)+4=2+3+4,f (6)=f (5)+5=2+3+4+5,猜想f (n )=2+3+4+…+(n -1)=(n +1)(n -2)2(n >4).答案 5 12(n +1)(n -2)14.(2014·江苏卷)已知函数f 0(x )=sin x x(x >0),设f n (x )为f n -1(x )的导数,n ∈N *.(1)求2f 1⎝ ⎛⎭⎪⎫π2+π2f 2⎝ ⎛⎭⎪⎫π2的值;(2)证明:对任意的n ∈N *,等式⎪⎪⎪⎪⎪⎪nf n -1⎝ ⎛⎭⎪⎫π4+π4f n ⎝ ⎛⎭⎪⎫π4=22都成立. (1)解 由已知,得f 1(x )=f ′0(x )=⎝ ⎛⎭⎪⎫sin x x ′=cos x x -sin x x 2,于是f 2(x )=f ′1(x )=⎝⎛⎭⎪⎫cos x x ′-⎝ ⎛⎭⎪⎫sinx x 2′=-sin x x -2cos x x 2+2sin x x 3, 所以f 1⎝ ⎛⎭⎪⎫π2=-4π2,f 2⎝ ⎛⎭⎪⎫π2=-2π+16π3.故2f 1⎝ ⎛⎭⎪⎫π2+π2f 2⎝ ⎛⎭⎪⎫π2=-1.(2)证明 由已知,得xf 0(x )=sin x ,等式两边分别对x 求导,得f 0(x )+xf ′0(x )=cosx ,即f 0(x )+xf 1(x )=cos x =sin ⎝⎛⎭⎪⎫x +π2,类似可得2f 1(x )+xf 2(x )=-sin x =sin(x +π),3f 2(x )+xf 3(x )=-cos x =sin ⎝⎛⎭⎪⎫x +3π2,4f 3(x )+xf 4(x )=sin x =sin ()x +2π. 猜想nf n -1(x )+xf n (x )=sin ⎝⎛⎭⎪⎫x +n π2. 下面用数学归纳法证明等式nf n -1(x )+xf n (x ) =sin ⎝⎛⎭⎪⎫x +n π2对所有的n ∈N *都成立. ①当n =1时,由上可知等式成立.②假设当n =k 时等式成立,即kf k -1(x )+xf k (x ) =sin ⎝⎛⎭⎪⎫x +k π2. 因为[kf k -1(x )+xf k (x )]′=kf ′k -1(x )+f k (x )+xf ′k (x )=(k +1)f k (x )+xf k +1(x ),⎣⎢⎡⎦⎥⎤sin ⎝ ⎛⎭⎪⎫x +k π2′=cos ⎝ ⎛⎭⎪⎫x +k π2·⎝ ⎛⎭⎪⎫x +k π2′ =sin ⎣⎢⎡⎦⎥⎤x +(k +1)π2, 所以(k +1)f k (x )+xf k +1(x )=sin ⎣⎢⎡⎦⎥⎤x +(k +1)π2. 因此当n =k +1时,等式也成立. 综合①,②可知等式nf n -1(x )+xf n (x ) =sin ⎝⎛⎭⎪⎫x +n π2对所有的n ∈N *都成立.令x =π4,可得nf n -1⎝ ⎛⎭⎪⎫π4+π4f n ⎝ ⎛⎭⎪⎫π4 =sin ⎝ ⎛⎭⎪⎫π4+n π2(n ∈N *).所以⎪⎪⎪⎪⎪⎪nf n -1⎝ ⎛⎭⎪⎫π4+π4f n ⎝ ⎛⎭⎪⎫π4=22(n ∈N *).。

高考数学一轮复习 第十二章 算法初步、推理与证明、复数12.5数学归纳法教学案 理

高考数学一轮复习 第十二章 算法初步、推理与证明、复数12.5数学归纳法教学案 理

12.5 数学归纳法考纲要求1.了解数学归纳法的原理.2.能用数学归纳法证明一些简单的数学命题.1.数学归纳法是证明一个与正整数n 有关的命题,可按下列步骤进行: (1)(归纳奠基)证明当n 取______时命题成立.(2)(归纳递推)假设n =k (k ≥k 0,k ∈N *)时命题成立,证明当______时命题也成立. 2.应用数学归纳法时特别注意:(1)数学归纳法证明的对象是与______有关的命题. (2)在用数学归纳法证明中,两个基本步骤缺一不可.1.用数学归纳法证明3n ≥n 3(n ∈N ,n ≥3),第一步应验证( ).A .n =1B .n =2C .n =3D .n =42.用数学归纳法证明1+2+22+…+2n +1=2n +2-1(n ∈N *)的过程中,在验证n =1时,左端计算所得的项为( ).A .1B .1+2C .1+2+22D .1+2+22+233.