苏科版七年级数学上册 第二章有理数单元复习提高习题

合集下载

第2章有理数(单元复习2提高版)苏科版数学七年级上册

第2章有理数(单元复习2提高版)苏科版数学七年级上册

第2章有理数(单元复习提高版)【典型例题】题型一:新定义题型【例题】现定义一种新运算:a※b=b2﹣ab,如:1※2=22﹣1×2=2,则(﹣1※2)※3等于.【变式训练】1.我们定义一种新运算:a*b=a2﹣b+ab.例如:1*2=12﹣2+1×2=1(1)求2*3的值.(2)求(﹣2)*[2*(﹣3)]的值.2.将下列计算的结果直接写成幂的形式:2÷2÷2=()1;2÷2÷2÷2=;=;(﹣5)÷(﹣5)÷(﹣5)÷(﹣5)÷(﹣5)÷(﹣5)=;(2)一般地,把n个a(a为有理数且a≠0,n为正整数)相除的结果记作aⓝ,读作“a的圈n 次方”.计算:aⓝ==(其中a≠0,n为正整数).请你尝试用文字概括归纳aⓝ的运算结果:一个非零有理数的圈n次方等于;(3)计算:24÷(﹣)⑤+(﹣27)×3④.3.[新定义]:A、B、C为数轴上三点,若点C到点A的距离是点C到点B的距离的3倍,我们就称点C是[A,B]的幸运点.[特例感知](1)如图1,点A表示的数为﹣1,点B表示的数为3.表示2的点C到点A的距离是3,到点B 的距离是1,那么点C是[A,B]的幸运点,①[B,A]的幸运点表示的数是;②试说明A是[C,E]的幸运点.(2)如图2,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4,则[M,N]的幸运点表示的数为.[拓展应用](3)如图3,A、B为数轴上两点,点A所表示的数为﹣20,点B所表示的数为40.有一只电子蚂蚁P从点B出发,以5个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B三个点中恰好有一个点为其余两点的幸运点?题型二:找规律题型【例题】国庆节,广场上要设计一排灯笼增强气氛,其中有一个设计由如图所示图案逐步演变而成,其中圆圈代表灯笼,n代表第n次演变过程,s代表第n次演变后的灯笼的个数.仔细观察下列演变过程,当n=6时,s=__________.【变式训练】1.将下表从左到右在每个小格子中都填入一个整数,使得其中任意四个相邻格子中所填整数之和都相等,则第2022个格子中的数字是()3 a b c ﹣1 0 2 …A.3 B.2 C.0 D.﹣12.将初一年级的500名同学从1到500编号,并按编号从小到大的顺序站成一排报数1、2、3…,报到奇数的退下,偶数的留下,留下的同学从编号小的开始继续报数1、2、3…,报到奇数的退下,偶数的留下,…,如此继续,最后留下一个同学,则最后留下的这个同学编号是.3.观察下列式子:1×3+1=22,2×4+1=32,3×5+1=42,4×6+1=52,…,(1)请你依照上述规律,写出第6个式子:;(2)请写出第n个式子:;(3)计算:(1+)×(1+)×(1+)×…×(1+).4.类比推理是一种重要的推理方法,根据两种事物在某些特征上相似,得出它们在其他特征上也可能相似的结论.比如在异分母的分数的加减法中,往往先化作同分母,然后分子相加减,例如:113232123233266--=-==⨯⨯,我们将上述计算过程倒过来,得到111162323==-⨯,这一恒等变形过程在数学中叫做裂项.类似地,对于146⨯可以用裂项的方法变形为:111146246⎛⎫=- ⎪⨯⎝⎭.类比上述方法,解决以下问题.(1)猜想并写出:()11n n =⨯+ ; (2)类比裂项的方法,计算:;(3)探究并计算:111111335577920212023+++++-⨯-⨯-⨯-⨯-⨯.题型三:数轴上的动点问题【例题】如图,将一个半径为1个单位长度的圆片上的点A 放在原点,并把圆片沿数轴向右滚动1周,点A 到达点A ′的位置,则点A ′表示的数是2π;若起点A 开始时是与﹣1重合的,则向左滚动2周后点A ′表示的数是 .