(完整版)七年级数学找规律题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
归纳—猜想~~~找规律
给出几个具体的、特殊的数、式或图形,要求找出其中的变化规律,从而猜想出一般性的结论.解题的思路是实施特殊向一般的简化;具体方法和步骤是(1)通过对几个特例的分析,寻找规律并且归纳;(2)猜想符合规律的一般性结论;(3)验证或证明结论是否正确,下面通过举例来说明这些问题. 一、数字排列规律题 1、观察下列各算式:
1+3=4=2的平方,1+3+5=9=3的平方,1+3+5+7=16=4的平方… 按此规律
(1)试猜想:1+3+5+7+…+2005+2007的值?
(2)推广: 1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少 ?
2、下面数列后两位应该填上什么数字呢?2 3 5 8 12 17 __ __
3、请填出下面横线上的数字。
1 1 2 3 5 8 ____ 21
4、有一串数,它的排列规律是1、2、3、2、3、4、3、4、
5、4、5、
6、……聪明的你猜猜第100个数是什么?
5、有一串数字 3 6 10 15 21 ___ 第6个是什么数?
6、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是( ). A .1 B .2 C .3 D .4
7、100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为 _________个. 二、几何图形变化规律题
1、观察下列球的排列规律(其中●是实心球,○是空心球):
●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●…… 从第1个球起到第2004个球止,共有实心球 个.
2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是 (填图形名称). 三、数、式计算规律题 1、已知下列等式: ① 13=12; ② 13+23=32; ③ 13+23+33=62;
④ 13+23+33+43=102 ;
由此规律知,第⑤个等式是 . 2、观察下面的几个算式: 1+2+1=4, 1+2+3+2+1=9,
1+2+3+4+3+2+1=16,
1+2+3+4+5+4+3+2+1=25,…
根据你所发现的规律,请你直接写出下面式子的结果: 1+2+3+…+99+100+99+…+3+2+1=____.
3、1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+()12
1
+=
n n n ,其中n是正整数.
现在我们来研究一个类似的问题:1×2+2×3+…()1+n n = ? 观察下面三个特殊的等式
()21032131
21⨯⨯-⨯⨯=⨯
()32143231
32⨯⨯-⨯⨯=⨯
()4325433
1
43⨯⨯-⨯⨯=⨯
将这三个等式的两边相加,可以得到1×2+2×3+3×4=205433
1
=⨯⨯⨯
读完这段材料,请你思考后回答:
⑴=⨯++⨯+⨯1011003221
⑵()()=++++⨯⨯+⨯⨯21432321n n n ⑶()()=++++⨯⨯+⨯⨯21432321n n n 4、,
,,,已知:245
52455154415448338333223222222⨯=+⨯=+⨯=+⨯=+
=
+⨯=+b a a
b
a b 则符合前面式子的规律,,若…21010 参考答案:
一、1、(1)1004的平方(2)n+1的平方
2、23 30。
数列中每两个相邻数字间的差分别是1,2,3,4,5,6,7。
3、13。
这一数列后面一个数是前面相邻两个数的和。
4、34 。
考虑时,可以从第一个数开始,每3个数加一个括号(1,2,3),(2,3,4),(3,4,5),……一共加了33个括号,剩下的一个必是第100个。
每个括号的第一个数分别是1,2,3,……因此第100个数必然是34。
5、28。
3+3=6 6+4=10 10+5=15 15+6=21 21+7=28, 所以第6个是28。
其实一般这类的规律题无非就是在数的基础上加减乘除,有些麻烦点的就是一个数乘上倍数后在加1或减1。
6、A
7、33 二、 1、602 2、圆
三、1、2333331554321=++++ 2、10000
3、 ⑴343400 或1021011003
1
⨯⨯⨯ ⑵()()2131++n n n ⑶()()()32141+++n n n n
4、109.
