Nonequilibrium Green's function method for phonon-phonon interaction and ballistic-diffusiv
双层硼烯的电输运和热输运性质的研究
摘要随着2004年石墨烯的问世,人们不断地设计和制备出新型的二维材料,但只有极少数是单质二维材料,而且大多数结构都存在离面屈曲,目前只有硼烯存在与石墨烯一样的纯平面结构。
随着硼烯的成功制备,人们通过研究发现该材料在力学、电学、光学、和热输运等方面具有优异的性能。
硼烯在力学性能方面是集坚、柔、韧于一体的二维材料;硼烯目前是质量最轻、厚度最薄的金属;在硼烯的β12结构结构中费米能级附近发现狄拉克锥。
由于其强的电声耦合,让其具有声子调节和χ3的高温超导性,高的能量存储容量以及近可见光波段的等离子激发,硼烯可广泛应用于柔性电子器件、光控器件、锂离子和钠离子电池、储氢以及复合材料设计等方面。
本文基于第一性原理和非平衡格林函数方法,首先得到了双层硼烯的新结构,分析了该结构的热输运和电输运,并基于半导体性的硼烯的无结晶体管,分析电输运性质。
主要内容具体如下:(1)得到了双层硼烯的新结构。
我们以实验制备出的硼烯β12单层结构为基础,进行双层结构研究,发现靠范德瓦尔斯力结合的双层硼烯不稳定,色散谱中有虚频;从而缩小双层距离发现了靠B-B共价键结合的稳定的双层硼烯,具有AA/AB 两种堆垛方式,从能量角度分析AB结构比AA结构更稳定。
另外,我们构建了双层AA和AB结构靠范德瓦尔斯力结合的体结构,计算后发现它们也是稳定的。
(2)研究了双层硼烯的电输运和热输运性质。
电输运性质研究发现β12构成的AB和AA结构的I-V曲线具有欧姆特性,表现出很好的金属性,而且具有很强的各向异性,另外由于AB结构的电子分布更局域,从而当偏压相同时电流相对要小一些。
热输运性质研究发现AB结构和AA结构的热导值相当,虽然AB和AA 结构具有很好的导热性,但比单层β12的热导要小很多,主要是由于低频段的声子谱降低很多。
(3)基于半导体硼烯的无结晶体管的电输运性质。
我们以半导体硼烯为研究对象,通过掺杂形成N型和P型无结晶体管,通过计算不同方向的I-V曲线,结果表明P型无结晶体管沿着α方向传输时性能最好,开关比达到1.2*104,而且可通过加大栅极电压的长度来改善其性能。
半导体物理与器件——Terms汉译英
半导体物理与器件——Terms(术语)U1 Terms:Semiconductor physics and devices半导体物理与器件,Space lattice空间晶格, unit cell晶胞, primitive cell原胞,basic crystal structures 基本晶格结构(five), Miller indices密勒指数, atomic bonding原子价键U2 Terms:quantum mechanics量子力学,energy quanta能量子, wave-particle duality波粒二象性,the uncertainty principle测不准原理/海森堡不确定原理Schrodinger's wave equation薛定谔波动方程, eletrons in free Space自由空间中的电子the infinite potential well无限深势阱, the step potential function 阶跃势函数, the potential barrier势垒.U3 Terms:Pauli exclusion principle泡利不相容原理, quantum state量子态. allowed energy band允带, forbidden energy band禁带.conduction band导带, valence band价带,hole空穴, electron 电子.effective mass有效质量.density of states function状态密度函数,the Fermi-Dirac probability function费米-狄拉克概率函数,the Boltzmann approximation波尔兹曼近似,the Fermi energy费米能级.U4 Terms:charge carriers载流子, effective density of states function有效状态密度函数,intrinsic本征的,the intrinsic carrier concentration本征载流子浓度, the intrinsic Fermi level本征费米能级.charge neutrality电中性状态, compensated semiconductor补偿半导体, degenerate简并的,non-degenerate非简并的, position of E F费米能级的位置U5 Terms:drift current漂移电流, diffusion current 扩散电流,mobility迁移率, lattice scattering晶格散射, ionized impurity scattering 电离杂质散射, velocity saturation饱和速度,conductivity电导率,resistivity电阻率.graded impurity distribution杂质梯度分布,the induced electric field感生电场, the Einstein relation爱因斯坦关系, the hall effect霍尔效应U6 Terms:nonequilibrium excess carriers非平衡过剩载流子,carrier generation and recombination载流子的产生与复合,excess minority carrier过剩少子,lifetime寿命,low-level injection小注入,ambipolar transport双极输运, quasi-Fermi energy准费米能级.U7 Terms:the space charge region空间电荷区,the built-in potential内建电势, the built-in potential barrier内建电势差,the space charge width空间电荷区宽度, zero applied bias零偏压, reverse applied bias反偏, onesided junction单边突变结.U8 Terms:the PN junction diode PN结二极管, minority carrier distribution少数载流子分布, the ideal-diode equation理想二极管方程, the reverse saturation current density反向饱和电流密度.a short diode短二极管,generation-recombination current产生-复合电流,the Zener effect齐纳效应, the avalanche effect雪崩效应, breakdown击穿.U9 Terms:Schottky barrier diode (SBD)肖特基势垒二极管,Schottky barrier height肖特基势垒高度.Ohomic contact欧姆接触,heterojunction异质结, homojunction单质结,turn-on voltage开启电压,narrow-bandgap窄带隙, wide-bandgap宽带隙,2-D electron gas二维电子气U10 Terms:bipolar transistor双极晶体管,base基极, emitter发射极, collector集电极.forward active region正向有源区, inverse active region反向有源区, cut-off截止, saturation饱和,current gain电流增益,common-base共基, common-emitter共射.base width modulation基区宽度调制效应, Early effect厄利效应, Early voltage厄利电压U11 Terms:Gate栅极, source源极, drain漏极, substrate基底.work function difference功函数差threshold voltage阈值电压, flat-band voltage平带电压enhancement mode增强型, depletion mode耗尽型strong inversion强反型, weak inversion弱反型,transconductance跨导, I-V relationship电流-电压关系。
第四章 Green函数法(all)
u(r0 ) G( r ,r0 ) f (r)dV G( r ,r0 )(r)dS
T
意义:Poisson方程边值问题的解在 T 内任一 点的值可由Green函数 G(r,r0 ) 和问题的已知函数 f 和 φ 的积分表示.
由以上讨论知, 要求解Poisson方程边值问题, 就要首先求出相应的Green函数。要知区域 T上 的Green函数, 还必须解一个特殊的定解问题。以 第一边值问题为例, 须求解
减T 去①式得:
u[vx cos( n, x) v y
(vu uv)dV
T
co(sv(nun,
y)uvvz
cos(
)dS
n
n, z)]dS
……②
即
第二Green公式
uvdV
T
u
v dS n
(uxvx
T
uyv y
uzvz )dV……①
第一Green公式
2.基本解
定义:设 M ( r ), M0(r0 ) 为n维空间中的点,
ln[1
02
20
cos(
)]
k 1
k 0
cos k(
k
)
有
G1
|
1
4
k 1
0k
k
(cos k
cos k
sin k
sin k
)
通过比较系数可得
a0 0,
ak
k 0
4 k
cos k ,
bk
0k 4 k
sin k
从而得:
G1( , ;0 ,
)
1
4
(0 )k
k1 k
cos k(
)
1
第七章 Green 函数法 - 数学物理方法
数学物理方法Mathematical Method in Physics西北师范大学物理与电子工程学院豆福全第七章Green函数法Green Function method引言前面几章我们系统的讨论了求解数学物理方法的几种典型方法:分离变量法,行波法以及积分变换法。
分离变量法主要适用于求解各种有界区域内的定解问题,行波法则主要适用于求解无界区域内的波动问题,而积分变换法也主要适用于求解无界区域内的定解问题,然而不受方程类型的限制。
同时,分离变量法,积分变换法这两种方法所给出的解,一般具有无穷级数与无穷积分的形式。
本章介绍求解数学物理方程的另一重要方法——Green函数法。
所不同的是,该法给出的是一种有限积分的解,便于人们进行理论分析与研究。
Green函数的特点是它仅与定解问题所定义的区域的形状及边界条件类型有关,而与定解条件及方程非齐次项所给出的具体形式无关。
特别是一些用分离变量法较难处理的非齐次方程的定解问题,Green函数法更能显示出其优越性。
从物理上看,一个数学物理方程在大多数情况下,往往表示一种特定的“场”和产生这种场的“源”之间的关系。
如热导方程表示的是温度场与点源之间的关系,泊松方程表示的是静电场和电荷分布之间的关系等。
这样,当源被分解成许多点源的叠加时,如果通过某一种方法知道各点源产生的场,然后再利用叠加原理,就可以求出同样边界条件下任意源的场,这种求解数理方程的方法被称为Green函数法,而点源产生的场就是Green函数。
本章首先复习Laplace方程边值问题的几种类型,然后由Green公式建立起Green函数的概念,并通过Green函数得到一般的泊松方程边值问题解的积分表达式,最后在几个特殊区域上讨论Green函数及Laplace方程的第一边值问题具体的求解过程。
7.1 Laplace 方程边值问题7.1.1 内问题Laplace 方程: 2222220u u ux y z∂∂∂++=∂∂∂0u ∆=描述物理中的平衡、稳定等现象,从而变化过程与时间无关,这时不提初始条件,边界条件常用到以下三种:1. 第一边值问题 Dirichlet 问题设曲面P 为空间某一区域Ω的边界,f 是定义在曲面P 上已知连续函数,求一函数(,,)u u x y z =满足Laplace 方程,满足光滑性条件:在区域Ω内有二阶连续偏导数,在Ω=Ω+Γ上连续,且有uf Γ=具有二阶连续偏导数且满足Laplace 方程的函数称为调和函数。
第七章 Green 函数法 - 数学物理方法
数学物理方法Mathematical Method in Physics西北师范大学物理与电子工程学院豆福全第七章Green函数法Green Function method引言前面几章我们系统的讨论了求解数学物理方法的几种典型方法:分离变量法,行波法以及积分变换法。
分离变量法主要适用于求解各种有界区域内的定解问题,行波法则主要适用于求解无界区域内的波动问题,而积分变换法也主要适用于求解无界区域内的定解问题,然而不受方程类型的限制。
同时,分离变量法,积分变换法这两种方法所给出的解,一般具有无穷级数与无穷积分的形式。
本章介绍求解数学物理方程的另一重要方法——Green函数法。
所不同的是,该法给出的是一种有限积分的解,便于人们进行理论分析与研究。
Green函数的特点是它仅与定解问题所定义的区域的形状及边界条件类型有关,而与定解条件及方程非齐次项所给出的具体形式无关。
特别是一些用分离变量法较难处理的非齐次方程的定解问题,Green函数法更能显示出其优越性。
从物理上看,一个数学物理方程在大多数情况下,往往表示一种特定的“场”和产生这种场的“源”之间的关系。
如热导方程表示的是温度场与点源之间的关系,泊松方程表示的是静电场和电荷分布之间的关系等。
这样,当源被分解成许多点源的叠加时,如果通过某一种方法知道各点源产生的场,然后再利用叠加原理,就可以求出同样边界条件下任意源的场,这种求解数理方程的方法被称为Green函数法,而点源产生的场就是Green函数。
本章首先复习Laplace方程边值问题的几种类型,然后由Green公式建立起Green函数的概念,并通过Green函数得到一般的泊松方程边值问题解的积分表达式,最后在几个特殊区域上讨论Green函数及Laplace方程的第一边值问题具体的求解过程。
7.1 Laplace 方程边值问题7.1.1 内问题Laplace 方程: 2222220u u ux y z∂∂∂++=∂∂∂0u ∆=描述物理中的平衡、稳定等现象,从而变化过程与时间无关,这时不提初始条件,边界条件常用到以下三种:1. 第一边值问题 Dirichlet 问题设曲面P 为空间某一区域Ω的边界,f 是定义在曲面P 上已知连续函数,求一函数(,,)u u x y z =满足Laplace 方程,满足光滑性条件:在区域Ω内有二阶连续偏导数,在Ω=Ω+Γ上连续,且有uf Γ=具有二阶连续偏导数且满足Laplace 方程的函数称为调和函数。
化学及化工专业词汇英语翻译(j-o)3
化学及化工专业词汇英语翻译(J-O)3- -neutron source 中子源neville winther's acid 萘温酸new ceramics 新陶瓷newsprint 新闻纸newtonian flow 牛顿怜newtonian liquid 牛顿液体niacin 尼克酸nichrome 镍铬合金nickel 镍nickel acetate 醋酸镍nickel alloy 镍合金nickel bloom 镍华nickel carbonyl 羰基镍nickel chloride 氯化镍nickel chromium steel 铬镍钢nickel compound 镍化物nickel hydroxide 氢氧化镍nickel nitrate 硝酸镍nickel plating 镀镍nickel powder 镍粉nickel salt 镍盐nickel silver 德银nickel steel 镍钢nickel sulfate 硫酸镍nickel sulfide 硫化镍nicotine 尼古丁nicotine sulfate 硫酸烟碱nicotinic acid 烟酸nicotinic acid amide 烟酰胺niello 乌鸟银nieuwland catalyst 纽兰德催化剂nigrite 尼格赖特nigrosine 苯胺黑ninhydrin 茚三酮ninhydrin reaction 茚三酮反应niobate 铌酸盐niobe oil 尼哦油niobic acid 铌酸niobium 铌niobium carbide 碳化铌niter 硝酸钠niter cake 硫酸氢钠niter steel 氮化钢niton 氡nitralin 磺乐录nitramide 硝酰胺nitramine 四硝甲苯胺nitrase 硝酸酶nitrate 硝酸盐nitrate assimilation 硝酸同化nitrate explosive 硝酸盐炸药nitrate nitrogen 硝态氮nitrate of lime 硝酸钙nitrate rayon 硝化纤维丝nitrate respiration 硝酸呼吸nitrating apparatus 硝化器nitration 硝化nitration centrifuge 硝化离心机nitrato complex 硝酸基络合物nitrator 硝化器nitrene 硝基苯抽出物nitric acid 硝酸nitric anhydride 硝酐nitric oxide 一氧化氮nitridation 氮化nitride 氮化物nitride solid solution 硝化物固溶体nitriding 氮化nitriding steel 氮化钢nitrification 硝化nitrile 腈nitrilotriacetic acid 氮川三醋酸nitrite 亚硝酸盐nitrite bleaching 亚硝酸盐漂白nitro color 硝基色料nitro compound 硝基化合物nitro derivative 硝基衍生物nitro dye 硝基色料nitro group 硝基nitroaniline 硝基苯胺nitrobenzene 硝基苯nitrobenzol 硝基苯nitrocalcite 硝酸钙nitrocellulose 硝化纤维nitrocellulose lacquer 硝基纤维漆nitrocellulose silk 硝化纤维丝nitrochalk 钾铵硝石nitrochlorobenzene 硝基氯苯nitrocotton 硝化纤维nitrocresol 硝基甲酚nitroethane 硝基乙烷nitroform 硝仿nitrofurazone 硝基糠腙nitrogen 氮nitrogen assimilation 氮同化nitrogen balance 氮平衡nitrogen bulb 定氮球管nitrogen compound 