(易错题精选)初中数学圆的易错题汇编附答案(1)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(易错题精选)初中数学圆的易错题汇编附答案(1)
一、选择题
1.如图,将△ABC绕点C旋转60°得到△A′B′C′,已知AC=6,BC=4,则线段AB扫过的图形面积为()
A.3
2
π
B.
8
3
π
C.6πD.以上答案都不对
【答案】D
【解析】
【分析】
从图中可以看出,线段AB扫过的图形面积为一个环形,环形中的大圆半径是AC,小圆半径是BC,圆心角是60度,所以阴影面积=大扇形面积-小扇形面积.
【详解】
阴影面积=
() 60361610
3603
π⨯-
=π.
故选D.
【点睛】
本题的关键是理解出,线段AB扫过的图形面积为一个环形.
2.如图,在平面直角坐标系中,点P是以C(﹣2,7)为圆心,1为半径的⊙C上的一个动点,已知A(﹣1,0),B(1,0),连接PA,PB,则PA2+PB2的最小值是()
A.6 B.8 C.10 D.12
【答案】C
【解析】
【分析】
设点P(x,y),表示出PA2+PB2的值,从而转化为求OP的最值,画出图形后可直观得出OP的最值,代入求解即可.
【详解】
设P (x ,y ),
∵PA 2=(x +1)2+y 2,PB 2=(x ﹣1)2+y 2,
∴PA 2+PB 2=2x 2+2y 2+2=2(x 2+y 2)+2,
∵OP 2=x 2+y 2,
∴PA 2+PB 2=2OP 2+2,
当点P 处于OC 与圆的交点上时,OP 取得最值,
∴OP 的最小值为CO ﹣CP =3﹣1=2,
∴PA 2+PB 2最小值为2×22+2=10.
故选:C .
【点睛】
本题考查了圆的综合,解答本题的关键是设出点P 坐标,将所求代数式的值转化为求解OP 的最小值,难度较大.
3.下列命题中,是假命题的是( )
A .任意多边形的外角和为360o
B .在AB
C V 和'''A B C V 中,若''AB A B =,''BC B C =,'90C C ∠=∠=o ,则ABC V ≌'''A B C V
C .在一个三角形中,任意两边之差小于第三边
D .同弧所对的圆周角和圆心角相等
【答案】D
【解析】
【分析】
根据相关的知识点逐个分析.
【详解】
解:A. 任意多边形的外角和为360o ,是真命题;
B. 在ABC V 和'''A B C V 中,若''AB A B =,''BC B C =,'90C C ∠=∠=o ,则ABC V ≌'''A B C V ,根据HL ,是真命题;
C. 在一个三角形中,任意两边之差小于第三边,是真命题;
D. 同弧所对的圆周角等于圆心角的一半,本选项是假命题.
故选D .
【点睛】
本题考核知识点:判断命题的真假. 解题关键点:熟记相关性质或定义.
4.如图,ABC ∆是O e 的内接三角形,45A ∠=︒,1BC =,把ABC ∆绕圆心O 按逆时针方向旋转90︒得到DEB ∆,点A 的对应点为点D ,则点A ,D 之间的距离是()
A .1
B .
2 C .
3 D .2
【答案】A
【解析】
【分析】 连接AD ,构造△ADB ,由同弧所对应的圆周角相等和旋转的性质,证△ADB 和△DBE 全等,从而得到AD=BE=BC=1.
【详解】
如图,连接AD ,AO ,DO
∵ABC ∆绕圆心O 按逆时针方向旋转90︒得到DEB ∆,
∴AB=DE ,90AOD ∠=︒,45CAB BDE ∠=∠=︒
∴1452
ABD AOD ∠=
∠=︒(同弧所对应的圆周角等于圆心角的一半), 即45ABD EDB ∠=∠=︒,
又∵DB=BD ,∴DAB BED ∠=∠(同弧所对应的圆周角相等),
在△ADB 和△DBE 中 ABD EDB AB ED
DAB BED ∠=∠⎧⎪=⎨⎪∠=∠⎩
∴△ADB ≌△EBD (ASA ),
∴AD=EB=BC=1.
