小学一年级数学上册期末复习试卷应用题100道(全) 含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学一年级数学上册期末复习试卷应用题100道(全) 含答案
一、六年级数学上册应用题解答题
1.有甲、乙两列火车,乙车的速度比甲车速度慢20%。
乙车先从B站出发开往A站行驶到距离B站72千米处时,甲车从A站出发开往B站,相遇时,甲、乙两列火车行的路程之比是3∶4。
(1)甲、乙两列火车的速度比是()∶();
(2)A、B两站之间的路程是多少千米?
2.一个书架,原来上层和下层中书的本数比是8:7,如果从上层取出8本书放放下层,这时上层和下层的比为4:5,原来上层和下层各有图书多少本?
3.果园里有桃树、梨树、苹果树共700棵,桃树与梨树的比是2:3,梨树与苹果树的比是4:5.果园里有桃树、梨树、苹果树各多少棵?
4.下图是由两个正方形和一个圆组成的,已知大正方形的面积是2
36cm,那么阴影部分的面积是多少?(圆周率 取3.14)
5.(1)某大酒店里有一种方圆两用餐桌(即外圆中方)。
请你借助圆规等学具,选择相对合理数据画出这种方圆两用桌的桌面模形(要保留作图痕迹),并将正方形外的部分涂上阴影。
(提示:在圆中画一个最大的正方形)
(2)如果圆桌的直径是1米,那么图中阴影部分的面积是多少平方米?
6.小方桌的边长是1米,把它的四边撑开就成了一张圆桌(如图),圆桌的面积比原来小方桌的面积多多少平方米(即求阴影部分的面积是多少)?
7.列出综合算式,不计算。
一根电线先截去它的40%,还剩下12米,再截去多少米后,这时正好剩下这根电线全长
的1
4
?
8.4月23日是世界读书日,每年的这一天,世界上百多个国家都会举办各种各样的庆祝和图书宣传活动。
某书店这天在图书定价的基础上降价20%出售某种图书,售价每本19.2元。
已知该图书的进价为图书定价的50%,则降价后每卖一本书可以盈利多少元?
9.赵叔叔加工一批零件,计划每小时加工125个,6小时完成,实际工作效率提高20%。
实际多少时间可以完成?
10.六年级一、二、三3个班献爱心捐书,一班捐的本数是三个班总数的2
5
,二、三两个
班捐的本数比是4:3.已知三个班捐书总数为700本.求三班捐了多少本?
11.一辆大巴从广州开往韶关,行了一段路程后,离韶关还有210千米,接着又行了全程的20%,这时已行路程与未行路程的比是3:2。
广州到韶关两地相距多少千米?(用方程解)
12.两列火车同时从相距720km的两城相对开出,经过3小时相遇。
已知甲车速度与乙车速度的比7:5。
甲乙两车的速度各是多少?
13.龙城超市上个星期售出甲、乙两种品牌的饮料箱数如下图.
(1)在这个星期中,两种品牌饮料的销售量在哪一天相差最大?
(2)甲饮料周日的销售比周一多百分之几?
(3)甲饮料这个星期平均每天销售多少箱?乙饮料呢?
14.在一次做“有趣的平衡”的综合实践中,小林拿来一根粗细均匀的竹竿,他从左端量到1.2米处做一个记号A,再从右端量到1.2米处做一个记号B。
这时,他发现A、B之间的长度恰好是全长的20%,这根竹竿长度可能是多少米?(提示:请试着画图理解,然后列式求得两个不同的答案)
15.一个疏菜大棚里种植菜椒的面积是450平方米,西红柿的种植面积比菜椒少20%,比黄瓜多12.5%,这个大棚里种植黄瓜的面积是多少平方米?
16.一辆客车从甲地开往乙地,第一天行了全程的20%,第二天行了450km,这时已行的路程和剩下的路程比是3:7.甲、乙两地相距多少千米?
17.明明和媛媛分别看两本不同页数的故事书.