【变式训练】1.如图所示,直径为单位1的圆从数轴上表示1的点沿着数轴无滑动地逆时针滚动一周到达A 点,则A 点表示的数是 .(结果保留π)2.如图,在数轴上点A 表示的数是8,若动点P 从原点O 出发,以2个单位/秒的速度向左运动,同时另一动点Q 从点A 出发,以4个单位/秒的速度也向左运动,到达原点后立即以原来的速度123-1 A返回,向右运动,设运动的时间为t(秒).(1)当t=0.5时,求点Q表示的数;(2)当t=2.5时,求点Q表示的数;(3)当点Q到原点O的距离为4时,求点P表示的数.3.如图,已知数轴上两点A、B对应的数分别为﹣1、3,(1)点P为数轴上一动点,其对应的数为x.①若点P到点A、点B的距离相等,则x=;②若点P到点A、点B的距离之和为10,则x=;(2)若将数轴折叠,使﹣1与3表示的点重合.①则﹣3表示的点与数表示的点重合;②若数轴上M、N两点之间的距离为2022,且M、N两点经过折叠后互相重合,求M,N两点表示的数.题型四:绝对值与相反数【例题】如图,四个有理数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+q=0,则m,n ,p ,q 四个数中,绝对值最大的一个是数 ▲ .【变式训练】1.数轴上表示数﹣3的点与原点的距离可记作|﹣3﹣0|=|﹣3|=3;表示数﹣3的点与表示数2的点的距离可记作|﹣3﹣2|=|﹣5|=5.也就是说,在数轴上,如果A 点表示的数记为a ,B 点表示的数记为b .则A ,B 两点间的距离就可记作|a ﹣b|. 回答下列问题:(1)数轴上表示3和7的两点之间的距离是 ,轴上表示2和﹣5的两点之间的距离是 ;(2)数轴上表示x 与﹣3的两点A 和B 之间的距离为2,那么x 为 ; (3)①找出所有使得|x+1|+|x ﹣1|=2的整数x ; ②若|x+1|+|x ﹣1|=4,求x ;③|x+1|+|x ﹣1|是否有最值?如果有,请直接写出结果;如果没有,请说明理由.2.阅读理解:我们知道x 的几何意义是:在数轴上数x 对应的点与原点的距离,也就是说,x 表示在数轴上数x 与数0对应点之间的距离,这个结论可以推广为: 12x x 表示在数轴上数12,x x 对应点之间的距离.举例:数轴上表示数a 和﹣1的两点A 和B 之间的距离是AB=|a ﹣(﹣1)|=|a+1|. 问题探究:参考阅读材料,解答下列问题. (1)求数轴上表示2和﹣3的两点之间的距离;(2)若数轴上表示数a 的点位于﹣3与5之间,求|a+3|+|a ﹣5|的值; (3)当|a ﹣1|+|a ﹣2|取最小值时,相应的数a 的取值范围是 ; (4)求|a ﹣1|+|a ﹣2|+|a ﹣3|的最小值是 . 实际应用:(5)问题:某一直线沿街一侧有2023户居民(相邻两户居民间隔相同),每户按序标记为:A 1,第一次第二次第三次第四次第五次第六次第七次+15 ﹣8 +6 +12 ﹣4 +5 ﹣10(1)B地在A地哪个方向,与A地相距多少千米?(2)巡逻车在巡逻过程中,离开A地最远是多少千米?(3)若每千米耗油0.2升,问共耗油多少升?2.外卖员骑摩托车从餐馆出发,先向南骑行3km到达A小区,继续向南骑行2km到达B小区,然后向北行12km到C小区,最后回到餐馆.(1)以餐馆为原点,以向北方向为正方向,用1个单位长度表示1km,请你在数轴上表示出A、B、C三个小区的位置;(2)外卖员最远离开出发点多远?(3)若摩托车每1km耗油0.04升,这趟路共耗油多少升?3.某共享单车厂计划一周生产自行车2100辆,平均每天生产300辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日。