故答案为A.
【点睛】
本题主要考查圆周角、圆中的计算问题以及勾股定理的运用;顶点在圆上,两边都与圆相交的角角圆周角;掌握三角形全等的判定是解题的关键.
5.如图,四边形ABCD为⊙O的内接四边形.延长AB与DC相交于点G,AO⊥CD,垂足为E,连接BD,∠GBC=50°,则∠DBC的度数为()
A.50°B.60°C.80°D.90°
【答案】C
【解析】
【分析】
根据圆内接四边形的性质得:∠GBC=∠ADC=50°,由垂径定理得:··
=,则∠
CM DM
DBC=2∠EAD=80°.
【详解】
如图,∵四边形ABCD为⊙O的内接四边形,∴∠GBC=∠ADC=50°.
∵AE⊥CD,∴∠AED=90°,∴∠EAD=90°﹣50°=40°,延长AE交⊙O于点M.
∵AO⊥CD,∴··
=,∴∠DBC=2∠EAD=80°.
CM DM
故选C.
【点睛】
本题考查了圆内接四边形的性质:圆内接四边形的任意一个外角等于它的内对角,还考查了垂径定理的应用,属于基础题.
6.如图,AB是⊙O的直径,点C是⊙O上一点,点D在BA的延长线上,CD与⊙O交于另一点E,DE=OB=2,∠D=20°,则弧BC的长度为()
A.2
3
πB.
1
3
πC.
4
3
πD.
4
9
π
【答案】A
【解析】
【分析】
连接OE、OC,如图,根据等腰三角形的性质得到∠D=∠EOD=20°,根据外角的性质得到∠CEO=∠D+∠EOD=40°,根据等腰三角形的性质得到∠C=∠CEO=40°,根据外角的性质得到∠BOC=∠C+∠D=60°,根据求弧长的公式得到结论.
【详解】
解:连接OE、OC,如图,
∵DE=OB=OE,
∴∠D=∠EOD=20°,
∴∠CEO=∠D+∠EOD=40°,
∵OE=OC,
∴∠C=∠CEO=40°,
∴∠BOC=∠C+∠D=60°,
∴»BC的长度=
2
60?2
360
π⨯
=
2
3
π,
故选A.【点睛】
本题考查了弧长公式:l=
••
180
n R
π
(弧长为l,圆心角度数为n,圆的半径为R),还考查
了圆的认识及等腰三角形的性质及三角形外角的性质,熟练掌握等腰三角形的性质和三角形外角性质是关键.
7.如图,点A,B,C,D都在半径为2的⊙O上,若OA⊥BC,∠CDA=30°,则弦BC的长为()
A.4 B.22C.3D.23
【答案】B
【解析】
【分析】
根据垂径定理得到CH=BH,»»
=,根据圆周角定理求出∠AOB,根据正弦的定义求出
AC BC
BH,计算即可.
【详解】
如图BC与OA相交于H
∵OA⊥BC,
∴CH=BH,»»
=,
AC AB
∴∠AOB=2∠CDA=60°,
∴BH=OB⋅sin∠3,
∴3
故选D.
【点睛】
本题考查的是垂径定理、圆周角定理,熟练掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.
8.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB=8cm,且AB⊥CD,垂足为M,则AC的长为()
A.5B.5C.5或5cm D.3或3
【答案】C
【解析】
连接AC,AO,
∵O的直径CD=10cm,AB⊥CD,AB=8cm,
∴AM=1
2
AB=
1
2
×8=4cm,OD=OC=5cm,
当C点位置如图1所示时,
∵OA=5cm,AM=4cm,CD⊥AB,
∴OM=2222
54
OA AM
-=-=3cm,
∴CM=OC+OM=5+3=8cm,
∴AC=2222
4845
AM CM
+=+=cm;
当C点位置如图2所示时,同理可得OM=3cm,
∵OC=5cm,
∴MC=5−3=2cm,
在Rt△AMC中,AC=2222
4225
AM CM
+=+=cm.