氮化合物nitrogen content 含氮量nitrogen cycle 氮循环nitrogen dioxide 二氧化氮nitrogen fertilizer 氮肥nitrogen filled lamp 充氮灯nitrogen fixation 氮固定nitrogen fixing bacteria 固氮细菌nitrogen flow 氮化怜nitrogen metabolism 氮代谢nitrogen monoxide 一氧化二氮nitrogen oxide 氧化氮nitrogen peroxide 二氧化氮nitrogen salt 氮盐nitrogen sulfide 硫化氮nitrogenous nutrient 含氮养料nitroglycerin 硝化甘油nitroglycerin powder 硝化甘油火药nitroglycol 硝化甘醇nitroguanidine 硝基胍nitrolic acid 硝肟酸nitrolime 石灰氮nitrolysis 加硝酸分解nitromannite 硝化甘露醇nitrometer 氮量计nitromethane 硝基甲烷nitron 硝酸灵nitronaphthalene 硝基萘nitronic acid 氮羧酸nitrophenol 硝基酚nitrophoska 硝化酸磷酸钾nitrosalicylic acid 硝基水杨酸nitrosalol 硝基萨罗nitrosamine 亚硝胺nitrosamine rearrangement 亚硝胺重排nitrose 硝酸类nitrosilk 硝化纤维丝nitroso compound 亚硝基化合物nitroso group 亚硝基nitroso rubber 亚硝基橡胶nitrosodye 亚硝基染料nitrosoguanidine 亚硝基胍nitrosonaphthol 亚硝基萘酚nitrosophenol 亚硝基苯酚nitrostarch 硝化淀粉nitrostyrene 硝茎苯乙烯nitrosulfonic acid 硝基磺酸nitrosyl chloride 氯化亚硝酰nitrosyl compound 亚硝酰化合物nitrosylsulfuric acid 亚硝基硫酸nitrothiophene 硝基噻吩nitrotoluene 硝基甲苯nitrotoluidine 硝基甲苯胺nitrourea 硝基脲nitrourethane 硝氨基甲酸乙酯nitrous acid 亚硝酸nitrous anhydride 亚硝酐nitrous oxide 一氧化二氮nitroxylene 硝基二甲苯nobelium 锘noble gas 稀有气体noble metal 贵金属nodal plane 节平面nodal point 节点nomenclature 命名法nominal horsepower 标称马力nomogram 列线图解nomograph 列线图解nomography 列线图解法non adiabatic 非绝热的non adiabatic rectification 非绝热精馏non diffusible ion 固定离子non inflammable 耐火的non newtonian flow 非牛顿怜non return valve 逆止阀non solvent 非溶剂nonacosane 廿九烷nonadecane 十九烷nonalcoholic bevarage 无醇饮料nonalternant hydrocarbon 非偶轭环烃nonanal 壬醛nonane 壬烷nonanoic acid 正壬酸nonanol 壬醇nonaqueous indicator 非水溶液指示剂nonaqueous solution 非水溶液nonaqueous solvent 非水溶剂nonaqueous titration 非水滴定nonbenzenoid aromatic compound 非苯型芳族化合物nonblackbody 非黑体nonbonding orbital 不成键轨道noncaking coal 非粘结煤noncatalytic polymerization 非催化聚合noncatalytic solution polymerization 非催化溶液聚合noncompetitive inhibition 非竞争性抑制noncondensable gas 不凝气体nonconductor 非导体noncrossing rule 不相交规则noncrystalline semiconductor 非晶质半导体nondestructive analysis 非破坏性分析nondimensional number 无因次数nondrying oil 非干性油nonelastic collision 非弹性碰撞nonelastic gel 非弹性凝胶nonelectrolyte 非电解质nonequilibrium thermodynamics 非平衡态热力学nonessential amino acid 非必需氨基酸nonfat milk 脱脂乳nonferrous alloy 非铁合金nonferrous metal 非铁金属nonfossiliferous limestone 无化石石灰岩nonhomogeneity 不均匀性nonideal solution 非理想溶液nonionizing solvent 非电离性溶剂nonlinear molecule 非线性分子nonlocalized energy 非定域能nonmagnetic steel 非磁性钢nonmetal 非金属nonmetallic luster 非金属光泽nonplastic material 非塑性材料nonpolar adsorption 非极性吸附nonpolar bond 非极性键nonpolar compound 非极性化合物nonpolar double bond 非极性双键nonpolar linkage 非极性键nonpolar liquid 非极性液体nonpolar molecule 非极性分子nonpolar solvent 非极性溶剂nonprotein nitrogen 非蛋白氮nonradiative transition 无辐射跃迁nonradioactive tracer 非放射性指示剂nonreflecting film 不反射膜nonsaturation 不饱和性nonshrink treatment 防缩处理nonskid tyre 防滑轮胎nonvariant system 不变系统nonvolatile matter 不挥发物质nonyl acetate 乙酸壬酯nonyl alcohol 壬醇nonylamine 壬胺nonylbenzene 壬苯nonylene 壬烯nonylic acid 正壬酸nonylphenol 壬基苯酚nordhausen acid 发烟硫酸norleucine 正亮氨酸normal atmosphere 标准大气normal chain 直链normal condition 标准条件normal consistency 标准稠度normal coordinates 简正坐标normal dispersion 正常弥散normal distribution 正态分布normal electrode 标准电极normal electrode potential 标准电极势normal element 标准电池normal polymerization 正规聚合normal potential 标准电势normal pressure 正常压力normal salt 正盐normal sand 标准砂normal solution 规定溶液normal state 标准状态normal temperature 标准温度normal thermometer 标准温度计normal vibration 正常振动normality 规定浓度normalization 规格化normuscone 降香酮norphytane 姥鲛烷norvaline 戊氨酸noumeite 硅镁镍矿novobiocin 新生霉素novocaine 奴佛卡因novolak 酚醛尸nozzle 喷嘴nuclear adiabatic demagnetization 核绝热去磁nuclear boiling 泡核沸腾nuclear bombardment 核轰击nuclear chain reaction 核链式反应nuclear charge 核电荷nuclear chemistry 核化学nuclear emulsion 核乳胶nuclear energy 原子能nuclear fission 核裂变nuclear force 核力nuclear fuel 核燃料nuclear fusion 核聚变nuclear isomer 同核异构体nuclear isomerism 同核异构性nuclear magnetic induction 核磁诱发nuclear magnetic moment 核磁矩nuclear magnetic resonance 核磁共振nuclear magnetism 核磁性nuclear magneton 核磁子nuclear membrane 核膜nuclear optical model 核光学模型nuclear power 原子能nuclear radius 核半径nuclear reaction 核反应nuclear reactor 核反应堆nuclear reactor control 核反应堆控制nuclear rotational motion 核转动nuclear synthesis 核合成nuclear vibration 核振动nuclease 核酸酶nucleic acid 核酸nuclein 核蛋白nucleon 核子nucleonics 核子学nucleophilic displacement 亲核置换nucleophilic reaction 亲核反应nucleophilic reagent 亲核剂nucleophilic rearrangement 亲核换位nucleophilic substitution 亲核取代nucleoplasm 核质nucleoproteide 核蛋白类nucleoprotein 核蛋白nucleosidase 核苷酶nucleoside 核苷nucleotidase 核苷酸酶nucleotide 核苷酸nucleotide sequence 核苷酸序列nucleus 核nucleus formation 核生成nucleus of crystall 晶核nuclide 核种null indicator 零点指示器null method 零位法null position 零位number average degree of polymerization 数平均聚合度number average molecular weight 数均分子量number of plate 塔板数number of transfer unit 传递单元数number operator 数字算符numerical aperture 数值孔径numerical concentration 数值浓度numerical integration 数值积分法nusselt number 努塞尔特数nutrient 营养素nutrient agar 营养琼脂培养基nutrient fat 营养脂肪nutrient solution 培养液nutrition 营养nutritional unit 营养值单位nutritive ratio 营养比nutritive salt 营养盐nutritive value 营养值nutsche filter 滤过器nylon 尼龙obermayer's reagent 奥伯迈耶试剂object glass 物镜objective color 实在彩色objective function 目标函数objective lens 物镜obscure glass 不透茫璃obscure radiation 暗辐射observable 可观察量observation 观测observation error 观测误差obsidian 黑曜岩occluded gas 吸留气体occlusion 吸留occupational disease 职业病ocean floor spreading theory 海底扩张说ocher 舣octadecane 十八烷octadecylene 十八烯octafluorocyclobutane 过氟化环丁烷octahedron 八面体octance value 辛烷值octane 辛烷octane number 辛烷值octanoic acid 辛酸octanol 辛醇octant rule 八区律octose 辛糖octyl acetate 乙酸辛酯octyl alcohol 辛醇octyl mercaptan 正辛硫醇octylene 辛烯octylene oxide 氧化辛烯octylic acid 辛酸octyne 辛炔ocular 目镜ocular dichroscope 接眼二色镜ocular examination 目视检查法ocular micrometer 目镜测微计odd even nucleus 奇偶核odor 气味odorant 着嗅剂odorimeter 气味计odorimetry 气味测定法odoriphore 生臭团oenometer 酒度计ohmic loss 电阻损失oil 油oil absorbency 吸油性能oil absorption 吸油量oil absorptiveness 吸油性能oil and fat 油脂oil bath 油浴oil cake 豆饼oil cleaner 油净化器oil coke 石油焦炭oil color 油溶性染料oil diffusion pump 油扩散泵oil emulsion 油品乳化液oil extended rubber 油增塑橡胶oil field 油田oil filled capacitor 充油电容器oil film 油膜oil firing 油燃烧oil foot 油渣oil gas 油气oil gas tar 油气焦油oil gasification 油的气化oil hardening steel 淬焦钢oil hydrometer 油比重计oil immersion test 油浸试验oil insulator 油类绝缘体oil lubrication 油润滑oil meal 油粉oil modified resin 油改性尸oil of vitriol 硫酸oil paint 油涂料oil printing 油印法oil purifier 油净化器oil putty 油灰oil reactive ester resin 油反应性酯尸oil reclaiming process 废油再生法oil removing 脱油oil resistance 耐油性oil resistant rubber 耐油橡胶oil separation 油分离oil separator 油分离器oil shale 油页岩oil soluble dyes 油溶染料oil soluble resin 油溶尸oil stain 油着色剂oil sugars 油糖剂oil thief 取油样器oil vapor velocity 油汽速度oil varnish 清油漆oiliness 油性oiliness improver 油性添加剂oiling 涂油oily matter 油状物ointment 软膏old fustic 黄颜木oleate 油酸盐olefin 烯olefin complex 烯烃复体olefin polymer oil 烯烃聚合油oleic acid 油酸oleic acid nitrile 油腈oleic alcohol 油醇olein 油精oleinic acid 油酸oleo resinous varnish 油基尸清漆oleomargarine 人造奶油oleonitrile 油腈oleorefractometer 油折射计oleoresin 含油尸oleum 发烟硫酸oleyl alcohol 油醇oligomer 低聚物oligomeric protein 低聚蛋白质oligonucleotide 低核苷酸oligopeptide 低聚肽oligosaccharide 低聚糖olive infused oil 橄榄泡制油olive oil 橄榄油oliver filter 连续式转鼓过滤机olivine 橄榄石on line operation 联机操作on off control 双位置控制one bath dyeing 单浴染色one component system 单组分系one dimensional chromatography 单向色谱one side printing 单面印花法one way vision glass 单向观察玻璃onethrough operation 单程操作opacifier 遮光剂opacity 不透萌opal 蛋白石opal glass 乳色玻璃opalizer 遮光剂open chain 开链open flash point tester 开方引火点试验器open hearth furnace 平炉open pot 开口坩埚open steam 直接蒸汽open steam vulcanization 直接蒸汽硫化open system 开系operating method 操捉法operating system 控制系统operation 工作操作operator 算符opianic acid 鸦片酸opiate 鸦片制剂opium 鸦片oppanol 欧巴诺尔opposing reaction 对抗反应opposite pole 异性极optic axial angle 光轴角optic axis 光轴optical active polymer 光学活性聚合物optical activity 旋光性optical anomaly 光学反常optical bleaching agent 荧光增白剂optical center 光中心optical density 光密度optical depth 光深度optical fiber 光学纤维optical glass 光学玻璃optical isomer 旋光异构体optical isomerism 光学异构性optical microscope 光学显微镜optical path difference 光程差optical property 光学性能optical pyrometer 光学高温计optical rotation 旋光度optical rotatory power 旋光强度optical sensitizer 光学增感剂optical transfer function 光学传递函数optically active