18.按照下图方式摆放餐桌和椅子。
照这样摆下去,要坐34位客人需要多少张餐桌?(用方程解)
19.二进制时钟是一种“特殊的时钟”,它用4行6列24盏灯来表示时间(图1)竖着看,从左到右每两列为一组,每列依次表示时、分、秒的十位数字和个位数字;每列从下往上的灯依次表示1、2、4、8(表示灯亮,○表示灯熄灭,灯灭代表0),同一列中多盏灯同时亮,要把它们各自表示的数加起来得到对应的数。
例如,图1中最右侧一列,从下往上第一、二、三盏灯是,分别表示数字1、2、4,1+2+4=7,此时这列灯表示数字7,按照这样的表示方法,请在图2的括号里写出此时时钟表示的时刻。
图3是雯雯同学上午进入校门的时刻,请涂出二进制时钟上的显示。
20.如下图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n(n是正整数)个图案中由______个基础图形组成.
21.美美服装公司赶制360件演出服。
甲组单独做需要8天,乙组单独做需要10天,丙组单独做需要12天。
(1)甲、乙两组合作,需要几天完成?
(2)如果甲组先完成任务的40%,剩下的任务按5:4分派给乙、丙两组。
甲、乙、丙三个组分别做了多少件演出服?
22.一个食堂买回一批面粉,第一天吃了1
5
,第二天吃了40 kg,第三天吃的等于前两天吃
的总和,最后还剩16 kg.这批面粉有多少千克?
23.实验小学举行科技大赛,五年级上交作品15件,六年级比五年级多交1
5。
两个年级共
交了多少件作品?
24.修一段公路,甲队独修要用20天,乙队独修要用24天,现在两队同时从两端开工,结果在距中点750m处相遇。
求这段公路长多少米?
25.六(1)班女生人数比全班人数的3
5
多2人,男生有22人,全班有多少人?
26.甲乙两仓库共存粮54吨,甲仓用了4
5
,乙仓用了
3
4
后,剩下的两仓一样多,原来两
仓各存粮多少吨?
27.当你开车开到2
3
路程时,你油箱的油已由原来的满箱到只有
1
4
箱。
问:是否能用这些
油到达终点?请你尝试说说理由。
28.一份稿件,甲5小时先打了1
5
,乙6小时又打了剩下稿件的1
2
,最后剩下的一些由
甲、乙两人合打,还需多少小时完成?
29.一辆快车与一辆慢车分别从甲、乙两站同时相对开出,在距中点5千米处相遇.已知快、慢车的速度比是3:2,甲、乙两站相距多少千米?(用方程解)
30.一辆客车和一辆货车上午8:00同时分别从甲、乙两地出发相向而行,客车每小时行
驶60千米,当行驶了全程的
7
12
时与货车相遇。
已知货车行驶完全程要8小时,两车相遇
是什么时刻?甲、乙两地间的路程是多少千米?
31.甲、乙两车分别从A、B两地同时出发,相向而行,4小时后在距离中点80千米处相遇,甲乙两车的速度比是9∶5,甲每小时行多少千米?
32.甲、乙二人同时从A地走向B地,当甲走了全程的5
7
时,乙走了全程的
3
5
;当甲离B
地还有1
7
时,乙离B地还有50米,A、B两地相距多少米?
33.王叔叔12月份接到加工一批零件的任务,他第一周加工后,已加工零件个数和剩下零
件个数的比是1∶3,第二周加工了总任务的1
3
,已知两周一共加工了140个零件。
王叔叔
接到的任务是一共要加工多少个零件?
34.小明放一群鸭子,已知岸上的只数与水中的只数比是3:4,现在从水中上岸9只后,
岸上的只数是水中的4
5
,这群鸭子有多少只?
35.一辆卡车和一辆客车分别从甲、乙两城同时出发,相向而行,卡车到达乙城后立即返回,客车到达甲城后也立即返回,已知卡车和客车的速度比为4:3,两车第一次相遇地点
距离第二次相遇地点24千米,求甲、乙两城相距多少千米?