苏科版七年级数学上册第二章《有理数》难题提优训练

苏科版七年级数学上册第二章《有理数》难题提优训练
A.1个B.2个C.3个D.4个
3.如图,按下面的程序进行运算.规定:程序运行到“判断结果是否大于35”为一次运算.若运算进行了2次停止,则x的取值范围是
A. B. C. D.
4.若a,b互为相反数,c,d互为倒数,m到 的距离是3,则 的值为
A. B.2C. 或2D. 或
5.如图,若数轴上A,B两点所对应的有理数分别为a,b,则化简 的结果为
三、解答题
14.规定两数a、b之间的一种运算,记作 :如果 ,那么 .例如:因为 ,所以 .
根据上述规定,填空: _____________, ____________;
若 ,则 ______________, 若 ,则b ________________;
求证: .
15.2018年9月16日起,菏泽城区部分区域限制超标三轮、四轮电动车上路,城管的摩托车在一条东西方向的公路上巡逻。如果规定向东为正,向西为负,从出发点开始所走的路程为: , , , , , , 单位:千米 此时,这辆摩托车司机如何向队长描述他的位置
如果队长命令他马上返回出发点,这次巡逻 含返回 共耗油多少升? 已知每千米耗油 升
16.有20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:
与标准质量的差值 单位:千克
0
1
筐数
1
4
2
3
2
8
筐白菜中,最重的一筐比最轻的一筐重多少千克? 与标准重量比较,20筐白菜总计超过或不足多少千克? 若这20筐白菜的进货价为每千克x元,售价为每千克y元 ,则出售这批白菜可获利润多少元? 用含x、y的代数式表示 注:第 、 小题列出算式,并计算
17.对于有理数a、b定义一种新运算,规定 . 求 的值; 若 ,求x的值.

第2章 有理数数学七年级上册-单元测试卷-苏科版(含答案)

第2章 有理数数学七年级上册-单元测试卷-苏科版(含答案)

第2章有理数数学七年级上册-单元测试卷-苏科版(含答案)一、单选题(共15题,共计45分)1、两个非零有理数的和为正数,那么这两个有理数为()A.都是正数B.至少有一个为正数C.正数大于负数D.正数大于负数的绝对值,或都为正数2、a表示有理数,则﹣a一定是()A.负数B.正数C.正数或负数D.以上都不对3、下列计算正确的是( )A. B. C. D.4、下列计算:①0-(-5)=-5;②(-3)+(-9)=-12;③×(-)=-;④(-36)÷(-9)=-4.其中正确的个数是( )A.1个B.2个C.3个D.4个5、在下列各数中,最小的数是()A.1B.-1C.-3D.06、的倒数是( )A. B. C. D.7、一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米8、四个有理数其中最小的是()A.2B.1C.0D.-19、计算(﹣8)×3÷(﹣2)2得()A.-6B.6C.-12D.1210、计算﹣42的结果等于()A.﹣8B.﹣16C.16D.811、文具店、书店和玩具店依次座落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在()A.文具店B.玩具店C.文具店西40米处D.玩具店西60米处12、地球的半径约为6370000m,用科学记数法表示正确的是()A. B. C. D.13、在﹣(﹣2),﹣[﹣(﹣3)],+(﹣),﹣|﹣2|这四个数中,负数的个数是()A.1个B.2个C.3个D.4个14、有理数在数轴上对应的点的位置如图所示,则下列式子正确的是( )A. B. C. D.15、温岭市冬季某天的最高气温是5℃,最低气温是-3℃,那么这天的最高气温与最低气温的差是()A.-2℃B.8℃C.– 8 ℃D.2℃二、填空题(共10题,共计30分)16、数学真奇妙,小慧同学研究有两个有理数a和b,若计算a+b,a-b,ab,的值,发现有三个结果恰好相同,小慧突发灵感,想考考大家,请你们求________17、 ________.18、白云湖是广州市政府便民利民的综合性水利工程,北部水系首期工程完工后,每天可以从珠江西航道引入1000000万立方米的活水进入白云湖,进而改善周边河涌的水质.将1000000用科学记数法可记为________.19、化简: =________20、如果a、b互为相反数,x、y互为倒数,那么(a+b)﹣2015xy=________.21、同学们都知道|5﹣(﹣2)|表示5与(﹣2)之差的绝对值,也可理解为5与﹣2两数在数轴上所对的两点之间的距离,试探索:(1)求|5﹣(﹣2)|=________(2)找出所有符合条件的整数x,使得|x+5|+|x﹣2|=7成立的整数是________22、在正数范围内定义一种运算“△”,其规则是a△b= ,根据这一规则,方程x△(x+1)= 的解是________.23、 5月20日,第15届中国国际文化产业博览交易会落下帷幕.短短5天时间,有7800000人次参观数据7800000用科学记数法表示为________.24、若关于x的一元二次方程有实数根,则n的取值范围是________.25、在一条数轴上有A、B两点,点A表示数﹣4,点B表示数6,点P是该数轴上的一个动点(不与A、B重合)表示数x.点M、N分别是线段AP、BP的中点(1)如果点P在线段AB上,则点M表示的数是________,则点N表示的数是________(用含x的代数式表示),并计算线段MN的长;(2)如果点P在点B右侧,请你计算线段MN的长________.三、解答题(共5题,共计25分)26、27、已知 |a| = 5, |b| = 3,且ab >0,求a+b的值28、如图,数轴上的点A,B,C所对应的数分别为a,b,c,化简|2a|+|b+c|-|a-b-c|.29、已知a2+b2+2a﹣4b+5=0,求2a2+4b﹣3的值.30、11﹣(﹣9)﹣(+3).参考答案一、单选题(共15题,共计45分)1、D2、D3、A4、B5、C7、C8、D9、A10、B11、A12、C13、C14、D15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、25、三、解答题(共5题,共计25分)26、27、28、30、。