substance 旋光物optically functional materials 光功能性材料optimal control 最佳控制optimum cure 最适硫化optimum temperature 最适温度optimum value 最佳值optimum vulcanization 最适硫化optoacoustic detection method 光声检测法oral contraceptive 口服避孕药orange flower oil 橙花油orange oil 橙油orange peel oil 橙皮油orange pigment 橙色颜料orbital electron 轨道电子orbital elements 轨道要素orbital function 轨道函数orbital quantum number 轨道量子数orbital symmetry 轨道对称orbital valence 轨道原子价orcin 蓄黑酚orcinol 蓄黑酚order 次order of perturbation 微扰阶数order of phase transition 相变的级order of reaction 反应级数ordinary light 普通光ordinary rays 寻常光线ordinary sheathed explosive 常规安全炸药ordinary state 常态ordination number 原子序ore 矿石ore assaying 矿石分析ore burner 烧矿炉ore deposit 矿床ore dressing 选矿ore flotation promoter 矿石浮选促进剂organic accelerator 有机促进剂organic acid 有机酸organic analysis 有机分析organic base 有机碱organic catalyst 有机催化剂organic chemistry 有机化学organic colloid 有机胶体organic coloring matter 有机色素organic compound 有机化合物organic electrochemistry 有机电化学organic fertilizer 有机肥料organic glass 有机玻璃organic group 有机基organic molecular compound 有机分子化合物organic peroxide 有机过氧化物organic pigment 有机颜料organic plastics 有机塑料organic precipitant 有机沉淀剂organic radical 有机基organic reagent 有机试药organic semiconductor 有机半导体organic solvent 有机溶剂organic substance 有机物质organic superconductor 有机超导体organism 有机体organism of fermentation 发酵微生物organized ferment 活体酶organoalkoxysilane 有机烷氧基硅烷organoaluminium compound 有机铝化合物organoaluminium polymer 有机铝聚合物organoboron compound 有机硼化合物organogel 有机凝胶organoleptic test 感官试验organomagnesium compound 有机镁化合物organomercurous fungicide 有机汞杀菌剂organomercury compound 有机汞化合物organometallic compound 有机金属化合物organophosphor 有机磷organosilicate 有机硅酸盐organosilicon compound 有机硅化合物organosol 有机溶胶organotin compound 有机锡化合物orientation 取向orientation force 定向力orientation polarization 定向极化orifice 遮光板orifice meter 孔板量计origin of elements 元素的起源original coal 原煤original color 原色original mold 原型orlon 腈纶ornamental glass 装饰用玻璃ornithine 鸟氨酸ornithuric acid 鸟尿酸orotic acid 乳清酸orpiment 雄黄orsat apparatus 奥萨特气体分析器orsellinic acid 苷色酸orthanilic acid 邻氨基苯磺酸orthite 褐帘石ortho effect 邻位效应ortho helium 正氦ortho hydrogen 正氢ortho para orientation 邻对位定向ortho position 邻位orthobaric density 正压密度orthochem 原生化学沉积orthochromatic plate 定色板orthoclase 正长石orthoform 凹栓因orthoformic acid 原甲酸orthogonal coordinates 直角坐标orthogonal function 正交函数orthogonal matrix 正交矩阵orthogonal transformation 正交变换orthonormal system 标准正交系orthophosphate 磷酸盐orthophosphoric acid 磷酸orthophosphorous acid 亚磷酸orthorhombic system 正交系orthosilicate 正硅酸盐osazone 脎oscillation 振荡oscillatory reaction 振荡反应oscillogram 示波图oscillograph 示波器oscillographic polarography 示波极谱法oscillometric titration 高频滴定oscillometry 示波测量术oscilloscope 示波器oscillotitrator 示波滴定仪osmate 锇酸盐osmic acid 锇酸osmiridium 铱锇矿osmium 锇osmium oxide 氧化锇osmium sulfide 硫化锇osmochemistry 渗析化学osmolality 克分子渗透压重量浓度osmolarity 克分子渗透压浓度osmole 渗透压摩尔osmometer 渗压计osmophore 渗泳群osmophore group 发香团osmoscope 渗透计osmosis 渗透osmotic coefficient 渗透系数osmotic pressure 渗透压力osmotropism 向渗性ossein 骨素osteolith 土磷灰石ostwald ripening 奥斯特瓦尔德成熟ostwald's dilution law 奥斯特瓦尔德稀释定律ostwald's viscometer 奥斯特瓦尔德粘度计otto of rose 蔷薇油ouabain 哇巴因outer diameter 外直径outer flame 外焰outflow 瘤outflux 瘤outgas 放气outlet 出口outlet pressure 排出压力output 输出功率outside indicator 外指示剂ovalbumin 卵白蛋白oven 炉over cure 过度硫化over exposure 过度照射overall coefficient of heat transfor 总传热系数overall plate efficiency 总塔板效率overall reaction rate 总反应速度overall stability constant 总稳定常数overbleaching 漂白过度overcharge 过度充电overcooling 过冷overdevelopment 过度显影overflow 外溢overflow mold 溢粒overflow pipe 下导管overhead 塔顶馏出物overheated vapour 过热蒸汽overheating 过热overlap integral 重叠积分overoxidation 过氧化overpotential 超电势overproduction 过度生产oversaturation 过饱和overvoltage 超电势ovoflavin 核黄素oxadiazon 恶草灵oxalacetic acid 草乙酸oxalate 草酸盐oxalic acid 草酸oxalic nitrile 氰oxaluric acid 草酰酸oxalyl chloride 乙二酰氯oxalylurea 乙二酰脲oxamic acid 草氨酸oxamide 草酰胺oxanilide 草酰替苯胺oxanthrone 蒽酚酮oxazine dye 恶嗪染料oxazole 恶唑oxazoline 恶唑啉oxidability 可氧化性oxidant 氧化剂oxidase 氧化酶oxidation 氧化oxidation bleaching 氧化漂白oxidation capacity 氧化能力oxidation catalyst 氧化催化剂oxidation color 氧化染料oxidation inhibitor 抗氧化剂oxidation number 氧化值oxidation of coal 碳氧化oxidation polymerization 氧化聚合oxidation potential 氧化电势oxidation reduction 氧化还原oxidation reduction cell 氧化还原电池oxidation reduction electrode 氧化还原电极oxidation reduction indicator 氧化还原指示剂oxidation reduction potential 氧化还原电位oxidation reduction reaction 氧化还原反应oxidation reduction system 氧化还原系统oxidation reduction titration 氧化还原滴定oxidation resistance 耐氧化性oxidation rinsing 氧化洗涤oxidation stage 氧化阶段oxidation style 氧化法oxidation test 氧化试验oxidation wave 氧化波oxidation zone 氧化区oxidative condensation 氧化缩合oxidative degradation 氧化降解oxidative ferment 氧化酶oxidative phosphorylation 氧化磷酸化oxide 氧化物oxide cathode 氧化物阴极oxide salt 氧化物盐oxidimetry 氧化还原滴定法oxidized form 氧化型oxidized starch 氧化淀粉oxidizing 氧化oxidizing agent 氧化剂oxidizing enzyme 氧化酶oxidizing flame 氧化焰oxidizing reagent 氧化剂oxidizing roasting 氧化焙烧oxidoreductase 氧化还原酶oxime 肟oximetry 测氧法oxindol 羟吲哚oxine 喔星oxirane 氧杂环丙烷oxo compound 氧基化合物oxo synthesis 羰基合成法oxonium base 氧碱oxonium compound 氧化合物oxonium ion 水合氢离子oxonium salt 氧盐oxozone 双氧气oxy acid 含氧酸oxyacetylation 氧氯净化oxyacetylene flame 氧乙炔焰oxyazo color 氧化叠氨色素oxybenzone 氧苯酮oxybromide 溴氧化物oxycalorimeter 氧量热计oxycarboxin 氧化萎锈灵oxycellulose 氧化纤维素oxychloride cement 氯氧化水泥oxycompound 氧基化合物oxygen 氧oxygen bomb 氧气瓶oxygen bomb test 氧气瓶试验oxygen bonding properties 氧结合性能oxygen carrier 载氧体oxygen convertible alkyd resin 氧化型醇酸尸oxygen convertible phthalic resin 氧化型苯二甲酸尸oxygen enriched air 富氧空气oxygen flask method 氧瓶法oxygen hydrogen cell 氧氢电池oxygen inhalator 氧吸入器oxygen number 氧价oxygen permeable membrane 富氧膜oxygen point 氧点oxygen pole 氧极oxygenase 氧合酶oxyhemoglobin 氧合血红蛋白oxyhydrogen blowpipe 氢氧气吹管oxyhydrogen flame 氢氧火焰oxyhydrogen light 氢氧爆气光oxyhydrogen welding 氢氧焊接oxyliquit 液氧炸药oxymeter 氧气计oxysalt 含氧盐oxytetracycline 氧四环素oxytocin 氧毒素ozalid 熏晒图ozalid paper 氨熏晒图纸ozocerite 天然地蜡ozokerite 木炭ozonation 臭氧化ozone 臭氧ozone bleaching 臭氧漂白ozone generator 臭氧发生器ozonide 臭氧化物ozonizer 臭氧发生器ozonolysis 臭氧分解ozonometer 臭氧计ozonometry 臭氧测定术ozonoscope 臭氧测量仪。
非平衡格林函数
非平衡格林函数非平衡格林函数(Non-equilibriumGreen'sfunctions,NEGF)是描述非平衡态下系统行为的重要工具。
它是格林函数的一种推广,广泛应用于凝聚态物理、纳米电子学、光电子学等领域。
本文将从NEGF 的基本概念、历史发展、理论框架、应用研究等方面进行介绍和分析。
一、基本概念NEGF是一种描述量子系统非平衡态下的行为的理论工具。
它是格林函数理论的一种推广,用于描述系统中的电荷、能量、自旋等自由度在时间和空间上的演化。
NEGF理论可以用来计算非平衡态下的输运性质,如电导率、热导率等,也可以用于描述非平衡态下的光学性质,如吸收谱、发射谱等。
NEGF理论的核心是非平衡态下的格林函数。
格林函数是描述量子系统中的相互作用效应的数学工具,它反映了系统中某个自由度的激发情况对其他自由度的影响。
在平衡态下,格林函数可以用来描述系统的激发态密度、热力学性质等。
在非平衡态下,格林函数则可以用来描述系统中的输运性质。
二、历史发展NEGF理论的历史可以追溯到20世纪50年代。
当时,人们开始研究电子在晶体中的输运性质,发现传统的电子输运理论无法解释一些实验现象,如局域化、能级移动等。
为了解决这些问题,人们开始研究非平衡态下的电子输运理论。
1960年代初,Kadanoff和Baym等人提出了非平衡态下的格林函数理论,为后来的NEGF理论的发展奠定了基础。
NEGF理论在20世纪80年代得到了快速发展。
当时,人们开始研究纳米电子学、光电子学等领域,需要描述非平衡态下的输运性质。
NEGF理论的优越性质得到了广泛认可,并被应用于多个领域。
目前,NEGF理论已经成为描述非平衡态下的量子系统行为的重要工具。
三、理论框架NEGF理论的核心是非平衡态下的格林函数。
在NEGF理论中,系统的哈密顿量可以表示为H=H0+V其中H0是自由哈密顿量,V是相互作用哈密顿量。
系统的演化可以用密度矩阵来描述。
在NEGF理论中,密度矩阵可以表示为ρ(t)=ρ0+δρ(t)其中ρ0是平衡态下的密度矩阵,δρ(t)是非平衡态下的扰动。
【国家自然科学基金】_非平衡格林函数方法_基金支持热词逐年推荐_【万方软件创新助手】_20140803
推荐指数 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2011年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
2011年 科研热词 非平衡格林函数 硼氮共掺杂 密度泛函理论 分子整流器 非平衡格林函数(negf) 键桥 量子点 量子效应 输运特性 输运性能 负微分电阻 调制 自旋极化 端基 石墨纳米结 电子输运 电子结构 热输运 热导 点接触 栅极漏电流 数值模拟 双栅mosfet 双原子分子 单壁碳纳米管 na@c20h20分子 fano线性 推荐指数 4 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
推荐指数 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2010年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
科研热词 非平衡格林函数 输运特性 电子输运 分子器件 非平衡格林函数方法 隧穿磁阻 铁磁电极 量子线 量子点 透射谱 解析研究 自发辐射 脱氧核苷酸 线性电导 碳链 电声子耦合 氮掺杂 整流效应 慢流形 惯性重力波 并苯分子 平衡流 密度泛函理论 密度泛函 单壁碳纳米管 分子偶极矩 kondo效应 i-v特性 fano效应 c_(20)f_(20)分子
2012年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
Green函数求解不稳定渗流问题。
Green函数求解不稳定渗流问题。
不稳定渗流:在渗流过程中,若各运动要素与时间有关,则为不稳定渗流。
稳定渗流:在渗流过程中,如果各运动要素与(如压力及流速)时间无关,称为稳定。
稳定试井:通过人为改变工作制度,待生产稳定后,测出各工作制度下压力、产量、含砂及含水等资料以确定油井生产能力、合理工作制度和地层参数的方法。
试井是渗流的一个反问题,稳定试井主要用于试采阶段,确定合理工作制度。
方法自喷井:通过改变油嘴的大小来改变工作制度,由小到大或由大到小;抽油井:改变抽油机的冲程、冲次来改变工作制度。
改变工作制度后,等生产稳定了再测各种资料,一般12~24hr,连续测量几次误差<5~10%即可。
Green函数又称影响函数,是数学物理方法中的一个重要概念。
因为,从物理意义上看,一个数学物理方程表示一种特定的场和产生这种场的源的关系。
如温度场和热源,静电场和电荷分布。
Green函数代表一个点源(在一定边界条件或初始条件下)所产生的场。
地下流体的渗流方程描述一些源(注水井)或汇(采油井)与所产生的压力场的关系,因此格林函数也同样适用。
RameyGringartenOzkan源函数是Green函数在源区域上的积分,而且仅取决于源的空间形状。