已知f (n )=1n +1n +1+1n +2+…+1n2,则( ).A .f (n )中共有n 项,当n =2时,f (2)=12+13B .f (n )中共有n +1项,当n =2时,f (2)=12+13+14C .f (n )中共有n 2-n 项,当n =2时,f (2)=12+13D .f (n )中共有n 2-n +1项,当n =2时,f (2)=12+13+144.用数学归纳法证明:“1+12+13+…+12n -1<n (n >1)”,由n =k (k >1)不等式成立,推证n =k +1时,左边应增加的项的项数是__________.5.已知数列{a n }中,a 1=12,a n +1=a na n +1,则数列的前5项为__________,猜想它的通项公式是__________.一、用数学归纳法证明恒等式【例1】 n ∈N *,求证:1-12+13-14+...+12n -1-12n =1n +1+1n +2+ (12).方法提炼用数学归纳法证题的关键是第二步由n =k 到n =k +1的过渡,要设法将待证式与归纳假设建立联系,即借助于已经学过的公式、定理或运算法则进行恒等变形,把n =k +1时的表达式拼凑出归纳假设的形式,再把运用归纳假设后的式子进行变形、证明.请做演练巩固提升2二、用数学归纳法证明不等式【例2】 设数列{a n }满足a 1=2,a n +1=a n +1a n(n =1,2,…).(1)证明:a n >2n +1对一切正整数n 都成立; (2)令b n =a nn(n =1,2,…),判断b n 与b n +1的大小,并说明理由. 方法提炼用数学归纳法证明不等式时常常要用到放缩法,即在归纳假设的基础上,通过放大或缩小技巧变换出要证明的目标不等式.事实上,在合理运用归纳假设后,可以使用证明不等式的任何方法证明目标式成立.请做演练巩固提升3三、用数学归纳法证明几何问题【例3】 用数学归纳法证明:凸n 边形的对角线的条数为f (n )=12n (n -3)(n ≥3).方法提炼用数学归纳法证明几何问题的关键是“找项”,即几何元素从k 个变成k +1个时,所证的几何量将增加多少,这需用到几何知识或借助于几何图形来分析;事实上,将n =k +1和n =k 分别代入所证的式子,然后作差,即可求出增加量,这也是用数学归纳法证明几何问题的一大技巧.请做演练巩固提升1 四、归纳—猜想—证明【例4】 设数列{a n }满足a n +1=a 2n -na n +1,n =1,2,3,….(1)当a 1=2时,求a 2,a 3,a 4,并由此猜想出a n 的一个通项公式; (2)当a 1≥3时,证明对所有的n ≥1,有a n ≥n +2. 方法提炼“归纳—猜想—证明的模式”,是不完全归纳法与数学归纳法综合运用的解题模式,这种方法在解决探索性、存在性问题时起着重要作用,它的证题模式是先由归纳推理发现结论,然后用数学归纳法证明结论的正确性,这种思维方式是推动数学研究与发展的重要方式.请做演练巩固提升5数学归纳法解题步骤要求【典例】 (14分)(2012湖北高考)(1)已知函数f (x )=rx -x r+(1-r )(x >0),其中r 为有理数,且0<r <1,求f (x )的最小值;(2)试用(1)的结果证明如下命题:设a 1≥0,a 2≥0,b 1,b 2为正有理数.若b 1+b 2=1,则1212bba a ≤a 1b 1+a 2b 2; (3)请将(2)中的命题推广到一般形式,并用数学归纳法证明你所推广的命题.注:当α为正有理数时,有求导公式(x α)′=αx α-1.规范解答:(1)f ′(x )=r -rx r -1=r (1-x r -1), 令f ′(x )=0,解得x =1.当0<x <1时,f ′(x )<0,所以f (x )在(0,1)内是减函数; 当x >1时,f ′(x )>0,所以f (x )在(1,+∞)内是增函数.故函数f (x )在x =1处取得最小值f (1)=0.(4分)(2)由(1)知,当x ∈(0,+∞)时,有f (x )≥f (1)=0,即x r≤rx +(1-r ).