故选C.
9.将直尺、有60°角的直角三角板和光盘如图摆放,A为60°角与直尺的交点,B为光盘与直尺的交点,AB=4,则光盘表示的圆的直径是()
A.4 B.3C.6 D.43
【答案】B
【解析】
【分析】
设三角板与圆的切点为C,连接OA、OB,根据切线长定理可得AB=AC=3,∠OAB=60°,然后根据三角函数,即可得出答案.
【详解】
设三角板与圆的切点为C,连接OA、OB,
由切线长定理知,AB=AC=3,AO平分∠BAC,
∴∠OAB=60°,
在Rt△ABO中,OB=AB tan∠OAB=43,
∴光盘的直径为83.
故选:B.
【点睛】
本题主要考查了切线的性质,解题的关键是熟练应用切线长定理和锐角三角函数.
10.中国科学技术馆有“圆与非圆”展品,涉及了“等宽曲线”的知识.因为圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了例以外,还有一些几何图形也是“等宽曲线”,如勒洛只角形(图1),它是分别以等边三角形的征个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧.三段圆弧围成的曲边三角形.图2是等宽的勒洛三角形和圆.
下列说法中错误的是( )
A.勒洛三角形是轴对称图形
B.图1中,点A到¶BC上任意一点的距离都相等
C.图2中,勒洛三角形上任意一点到等边三角形DEF的中心1O的距离都相等
D.图2中,勒洛三角形的周长与圆的周长相等
【答案】C
【解析】
【分析】
根据轴对称形的定义,可以找到一条直线是的图像左右对着完全重合,则为轴对称图形.鲁列斯曲边三角形有三条对称轴. 鲁列斯曲边三角形可以看成是3个圆心角为60°,半径为DE 的扇形的重叠,根据其特点可以进行判断选项的正误.
【详解】
鲁列斯曲边三角形有三条对称轴,就是等边三角形的各边中线所在的直线,故正确;
点A到¶BC上任意一点的距离都是DE,故正确;
勒洛三角形上任意一点到等边三角形DEF 的中心1O 的距离都不相等,1O 到顶点的距离是到边的中点的距离的2倍,故错误;
鲁列斯曲边三角形的周长=3×60180DE DE ππ⨯=⨯ ,圆的周长=22
DE DE ππ⨯=⨯ ,故说法正确.
故选C.
【点睛】
主要考察轴对称图形,弧长的求法即对于新概念的理解.
11.如图,四边形ABCD 是⊙O 的内接正方形,点P 是劣弧弧AB 上任意一点(与点B 不重合),则∠BPC 的度数为( )
A .30°
B .45°
C .60°
D .90°
【答案】B
【解析】 分析:接OB ,OC ,根据四边形ABCD 是正方形可知∠BOC=90°,再由圆周角定理即可得出结论.
详解:连接OB ,OC ,
∵四边形ABCD 是正方形,
∴∠BOC=90°,
∴∠BPC=
12
∠BOC=45°. 故选B .
点睛:本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.
12.如图,在矩形ABCD 中,6AB =,对角线10AC =,O e 内切于ABC ∆,则图中阴影部分的面积是( )
A .24π-
B .242π-
C .243π-
D .244π-
【答案】D
【解析】
【分析】 先根据勾股定理求出BC ,连接OA 、OB 、OC 、过点O 作OH ⊥AB ,OE ⊥BC ,OF ⊥AC ,设O e 的半径为r ,利用面积法求出r=2,再利用三角形ABC 的面积减去圆O 的面积得到阴影的面积.