对于无限大油藏的不稳定渗流问题,任意源只要求出源函数,则油藏中的压力分布就可以得到。
因此关键是如何求解源函数。
源函数的求法Newman乘积方法Newman乘积方法是数学物理方法中的一种降维方法,它可将一个三维的定解问题分解成一维或二维问题,基本源:一维无限大平面源。
单相液体稳定渗流第四节不完善性及稳定试井内容概要:在前面讨论的问题中,都认为油井是完善的,认为井钻穿全部油层,且钻穿部分是裸眼完成的。
但是,在实际情况下,有的井不一定钻穿全部油层厚度,且一般都采用下套管射孔完井,这些井都称为水动力不完善井,本节主要分析井的不完善性对渗流的影响及油井的稳定试井。
本节应牢固掌握稳定试井,折算半径、采油指数的概念;掌握井的不完善类型、对渗流的影响及表示方法;理解油井稳定试井的原理及应用。
非一致椭圆型方程的广义green函数
非一致椭圆型方程的广义green函数广义Green函数是解偏微分方程的一种方法,它可以通过椭圆型方程的积分表示来表示非一致椭圆型方程的解。
本文将详细介绍广义Green函数的定义、性质和表示方法。
首先,我们来定义非一致椭圆型方程。
非一致椭圆型方程是指不满足Laplace方程的椭圆型方程。
它可以表示为:\[Lu=f(x)\]其中,\(L\)是一个椭圆型的偏微分算子,\(u\)是未知函数,\(f(x)\)是给定函数。
通常,非一致椭圆型方程的最常见形式是Poisson 方程:\[\Delta u = f(x)\]其中\(\Delta\)表示Laplace算子。
广义Green函数可以用于求解非一致椭圆型方程的边界值问题。
边界值问题是指在给定边界条件下求解方程的特解。
对于非一致椭圆型方程,广义Green函数的定义如下:\[L_x G(x,y) = \delta(x-y) - \frac{1}{,\Omega,}\]其中,\(L_x\)是关于\(x\)的椭圆型偏微分算子,\(G(x,y)\)是Green函数,\(\delta(x-y)\)是Dirac Delta函数,\(,\Omega,\)是定义域\(\Omega\)的体积。
广义Green函数的性质如下:1. 广义Green函数是关于\(x\)的椭圆型方程的唯一解。
2. 广义Green函数在定义域\(\Omega\)内满足边界条件。
3. 广义Green函数在边界\(\partial \Omega\)上满足约束方程。
接下来,我们介绍用积分方法来表示广义Green函数的方法。
\[u(y) = \int_\Omega G(x,y)f(x)dx\]其中,\(G(x,y)\)是广义Green函数。
这个积分表示了\(u(y)\)是在整个定义域\(\Omega\)上对\(f(x)\)与Green函数的积分。
根据广义Green函数的定义,可以将其表示为:\[G(x,y) = G_0(x,y) - \frac{1}{,\Omega,}\int_\OmegaG(x,z)dz\]其中,\(G_0(x,y)\)是关于\(x\)的椭圆型方程的Green函数。
第二章 静电场 格林函数法
( x) ( x ) G ( x, x) ( x)dV 0 G ( x, x ) dS V S n
1 S ( x)dS 0 S
此式称为外问题的Green函数解的形式。边值问题的解找到 了,其实并作为此,因为只有把问题的Green函数 找到了,才能对表达式(第一类边值问题的形式解 和第二类边值问题的形式解)作出具体的计算。实 际求Green函数本身并不是件容易的事,所以以上 解的形式只具有形式解的意义。当然,它把唯一性 定理更具体地表达出来了。 在这里介绍几种不同区域的Green函数的制作 方法。
因为Green公式中积分,微分都是对变量 x 进行的, 而Green函数关于源点和场点是对称的,即 G( x, x)
G( x, x ) ,为方便起见,把变量 x 换为 x ,故有 改为 ,即得
[G( x, x)
V
1
0
( x) ( x)
1
0
( x x )]dV
电势方程为
0 假设有一包含 x 点的某空间区域V,在V 的边界
2
1
( x x)
(3)
S上有如下边界条件
S
0 或者 n
S
1 0S
(4)
则把满足边界条件(4)式的(3)式的解称为 泊松方程在区域V的第一类或第二类边值问题 的Green函数。
Green函数一般用 G( x, x) 表示,x 表示单位电荷 所在的位置,x代表观察点,在(3)式和(4) 式中,把
故得到
1 4 ( x x) r
2
与微分方程比较,即有 1 1 2 2 1 G ( x, x) ( x x) 40 r 0
ATK-VNL 2013.8 原子级模拟平台用户手册说明书
ATK-VNL 2013.8ATK-VNL is a leading industry-proven platform for atomic-scale modeling ofmaterials, nanostructures, and nanoelectronic devices. It includes quantum mechanical methods such as density functional theory (DFT) with either LCAO or plane-wave basis sets and semi-empirical models, simulation engine for atomic-scale simulations using classical potentials, module for nanoscale device and transport simulations using non-equilibrium Green’s function (NEGF) methodology. ATK-VNL combines the power of a Python scripting engine with the ease-of-use provided by an intuitive graphical user interface, Virtual NanoLab. All simulation engines share a common infrastructure for analysis, ion dynamics and parallel performance techniques.New Interface | Introducing Projects and the LabFloor►Group your files into projects►Easier and more transparent access to objects in NetCDF files►Complete overview of all files and data within a project on the LabFloor►Combine data sets from different files for analysis►The Builder “stash” is now persistent across sessions - and separate for different projects►But - if you like the old interface, you can also make ATK 13.8 look like 12.8 and still benefit from all the new features.►This is also handy for quickly navigating around your directory structure to locate a file.►Transmission Analyzer - investigate specific transmission spectra in more detail. Calculate transmissioneigenvalues and eigenstates interactively.►Enhanced band structure analyzer - e.g. measure band gaps.►Plotting tool for 3D grids projected to 1D►Defined by plugins - expect more, and write your own!IV Curves►Easily set up, compute, and and plot I-V curves►Investigate the transmission spectra behind the calculation.►The dynamical view in the I-V plot plugin allows you to symmetrize the curve.►Click a voltage point to highlight the transmission spectrum.Phonon Calculations►Phonon band structure and density of states for bulk materials, nanowires, nanotubes, graphene, etc.►Study thermal transport - compute the phonon transmission spectrum and calculate the Seebeck and other thermal coefficients►Parallelized with near-linear scaling up to 3N nodes (N=the number of atoms)Noncollinear Spin►Available for both electronic structure and transport calculations►Specially developed novel methods for improved convergence, using a collinear initial stateCrystal Builder►Build crystals from scratch, using Wyckoff positions►Strukturbericht templates►Symmetry recognition (spglib) - plugin the BuilderNew 3D Viewer►Improved performance for trajectory movies and large structures►Control atom color, radius etc individually►Set background color, control lighting in detail►Set atom properties by properties, like radius by Mulliken population or color by effective potential or forces (requires plugins)►Better support for old graphics drivers - performance may suffer, but at least VNL starts up properly.►Easy export of images from the Builder and Viewer in various bitmap formats.►There is also an update to the POVRay plugin for generating ray-traced imagesDoped Systems►Doping can also be introduced in the central region (earlier it was only possible to do for the electrodes) via so-called compensation charges. This allows for simulations of a wide variety of semiconductor devices, like p-n junctions, p-i-n doped Si nanowires, etc, without the need to introduce explicit dopant atoms.►Doping charge can now be set in Scripter; the compensation.►Improved convergence of doped device systems.Molecular Dynamics►Large set of Tersoff potentials from Tremolo-X►Pre/post step hooks for customized on-the-fly analysis or time-dependent modifications of the structure (to make a stress/strain curve, for instance)►NVT, NPT, NVTBerendsen, NPTBerendsen, Velocity VerletPlane Wave Method: ABINIT►Shipped with ATK 13.8 - both for Linux and Windows, with support for MPI parallelization►Fully integrated with the ATK Python scripting language for total energy, NEB, geometry optimization and band structure calculations►Other customized ABINIT tasks can be scripted tooMethod Improvements►ATK-SemiEmpirical●All models now available in fully nonself-consistent and selfconsistent form●Performance enhancements►New shell-wise Hubbard +U model►Counterpoise correction to compensate for the basis set superposition error (BSSE). Use this when optimizing molecules on surfaces etc to get high accuracy.►Grimme’s DFT-D2 semi-empirical model for van der Waals interactions, both forces and stress; parameters for most elements up to Xe►Multigrid method●Added support for non-orthogonal cells●Performance improvementsSmaller Changes, Improvements and Additions►The keyword grid_mesh_cutoff for NumericalAccuracyParameters has been renamed to density_mesh_cutoff which is more correct conceptually. The old keyword is still accepted for backwards compatibility.►It is now possible to save arbitrary numpy arrays in NC files. This is very handy when you have computed some results - possibly in a time-consuming post-processing step - and want to store them for later plotting etc.►Several small improvements to the Interface Builder, like a small inaccuracy in the positions of plot points in the surface cell picker, shift in Z kept consistent when adding layers, and the default suggestion for the surface cell is now really the smallest cell.►Device from Bulk - algorithmic improvements and new presentation of electrode Z-length choices.►A few performance improvements related to MD simulations and other cases where a copy is needed of aconfiguration.►Unit cells and coordinates are now slightly rounded to avoid 0 being represented as 1e-17 in generated scripts.►No question anymore for permission to overwrite existing NC files - ATK doesn’t actually overwrite existing NC files, it just appends to them (normally, at least - unless you use an object ID already present in the file).►Memory Usage button in the Script Generator to provide an estimate of the required memory for a calculation.Can also be inserted in a script, since the estimate can take some time. See the dedicated tutorial for moredetails.