……
规律发现专题训练
1.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:第(4)个图案中有黑色地砖4块;
那么第(n )个图案中有白色..地砖 块。
2.我国著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万
事非。
”如图,在一个边长为1的正方形纸版上,依次贴上面积为2
1
,41,81,…,n 2
1的矩形彩色纸片(n 为大于1的整数)。
请你用“数形结合”的思想,依数形变化的规律,计算n 2
1
814121++++ = 。
3.有一列数:第一个数为x 1=1,第二个数为x 2=3,第三个数开始依次记为x 3,x 4,…,x n ;从第二个数开始,每个数是它相邻两个数和的一半。
(如:x 2=
2
3
1x x +) (1)求第三、第四、第五个数,并写出计算过程; (2)根据(1)的结果,推测x 8= ; (3)探索这一列数的规律,猜想第k 个数x k = .(k 是大于2的整数)
4.将一张长方形的纸对折,如图所示可得到一条折痕(图中虚线). 继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,那么对折四次可以得到_ 条折痕 .如果对折n 次,可以得到 条折痕 .
5. 观察下面一列有规律的数 ,486
,355,244,153,82,31, 根据这个规律可知第n 个数是 (n 是正整数)
6.古希腊数学家把数1,3,6,10,15,21,……,叫做三角形数,它有一定的规律性,则第24个三角形数与第22个三角形数的差为 。
第3题
7. 按照一定顺序排列的一列数叫数列,一般用a 1,a 2,a 3,…,a n 表示一个数列,可简记为{a n }.现有数
列{a n }满足一个关系式:a n +1=2
n a -na n +1,(n =1,2,3,…,n ),且a 1=2.根据已知条件计算a 2,a 3,a 4的值,然后
进行归纳猜想a n =_________.(用含n 的代数式表示)
8.观察下面一列数:-1,2,-3,4,-5,6,-7,...,将这列数排成下列形式 按照上述规律排下去,那么第10行从左边第9个数是 .
9.观察下列等式9-1=8
16-4=12 25-9=16 36-16=20 …………
这些等式反映自然数间的某种规律,设n(n ≥1)表示自然数,用关于n 的等式表示这个规律为.
10.如图是阳光广告公司为某种商品设计的商标图案, 图中阴影部分为红色。
若每个小长方形的面积都1, 则红色的面积是 。
11.如下图,从A 地到C 地,可供选择的方案是 走水路、走陆路、走空中.从A 地到B 地有2条水 路、2条陆路,从B 地到C 地有3条陆路可供选择,走空中从A 地不经B 地直接到C 地.则从A 地到C 地可供选择的方案有( )
A .20种
B .8种
C . 5种
D .13种
12.某校的一间阶梯教室,第1排的座位数为12,从第
2排开始,每一排都比前一排增加a 个座位。
(1)请你在下表的空格里填写一个适当的代数式: 第1排的座位数 第2排的座位数 第3排的座位数 第4排的座位数 … 第n 排的座位数 12
12+a
…
(2)已知第15排座位数是第5排座位数的2倍,求a 的值,并计算第21排有多少座位?
13.探索:⑴一条直线可以把平面分成两部分,两条直线最多可以把平面分成4部分,三条直线最多可以把平面分成 部分,四条直线最多可以把平面分成 部分,试画图说明;⑵n 条直线最多可以把平面分成几部分?
£¨µÚ9 Ìâͼ£©
......16-1514-1312-1110-9
-76-54-32-1第8题 第17题
14.先观察
321211⨯+
⨯=)3121()2111(-+-=1-31=32
431321211⨯+
⨯+⨯=)4131()3121()2111(-+-+-=1-41=4
3
再计算
)
1(1
431321211+++⨯+⨯+⨯n n 的值.
15..观察下列顺序排列的等式:
9×0+1=1 9×1+2=11 9×2+3=21 9×4+5=41 …,猜想:第21个等式应为:
16.我们把分子为1的分数叫做单位分数. 如2
1,3
1,4
1…,任何一个单位分数都可以拆分成两个不同的
单位分数的和,如2
1=6
13
1+,3
1
=12
14
1+
,41=20
1
51+
,… (1)根据对上述式子的观察,你会发现51=1
1+. 请写出□,○所表示的数;
(2)进一步思考,单位分数n
1(n 是不小于2的正整数)=1
1+,请写出△,☆所表示的式。
17.你到过县城的拉面馆吗?拉面馆的师傅,能把一根很粗的面条,先两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多根细面条,如下面草图所示。
请问这样第__________次可拉出256根面条。
18.我国古代的“河图”是由3×3的方格构成,每个格内均有数目不等 的点图,每一行、每一列以及每条对角线上的三个点图的点数之和 均相等.如图,给出了“河图”的部分点图,请你推算出M 处所对应 的点图 A .· B .·· C . D . 19.计算20082007654321-++-+-+- 的结果是( ) A. -2008 B. -1004 C. -1 D. 0
20.观察右图并寻找规律,x 处填上的数字是 A .-136 B .-150
C .-158
○ □
△
☆ -26 -48 -14 -88 -8 -4 -2 -2
x
11235...