36.根据下列信息回答问题。
印刷厂的纸是以“令”来卖的。
一令是500张。
最普通的纸张是A4纸。
A系列纸张是以A0尺寸为基础的,而A4纸是其中的一部分。
一张A0纸的规格为1189毫米×841毫米,差不多有1平方米。
如右图所示,A1纸是A0纸的一半,A2纸是A1纸的一半,A3纸是A2纸的一半,等等。
(1)需要多少张A4纸才能覆盖住一张A0纸?()
①8 ②16 ③32 ④64
(2)—张A5纸较长那条边的长度大约是多少?()
①420mm ②297mm ③210mm ④149mm
37.“外方内圆”是中国建筑中经常能见到的设计,而且“外方”与“内圆”的面积比是固定的。
(1)如图所示,“内圆”的半径是r,它的面积是________;“外方”的面积是________。
(用含有字母的式子表示以上结果)
(2)所以,S外方:S内圆=________:________。
(3)如图中正方形的面积是20平方厘米,那么图中“内圆”的面积是多少平方厘米?38.一个周长为12.56厘米的圆在长方形内滚动一周后回到初始位置(如下图所示),圆心所经过的路程是40厘米,已知图中长方形的长和宽之比是5:2,这个长方形的面积是多少平方厘米?
39.一杯盐水,第一次加入一定量的水后,盐占盐水的20%;第二次又加入同样多的水,盐水的含盐百分比变为15%;
(1)第二次又加入同样多的水,盐水的含盐百分比变为15%,则盐:盐水=(________:________)。
(2)若第三次再加入同样多的水,含盐率为百分之几?
40.用边长为1厘米的小正方形拼长方形,如下图,图1的周长是4,图2的周长是6,图3的周长是8.
(1)你发现第几幅图和周长之间有什么关系吗?把你的发现写出来.
(2)你的发现对吗?请画出图4和图5验证一下.
(3)按照上面的规律,图20的图形周长是多少?请把你的思考过程写出来.
41.淘气和奇思都是集邮爱好者,淘气收集了各种邮票63张,奇思收集的邮票数比淘气少
2
7。
(1)画图表示淘气和奇思的邮票张数之间的关系。
(2)奇思比淘气少多少张邮票?
42.一项工程,甲队单独完成需要60天。
若甲队先单独做18天,则剩余的甲、乙两队合作24天可以完成。
乙队单独完成这项工程需要多少天?
43.某通信公司有两种不同的通话费计费方式,第一种:每月付20元月租费,然后每分钟收通话费0.18元;第二种:不收月租费,每分钟收通话费0.28元。
①如果每月通话300分钟,哪一种计费方式更便宜?
②每月通话多少分钟,两种计费方式的通话费正好相等?
44.某校六年级学生在青少年科技活动中心参加机器人竞赛,分成甲、乙两个组,甲、乙两组人数比是7:8,如果从乙组调8人到甲组,则甲、乙两组的人数比是5:4,参加机器人比赛的一共多少人?
45.李师傅3天做完一批零件,第一天做的是第二天的,第三天做的是第二天的,已知第三天比第一天多做30个零件,这批零件一共有多少个?
46.一项工程,甲单独做30天完成,乙单独做40天完成,现在两人一起做,共用25天完成,其间甲休数是乙休息天数的2倍。
乙休息几天?
47.如图为某学校花坛,它由一个圆心角∠AOB=30°,半径AO=6米的扇形以及分别以
AO、BO的1
3
为直径的6个相等的半圆组成,求此花坛的面积。
48.商店购进一批自行车,购入价为每辆420元,卖出价为每辆500元,当卖出自行车的
4
5
多20辆时,已获得全部成本,当自行车全部卖完时,共盈利多少元? 49.弹簧秤在正常的范围内称物体,称2千克的物体,弹簧全长为12.5cm ,称8千克的物体,弹簧全长为14cm 。
那么当弹簧全长为15cm 时,所称物体的质量为多少千克? 50.水果店运来一批橘子,第一天卖出总数的40%,第二天卖出140千克,剩下的与卖出的重量比是1:3,这批橘子重多少千克?