【详解】
∵四边形ABCD 是矩形,
∴∠B=90°,
∵6AB =,10AC =,
∴BC=8,
连接OA 、OB 、OC 、过点O 作OH ⊥AB ,OE ⊥BC ,OF ⊥AC ,
设O e 的半径为r ,
∵O e 内切于ABC ∆,
∴OH=OE=OF=r , ∵11()22ABC S AB BC AB AC BC r =
⋅=++⋅V , ∴1168(6108)22
r ⨯⨯=++⋅, 解得r=2,
∴O e 的半径为2,
∴2168-2
224-4ABC O S S S ππ=-=
⨯⨯⨯=V e 阴影, 故选:D .
【点睛】
此题考查矩形的性质,勾股定理,三角形内切圆的定义,阴影面积的求法,添加合适的辅助线是解题的关键.
13.如图,抛物线y =ax 2﹣6ax+5a (a >0)与x 轴交于A 、B 两点,顶点为C 点.以C 点为圆心,半径为2画圆,点P 在⊙C 上,连接OP ,若OP 的最小值为3,则C 点坐标是( )
A .5252
B .(4,﹣5)
C .(3,﹣5)
D .(3,﹣4)
【答案】D
【解析】
【分析】
首先根据二次函数的解析式求出点A 、B 、C 三点的坐标,再由当点O 、P 、C 三点共线时,OP 取最小值为3,列出关于a 的方程,即可求解.
【详解】
∵2650y ax ax a a +-=(
>) 与x 轴交于A 、B 两点, ∴A (1,0)、B (5,0),
∵226534y ax ax a a x a =+=---(
) , ∴顶点34C a (,-)
, 当点O 、P 、C 三点共线时,OP 取最小值为3,
∴OC =OP+2=5, 29165(0)a a +=> ,
∴1a = ,
∴C (3,﹣4),
故选:D .
【点睛】
本题考查了二次函数的图象和性质,解题的关键是明确圆外一点到圆上的最短距离即该点与圆心的距离减去半径长.
14.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,OC 交⊙O 于点D ,若∠ABD =24°,则∠C 的度数是( )
A.48°B.42°C.34°D.24°
【答案】B
【解析】
【分析】
根据切线的性质求出∠OAC,结合∠C=42°求出∠AOC,根据等腰三角形性质求出∠B=∠BDO,根据三角形外角性质求出即可.
【详解】
解:∵∠ABD=24°,
∴∠AOC=48°,
∵AC是⊙O的切线,
∴∠OAC=90°,
∴∠AOC+∠C=90°,
∴∠C=90°﹣48°=42°,
故选:B.
【点睛】
考查了切线的性质,圆周角定理,三角形内角和定理,解此题的关键是求出∠AOC的度数,题目比较好,难度适中.
15.如图,点I是Rt△ABC的内心,∠C=90°,AC=3,BC=4,将∠ACB平移使其顶点C与I重合,两边分别交AB于D、E,则△IDE的周长为()
A.3 B.4 C.5 D.7
【答案】C
【解析】
【分析】
连接AI、BI,根据三角形的内心的性质可得∠CAI=∠BAI,再根据平移的性质得到∠CAI=∠AID,AD=DI,同理得到BE=EI,即可解答.
【详解】
连接AI、BI,
∵∠C=90°,AC=3,BC=4,
∴AB22
5
AC BC
∵点I为△ABC的内心,
∴AI平分∠CAB,
∴∠CAI=∠BAI,
由平移得:AC∥DI,
∴∠CAI=∠AID,
∴∠BAI=∠AID,
∴AD=DI,
同理可得:BE=EI,
∴△DIE的周长=DE+DI+EI=DE+AD+BE=AB=5
故选C.
【点睛】
此题考查了平移的性质和三角形内心的性质,解题关键在于作出辅助线
16.下列命题中正确的个数是()
①过三点可以确定一个圆
②直角三角形的两条直角边长分别是5和12,那么它的外接圆半径为6.5
③如果两个半径为2厘米和3厘米的圆相切,那么圆心距为5厘米
④三角形的重心到三角形三边的距离相等.