苏科版七年级上《第二章有理数》单元测试含答案

苏科版七年级上《第二章有理数》单元测试含答案

第二章有理数单元测试一、单选题(共10题;共30分)1.下列各组数中:①-52和(-5)2;②(-3)3和-33;③-(-0.3)5和0.35;④0100和0200;⑤(-1)3和-(-1)2.相等的共有()A、2组B、3组C、4组D、5组2.计算﹣4×2的结果是()A、-6B、-2C、8D、-83.2015的倒数是()A、-2015B、-C、D、20154.计算(1﹣﹣﹣)•(+++)﹣(1﹣﹣﹣﹣)•(++)的结果是()A、B、C、D、5.计算(﹣25)÷的结果等于()A、-B、-5C、-15D、-6.下列说法中,正确的是()A.所有的有理数都能用数轴上的点表示B.有理数分为正数和负数C.符号不同的两个数互为相反数D.两数相加和一定大于任何一个加数7.﹣5的相反数是()A.5B.15C.﹣15D.﹣58.已知a>b且a+b=0,则()A.a<0B.b>0C.b≤0D.a>09.下列各数中,比﹣2小的数是()A.﹣3B.﹣1C.0D.210.如果向北走3m,记作+3m,那么﹣10m表示()A、向东走10mB、向南走10mC、向西走10mD、向北走10m二、填空题(共8题;共39分)11.已知|a|=1,|b|=2,|c|=3,且a>b>c,那么a+b﹣c=________12.在数﹣5,1,﹣3,5,﹣2中任选两个数相乘,其中最大的积是________13.若a<0,b<0,|a|<|b|,则a﹣b________ 0.14.﹣2倒数是________ ,﹣2绝对值是________15.计算:1﹣(﹣3)=________16.如果水库的水位高于正常水位lm时,记作+1m,那么低于正常水位2m时,应记作________.17.若|a﹣1|=4,则a=________.18.计算:﹣(+ )=________,﹣(﹣5.6)=________,﹣|﹣2|=________,0+(﹣7)=________.(﹣1)﹣|﹣3|=________.三、解答题(共6题;共31分)19.把下列各数分别填入相应的大括号里:﹣5.13,5,﹣|﹣2|,+41,﹣227 ,0,﹣(+0.18),34 .正数集合{ };负数集合{ };整数集合{ };分数集合{ }.20.若|a|=5,|b|=3,①求a+b的值;②若a+b<0,求a﹣b的值.21.若|a|=4,|b|=2,且a<b,求a﹣b的值.22.小明在初三复习归纳时发现初中阶段学习了三个非负数,分别是:①a2;②a;③|a|(a是任意实数).于是他结合所学习的三个非负数的知识,自己编了一道题:已知(x+2)2+|x+y﹣1|=0,求x y的值.请你利用三个非负数的知识解答这个问题23.为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西方向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下(单位:千米):+15,﹣4,+13,﹣10,﹣12,+3,﹣13,﹣17.(1)出车地记为0,最后一名老师送到目的地时,小王距出车地点的距离是多少?(2)若汽车耗油量为0.1升/千米,这天上午汽车共耗油多少升?24.如图是一个三阶幻方,由9个数构成并且横行,竖行和对角线上的和都相等,试填出空格中的数.答案解析一、单选题1、【答案】C【考点】有理数的乘方【解析】【分析】首先计算出各组数的值,然后作出判断.【解答】①-52=-25,(-5)2=25;②(-3)3=-27和-33=-27;③-(-0.3)5=0.00729,0.35=0.00729;④0100=0200=0;⑤(-1)3=-1,-(-1)2=-1.