【参考答案】***试卷处理标记,请不要删除
一、六年级数学上册应用题解答题
1.(1)5;4 (2)315千米 【分析】
(1)甲车速度是单位“1”,乙车的速度比甲车速度慢20%,甲车速度看作100,乙车速度是100-20,写出速度比化简即可。
(2)路程比=速度比,设相遇时甲行驶的路程是x 千米,乙车形式的路程是4
725
x +千
米,根据甲车和乙车的路程比=甲车和乙车的时间比,列出方程求出甲车行驶路程,相遇时,甲、乙两列火车行的路程之比是3∶4,甲车行驶了路程的3
34
+,用甲车路程÷对应分率=A 、B 两站之间的路程。
【详解】
(1)100∶(100-20)=100∶80=5∶4 (2)解:设相遇时甲行驶的路程是x 千米。
34
4725
x x =+
47234512
21645855216588
x x x x
x ⎛⎫
+⨯= ⎪⎝⎭+=⨯=⨯ 135x =
3+4=7 3
1353157
÷
=(千米) 答:A 、B 两站之间的路程是315千米。
【点睛】
本题考查了百分数和比的意义,列方程解决问题和按比例分配应用题,较为综合,关键是理解速度、时间、路程之间的关系以及比的意义。
2.上层48本;下层42本
【详解】
8÷(
8
87
+
﹣
4
45
+
)
=8÷(
8
15
﹣
4
9
)
=8÷ 4 45
=90(本)
则原来上层有书:90×
8
87
+
=48(本)
下层有书:90×
7
87
+
=42(本)
答:原来上层有书48本,下层有书42本。
3.桃树160棵,梨树240棵,苹果树300棵
【解析】
【详解】
解:因为桃树与梨树的比是(2×4):(3×4)=8:12
梨树与苹果树的比是(4×3):(5×3)=12:15
所以桃树、梨树、苹果树的比是:8:12:15
所以700÷(8+12+15)
=700÷35
=20(棵)
桃树:20×8=160(棵)
梨树:20×12=240(棵)
苹果树:20×15=300(棵),
答:果园里有桃树160棵,梨树240棵,苹果树300棵
4.26平方厘米
【分析】
根据图意可得:阴影部分的面积=圆的面积-小正方形的面积,已知大正方形的面积是2
36cm,36=6×6,即大正方形的边长是6cm,也正是圆的直径;小正方形的对角线的长度是6cm,小正方形的面积是6×6÷2=18(平方厘米)。
据此解答即可。
【详解】
36=6×6
3.14×(6÷2)2-6×6÷2
=3.14×9-18
=28.26-18
=10.26(平方厘米)
答:阴影部分的面积是10.26平方厘米。
【点睛】
本题属于求圆与组合图形面积的问题,这种类型的题目主要明确组合图形是由哪些基本的图形构成的,然后看是求几种图形的面积和还是求面积差,然后根据面积公式解答即可。
5.(1)
(2)0.285平方米
【详解】
略
6.57平方米
【解析】
【分析】
如图,连接正方形的对角线,把正方形平均分成了4个等腰直角三角形,且每一条直角边都是圆的半径;一个等腰直角三角形的面积就是正方形面积的,由于正方形的面积是
1×1=1平方米,所以一个等腰直角三角形的面积就是平方米,即r2÷2=,可求得r2是,进而求得圆桌的面积,再求出面积差.
【详解】
连接正方形的对角线,把正方形平均分成了4个等腰直角三角形,如下图:
每一条直角边都是圆的半径;
正方形的面积:1×1=1(平方米)
小等腰直角三角形的面积就是平方米 即:r 2÷2=,r 2=; 圆桌的面积:3.14×r 2 =3.14× =1.57(平方米); 1.57﹣1=0.57(平方米);
答:圆桌的面积比原来小方桌的面积多0.57平方米.