►Transmission spectrum is now always identically zero for energies where there are no propagating states. This means you can trust that a small but non-zero value is not just numerical noise but actually indicates finite but small transmission.►Clearer which stash items you are about to delete.►Possibility to make the stash panel in the Builder larger.►The scipy package is now part of ATK.►Clearer error messages in cases where licenses (trial or usual ones) have expired.Serious Bugs Fixed (Which Could Give Incorrect Results in Calculations!)►The wrong set of k-points for hexagonal (and other) lattices were generated by the symmetry recognitionroutines in ATK in some cases, which could result in incorrect results for the density of states. In 13.8.1 thisis solved by not using symmetries at all - this makes the calculations take a bit longer of course. In 14.2 thecorrect symmetry points will be used.►The Cleaver was unable to cleave for instance base-centered orthorhombic crystals correctly. Also, there were issues when you manually rotated the cell - even if you chose an “electrode” cell, C was not perpendicular to the AB plane always.►The dynamical matrix calculation now employs the acoustic sum rule and symmetries to avoid negativefrequencies.►A degeneracy factor was missing for the entropy of phonon DOS.►The function sortCoordinates (used e.g. in the “Coordinate list” plugin) would fail for systems with many atoms, leaving the atoms unsorted. This was especially a problem for large devices which rely on this sorting for the central region to reduce memory usage (and indeed construct the device using “Device from Bulk”).►A Bohr/Angstrom mixup in QuantumEspresso import caused incorrect structures if the input file was specified in Bohr.►Errors with Tersoff potentials for III-V alloys (Tersoff_GaAs_2002, Tersoff_GaAs_2011 and Tersoff_InGaAs_2000) have been corrected (the errors are actually in the original references themselves). Additions & Improvements►LDOS for ATK-SE has been implemented.►Thermal transport coefficients can now be plotted as a function of the Fermi level (image to the right)►ElectrodeValidator function - new way to find proper electrode sizes (will be presented in the new ATK device tutorial)►Adding more information to the About box, to help diagnose OpenGL issues. Also possible to email theinformation directly to QuantumWise.►ElectronDifferenceDensity now calculates all spin components.►All files are unchecked by default in new projects, to avoid a large new project taking very long time to load.►The dynamical matrix is no longer recalculated for devices each time - now it will be reused if it has alreadybeen calculated.►The colorbar is now included in exported images.►Export Abinit scripts to a directory without actually running them (this is not supported from the ScriptGenerator though, you have to add a line in the script).►Band structure plots etc now have window titles so you know which file they come from.►The object ID is shown in the tooltips for items imported to the LabFloor from NC files.►You can now delete files using the keyboard (Del button) in the file panel of the main VNL window.►The Installation guide has been added to the Start Menu.►Sorting of the projects in the “Open project” dialog has been disabled because sorting caused the wrong project to be opened when you selected it.►LabFloor importers now give item titles to FHI and QuantumEspresso files.►The scrollbars on the LabFloor work better now.Noticeable But Not Severe Bugs►It was not possible to select multiple images in a NEB path in the Builder - and thus not possible to applyoperations like Translate etc to many images at once.►The Script Generator made incorrect scripts for GGA and MGGA with ABINIT.►Spin-polarized device calculations using DFTB now works - the equivalent bulk was not polarized which causeda segfault when going into the device part.►When exporting matplotlib data, the global normalization factor was not removed, so the data was not scaled properly.►Running MemoryUsage for device using a DFTB calculator now works.►Cut Planes in the Viewer would not display negative values.►Running a quick optimization with the Brenner potential made it impossible to insert a spatial region.►LDOS was not supported in the Projector1D plugin►Crystal Builder: if the first inserted point is (x,y,z), editing coordinates didn’t work.►The NEB builder progress bar appeared behind the Builder and the “Create” button could easily be clickedmultiple times inf you didn’t notice it was already running.►Cut Planes in the Viewer - the preset planes AC and BC were reversed.Smaller Stuff►A smaller Bohr/Angstrom mixup for unit cells has been fixed.►“Analysis from File” (and a few other file dialogs) did not always open up in the project directory.►Crystal Builder: the default unique axis for Monoclinic should be B►The discs at the end of bonds were not transparent.►filename.nc was written twice when LabFloor items were grouped by calculator ID►Classic mode started in the wrong directory sometimes.►Copy atoms is no longer possible for NEB configurations in plugins like Translate etc (it doesn’t make sense).Unfixed Known Issues►Running Abinit in parallel requires special setup of the cluster, and even with that it sometimes doesn’t workproperly. We are investigating the issue but don’t expect to have a fix until ATK 14.2.►Sometimes you click the “Create” button in the I-V Curve generator but nothing happens. Solution: try again! It’s because of a conflict with the file being locked for reading by the LabFloor, and the file is unavailable for writinga short period after that.►Coloring of isosurfaces for Bloch states is wrong.►Reloading plugins raises errors if any atoms are selected when the reload is requested. Workaround: unselect all atoms first.►Trajectories where the cell changes were not read correctly (nlread).►The method “lastImage()” for trajectories now works as intended.►MoS2 and MoSe2 structures corrected in the Database (cf. Phys. Chem. Chem. Phys. 4, 4078 (2002)).►Sealed a memory leak (self-energies) in device calculations.►Forces for non-selfconsistent Slater-Koster models corrected.►EMTCalculator ignored repeated images and therefore did not work correctly for bulk configurations.►No matter which k-point sampling you set in C, the Script Generator always generated the script with 100points, which is always a safe choice, so it’s not a serious problem, but anyway fixed now.►The maximum number of steps set for an optimization will now apply also to a stress optimization. Earlier the loop over stress would run forever if the criterion was not met.►Better handling of zero (or very small) or very large values of the lattice parameters (could force the Builder to crash). Also improved error messages for illegal lattice parameters.►Tags are now kept when systems are dragged and dropped onto each other in the Builder.►The “Fit cell” plugin has been improved for some difficult cases.►Passivate tool could cause VNL to segfault for some structures - fixed.►Z-matrix tool now handles the selection order of atoms correctly when switching stash items.►Spatial regions inside electrodes are now displayed correctly in the Builder and Viewer (and not shifted inside the central region as before).►Better handling of rare cases where atoms are deleted in the electrodes causing the device to become invalid.►Contour integral parameters now cloned correctly when upgrading a calculator.►Ctrl and Shift not always observed when clicking the 3D view when the Builder is not active.►Cube file export no longer prints the trailing line which could trip up some other programs that import Cube files.►Improvements to the license configuration tool, to correct for mistakenly set server port.►Effective Mass Analyzer prints unit for Cartesian k-points - was confusing that they appeared in 1/Bohr when most other output in ATK is in Angstrom.►The NEB preoptimization also uses the max_steps keyword set for the NEB calculation itself.►Eigenstates, small bug related to using default quantum numbers.►Again possible to add an extra image between other ones in a NEB path - worked in 12.2 but not in 12.8.►Ti-beta actually generated a structure with a Tl (thallium) atom - typo...►Nanowire plugin doesn’t crash anymore when using a small radius►... plus a few really small and esoteric issuesBug Fixes (Compared to 12.8.2)Synopsys QuantumATK TeamFruebjergvej 3DK-2100 CopenhagenDENMARKTel: +45 333 32 300Email:***********************©2018 Synopsys, Inc. All rights reserved. Synopsys is a trademark of Synopsys, Inc. in the United States and other countries. A list of Synopsys trademarks is available at https:///copyright.html . All other names mentioned herein are trademarks or registered trademarks of their respective owners. 06/28/18.snSheet_qatk2018features.indd。