故②③④⑤组相等.故选C.【点评】本题主要考查有理数乘方的运算.正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数.2、【答案】D【考点】有理数的乘法【解析】【解答】解:原式=﹣(4×2)=﹣8,故选:D.【分析】根据两数相乘同号得正异号得负,再把绝对值相乘,可得答案.3、【答案】C【考点】倒数【解析】【解答】解:2015的倒数是.故选:C.【分析】根据倒数的定义可得2015的倒数是.4、【答案】C【考点】有理数的混合运算【解析】【解答】解:设++=a,原式=(1﹣a)(a+)﹣(1﹣a﹣)a=a+﹣a2﹣a﹣a+a2+a=,故选C【分析】设++=a,原式变形后计算即可得到结果.5、【答案】C【考点】有理数的除法【解析】【解答】解:∵(﹣25)÷=(﹣25)×=﹣15,∴(﹣25)÷的结果等于﹣15.故选:C.【分析】根据有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数,求出算式(﹣25)÷的结果等于多少即可.6、【答案】A【考点】有理数的加法【解析】【解答】解:所有的有理数都能用数轴上的点表示,A正确;有理数分为正数、0和负数,B错误;﹣3和+2不是相反数,C错误;正数与负数相加,和小于正数,D错误;故选A.【分析】利用排除法求解.7、【答案】A【考点】相反数【解析】【解答】解:﹣5的相反数是5.故选A.【分析】根据相反数的定义直接求得结果.8、【答案】D【考点】有理数的加法【解析】【解答】解:∵a>b且a+b=0,∴a>0,b<0,故选:D.【分析】根据互为相反数两数之和为0,得到a与b互为相反数,即可做出判断.9、【答案】A【考点】有理数大小比较【解析】【解答】解:根据两个负数,绝对值大的反而小可知﹣3<﹣2.故选:A.【分析】先根据正数都大于0,负数都小于0,可排除C、D,再根据两个负数,绝对值大的反而小,可得比﹣2小的数是﹣3.10、【答案】B【考点】正数和负数【解析】【解答】解:如果向北走3m,记作+3m,南、北是两种相反意义的方向,那么﹣10m表示向南走10m;故选B.【分析】正数和负数是两种相反意义的量,如果向北走3m,记作+3m,即可得出﹣10m的意义.二、填空题11、【答案】2或0【考点】有理数的混合运算【解析】【解答】解:∵|a|=1,|b|=2,|c|=3,∴a=±1,b=±2,c=±3,∵a>b>c,∴a=﹣1,b=﹣2,c=﹣3或a=1,b=﹣2,c=﹣3,则a+b﹣c=2或0.故答案为:2或0【分析】先利用绝对值的代数意义求出a,b及c的值,再根据a>b>c,判断得到各自的值,代入所求式子中计算即可得到结果.12、【答案】15【考点】有理数的乘法【解析】【解答】解:根据题意得:(﹣5)×(﹣3)=15,故答案为:15【分析】根据题意确定出积最大的即可.13、【答案】>【考点】有理数的减法【解析】【解答】解:∵a<0,b<0,|a|<|b|∴a﹣b>0.【分析】根据有理数的减法运算法则进行计算,结合绝对值的性质确定运算符号,再比较大小.14、【答案】-;2【考点】绝对值,倒数【解析】【解答】解:﹣2的倒数为﹣,﹣2的绝对值为2.故答案为﹣;2.【分析】分别根据倒数的定义以及绝对值的意义即可得到答案.15、【答案】4【考点】有理数的减法【解析】【解答】解:1﹣(﹣3)=1+3=4.故答案为:4.【分析】根据有理数的减法法则,求出1﹣(﹣3)的值是多少即可.16、【答案】﹣2m【考点】正数和负数【解析】【解答】解:高于正常水位记作正,那么低于正常水位记作负.