7.()112140%140%4
⎛⎫÷-⨯-- ⎪⎝
⎭
【分析】
根据题意可得,12米占这根电线总长度的()140%-,据此求出这根电线总长度。
因为第二次截取的长度占这根电线长度的1140%4⎛
⎫-- ⎪⎝
⎭,最后求出第二次截取的长度即可。
【详解】
()112140%140%4⎛
⎫÷-⨯-- ⎪⎝
⎭
=20×0.35 =7.5(米)
答:需再截去7.5米,这时正好剩下这根电线全长的四分之一。
【点睛】
本题考查百分数,解答本题的关键是找准单位“1”。
8.2元 【分析】
某书店这天在图书定价的基础上降价20%出售某种图书,说明售价是定价的1-20%=80%,每本19.2元,据此求出定价;书的进价为图书定价的50%,求出书的进价,最后求盈利即可。
【详解】
19.2-19.2÷(1-20%)×50% =19.2-12 =7.2(元)
答:降价后每卖一本书可以盈利7.2元。
【点睛】
本题考查百分数,解答本题的关键是理解定价、售价、进价之间的关系。
9.5小时 【分析】
计划每小时加工125个,即为工作效率,实际工作效率提高20%,那么每小时完成150个,求出工作总量,然后除以实际的工作效率,得到实际的时间。
【详解】
()125120%⨯+
125 1.2=⨯
150=(个)
1256150⨯÷
750150=÷
5=(小时)
答:实际5小时可以完成。
【点睛】
本题考查的是工程问题,=÷工作时间工作总量工作效率,随后也可以按照正反比例求解。
10.180本
【详解】 700×25
=280(本) (700﹣280)×
343
+ =420×37 =180(本)
答:三班捐书180本.
11.350千米
【分析】
分析题干,根据这时已行路程与未行路程的比是3∶ 2,则未行路程占全程的25,而全程的25
与全程的20%的和是210千米,可得到等量关系广州、韶关两地相距多少千米×(20%+25
)=210,据此列出方程解答即可。
【详解】
解:设广州到韶关两地相距x 千米。
220%2105x ⎛⎫+= ⎪⎝
⎭ 32105
x = 333210555
x ÷=÷ 350x =
答:广州到韶关两地相距350千米。
【点睛】
本题考查列方程解决问题、百分数、比的意义,解答本题的关键是根据题意找到等量关
系:广州、韶关两地相距多少千米×(20%+2
5
)=210。
12.甲140千米/时;乙100千米/时
【解析】
【详解】
720÷3×=140(千米/时)
140×=100(千米/时)
13.(1)周二;(2)40%;(3)286箱, 270箱
【详解】
(1)从统计图中看出周二时,两种品牌饮料的销售量相差最大;
(2)(350﹣250)÷250
=100÷250
=40%
答:甲饮料周日的销售比周一多40%。
(3)(350+250+270+200+230+320+385)÷7
=2005÷7
≈286(箱)
(300+220+200+230+250+320+370)÷7
=1890÷7
=270(箱)
答:甲饮料这个星期平均每天销售约286箱,乙饮料这个星期平均每天销售270箱.14.2米或3米
【分析】
方法一:如图所示,这根竹竿的距离小于两次量出的米数之和,所以这根竹竿的长度=(第一量出的米数+第二次量出的米数)÷(1+A、B之间的长度是全长的百分之几);
方法二:如图所示,这根竹竿的距离大于两次量出的米数之和,所以这根竹竿的长度=(第一量出的米数+第二次量出的米数)÷(1-A、B之间的长度是全长的百分之几)。
【详解】
①
(1.2+1.2)÷(1+20%)=2(米)
②
(1.2+1.2)÷(1-20%)=3(米)
答:这根竹竿可能是2米或3米。
15.450×(1–20%)÷(1+12.5%)=320(平方米)
【详解】
略
16.4500千米
【详解】
450÷(-20%)=4500(km)
答:甲、乙两地相距4500千米.