含磁场点线耦合系统近藤区输运性质的研究
中文图书分类号:0481密级:公开UDC: 530学校代码:10005硕士学位论文MASTERAL DISSERTATION论文题目:含磁场点线耦合系统近藤区输运性质的研究论文作者:秦昌东学科:物理学********论文提交日期: 2017年4月UDC:530 学校代码:10005中文图书分类号:0481 学号:S201406071密级:公开北京工业大学理学硕士学位论文题目:含磁场点线耦合系统近藤区输运性质的研究英文题目: TRANSPORT PROPERTIES OF THE QUANTUMDOT COUPLED LEAD IN THE KONDO REGIMEWITH MAGNETIC FIELD论文作者:秦昌东学科专业:物理学研究方向:新型材料物性及应用申请学位:理学硕士指导教师:杨凯华副教授所在单位:应用数理学院答辩日期:2017年5月授予学位单位:北京工业大学独创性声明本人声明所呈交的论文是我个人在导师指导下进行的研究工作及取得的研究成果。
尽我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得北京工业大学或其它教育机构的学位或证书而使用过的材料。
与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。
签名:秦昌东日期:20417 年4 月1 日关于论文使用授权的说明本人完全了解北京工业大学有关保留、使用学位论文的规定,即:学校有权保留送交论文的复印件,允许论文被查阅和借阅;学校可以公布论文的全部或部分内容,可以采用影印、缩印或其他复制手段保存论文。
(保密的论文在解密后应遵守此规定)签名:秦昌东日期:2017年4 月1 日导师签名:杨凯华日期:2017 年4 月1 日摘要人们对强关联电子体系的探索,无论是从理论角度还是从实验角度都取得了很大的进展。
人们对量子点电子体系的研究取得了显著的成果,凝聚态物理中的这一重要量子体系仍有很多新奇的物理现象需要我们去探索,这正是众多实验和理论物理学家投身于量子点系统研究的原因。
非一致椭圆型方程的广义green函数
非一致椭圆型方程的广义green函数
非一致椭圆型方程的广义Green函数是一种非常重要的数学工具,它用来求解非一致椭圆型方程的解。
它是一种双变量函数,用来描述椭圆型方程的解。
非一致椭圆型方程是一种非线性方程,它由一个非线性函数和一个变量组成。
它可以用来描述物理系统或其它类似的系统,如电力系统、水力系统和热力系统。
由于这些系统涉及到复杂的变量和参数,因此求解非一致椭圆型方程的解通常是一个比较困难的任务。
为了解决这个问题,人们引入了非一致椭圆型方程的广义Green函数。
它可以将复杂的非一致椭圆型方程转化为一种更简单的函数,这样可以更容易地求解非一致椭圆型方程的解。
非一致椭圆型方程的广义Green函数由三个变量组成,它们分别是椭圆型方程的参数a、b和c,它们分别代表椭圆型方程的X轴半径、Y轴半径和系数。
这三个变量是定义非一致椭圆型方程的基础。
广义Green函数可以用来解决非一致椭圆型方程的解,它的基本思想是将非一致椭圆型方程转换为简单的一元函数,这样可以用标准的数学方法来求解非一致椭圆型方程的解。
广义Green函数在许多科学领域都有广泛的应用,它可以用来求解非一致椭圆型方程的解,也可以用来解决物理系统或
其它类似的系统。
它是一种非常重要的数学工具,它可以帮助我们解决复杂的问题,并且可以提供更多的解决方案。
总之,非一致椭圆型方程的广义Green函数是一种非常重要的数学工具,它可以用来解决非一致椭圆型方程的解,它也可以用来解决物理系统或其它类似的系统。
它可以帮助我们解决复杂的问题,并且可以提供更多的解决方案,因此它是一种非常有用的数学工具。
非均匀介质中静电问题的green函数解法
非均匀介质中静电问题的green函数解法静电场的建模和计算是电动力学的基本问题,它在金属结构和工程应用中有广泛的应用。
静电场的数值模拟通常采用有限元法、有限差分法和边界元法,其优点是精度高、操作简单,但是,它们在处理非均匀介质中静电场时,存在计算量大、运行时间长等问题,因此,非均匀介质中静电问题的求解一直是研究热点。
Green函数是求解非均匀介质中静电问题最直接和有效的方法,它具有解析性、单元精度高等优点,可以有效的求解非均匀介质中的静电场模型,提高模型的求解精度和计算效率。
本文就Green函数研究在非均匀介质中的静电场模型的应用,从而降低计算时间和提高求解精度。
二、Green函数模型Green函数模型是一种分析法,用于求解非均匀介质中的静电场模型,它主要涉及Green函数计算、积分等几个主要步骤,其主要特点在于精度高、计算简便,可以有效求解非均匀介质中的静电场模型。
Green函数的基本思想是,先将非均匀介质中的静电场模型定义为一个复杂的函数,然后用Green函数对其进行分解。
Green函数是对复杂函数的局部拆分,可以有效地进行求解。
Green函数模型的计算步骤如下:(1)定义分析所需的Green函数,一般采用二维或三维Green 函数来求解多维Green函数;(2)根据Green函数定义去求解所需的数据,包括电势和电势能量;(3)计算边界条件对Green函数的导数;(4)结合所求的Green函数求解电荷分布,并根据负荷分布和电势来计算静电力,完成整个分析过程。
三、Green函数在非均匀介质中的应用由于Green函数在计算上具有计算简单、精度高等优点,如果能正确地应用Green函数模型,就可以更好的求解非均匀介质中的静电场问题。
(1)Green函数在多维介质中的应用Green函数可以用于非均匀介质中的电场分析,例如空间和时间的电场模型,其受力的方向可以分别为x、y、z三个方向,这就需要分别计算x、y、z三个方向上的电场。
梁的强迫振动问题Green函数解及应用研究综述
第21卷第10期2023年10月动力学与控制学报J O U R N A L O FD Y N AM I C SA N DC O N T R O LV o l .21N o .10O c e .2023文章编号:1672G6553G2023G21(10)G005G013D O I :10.6052/1672G6553G2023G093㊀2023G07G12收到第1稿,2023G09G13收到修改稿.∗国家自然科学基金资助项目(12072301),N a t i o n a lN a t u r a l S c i e n c eF o u n d a t i o no fC h i n a (12072301).†通信作者E Gm a i l :z h a o x i a n g _s w pu @126.c o m 梁的强迫振动问题G r e e n 函数解及应用研究综述∗赵翔†㊀谢非(西南石油大学土木工程与测绘学院,成都㊀610500)摘要㊀工程系统中梁结构经常处于各种激励的作用,因而梁结构在这种环境下不可避免地发生着各种各样的强迫振动.在梁结构发生振动的过程中,其自身会受到的温度㊁湿度㊁电磁场㊁裂纹等众多内外部因素的影响,而众多内外部因素就构成梁的多物理场耦合环境.在多场耦合环境下,G r e e n 函数法作为一种解析方法在研究梁的多场耦合振动问题方面具有优势,有利于讨论力㊁电㊁热㊁裂纹等因素作用下梁的振动特性和多场耦合特性.G r e e n 函数法相比于模态叠加法,优点在于能够得到完整且精度较高的解析解,具有收敛性好,运算快的特点.本文主要阐述G r e e n 函数在梁的强迫振动㊁热力耦合振动㊁力电耦合振动㊁裂纹梁振动等研究问题上取得了大量的理论和工程研究成果.本文以裂纹为内因,热㊁力㊁电为外因进行分类,阐述了在内外因影响下梁的强迫振动问题G r e e n 函数解的研究现状,从而让读者进一步系统性的了解G r e e n 函数法在振动领域中的广泛应用,以及了解该方法本身的特色和优势奠定基础.关键词㊀G r e e n 函数,㊀裂纹梁,㊀热力耦合,㊀力电耦合,㊀强迫振动中图分类号:O 32文献标志码:AR e v i e wo fG r e e nF u n c t i o nS o l u t i o n s a n dA p pl i c a t i o n s f o rF o r c e dV i b r a t i o no fB e a m s ∗Z h a oX i a n g †㊀Xi eF e i (C o l l e g e o fC i v i l E n g i n e e r i n g a n dS u r v e y i n g ,S o u t h w e s tP e t r o l e u m U n i v e r s i t y ,C h e n gd u ㊀610500,C h i n a )A b s t r a c t ㊀Be a m s t r u c t u r e s i ne n g i n e e r i n g s y s t e m a r eu s u a l l y s uf f e r e db y v a r i o u sc o m pl e xl o a d s ,a n d t h e s e l o a d s i n d u c e s m a n y k i n d so f f o r c e dv i b r a t i o no fb e a m s t r u c t u r e s i nt h i se n v i r o n m e n t i n e v i t a b l y .W h e n f o r c e dv i b r a t i o n s a r e o c c u r r e d ,t h e s e f o r c e dv i b r a t i o n s a r ea f f e c t e db y m a n y f a c t o r s s u c ha s t e m Gp e r a t u r e ,h u m i d i t y ,e l e c t r o m a g n e t i c f i e l d ,c r a c k s ,e t c .,a n d t h e s e f a c t o r s c o n s t i t u t em u l t i Gp h ys i c a l f i e l d s o f b e a ms t r u c t u r e s .I n m u l t i Gp h y s i c a l f i e l d s e n v i r o n m e n t ,a sa g o o da n a l yt i c a lm a t h e m a t i c a l t o o l ,t h e G r e e n s f u n c t i o n m e t h o dh a sa d v a n t a g e st os o l v e m u l t i Gf i e l dc o u pl e df o r c e dv i b r a t i o n so fb e a m s t r u c Gt u r e s ,a n dh a s g o o d p e r f o r m a n c e s t o d i s c u s s v i b r a t i o n c h a r a c t e r i s t i c s a n d c o u pl e d c h a r a c t e r i s t i c s o f b e a m s t r u c t u r e s u n d e ra c t i o n so fe x t e r n a l f o r c e s ,e l e c t r i c i t y ,h e a ta n dc r a c k sa r ed i s c u s s e d .C o m pa r e d w i t h m o d a l s u p e r p o s i t i o nm e t h o d ,t h eG r e e n s f u n c t i o n m e t h o dh a sa d v a n t a g e s t h a t i t c a nob t a i nc o m pl e t e a n dh i g h p r e c i s i o na n a l y t i c a l s o l u t i o n ,a n dh a sc h a r a c t e r i s t i c so f g o o dc o n v e r g e n c ea n df a s to p e r a t i o n .T h i s p a p e rm a i n l y r e v i e w e d a l a r g e n u m b e r o f t h e o r e t i c a l a n d e n g i n e e r i n g re s e a r c h r e s u l t s of t h eG r e e n s f u n c t i o nm e t h o d o n r e s e a r c h p r o b l e m s o f f o r c e d v i b r a t i o n s ,t h e r m o d y n a m i c c o u p l e d v i b r a t i o n s ,e l e c t r o Gm e c h a n i c a l c o u pl e dv i b r a t i o n s ,c r a c k e db e a mv i b r a t i o n s ,a n d s oo n .K e y wo r d s ㊀G r e e n sf u n c t i o n ,㊀c r a c k e db e a m ,㊀t h e r m o d y n a m i cc o u p l i n g ,㊀e l e c t r o Gm e c h a n i c a l c o u Gp l i n g,f o r c e dv i b r a t i o n s动㊀力㊀学㊀与㊀控㊀制㊀学㊀报2023年第21卷引言19世纪30年代英国科学家G e o r g eG r e e n首次提出了G r e e n函数[1]的概念,自此G r e e n函数作为物理学和数学方法被应用于力学㊁传热学㊁地震工程㊁结构工程[2]等诸多领域,并取得了大量的理论和研究成果.在数学物理学中,G r e e n函数被称为点源影响函数,表示一种特定的场和产生这种场的源之间的关系,而通过叠加原理求解任意点源场数学物理方程的方法就被称为G r e e n函数法.在G r e e n函数法运用于线性问题求解之前,学者们曾提出了各种方法来解决梁的强迫振动问题,例如用无限级数表示解的模态叠加法[3],M oGc h i d a等[4]就利用模态叠加法得到了梁固有频率和模态形状,可以准确有效地计算出弯曲振动梁的瞬态响应.S u n等[5]采用模态叠加法计算阻尼线性系统的振动响应,并根据外部激励的特性,求解了相应齐次方程的通解.然而该方法在无限级数的计算过程中会出现截断情况,所以本质上得到的解是一个近似解.与模态叠加法相比,G r e e n函数法能够得到精度较高的解析解,更有利于反应问题中的物理本质.在针对于瞬态G r e e n函数问题上可直接做瞬态叠加(积分),就可直接求出最终结果,而瞬态G r e e n函数分析和稳态G r e e n函数分析从求解方法上来说差别就在于对时间的积分,但无论是瞬态G r e e n函数还是稳态G r e e n函数都常用于处理边值问题,被广泛的用于各种非齐次定解问题.为了推导出相应的G r e e n函数,学者们付出了大量的努力,C a b a d a等[6]研究了一类具有积分界高阶微分方程非线性边值问题解的存在性,对相关G r e e n函数的符号作了详尽的研究.R o m a n等[7]研究了具有非局部边界条件下的各种平稳问题的G r e e n函数,并将具有非局部边界条件的G r e e n函数的性质与经典问题的性质进行了比较.K h o r r a m i 等[8]研究了振动方程㊁拉普拉斯方程㊁波动方程等不同物理方程的G r e e n函数.H o z h a b r o s s a d a t i 等[9]采用G r e e n函数法去求解具有两个导向支承的E u l e rGB e r n o u l l i梁结构的静力位移.H a n等[10]提出了一种基于G r e e n函数的弯曲-扭转耦合T i m o s h e n k o梁在分布和集中荷载作用下的稳态动力响应分析方法,求解了具有任意边界条件的梁的G r e e n函数.C h e n等[11]研究了不同边界条件下轴向强迫振动T i m o s h e n k o梁的稳态动力学问题,运用G r e e n函数法去讨论结构在过渡参数㊁高长比以及轴力作用下的动态响应.在应用模态分析方法处理梁的高阶模态方面,M a z i l u等[12]讨论了包含双曲函数的G r e e n函数标准形式,并将其应用于自由振动T i m o s h e n k o梁的数值不稳定性问题,提出了一种基于新的特征函数集(包括指数函数)构造G r e e n函数新方法.在对梁结构的改进和优化方面, K u r t a r a n等[13]用G r e e n函数法研究了中厚等曲率梯度曲梁的大位移静态和瞬态特性,并利用虚功原理得到了静力响应和动力响应的平衡方程.Z h a o 等[14]使用G r e e n函数方法研究了轴向压缩荷载下T i m o s h e n k o双梁系统的强迫振动,分析了双梁结构的相互作用,讨论高长比㊁外部频率㊁剪切效应㊁转动惯量以及轴向拉力等重要因素对G r e e n函数的影响.