低于正常水位2米记作:﹣2m.故答案为:﹣2m【分析】弄清楚规定,根据规定记数低于正常水位2m.17、【答案】5或﹣3【考点】绝对值【解析】【解答】解:∵|a﹣1|=4,∴a﹣1=4或a﹣1=﹣4,解得:a=5或a=﹣3.故答案为:5或﹣3.【分析】依据绝对值的定义得到a﹣1=±4,故此可求得a的值.18、【答案】﹣;5.6;﹣2;﹣7;﹣4【考点】相反数,绝对值,有理数的加减混合运算【解析】【解答】解:原式=﹣;原式=5.6;原式=﹣2;原式=﹣7;原式=﹣1﹣3=﹣4,故答案为:﹣;5.6;﹣2;﹣7;﹣4【分析】原式利用减法法则,绝对值的代数意义计算即可得到结果.三、解答题19、【答案】【解答】解:正数集合{ 5,+41,34};负数集合{﹣5.13,﹣|﹣2|,﹣227,﹣(+0.18)};整数集合{ 5,﹣|﹣2|,+41,0};分数集合{﹣5.13,﹣227,﹣(+0.18),34}【考点】有理数【解析】【分析】按照有理数的分类填写:20、【答案】解:(1)∵|a|=5,|b|=3,∴a=±5,b=±3,∴a+b=8或2或﹣2或﹣8;(2)∵a=±5,b=±3,且a+b<0,∴a=﹣5,b=±3,∴a﹣b=﹣8或﹣2.【考点】有理数的加法【解析】【分析】(1)由于|a|=5,|b|=3,那么a=±5,b=±3,再分4种情况分别计算即可;(2)由于a=±5,b=±3,且a+b<0,易求a=﹣5,b=±3,进而分2种情况计算即可.21、【答案】解:∵|a|=4,|b|=2,∴a=±4,b=±2,∵a<b,∴a=﹣4,b=±2,∴a﹣b=﹣4﹣2=﹣6,或a﹣b=﹣4﹣(﹣2)=﹣4+2=﹣2,所以,a﹣b的值为﹣2或﹣6.【考点】有理数的减法【解析】【分析】根据绝对值的性质求出a、b,再判断出a、b的对应情况,然后根据有理数的减法运算法则进行计算即可得解.22、【答案】解:∵(x+2)2+|x+y﹣1|=0,∴x+2=0x+y-1=0,解得x=-2y=3,∴x y=(﹣2)3=﹣8,即x y的值是﹣8.【考点】有理数的乘方【解析】【分析】根据题意,可得(x+2)2+|x+y﹣1|=0,然后根据偶次方的非负性,以及绝对值的非负性,可得x+2=0,x+y﹣1=0,据此求出x、y的值各是多少,再把它们代入x y,求出x y的值是多少即可.23、【答案】解:(1)0+15﹣4+13﹣10﹣12+3﹣13﹣17=﹣25.答:最后一名老师送到目的地时,小王在出车地点的西面25千米处.(2)|+15|+|﹣4|+|+13|+|﹣10|+|﹣12|+|+3|+|﹣13|+|﹣17|=87(千米),87×0.1=8.7(升).答:这天上午汽车共耗油8.7升【考点】正数和负数【解析】【分析】(1)由已知,出车地位0,向东为正,向西为负,则把表示的行程距离相加所得的值,如果是正数,那么是距出车地东面多远,如果是负数,那么是距出车地东面多远.(2)不论是向西(负数)还是向东(正数)都是出租车的行程.因此把它们行程的绝对值相加就是出租车的全部行程.既而求得耗油量.24、【答案】解:∵﹣3+7+5=﹣3+12=9,∴三个数的和为9,第三行中间的数是9﹣(9+5)=﹣5,最中间的数是9﹣(﹣3+9)=3,第二列最上边的数是9﹣(﹣5+3)=9+2=11,第一行的第一个数是9﹣(﹣3+11)=9﹣8=1,第一列的第二个数是9﹣(1+9)=﹣1.【考点】有理数的加法【解析】【分析】先根据最后一列求出三个数的和,然后求出第三行中间的数,根据对角线的数求出最中间的数再求出第二列最上边的数,再根据第一行的三个数的和求出左上角的数,然后求出第一列的第二个数,从而得解.。