17.明明184页;媛媛140页
【详解】
=184(页)
92÷1
2
(92+13)÷75%=140(页)
18.8张
【分析】
设有n张桌子,根据桌子数量×4+2=能坐的人数,列出方程解答即可。
【详解】
解:设有n张桌子。
4n+2=34
4n=32
n=8
答:要坐34位客人需要8张餐桌。
【点睛】
关键是看懂图示,找到等量关系。
19.图2(19:47:26);
图3
【分析】
(1)同一列中多盏灯同时亮,要把它们各自表示的数加起来得到对应的数,注意灯灭表示0,那么图2左侧第1列代表1,第2列代表1+8=9,也就是19时;第3列表示4,第4列表示1+2+4=7,也就是47分;第5列表示2,第6列表示2+4=6,也就是26秒;(2)图3是左侧第1列是0,所以不涂;第2列是7,从下往上涂代表数字1、2、4的灯亮;第3列代表数字4的灯亮,其它灯灭;第4列代表数字1、8的灯亮;第5列代表数
字1、4的灯亮,其它灯灭;第6列代表数字2、4的灯亮,其它灯灭。
【详解】
据分析可得,图2代表(19:47:26);
图3是:
故答案为:图2(19:47:26);
图3是。
【点睛】
本题考查数与形,解答本题的关键就是理解同一列中多盏灯同时亮,要把它们各自表示的数加起来得到对应的数的概念。
20.(3n+1)
【解析】
【详解】
略
21.(1)409天 (2)甲:144件
乙:120件
丙:96件
【分析】
(1)工作时间=工作总量÷工作效率,工作效率=工作总量÷工作时间,据此解答即可; (2)甲组先完成任务的40%,剩下的任务占60%,求出剩下的任务;剩下的任务按 5∶4 分派给乙、丙,则乙完成的占剩下任务的九分之五,丙完成的占剩下任务的九分之四。
【详解】
(1)111810⎛⎫÷+ ⎪⎝⎭ 9140=÷ 409
=(天) 答:甲、乙两组合作,需要
409天完成。
(2)360×40%=144(件)
()360140%⨯-
3600.6⨯=
216=(件)
521612054
⨯+=(件)
42169654
⨯+=(件) 答:甲、乙、丙三个组分别做了144,120,96件演出服。
【点睛】
本题考查工程问题、百分数、按比例分配,解答本题的关键是掌握按比例分配解决问题的方法。
22.160kg
【解析】
【详解】
()116402121605⎛⎫+⨯÷-⨯= ⎪⎝⎭
(kg) 23.33件
【分析】 六年级比五年级多交15,说明六年级作品占五年级作品的115⎛⎫+ ⎪⎝⎭
,据此求出六年级作品数量,最后求两个年级共交了多少件作品即可。
【详解】
1151515⎛⎫+⨯+ ⎪⎝⎭
=15+18
=33(件)
答:两个年级共交了33件作品。
【点睛】
本题考查分数乘法,解答本题的关键是找到六年级作品数占五年级作品数的几分之几。
24.16500米
【分析】
先求出两队合作需要的时间,再求出甲队比乙队多修总路程的几分之几,然后求甲队比乙队多修多少米,在距中点750米处相遇,说明甲队比乙队多修750×2=1500(米),用除法求出这段公路的距离即可。
【详解】
1÷(
112024+) =1÷
11120 =12011
(天) 750×2÷(1120112020112411
⨯-⨯) =1500÷(
651111-) =1500×11
=16500(米)
答:这段公路长16500米。
【点睛】
本题考查工程问题和路程问题中的相遇问题,画线段图可以帮助快速理清题意。
25.60人
【分析】
将全班人数看作单位“1”,男生人数+2刚好是全班人数的1-3
5
,用男生人数÷对应分率即
可。
【详解】
(22+2)÷(1-3
5
)
=24÷2 5
=60(人)
答:全班有60人。
【点睛】
关键是确定单位“1”,找到部分数量以及对应分率。
26.甲:30吨,乙:24吨
【分析】
设甲仓库原有粮食x吨,则乙仓库原有粮为(54-x)吨;甲用了4
5
之后,剩余粮食为(1
-4
5
)x;乙仓用了
3
4
之后,剩余粮食为(1-
3
4
)×(54-x);此时剩下的两仓一样多,
据此列出方程解答。
【详解】
解:设甲仓库原有粮食x吨,则乙仓库原有粮为(54-x)吨。
(1-4
5
)x=(1-
3
4
)×(54-x)
1 5x=
1
4
×(54-x)
1 5x=
1
4
×54-
1
4
x
1 5x+
1
4
x=
1
4
×54
9 20x=
54
4
x=54
4
÷
9
20
x=30