A.1个B.2个C.3个D.4个
【答案】A
【解析】
【分析】
①根据圆的作法即可判断;
②先利用勾股定理求出斜边的长度,然后根据外接圆半径等于斜边的一半即可判断;
③根据圆与圆的位置关系即可得出答案;
④根据重心的概念即可得出答案.
【详解】
①过不在同一条直线上的三点可以确定一个圆,故错误;
②∵直角三角形的两条直角边长分别是5和12,
∴斜边为2251213+= , ∴它的外接圆半径为.113652
⨯=,故正确; ③如果两个半径为2厘米和3厘米的圆相切,那么圆心距为5厘米或1厘米,故错误; ④三角形的内心到三角形三边的距离相等,故错误;
所以正确的只有1个,
故选:A .
【点睛】
本题主要考查直角三角形外接圆半径,圆与圆的位置关系,三角形内心,重心的概念,掌握直角三角形外接圆半径的求法,圆与圆的位置关系,三角形内心,重心的概念是解题的关键.
17.如图,已知某圆锥轴截面等腰三角形的底边和高线长均为10cm ,则这个圆锥的侧面积为( )
A .50cm 2
B .50πcm 2
C .255cm 2
D .255πcm 2
【答案】D
【解析】
【分析】 根据勾股定理求出圆锥的母线长,求出底面圆周长,根据扇形面积公式计算即可.
【详解】
解:如图所示,
∵等腰三角形的底边和高线长均为10cm ,
∴等腰三角形的斜边长=22105+=55,即圆锥的母线长为55cm ,圆锥底面圆半径为5,
∴这个圆锥的底面圆周长=2×π×5=10π,即为侧面展开扇形的弧长,圆锥的侧面积=12
×10π×55=255πcm 2, 故选:D .
【点睛】
本题考查了圆锥的计算,解题的关键是弄清楚圆锥的侧面积的计算方法,特别是圆锥的轴截面是等腰三角形,勾股定理的应用,以及圆锥的底面周长等于圆锥的侧面扇形的弧长.
18.如图,若干全等正五边形排成环状.图中所示的是前3个正五边形,则要完成这一圆环还需
..()个这样的正五边形
A.6 B.7 C.8 D.9
【答案】B
【解析】
【分析】
【详解】
如图,
∵多边形是正五边形,
∴内角是1
5
×(5-2)×180°=108°,
∴∠O=180°-(180°-108°)-(180°-108°)=36°,
36°度圆心角所对的弧长为圆周长的
1 10

即10个正五边形能围城这一个圆环,
所以要完成这一圆环还需7个正五边形.
故选B.
19.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=86°,则∠BCD的度数是()
A.86°B.94°C.107°D.137°
【答案】D
【解析】
【分析】
【详解】
解:∵∠BOD=86°,
∴∠BAD=86°÷2=43°,
∵∠BAD+∠BCD=180°,
∴∠BCD=180°-43°=137°,
即∠BCD的度数是137°.
故选D.
【点睛】
本题考查圆内接四边形的对角互补.②圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).
20.已知圆锥的三视图如图所示,则这个圆锥的侧面展开图的面积为()
A.60πcm2B.65πcm2C.120πcm2D.130πcm2
【答案】B
【解析】
【分析】
先利用三视图得到底面圆的半径为5cm,圆锥的高为12cm,再根据勾股定理计算出母线长为13cm,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.
【详解】
根据三视图得到圆锥的底面圆的直径为10cm,即底面圆的半径为5cm,圆锥的高为
12cm,
所以圆锥的母线长22
5+12=13,
所以这个圆锥的侧面积=1
2
×2π×5×13=65π(cm2).
故选B.
【点睛】
本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了三视图.。

相关文档
最新文档