① 若a 1,a 2中有一个为0,则1212bba a ≤a 1b 1+a 2b 2成立;若a 1,a 2均不为0,又b 1+b 2=1,可得b 2=1-b 1, 于是在①中令x =a 1a 2,r =b 1,可得112b a a ⎛⎫ ⎪⎝⎭≤b 1·a 1a 2+(1-b 1), 即11112b ba a -≤a 1b 1+a 2(1-b 1),亦即1212b b a a ≤a 1b 1+a 2b 2.综上,对a 1≥0,a 2≥0,b 1,b 2为正有理数且b 1+b 2=1,总有1212bba a ≤a 1b 1+a 2b 2.②(8分)(3)(2)中命题的推广形式为:设a 1,a 2,…,a n 为非负实数,b 1,b 2,…,b n 为正有理数. 若b 1+b 2+…+b n =1,则1212bba a …n bn a ≤a 1b 1+a 2b 2+…+a n b n .③用数学归纳法证明如下:(ⅰ)当n =1时,b 1=1,有a 1≤a 1,③成立.(10分)(ⅱ)假设当n =k 时,③成立,即若a 1,a 2,…,a k 为非负实数,b 1,b 2,…,b k 为正有理数,且b 1+b 2+…+b k =1,则1212bba a …k bk a ≤a 1b 1+a 2b 2+…+a k b k .当n =k +1时,已知a 1,a 2,…,a k ,a k +1为非负实数,b 1,b 2,…,b k ,b k +1为正有理数,且b 1+b 2+…+b k +b k +1=1,此时0<b k +1<1,即1-b k +1>0,于是1212b b a a …11k k b b k k a a ++=(1212b ba a …kb k a )11k b k a ++=12111111111121()kk k k k k b b b b b b b b kk aaaa +++++----+….(12分)因b 11-b k +1+b 21-b k +1+…+b k1-b k +1=1,由归纳假设可得1211111112k k k k b b b b b b kaaa+++---…≤a 1·b 11-b k +1+a 2·b 21-b k +1+…+a k ·b k1-b k +1=a 1b 1+a 2b 2+…+a k b k1-b k +1,从而1212b b a a (1)1k k b bk k a a ++≤⎝⎛⎭⎪⎫a 1b 1+a 2b 2+…+a k b k 1-b k +11-b k +1·11k b k a ++.又因(1-b k +1)+b k +1=1,由②得⎝ ⎛⎭⎪⎫a 1b 1+a 2b 2+…+a k b k 1-b k +111k b +-11k b k a ++≤a 1b 1+a 2b 2+…+a k b k 1-b k +1·(1-b k +1)+a k +1b k +1 =a 1b 1+a 2b 2+…+a k b k +a k +1b k +1,从而1212b b a a (1)1k k b bk k a a ++≤a 1b 1+a 2b 2+…+a k b k +a k +1b k +1.故当n =k +1时,③成立.由(ⅰ)(ⅱ)可知,对一切正整数n ,所推广的命题成立.(14分) 答题指导:解决数学归纳法中“归纳—猜想—证明”问题及不等式证明时,有以下几点容易造成失分,在备考时要高度关注:1.归纳整理不到位得不出正确结果,从而给猜想造成困难.2.证明n =k 到n =k +1这一步时,忽略了假设条件去证明,造成不是纯正的数学归纳法.3.不等式证明过程中,不能正确合理地运用分析法、综合法来求证. 另外需要熟练掌握数学归纳法中几种常见的推证技巧,只有这样,才能快速正确地解决问题.1.平面内有n 个圆,其中每两个圆都相交于两点,且每三个圆都不相交于同一点,则这n 个圆将平面分成不同的区域有( ).A .2n 个B .2n个C .n 2-n +2个D .n 2+n +1个2.已知n 为正偶数,用数学归纳法证明1-12+13-14+…-1n =2⎝ ⎛⎭⎪⎫1n +2+1n +4+…+12n 时,若已假设n =k (k ≥2且k 为偶数)时命题为真,则还需要用归纳假设再证( ).A .n =k +1时等式成立B .n =k +2时等式成立C .n =2k +2时等式成立D .n =2(k +2)时等式成立3.