54-30=24(吨)
答:原甲仓存粮30吨,乙仓存粮24吨。
【点睛】
用方程解答关键是找出等量关系式:甲仓库原存粮吨数×剩余存粮所占分率=乙仓库原存粮吨数×剩余存粮所占分率,并根据等式的性质解方程。
27.不能
【详解】
13144
-= (箱) 22(1)233
÷-= 33248
÷= (箱) 3184
> 答:不能用这些油到达终点
28.334
小时 【分析】
将整份稿件看作整体“1”,甲5小时打了15,所以甲的工作效率是:115525÷=;乙6小时打了剩下稿件的12,即1(1)5-的12,所以乙的工作效率是:111(1)65215
-⨯÷=。
最后甲乙两人合打的工作量也是1(1)5
-的12,工作效率是两人的工作效率之和,然后再根据“工作时间=工作总量÷工作效率”来计算他们所需要的时间。
【详解】
11111(1)5(1)652552⎡⎤-⨯÷÷+-⨯÷⎢⎥⎣⎦ 411416522552⎡⎤=⨯÷+⨯÷⎢⎥⎣⎦ 21152515⎡⎤=
÷+⎢⎥⎣⎦ 28575
=÷ 334
=(小时) 答:还需334
小时完成。
【点睛】
本题考查工程问题,找到甲乙两人的工作效率非常关键。
29.50千米
【详解】
5×2=10(千米)
设慢车行了x千米,则快车行了(x+10)千米,则有:(x+10):x=3:2
3x=(x+10)×2
3x=2x+20
x=20
20+10=30(千米)
20+30=50(千米)
答:甲、乙两站相距50千米
30.11时20分;2400
7
千米
【分析】
根据题意可知,相同的时间内,客车行驶了全程的
7
12
,货车行驶了全程的
5
12
,则两车行
驶的路程比为7∶5;当时间一定是,路程比和速度比相同,则两车的速度比也为7∶5,用60÷7×5即可求出货车的速度,用货车的速度乘时间即可求出全程;用总路程除以它们的速度和即可求出相遇的时间,再加上开始的时间,即可求出相遇的时刻。
【详解】
根据题意可知,两车的速度比为7∶5;
60÷7×5
=60
7
×5
=300
7
(千米);
300 7×8=
2400
7
(千米);
2400 7÷(60+
300
7
)
=2400
7
÷
720
7
=31
3
(小时);
8时+31
3
小时=11
1
3
时,即11时20分;
答:两车相遇是11时20分,甲、乙两地间的路程是2400
7
千米。
【点睛】
根据题意,先求出两车的速度比是解答本题的关键,进而求出货车的速度和全程,从而解答。
31.90千米
【分析】
根据题意可知,两车相遇时,所行路程相差80×2=160(千米),两车行驶的时间相同,
所以速度比就是所行的路程之比,所以甲比乙多行全程的(959595
-++),根据分数除法的意义,求出全程,除以相遇时间求出速度之和,再按比例分配求出甲的速度。
【详解】
80×2÷(
959595-++) =160÷414
=560(千米) 560÷4×
995+ =140×914
=90(千米)
答:甲每小时行90千米。
【点睛】
此题考查了有关比的相关应用,明确两车行驶的路程之差是两个80千米,先求出总路程是解题关键。
32.12507
米 【详解】 相同时间内:甲乙的速度比就是
57:35=25:21; 乙的速度就是甲的
2125,相同时间内,已走的路程就是甲的2125
1﹣17=67 67×2125=1825
50÷(1﹣
1825) =50÷
725 =12507
(米) 答:A 、B 两地相距
12507米. 33.240个
【分析】
根据条件“他第一周加工后,已加工零件个数和剩下零件个数的比是1∶3”可知,第一周完成的占全部任务的131+=14
,然后用两周一共加工的零件总个数÷两周一共加工的占总个数的分率=要加工的零件总个数,据此列式解答。
【详解】
第一周完成了
1
31
+
=
1
4
140÷(1
4
+
1
3
)
=140÷
7 12
=140×12 7
=240(个)
答:王叔叔接到的任务是一共要加工240个零件。
【点睛】
题目中不易理解的一句话是“他第一周加工后,已加工零件个数和剩下零件个数的比是
1∶3”,我们需要依据比与分数的关系,把它转化成一个表示第一周完成的零件个数占零件总数的分率。
34.567只
【详解】
3:4=3 4
9÷(
4
45
+
-
3
34
+
)
=9÷(4
9
-
3
7
)
=9÷1 63
=567(只)
答:这群鸭子有567只.