在多场耦合动力学问题方面,学者们也热衷于通过G r e e n函数解决各种复杂的耦合问题.梁热致振动问题一直被认为是经典和长期存在的问题,其中K i d a w aGK u k l a[15]利用G r e e n函数研究了梁的热致振动问题,分析了热源作用下梁的横向振动问题.Z h a o等[16]基于E r i n g e n非局部弹性理论和经典的E u l e rGB e r n o u l l i梁模型,利用G r e e n函数和特征函数研究了轴向运动中微纳梁的热弹性耦合强迫振动和传热方程,分析了轴向速度㊁高长比等因素对耦合温度场和位移场的影响,并首次发现了热量旋转效应.其次是对于梁裂纹场的研究,由于裂纹会降低构件承载力以及缩短使用寿命,在动力荷载作用下这种情况更加明显,且其力学行为求解分析困难.Z h a o等[17]利用G r e e n函数法比较了不同经典局部柔度模型对梁的动力学特性,给出了裂纹E u l e rGB e r n o u l l i梁在谐波力作用下稳态响应的显式表达式,分析了裂纹几何形状(深度和位置)对梁力学行为的影响.此外,在梁的力电耦合振动问题中,大多数学者都热衷于研究压电能量收集器,并在此基础上进行大量的改进和创新.C h e n等[18]根据柔电理论和H a m i l t o n原理推导出能量收集器在激励下的非线性机电耦合方程.E r t u r k[19]为基底激励压电能量收集器提出了通用的框架,给出了E u lGe rGB e r n o u l l i梁模型的机电耦合方程级数解.对于压电能量采集问题学者们更多的是看重解耦方法,6第10期赵翔等:梁的强迫振动问题G r e e n函数解及应用研究综述其次是考虑物理参数对压电能量收集器电力采集效率影响.本文回顾了以G r e e n函数为研究手段研究梁的强迫振动㊁裂纹梁的振动㊁梁的热弹性耦合振动㊁以及梁的力电耦合振动问题等一些经典文献.通过对近年来一些研究热点问题的G r e e n函数解方面的研究,总结G r e e n函数法在振动领域中一些发展,从而让读者进一步系统性的了解G r e e n函数法在振动领域中的广泛应用,以及了解该方法本身的特色和优势奠定基础,也为G r e e n函数法的进一步发展和推广提供帮助.1㊀梁结构振动问题的G r e e n函数解梁结构是工程系统中的一种基本单元,其在机械㊁车辆㊁船舶㊁飞机㊁航天器㊁建筑等结构中广泛存在.由于工程系统经常处于各种激励作用下,因而梁结构不可避免地发生着各种各样的强迫振动.此外,在梁结构发生振动的过程中,其自身会受到的温度㊁湿度㊁电磁场㊁裂纹等众多内外部因素的影响,这些因素使梁的强迫振动问题变得复杂且难以控制.如何更好地控制和利用多物理场环境下梁结构的强迫振动,达到趋利避害的目的成为了越来越多人关心的问题.1.1㊀直梁振动问题的G r e e n函数解系统受到初始扰动的激发所产生的振动称为自由振动,是一种没有外界能量补充的运动.在离散系统线性振动理论逐渐成熟的18世纪中叶,1727年B e r n o u l l i就研究了不计质量弹性弦线上等距分布的等质量点,建立了无阻尼自由振动动力学方程,并求出解析解.之后E u l e r于1728年建立并求解了单摆在有阻尼介质中运动的微分方程,并研究了无阻尼简谐受迫振动,从理论上也解释了共振现象.经过前两者的实验研究和理论论证,提出了后来经典的E u l e rGB e r n o u l l i梁模型.之后有R o n c e v i c等[20]研究了由任意数量下不同等刚度平移弹簧支承的E u l e rGB e r n o u l l i梁自由振动问题,采用G r e e n函数法计算了系统的固有频率和振型.R e z a i e eGP a j a n d等[21]也采用G r e e n函数法对两端为自由边界条件的E u l e rGB e r n o u l l i梁进行了分析,解析了具有旋转刚体运动的自由简支梁振动问题.研究中利用F r e d h o l m定理,消除了在数学上不能构造普通的G r e e n函数这一矛盾.由于之前梁结构的研究都忽略了截面转动和剪切应力的影响,为了更好修正模态函数以及频率方程.其中,由美国科学家T i m o s h e n k o提出T i m oGs h e n k o梁力学模型,该模型更有利于某些短梁和层合梁在荷载激励下振动问题的求解.首先L i u 等[22]计算得到了具有多重多层分层的旋转T i m oGs h e n k o梁的自由振动的解析解,其根据T i m o s hGe n k o梁理论以及自由振动模式所采用分层假设方法,详细的研究了自由振动模式下T i m o s h e n k o梁的振型.基于之前所采取的层合梁假设处理办法, J a f a r iGT a l o o k o l a e i等[23]提出了一种求解基于不同边界条件下的T i m o s h e n k o层合梁自由振动问题精确解的方法,方法就是利用以自由振动问题作为约束变分条件的L a g r a n g e乘数法,该方法较好的诠释了各种T i m o s h e n k o梁的固有频率和模态形状.如今对于梁的振动研究方面,还是主要偏向于强迫振动问题,所谓强迫振动就是由持续周期变化的外激励所引起的响应.其中A b uGH i l a l[24]利用动态G r e e n函数提出了一种确定受分布和集中荷载影响下E u l e rGB e r n o u l l i梁动态响应的方法,还给出了不同边界条件的G r e e n函数用于研究单跨和多跨梁㊁单载和多载梁以及静定梁的动力学特性.L i 等[25]通过L a p l a c e变换和分离变量法求解带阻尼T i m o s h e n k o梁的强迫振动稳态G r e e n函数,并通过对E u l e rGB e r n o u l l i㊁R a y l e i g h等经典梁模型进行比较,得到了剪切变形和转动惯量等因素对梁动态特性的影响.梁的G r e e n函数定义,其表示的是在梁上任意一点施加荷载所引起的响应,是力和位移之间的关系函数,用来求解梁结构动态响应问题.以T i m o s h e n k o梁的强迫振动稳态G r e e n函数求解为例,将梁稳态动力学问题中的G r e e n函数求解基本过程分为两大步,首先利用叠加原理将解表示为:W(x)=ʏL0f(x0)G(x,x0)d x(1)之后使用狄拉克函数进行推导,再对变量x进行L a p l a c e变换以及逆变换得到G r e e n函数相应的数学形式:G(x,x0)=H(x-x0)ϕ1(x-x0)+㊀ϕ2(x)W(0)+ϕ3(x)Wᶄ(0)+㊀ϕ4(x)Wᵡ(0)+ϕ5(x)W‴(0)(2)其中W㊁Wᶄ㊁Wᵡ和W‴是由边界条件确定的常数,7动㊀力㊀学㊀与㊀控㊀制㊀学㊀报2023年第21卷而常见的边界条件形式则有铰支座㊁固定端和自由端,三种边界条件结合不同梁类型共同决定其取值.在T i m o s h e n k o单梁系统的G r e e n函数研究基础上,M a z i l u等[26]描述了一个简单的运动车辆与无限周期之间的相互作用的支撑轨道,首次将轮轨的模型看作是一个无限的T i m o s h e n k o梁,通过建立时域分析,创建G r e e n函数矩阵,对轮轨进行数值模拟,最后得出由两种激励引起的响应:稳态相互作用和轨道不规则性.基于轴向载荷T i m o s hGe n k o微纳梁在微纳工程领域广泛的应用,L i等[27]推导了T i m o s h e n k o微/纳米梁在轴向张力支撑下的强迫振动解析解.在W i n k l e rGP a s t e r n a k谐波荷载㊁T i m o s h e n k o梁理论和非局部应变梯度理论条件基础下,使用过渡参数描述了微纳梁变形过程中的轴向张力方向,采用加权残差法,根据振动情况导出变分一致性边界条件,最后利用G r e e n函数法得到了T i m o s h e n k o微纳梁稳态动力响应的解析表达式.1.2㊀曲梁的振动G r e e n函数解在很多实际工程问题中,由于受场地㊁工程地质条件以及优化设计等影响,直梁结构不再能满足工程需求,因此出现了很多曲梁结构.目前对于曲梁的结构的研究主要集中在振动模式㊁结构多样化㊁多物理场等方面.1.2.1㊀不同振动模式下曲梁G r e e n函数研究针对曲梁的自由振动问题,K i s s等[28]建立了一维线性模型,在力学模型中考虑了中心线的延伸性,以此确定相关问题的G r e e n函数矩阵.在矩阵建立的基础上,采用数值技术(基于F r e d h o l m理论)来解决振动问题.这套方法不仅可以得到特征频率,而且可以找出模型中弹簧刚度如何影响梁的动力行为.在非均匀曲梁振动问题研究的基础上, K i s s等[29]又研究了具有中心线可拓性的非均质弯曲梁的振动问题.模型支座的端部均考虑为旋转约束销,其具有一定的中心作用,特点是此约束可任意压缩或拉伸,使得约束中的力(预载荷)被纳入模型.数值计算部分通过虚功原理导出耦合控制问题的微分方程,使用微分方程构造出G r e e n函数矩阵,确定矩阵的特征值并对系统进行数值求解.为更深入研究曲梁的动力学行为,赵翔等[30]通过将半径R设置为无穷大的方法,将曲梁结构退化为T i m o s h e n k o直梁振动模型,之后运用G r e e n函数法求解了T i m o s h e n k o曲梁在强迫振动下的解析解,通过分析曲梁截面的力学平衡,建立了T i m oGs h e n k o曲梁的振动方程.依次采用分离变量法和L a p l a c e变换法,对不同边界的T i m o s h e n k o曲梁求解出了相应的G r e e n函数.1.2.2㊀曲梁结构G r e e n函数研究在T i m o s h e n k o曲梁强迫振动G r e e n函数和一维线性模型的基础之上,V o等[31]利用G r e e nGL a g r a n g e法对曲梁进行描述,提出一种新的等几何T i m o s h e n k o梁公式,用于空间梁的几何非线性分析.对于空间曲梁结构的多变形式发展,L u u 等[32]介绍了双对称等截面圆弯曲梁自由振动的等几何分析方法.与传统基于有限元方法的不同,该方法采用G r e e n函数,能够精确定义圆形弯曲梁的几何形状,以此来作为有限元分析的基础.研究采用剪切变形曲线梁理论,考虑轴向拉伸㊁剪切变形和转动惯量的影响,详细研究了等几何单元的收敛性.基于经典的E u l e rGB e r n o u l l i梁曲梁模型,Z h a o 等[33]用G r e e n函数法求解双弯曲梁系统强迫振动.研究中利用G r e e n函数和L a p l a c e变换方法,得到了双弯曲梁振动方程的基本解,由于该基本解是通解的原由,适用于任何边界条件.最后基于不同边界条件下所得的通解,讨论了一些重要的几何和物理参数对振动响应的影响,以及弹性层刚度与双弯曲梁之间的相互作用.1.2.3㊀曲梁的多物理场G r e e n函数研究对于曲梁研究不单单仅限于得到一些简单边界条件下的强迫振动理论结果,更多是去考虑多物理场下曲梁所表现出来的响应.R e z a i e eGP a j a n d 等[34]用G r e e n函数法研究了受热机械载荷作用下弯曲曲梁的三维变形,运用G r e e n函数法去呈现曲梁的精确热力学静态响应.在此研究中值得注意的是,出现横向温度分布会导致面内和面外变形的情况,这一点在以前的研究中都没有被提及,使得对之后曲梁热力耦合研究起到一定的推进作用.在带阻尼效应E u l e rGB e r n o u l l i梁强迫振动研究基础之上,赵翔等[35]研究了多裂纹E u l e rGB e r n o u l l i曲梁的非线性强迫振动,利用G r e e n函数推导出了多裂纹曲梁稳态强迫振动的解析解.在推导的过程中基于G r e e n函数的数学结构,提出了一种新的传递矩阵,即反坐标两步传递矩阵(O C T M)方法.利用8第10期赵翔等:梁的强迫振动问题G r e e n函数解及应用研究综述O C T M方法和L a p l a c e变换方法,可得到了具有多裂纹的E u l e rGB e r n o u l l i梁的G r e e n函数.基于曲梁裂纹的研究,赵翔等[36]又建立了含裂纹损伤的曲梁压电能量俘获系统在强迫振动下的动力学模型.通过运用P r e s c o t t型压电曲梁力电耦合振动方程的解析解和裂纹截面处的连续性条件,求解了含裂纹损伤的压电曲梁的G r e e n函数,再根据线性叠加原理,对含裂纹的力电耦合模型的系统方程解耦,得到强迫振动下含裂纹损伤曲梁压电俘能器的输出电压.在得到模型的强迫振动解析解后,提出了新方法来检测结构中的裂纹损伤,并将这一检测方法推广适用于处于振动状态下一系列梁㊁管等结构.2㊀裂纹梁振动问题及其G r e e n函数解在土木工程与机械行业中,裂纹是一个普遍存在的问题,初期的细小裂纹一般难以发现,但是随着在振动环境中的疲劳裂纹会不断扩展,从而引起构件失稳甚至破坏.由于裂纹带来的危害不容小觑,对此从事裂纹研究就成为了一个热门课题,研究裂纹梁的动力学特性和动力响应就具有了重要的理论意义和应用价值.2.1㊀不带运动效应的裂纹梁G r e e n函数基于裂纹梁局部刚度模型的考虑,S a h u等[37]将裂纹截面等效为无质量扭转弹簧,研究了多个横向裂纹层合梁的振动特性,讨论了固有频率对不同边界条件㊁裂纹深度和位置的影响,发现自然频率随着裂纹和纤维取向的增加而降低的现象.W u 等[38]基于修正耦合应力理论和T i m o s h e n k o梁模型,研究了裂纹微梁的振动动力流,讨论了功率流的传输特性.C h e n等[39]采用改进的扩展有限元方法(X F E M)研究了裂纹长度和波长对动态开裂行为的影响,发现当动荷载与裂纹的夹角由直角变锐角时,能量的突然下降的现象,得出了裂纹长度对动态开裂行为影响较小,而波长对动态开裂行为影响较大的结论.K h a r a z a n等[40]采用W e i e r s t r a s s连续多项式函数来模拟呼吸裂缝的双线性行为,找到了多条呼吸裂缝悬臂梁的非线性振动特性,讨论了梁的非线性响应对不同呼吸裂纹数目和不同裂纹深度的敏感性,发现了裂缝数量较多或较深的梁具有明显软化行为,即在响应中会出现更明显的跳跃的现象.W e i等[41]提出了一种解决轴向荷载㊁旋转惯性和剪切变形的裂纹功能分级材料(F GM)梁自由振动问题的分析方法,讨论了裂纹的位置㊁数量㊁材料特性㊁轴向荷载㊁惯性和端部支撑对F MG梁的自然频率和振动模态的影响.对比前面的研究方法,G r e e n函数法具有着其独特的研究优势.C h e n等[42]通过数值计算方法研究了粘弹性层裂纹双梁系统动力学特性,其中每段的基本动力响应采用了G r e e n函数法.讨论了裂纹几何形状和连接层刚度等重要参数对开裂双梁系统动力学性能的影响,得到了裂纹深度和位置对系统固有频率和动力响应有显著影响的结论.H a n 等[43]研究了含裂纹梁和受外谐波荷载作用的阻尼效应,并采用了G r e e n函数法得到解析解.研究考虑梁是由于裂缝的存在而分裂成几段,每个部分的G r e e n函数边界常数未知,通过引入裂纹梁的局部刚度模型结合使用L a p l a c e变换法,得到了含一条或多条裂缝的整条裂缝梁的解析解.研究着重说明裂缝对解的影响,讨论了裂纹深度㊁位置和数量对固有频率的影响.G h a n n a d i a s l等[44]利用动态G r e e n函数公式计算E u l e rGB e r n o u l l i梁多跨度裂缝的强迫振动问题,描述了一种确定多跨裂缝梁在集中载荷作用下裂纹梁行为.采用基于动态G r e e n 函数公式的分析方法,对多跨裂缝梁的振动分析进行了实验验证,给出梁上裂纹的存在会对梁的动态产生响应这一观点,并对裂缝数量和位置对梁的动态响应的影响进行了评估.在对集中荷载下的E u lGe rGB e r n o u l l i梁做出性能评估之后,G h a n n a d i a s l 等[45]又对单跨和多跨阻尼梁的动力响应进行了研究,基于T i m o s h e n k o理论,研究了具有多裂纹和弹性边界条件的移动荷载作用.讨论当裂缝开始在结构的周围区域出现时,它们会产生局部柔软区这一情况,并对结构产生影响结构的动力响应采用G r e e n函数法进行了计算,给出微分方程的解,分析了各种情况及其对梁性能的影响.同样在T i m oGs h e n k o理论基础之上,C h e n等[46]运用G r e e n函数得到了多裂纹T i m o s h e n k o梁在阻尼作用下的稳态强迫振动解析解(如图1所示),通过将梁两端支座考虑为一个旋转弹簧和一个横向弹簧模型,来描述了T i m o s h e n k o梁的裂纹部分的力学性能.首先推导了单裂纹T i m o s h e n k o梁的G r e e n函数,借助单裂纹的G r e e n函数解和传递矩阵法,得到了多裂纹T i m o s h e n k o梁的G r e e n函数,揭示了剪切效应对振动的影响,清楚描述了单裂纹T i m o s h e n k o模9动㊀力㊀学㊀与㊀控㊀制㊀学㊀报2023年第21卷型和多裂纹情况下的性能.图1㊀G r e e n 函数法计算出的多裂纹梁强迫振动响应F i g .1㊀F o r c e dv i b r a t i o n r e s po n s e o fm u l t i Gc r a c kb e a m c a l c u l a t e db y G r e e n f u n c t i o nm e t h o d 2.2㊀带运动效应的裂纹梁G r e e n 函数在轴向运动梁领域的裂纹梁研究远少于不带运动效应的梁,但是仍有一些学者做出了以下研究.S a r i gu l [47]研究了有多条裂缝轴向运动梁的非线性横向振动,发现固有频率随着裂纹深度的增加而降低的现象,得出了梁在高速运动的情况下,裂纹深度对自然频率的影响可以被忽略的结论.M u r Gp h y 等[48]利用Ha m i l t o n 原理和初级断裂力学建立了梁的振动方程,研究了固定支持之间水平移动裂纹梁的振动和稳定特性,发现波动的大小随着轴向运动速度和裂缝深度的变化而变化,并被映射到控制参数空间.G a ye n 等[49]研究了轴向速度㊁材料性能变化指数㊁位置和裂缝深度对振动特性的影响,发现固有频率随着轴向速度㊁裂缝深度和材料性能指数的上升而下降的现象.国外对于带运动效应裂纹梁G r e e n 函数主要集中在理论推导和运动方程的建立,主要参考指数性能的结果,对裂纹的不稳定行为以及扩展方式研究较少.而国内张腾等[50]运用三维时域法G r e e n 函数为航海模拟器建立可靠㊁实用的船舶运动数学模型,探讨了海水压力㊁船底裂纹等对船舶运行时的影响,崔元庆等[51]针对各向同性弹性裂纹梁,用解析函数方法求解了裂纹处横向应力的G r e e n 函数.通过加载任意集中力作用于任意一点处,用叠加法求解了复势,通过渐近分析抽取复势的非奇异部分,最终得到了轴向位移下裂纹梁的解.对于轴向运动梁在横向裂纹作用下G r e e n 函数解的研究中,赵翔[52]求解了轴向运动梁在弹簧边界条件下的解析解,分析了轴向速度㊁转动惯量㊁弹簧刚度对G r e e n 函数的影响,在得到轴向运动梁解析解的基础之上,推导多个裂纹的G r e e n 函数解,分析轴向速度㊁裂纹深度㊁裂纹位置㊁裂纹数量以及两个裂纹相互作用对G r e e n 函数的影响,给出裂纹数量对G r e e n 的影响有:三裂纹>双裂纹>单裂纹,且三裂纹挠度影响数值远大于双裂纹和单裂纹,可已看出裂纹影响并非单纯的数值叠加.3㊀梁的多物理场强迫振动问题的G r e e n 函数解实际工程中梁结构的强迫振动是多物理环境下的强迫振动,梁结构处于这些多物理场坏境在现实生活中普遍常见且又不可避免,为了降低环境因素所带来的危害程度.通过研究一些梁多物理场耦合振动过程中关键参数(活动荷载,温度,电势等)对振动的影响,可以对工程中遇到的一些梁的多场耦合强迫振动进行合理的控制以便人们对其加以利用.而G r e e n 函数就是将这些关键参数数值化的重要工具,通过G r e e n 的变化程度就可得到相应参数对梁的强迫振动影响大小.3.1㊀梁热力耦合强迫振动问题的G r e e n 函数解梁热应力和热致振动问题一直被认为是经典和长期存在的问题,在高速飞机㊁反应堆容器㊁涡轮㊁微机电系统(M E M S )等应用中具有实际意义,因为这些应用都受到可变加热,因此许多学者对梁的热力耦合进行了研究.Z h a o 等[53]求解了T i m o s h e n k o 梁作用简谐力荷载和简谐热激励的热力耦合强迫振动问题,并给出了二维温度场和位移场的解析表达式.研究中使用特征函数展开和L a p l a c e 变换等方法,分别得到了各种边界下稳态传热方程和稳态强迫振动方程的G r e e n 函数(如图2所示),并结合线性系统的叠加原理对T i m o s h e n k o 梁热力耦合强迫振动系统问题进行了解耦.热机耦合谐振器是对热力梁振动的改进,C a o等[54]基于大体积微谐振器在高质量系数和高频的定时和频率控制方面具有潜在的发展前景,考虑挤压膜阻尼(S F D )和热弹性阻尼(T E D )影响的体谐振器面内振动模型,采用改进的傅立叶级数方法提出了T E D ,用G r e e n 函数法求解方程,计算振动位01。