设f (x )是定义在正整数集上的函数,且f (x )满足:“当f (k )≥k 2成立时,总可推出f (k +1)≥(k +1)2成立”,那么,下列命题总成立的是( ).A .f (1)<1成立,则f (10)<100成立B .若f (3)≥9成立,则当k ≥1时,均有f (k )≥k 2成立 C .若f (2)<4成立,则f (1)≥1成立D .若f (4)≥16成立,则当k ≥4时,均有f (k )≥k 2成立4.在应用数学归纳法证明凸n 边形的对角线为12n (n -3)条时,第一步检验的第一个值为n 0=__________.5.设数列a 1,a 2,…,a n ,…中的每一项都不为0.证明:{a n }为等差数列的充分必要条件是:对任何n ∈N *,都有1a 1a 2+1a 2a 3+…+1a n a n +1=n a 1a n +1.参考答案基础梳理自测知识梳理1.(1)第一个值n 0(n 0∈N *) (2)n =k +1 2.(1)正整数 基础自测 1.C 2.C 3.D4.2n-1 解析:当n =k +1时,1+12+13+…+12n -1+12n +12n +1+…+12n +1-1<n +1,∴左边增加的项的项数为2n +1-1-2n =2n +1-1-2n =2n-1项. 5.12,13,14,15,16 a n =1n +1考点探究突破【例1】 证明:(1)当n =1时,左边=1-12=12,右边=11+1=12.左边=右边.(2)假设n =k 时等式成立,即1-12+13-14+…+12k -1-12k =1k +1+1k +2+…+12k,则当n =k +1时,⎝⎛⎭⎪⎫1-12+13-14+…+12k -1-12k +⎝ ⎛⎭⎪⎫12k +1-12k +2 =⎝ ⎛⎭⎪⎫1k +1+1k +2+…+12k +⎝ ⎛⎭⎪⎫12k +1-12k +2 =1k +2+1k +3+…+12k +1+12k +2. 即当n =k +1时,等式也成立.综合(1),(2)可知,对一切n ∈N *,等式成立.【例2】 (1)证明:当n =1时,a 1=2>2×1+1,不等式成立.假设当n =k (k ∈N *)时,a k >2k +1成立. 那么当n =k +1时,21k a +=a k 2+21k a +2>2k +3+21k a >2(k +1)+1. ∴当n =k +1时,a k +1>2(k +1)+1成立.综上,a n >2n +1对一切正整数n 都成立.(2)解:∵b n +1b n =a n +1n +1a nn=211n a ⎛⎫+⎪⎝⎭·nn +1 <⎝ ⎛⎭⎪⎫1+12n +1·n n +1=2(n +1)n (2n +1)n +1=2n (n +1)2n +1=⎝ ⎛⎭⎪⎫n +122-14n +12<1.故b n +1<b n .【例3】 证明:(1)∵三角形没有对角线, ∴n =3时,f (3)=0,命题成立.(2)假设n =k (k ≥3)时,命题成立,即f (k )=12k (k -3),则当n =k +1时,凸k 边形由原来的k 个顶点变为k +1个顶点,对角线条数增加k -1条.∴f (k +1)=f (k )+k -1=12k (k -3)+k -1=12(k +1)[(k +1)-3].∴当n =k +1时命题成立,由(1),(2)可知对任何n ∈N 且n ≥3,命题恒成立. 【例4】 解:(1)由a 1=2,得a 2=a 12-a 1+1=3,由a 2=3,得a 3=a 22-2a 2+1=4,由a 3=4,得a 4=a 32-3a 3+1=5,由此猜想a n 的一个通项公式:a n =n +1(n ≥1). (2)证明:用数学归纳法证明:①当n =1时,a 1≥3=1+2,不等式成立. ②假设当n =k 时不等式成立, 即a k ≥k +2,那么,a k +1=a k (a k -k )+1≥(k +2)(k +2-k )+1≥k +3, 也就是说,当n =k +1时,a k +1≥(k +1)+2. 根据①和②,对于所有n ≥1,都有a n ≥n +2. 