D .-162 21.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6, 4!=4×3×2×1,…,则100!
98!
的值为
22.如图,平面内有公共端点的六条射线OA 、OB 、OC 、OD 、OE 、OF ,从射线OA 开始按逆时针依次在射
线上写出数字1、2、3、4、5、6、7…,则数字“2008”在( ) A .射线OA 上 B .射线OB 上 C .射线OD 上 D .射线OF 上 23.
(1)左下图是有几个大小完全一样的小正方体搭成的几何体的俯视图,小正方形中的数字表示在该位置小正方体的个数,请你画出该几何体的主视图和左视图.
(2) 意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,其中从第三个数起,每一个数都等于它前面两个数的和.现以这组数中的各个数作为正方形的边长值构造如下正方形:
再分别依次从左到右取2个、3个、4个、5个…正方形拼成如下长方形并记为①、②、③、④、 …
相应长方形的周长如下表所示: 仔细观察图形,上表中的=x 16 ,=y 26 .
若按此规律继续作长方形,则序号为⑧的长方
形周长是 178 .
序号 ① ② ③ ④
… 周长
6
10
x
y
…
11
10
9
128
7
6
5
43
2
1
O
F E
D
C
B
A
11
2
3
15
1
1
2
11
3
2
1④
③
②
①…
24.(本题满分10分)
如图,将一张正方形纸片剪成四个小正方形,然后将其中的一个正方形再剪成四个小正方形,再将其中
的一个正方形剪成四个小正方形,如此继续下去,………,请你根据以上操作方法得到的正方形的个数的规律完成各题. (1)将下表填写完整; (2)
(2) n a (用含n 的代数式表示).
(3)按照上述方法,能否得到2009个正方形?如果能,请求出n ;如果不能,请简述理由.
25.观察下列图形的构成规律,根据此规律,第8个图形中有 个圆.
26.观察下面图形,按规律在两个..箭头所指的“田”字格内分别 画上适当图形
27、观察下面一列数,按某种规律在横线上填上适当的数:1,
43,95,16
7
……则 第n 个数为 ;
规律发现专题训练答案
1.4n+2
2.1
3.(1)5;7;9 (2)15 (3)2n-1
4.15;?
5.n/n(n+2)
第11题图
6.45
7.n+1
8.90
9.? 10.5 11.D 12.(1)12+2a;12+3a;12+a(n-1)(2)a=2;54 13.7;11;n/(n+1)+1 14.n/(n+1)
15.9×20+21=201
16.(1)6;30(2)n+1;n(n+1)
17.8 18.C 19.B 20.D 21.9900 22.C 23.(2)16;26;178
24(1)13;16;(2)3n+1;(3)不能,3n+1=2009 3n=2008 因为2008不是3的倍数。
25.n ×n 26.? 27.(2n-1)/n ×n
阅读规律题专题测试卷
一填空
1、.观察下列各数,按规律在横线上填上适当的数.
(1)1,1,2,3,5,_____,13,21,34,_____,_____. (2)1,-2,4,-8,16,_____,_____.
(3).观察下列数据,按某种规律在横线上填上适当的数:
1,43-,95,16
7
-, ,…
(4)、有一组数:1,2,5,10,17,26,……,请观察这组数的构成规律,用你发现的规律确定第8个数为 .
(5).观察下列各数之间的关系,在空中填上适当的数:1,1,2,3,5,8,______.
2、为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:
按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( ) A .26n + B .86n + C .44n + D .8n 3,广西河3、(2007池非课改)填在下面三个田字格内的数有相同的规律,根据此规律,
C = .