非平衡格林函数方法在量子点电流输运问题中的应用
JIU JIANG UNIVERSITY毕业论文题目用非格林函数计算量子点电流的输运问题英文题目Non-equilibrium Green's function calculation of the quantum dotcurrent transport院系理学学院专业材料物理姓名张贵龙班级学号 A0841指导教师周利玲二零一二年二月摘要笼统地说,空间尺寸介于宏观和微观之间的系统即被称为介观系统.介观系统电子行为的主要特征是电子通过样品之后仍能保持自己波函数的相位相干性.人工微结构包括量子阱、量子线和量子点,电子的运动由有效势控制.有效势在一、二或三个方向上对电子加以限制,这些限制带来明显的量子效应.若将电子或空穴在三个方向上的运动都限制住,我们就可得到具有零维结构的量子点.由于量子局限效应,导致量子点中的电子只能占据类似于原子的分立的能量状态,因此量子点又被称为“人造原子”.本文首先简要介绍了介观系统、量子点的定义和制备、固体中的输运现象、量子点系统的基本结构、量子点输运过程中的两个重要现象:库仑阻塞现象和近藤效应.接着以一个简单的量子点与导线耦合的例子,介绍非平衡格林函数方法用于研究量子点直流输运问题的六个基本步骤.关键词:模型哈密顿量;Heisenberg运动方程;lesser格林函数;宽带近似;自能;推迟格林函数;输运电流表达式AbstractGenerally speaking, the space size between macro and microsystem is called mesoscopic systems. The main features of theelectronic behavior of mesoscopic systems can maintain phasecoherence of the wave function of electrons through the sample afterArtificial micro-structure consists of quantum wells, quantum wiresand quantum dots, the electron motion is controlled by the effective potential. Effective potential in one, two or three directions of electronic restrictions, these restrictions brought about a significantquantum effects. If the electronic or hole in the three directions ofmovement are locked, we can get a zero-dimensional structures of quantum dots. Due to quantum confinement effect, the electron can only occupy discrete energy states is similar to atomic quantum dots, quantum dot is also known as "artificial atoms".This paper briefly introduces the definition and preparation ofmesoscopic systems, quantum dots, the transport phenomena in solids, the basic structure of quantum dots, quantum dot transport processes in two important phenomena: the phenomenon ofCoulomb blockade and the Kondo effect. Then, a simple quantum dots and wires coupled examples, describes the six basic steps ofnon-equilibrium Green's function method is used to study thetransport problems of quantum dots DC.Key words : model Hamiltonian equations of motion; Heisenberg; analytic continuation;Green lesser function approximation; broadband; self; Green function; transport current formula1.1介观系统介观系统(Mesoscopic system)一词第一次是由van Kampen 在1976年关于随机过程的文章中提到的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Our work aims to provide an efficient way to study ballistic-diffusive thermal transport including the effects of phonon-phonon interaction. Here we propose a new formalism of nonequilibrium Green’s function (NEGF) to treat phonon-phonon interaction in momentum space at finite temperatures. It is known that NEGF is usu-
PACS numbers: 05.60.Gg, 44.10.+i, 63.22.-m
I. INTRODUCTION
More understanding of nanoscale thermal transport is required to solve heat dissipation problem, which becomes important as the size of electronic device decreases1. In recent years, many experiments have been done to measure thermal conduction of nanostructures2,3,4,5. At the nanoscale, the ballistic approximation is usually a good starting point for thermal transport and a lot of theoretical research on ballistic thermal transport have been reported6,7,8,9. However, the ballistic approximation would lead to unphysical results, such as infinite phonon mean free path, divergent thermal conductivity and zero temperature gradient. In most cases we need to go beyond ballistic limit to include effects of scattering for a more realistic consideration. In fact, phonon-phonon interaction is one of the significant factors for understanding and improving thermal transport properties. Since the sizes of nanostructures are comparable to phonon mean free path, thermal transport in these systems is in the intermediate region between ballistic and diffusive ranges. Nanoscale thermal transport has been studied through many approaches10,11,12,13,14,15,16,17,18,19,20. Nevertheless, no satisfactory method has been available to deal with thermal transport in the intermediate region.
ally used to study nonequilibrium problems, but its formulism can be applied to equilibrium systems as well. While Matsubara formalism21 is conventionally used for equilibrium Green’s function calculation at finite temperatures, NEGF is an alternative that also works for such situations. In our framework of NEGF, the analytical form of phonon self energy to any order can be easily derived and phonon frequency shift and lifetime are directly related to the retarded self energy. The phonon frequency shift can also be accurately predicted by an effective phonon theory based on the ergodic hypothesis (equipartition theorem)22,23,24. For weak phononphonon interaction, however, frequency shift is usually very small and the major influence on thermal transport is from the finite phonon lifetime. It will be shown that NEGF of lowest order is equivalent to Fermi’s golden rule when considering phonon lifetime.
arXiv:0807.3819v1 [cond-mat.mes-hall] 24 Jul 2008
Nonequilibrium Green’s function method for phonon-phonon interaction and ballistic-diffusive thermal transport
Yong Xu,1, 2 Jian-Sheng Wang,2 Wenhui Duan,1, ∗ Bing-Lin Gu,1 and Baowen Li2, 3 1Center for Advanced Study and Department of Physics, Tsinghua University, Beijing 100084, China
3NUS Graduate School for Integrative Sciences and Engineering, Singapore 117597, Republic of Singapore (Dated: July 24, 2008)
Phonon-phonon interaction is systematically studied by nonequilibrium Green’s function (NEGF) formulism in momentum space at finite temperatures. Within the quasi-particle approximation, phonon frequency shift and lifetime are obtained from the retarded self-energy. The lowest order NEGF provides the same phonon lifetime as Fermi’s golden rule. Thermal conductance is predicted by the Landauer formula with a phenomenological transmission function. The main advantage of our method is that it covers both ballistic and diffusive limits and thermal conductance of different system sizes can be easily obtained once the mode-dependent phonon mean free path is calculated by NEGF. As an illustration, the method is applied to two one-dimensional atom chain models (the FPU-β model and the φ4 model) with an additional harmonic on-site potential. The obtained thermal conductance is compared with that from a quasi-classical molecular dynamics method. The harmonic on-site potential is shown to remove the divergence of thermal conductivity in the FPU-β model.
We also provide a new approach to study thermal transport using NEGF. Our NEGF formalism gives phonon lifetime and mean free path. Using a phenomenological transmission function determined from mean free path in the Landauer formula, ballistic-diffusive thermal transport can be studied10,25,26. Many works have been done on thermal transport by NEGF16,17,18,19,20. In previous treatments, the system is situated at the center as a junction with semi-infinite leads on the two sides. The central part can not be too large due to the constraint of computational capability. Here we compute phonon lifetime in a periodic system at equilibrium, and feed the lifetime information to phonon transmission function in the Landauer formula. Our approach is computationally more efficient, but with a less rigorous treatment of