演练巩固提升1.C 解析:n =2时,分成4部分,可排除D ;n =3时,分成8部分,可排除A ;n =4时,分成14部分,可排除B ,故选C.2.B 解析:n 为正偶数,若n =k ,则下一个正偶数为n =k +2,故选B. 3.D 解析:f (4)≥16,说明当k =4时,f (k )≥k 2成立.f (k )≥k 2成立时,f (k +1)≥(k +1)2成立,说明n =k 时f (n )≥n 2成立能推出n =k +1时,f (n )≥n 2成立,根据数学归纳法可得当k ≥4时,均有f (k )≥k 2成立.4.4 解析:∵凸多边形要有对角线,至少也是四边形,∴n 0=4. 5.证明:先证必要性. 设数列{a n }的公差为d .若d =0,则所述等式显然成立.若d ≠0,则1a 1a 2+1a 2a 3+…+1a n a n +1=1d ⎝ ⎛⎭⎪⎫a 2-a 1a 1a 2+a 3-a 2a 2a 3+…+a n +1-a n a n a n +1 =1d ⎝ ⎛⎭⎪⎫⎝ ⎛⎭⎪⎫1a 1-1a 2+⎝ ⎛⎭⎪⎫1a 2-1a 3+…+⎝ ⎛⎭⎪⎫1a n -1a n +1=1d ⎝ ⎛⎭⎪⎫1a 1-1a n +1=1d ·a n +1-a 1a 1a n +1=n a 1a n +1. 再证充分性.(数学归纳法)设所述的等式对一切n ∈N *都成立.首先,在等式1a 1a 2+1a 2a 3=2a 1a 3①两端同乘a 1a 2a 3,即得a 1+a 3=2a 2,所以a 1,a 2,a 3成等差数列,记公差为d , 则a 2=a 1+d .假设a k =a 1+(k -1)d ,当n =k +1时,观察如下两个等式 1a 1a 2+1a 2a 3+…+1a k -1a k=k -1a 1a k,②1a 1a 2+1a 2a 3+…+1a k -1a k +1a k a k +1=ka 1a k +1,③将②代入③,得k -1a 1a k +1a k a k +1=ka 1a k +1,在该式两端同乘a 1a k a k +1, 得(k -1)a k +1+a 1=ka k .将a k =a 1+(k -1)d 代入其中,整理后, 得a k +1=a 1+kd .由数学归纳法原理知,对一切n ∈N *,都有a n =a 1+(n -1)d . 所以{a n }是公差为d 的等差数列.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【2019最新】精选高考数学一轮复习第十二章推理与证明算法复数第三节
数学归纳法课后作业理
一、选择题
1.已知f(n)=+++…+,则( )
A.f(n)中共有n项,当n=2时,f(2)=+1
3
B.f(n)中共有n+1项,当n=2时,f(2)=++1
4
C.f(n)中共有n2-n项,当n=2时,f(2)=+1
3
D.f(n)中共有n2-n+1项,当n=2时,f(2)=++1
4
2.某个命题与自然数n有关,若n=k(k∈N*)时命题成立,那么可推得当n=k +1时该命题也成立,现已知n=5时,该命题不成立,那么可以推得( ) A.n=6时该命题不成立 B.n=6时该命题成立
C.n=4时该命题不成立 D.n=4时该命题成立
3.用数学归纳法证明不等式1+++…+>(n∈N*)成立,其初始值至少应取( )
A.7 B.8 C.9 D.10
4.凸n边形有f(n)条对角线,则凸n+1边形的对角线的条数f(n+1)为( ) A.f(n)+n+1 B.f(n)+n
C.f(n)+n-1 D.f(n)+n-2
5.利用数学归纳法证明“(n+1)(n+2) …·(n+n)=2n×1×3×…×(2n-1),n∈N*”时,从“n=k”变到“n=k+1”时,左边应增乘的因式是( ) A.2k+1 B.2(2k+1)
C. D.2k+3
k+1
二、填空题
6.用数学归纳法证明1+++…+<n(n∈N,且n>1),第一步要证的不等式是________________.
7.用数学归纳法证明“当n为正奇数时,xn+yn能被x+y整除”,当第二步假设n=2k-1(k∈N*)命题为真时,进而需证n=________时,命题亦真.8.用数学归纳法证明1+2+3+…+n2=,则当n=k+1时左端应在n=k的基础上加上的项为______________________________________.
三、解答题
9.求证:1-+-+…+-=++…+(n∈N*).
10.用数学归纳法证明:
1+++…+<2-(n∈N*,n≥2).