35.84千米
【分析】
两车第一次相遇后到第二次相遇,这之间一共行驶了两倍的两城市之间的距离长度,已知
卡车与客车的速度比是4∶3,即路程比是4∶3,则两车的路程差是
43
4343
-
++
,用24除
以路程差,就是两倍的城市距离,再除以2即可。
【详解】
24÷(
43
4343
-
++
)÷2
=24÷1
7
÷2
=84(千米)
答:甲、乙两城相距84千米。
【点睛】
此题考查了学生对多次相遇问题的理解能力及其比的应用,关键是找出数量对应的分率。
36.(1)② (2)③
【解析】
【详解】
略
数一数,填一填,做一做。
37.(1)πr2;4r2
(2)4;π
(3)20÷4×π=5π=15.7(cm2)
【分析】
(1)已知圆的半径,那么内圆的面积=πr2;外方的面积=4×r2;
(2)化简比时,用比的基本性质作答即可,即比的前项和后项同时乘或除以相同的数(0除外),比值不变;
可
【详解】
(1)“内圆”的半径是r,它的面积是πr2;“外方”的面积是4r2;
(2)由(1)得S外方:S内圆=πr2:4r2=4:π。
(3)内圆的面积=正方形的面积×π÷4,据此作答即
38.160平方厘米
【详解】
圆的半径:12.56÷3.14÷2=2(厘米),
设长方形的长和宽分别为5a厘米和2a厘米,则圆心经过的路程长是(5a-2×2)厘米,宽是(2a-2×2)厘米;
(5a-2×2+2a-2×2)×2=40
7a-8=20
7a=28
a=4
长方形的面积为:
(5×4)×(2×4)
=20×8
=160(平方厘米)
答:这个长方形的面积是160平方厘米.
【点睛】
解答此题关键是明确圆心经过的路径是一个长方形,长和宽分别比原长方形少两个半径.39.(1)3;20
(2)解:将原来有盐水看成单位1,设第一次加入水x,则第一次加入水x后,盐占盐水
的20%,此时含盐(1+x)×20%。
同理,第二次加入同样多的水x,含盐(1+x+x)×15%。
因为盐的量没有发生变化,所以(1+x)×20%=(1+x+x)×15%,x=0.5
则第三次再加入同样多的水,含盐率:(1+0.5)×20%÷(1+0.5×3)=0.12=12%。
【详解】
(1)盐水的含盐率=盐的质量÷(盐的质量+水的质量),所以将含盐率写成分数的形式,然后化成比即可;
(2)可以用分数作答,即设第一次加入水x,把原来有盐水看成单位“1”,那么第一次加水后,盐的质量=(原来盐水的质量+水的质量)×第一次加水后的含盐率,第二次加水后,盐的质量=(原来盐水的质量+水的质量+水的质量)×第二次加水后的含盐率,由于整个过程中,盐的质量没有发生变化,所以第一次加水后盐的质量=第二次加水后盐的质量,据此可以解得x的值,那么第三次再加入同样多的水后的含盐率=盐的质量÷(原来盐水的质量+每次加入水的质量×3),据此作答即可。
40.(1)第几幅图加1的和乘2是它的周长
(2)
(3)图20是第20幅图,所以周长是(20+1)× 2=42(厘米).
【详解】
略
41.(1)见详解
(2)18张
【分析】
(1)淘气的数量是单位“1”,画一条线段表示淘气收集数量,有63张;奇思的线段比淘气
短,短的部分是2
7
,据此作图。
(2)用淘气收集数量×奇思收集的邮票数比淘气少几分之几=少的数量。
【详解】
(1)
(2)63×2
7
=18(张)
答:奇思比淘气少18张邮票。
【点睛】
关键是确定单位“1”,整体数量×部分对应分率=部分数量。
42.80天
【分析】。