4、观察下列等式,并回答问题:
23)31(6321⨯+==++ 24
)41(104321⨯+=
=+++
25
)51(1554321⨯+=
=++++ ……
=++++n 321 。
并求1000321++++ 的结果。
5、观察下列算式:21=2、22=4、23=8、24=1
6、55=32、26=64、27=128、28=256……。
观察后,用你所发现的规律写出223
的末位数字是 。
6.探索规律:观察下面由※组成的图案和算式,解答问题:
C B A
55675
3
20531
35791※※※※※※※
※※※※
※※※※※※※※※※※※※※1+3=4=22
1+3+5=9=32 1+3+5+7=16=42 1+3+5+7+9=25=52
(1)请猜想1+3+5+7+9+…+19= ;(只填数字,2分) (2)请猜想1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)= ;(只填
乘方形式,3分)
(3)请用上述规律.....计算: 103+105+107+…+2003+2005
7、观察下面的几个算式: 1+2+1=4, 1+2+3+2+1=9, 1+2+3+4+3+2+1=16, 1+2+3+4+5+4+3+2+1=25,…
根据你所发现的规律,请你直接写出下面式子的结果:
1+2+3+…+99+100+99+…+3+2+1=____。
8、观察下列算式:21=2、22=4、23=8、24=16、55=32、26=64、27=128、28=256……。
观察后,用你所发现的规律写出223的末位数字是 。
9、已知:
, ……,若
符合前面式子的规律, 则 a + b = ___ ____.
10,例 计算:10
91
431321211⨯+
+⨯+⨯+⨯ 解:10
91431321211⨯+
+⨯+⨯+⨯ =⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-10191413131212111 =10
9101
11=-
. 观察上面的解题过程,请你用类似的方法计算:101
991
751531311⨯+
+⨯+⨯+⨯ .
11、观察下面的几个算式: 1+2+1=4, 1+2+3+2+1=9, 1+2+3+4+3+2+1=16, 1+2+3+4+5+4+3+2+1=25,…
根据你所发现的规律,请你直接写出下面式子的结果: 1+2+3+…+99+100+99+…+3+2+1=____。
12.观察下面的一列数:21,-61,121,-20
1
……
请你找出其中排列的规律,并按此规律填空.
(1)第9个数是________,第14个数是________. (2)若n 是大于1的整数,按上面的排列规律,写出第n 个数.
13.按如图所示的方式搭正方形,则搭x 个正方形
所需的火柴棒数是
根.
14、(9分)树的高度与树生长的年数有关,测得某棵树的有关数据如下
n 年的树苗的高度a n 。
(2)生长了11年的树的高度是多少?
15.已知任意三角形的内角和为180°,试利用多边形中过某一点的对角线条数,寻求多边形内角和的公式。
……
内角和180° 180°×2 180°×3 180°×4 n 边形
根据上图所示,一个四边形可以分成____个三角形;于是四边形的内角和为______度:一个五边形可以分成______个三角形,于是五边形的内角和为______度,……,按此规律,n 边形可以分成_______个三角形,于是n 边形的内角和为________________度 16、合情推理题:
观察右面的图形(每个正方形的边长均为1)和相应的等式,探究其中的规律:
①11
1122
⨯=-
②22
2233
⨯=-
③33
3344
⨯=-
④44
4455
⨯=-
(1)写出第五个等式,并在右边给出的五个正方形上画出与之对应的图示;
11235...
(2)猜想并写出与第n个图形相对应的等式.
17、意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,
其中从第三个数起,每一个数都等于它前面两上数的和。
现以这组数中的各个数作为正方形的长度构造如下正方形:
再分别依次从左到右取2个、3个、
4个、5个,正方形拼成如下矩形并记为
①、②、③、④.相应矩形的周长如下表
所示:若按此规律继续作矩形,则序号
为⑩的矩形周长是_______。
18,请你观察表一,寻找规律.表二、表
三、表四分别是从表一中截取的一部
分,其中a、b、c的值分别为
()
A.20、29、30 B.18、30、26 C.18、20、26 D.18、30、28 19、根据下列图形的排列规律,第2008个图形
是 (填序号即可). (① ;② ;③ ;④ .) ……序号①②③④周长 6 10 16 26
1 2 3 4 5 …
2 4 6 8 10 …
3 6 9 12 15 …
4 8 12 16 20 …
5 10 15 20 25 ……………
18
c
32 12
15
a
20 24
25 b
表二表三表四
表一
11。