1.平面内有n条直线,最多可将平面分成f(n)个区域,则f(n) 的表达式为( )
A.n+1 B.2n
C. D.n2+n+1
2.在数列{an}中,a1=,且Sn=n(2n-1)an,通过求a2,a3,a4,猜想an的表达式为( )
A. B.1
2n2n+1
C. D.1
2n+12n+2
3.用数学归纳法证明不等式++…+>的过程中,由n=k推导n=k+1时,不等式的左边增加的式子是____________.
4.已知函数f(x)=x3-x,数列{an}满足条件:a1≥1,an+1≥f′(an+1),试比较+++…+与1的大小,并说明理由.
答案
一、选择题
1.解析:选D 由f(n)可知,共有n2-n+1项,且n=2时,f(2)=++.
2.解析:选C 因为当n =k(k∈N*)时命题成立,则当n =k +1时,命题也成立.现已知n =5时,命题不成立,故n =4时命题也不成立.
3.解析:选B 左边=1+++…+==2-,代入验证可知n 的最小值是8.
4.解析:选C 边数增加1,顶点也相应增加1个,它与和它不相邻的n -2个顶点连接成对角线,原来的一条边也成为对角线,因此,对角线增加n -1条.
5.解析:选B 当n =k(k∈N*)时,
左式为(k +1)(k +2) ·…·(k+k);
当n =k +1时,左式为(k +1+1)·(k+1+2)·…·(k+1+k -1)·(k+1+k)·(k+1+k +1),
则左边应增乘的式子是=2(2k +1).
二、填空题
6.解析:当n =2时,左边为1++=1++,右边为2.故应填1++<2.
答案:1++<2
7.解析:n 为正奇数,假设n =2k -1成立后,需证明的应为n =2k +1时成立. 答案:2k +1
8.解析:当n =k 时左端为1+2+3+…+k +(k +1)+(k +2)+…+k2,
则当n =k +1时,左端为
1+2+3+…+k2+(k2+1)+(k2+2)+…+(k +1)2,
故增加的项为(k2+1)+(k2+2)+…+(k +1)2.
答案:(k2+1)+(k2+2)+…+(k +1)2
三、解答题
9.证明:(1)当n =1时,左边=1-=,
右边==,左边=右边,等式成立.
(2)假设n =k(k∈N*)时等式成立,即1-+-+…+-=++…+,
则当n =k +1时,
⎝ ⎛⎭⎪⎫1-12+13-14+…+12k -1-12k +⎝ ⎛⎭
⎪⎫12k +1-12k +2
=+⎝ ⎛⎭⎪⎫12k +1-1
2k +2 =++…++.
即当n =k +1时,等式也成立.
综合(1),(2)可知,对一切n∈N*,等式成立.
10.证明:(1)当n =2时,1+=<2-=,命题成立.
(2)假设n =k(k≥2,且k∈N*)时命题成立,即
1+++…+<2-.
当n =k +1时,1+++…++<2-+<2-+=2-+-1
k +1
=2-,命题也成立.
综合(1),(2)知原不等式在n∈N*,n≥2时均成立.
1.解析:选C 1条直线将平面分成1+1个区域;2条直线最多可将平面分成1+(1+2)=4个区域;3条直线最多可将平面分成1+(1+2+3)=7个区域;…;n 条直线最多可将平面分成1+(1+2+3+…+n)=1+=个区域.
2.解析:选C 由a1=,Sn =n(2n -1)an 求得a2==,a3==,a4==.猜想an =.
3.解析:不等式的左边增加的式子是+-=,故填.
答案:1
2k +12k +2 4.解:∵f′(x)=x2-1,且an +1≥f′(an+1),
∴an +1≥(an +1)2-1.
∵函数g(x)=(x +1)2-1在[1,+∞)上是增函数.
于是由a1≥1,得a2≥(a1+1)2-1≥22-1,
进而a3≥(a2+1)2-1≥24-1>23-1,
由此猜想:an≥2n-1.
下面用数学归纳法证明这个猜想:
①当n =1时,a1≥21-1=1,结论成立;
②假设n=k(k≥1且k∈N*)时结论成立,即ak≥2k-1.
当n=k+1时,由g(x)=(x+1)2-1在区间[1,+∞)上是增函数知ak+1≥(ak +1)2-1≥22k-1≥2k+1-1,
即n=k+1时,结论也成立.
由①②知,对任意n∈N*,都有an≥2n-1.
即1+an≥2n,∴≤,
∴+++…+≤+++…+=1-n<1.。

相关文档
最新文档