苏科版数学七年级上册第二章有理数有理数比大小(习题)

苏科版数学七年级上册第二章有理数有理数比大小(习题)

1.3.4 有理数加减混合运算【夯实基础】1.把(−2)−(+3)−(−5)+(−4)+(+3)统一成几个有理数相加的形式,正确的为( )A.(−2)+(+3)+(−5)+(−4)+(+3)B. (−2)+(−3)+(+5)+(−4)+(+3)C. (+2)+(+3)+(+5)+(+4)+(+3)D. (−2)−(+3)−(−5)+(−4)+(+3)2.下列各式不成立的是( )A.20+(−9)−7+(−10)=20−9−7−10B.−1+3+(−2)−11=−1+3−2−11C.−3.1+(−4.9)+(−2.6)−4=−3.1−4.9−2.6−4D.−7−(−18)+(−21)−34=−7−(18−21)−343.张大叔家共有十块麦田,今年的收成与去年相比(增产为正,减产为负)情况如下(单位:千克):+32,+17,−39,−11,+15,−13,+8,+3,+11,−21.则今年小麦的总产量与去年相比( ).A.增产2千克B.减产2千克C.增产12千克D.减产12千克4.把(+6)−(−10)+(−3)−(+2)写成省略括号和加号的形式为__________________.5.小食堂会计某天办理了以下业务:支出150元,收入300元,支出210元,收入150元,支出65元,收入80元,问食堂这一天共收入____元.6.计算(1) (2)(3) (4)(+9)−(+10)+(−2)−(−8)+3−−−−+−(7)9(3)(5)−+−+4.2 5.78.410−++−14562312(5)|−0.75|+(−3)−(−0.25)+|−18|+78 (6)−478−(−512)+(−412)−318(7)−156+(−523)+2434+312 (8)634+313−514−312+123【能力提升】7.计算(1)1−2−3+4+5−6−7+8+⋯+97−98−99+100(2)12+16+112+120+130+142+156+1728.当a=23,b=−45,c=−34时,分别求下列式子的值:(1)a+b−c;(2)a−b+c;(3)a−b−c.9.若a、b、c是有理数,|a|=3,|b|=10,|c|=5,且a、b异号,b、c同号,求a−b−(−c)的值.【思维挑战】10.有依次排列的3个数:3,9,8,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,-1,8,这称为第一次操作;第二次同样的操作后也可产生一个新数串:3,3,6,3,9,-10,-1,9,8;继续依次操作下去.问:(1)第一次操作后,增加的所有新数之和是多少?(2)第二次操作后所得的新数串比第一次操作后所得的数串增加的所有新数之和是多少?(3)猜想:第一百次操作后得到的新数串比第九十九次操作所得的数串增加的所有新数之和是多少?。

苏科版七年级数学上册第2章有理数单元测试题含答案

苏科版七年级数学上册第2章有理数单元测试题含答案

第2章 有理数一、选择题(每小题3分,共24分) 1.12的相反数是( ) A .-12 B.12 C .-2 D .22.-3的绝对值是( )A .3B .-3C .13D .-133.在数3.14159,4,1.010010001, 4.2·1·,π,227中,无理数有( )A .1个B .2个C .3个D .4个4.下列说法中,正确的是( )A .两个有理数的和一定大于每个加数B .3与-13互为倒数 C .0没有倒数也没有相反数 D .绝对值最小的数是05.提出了未来5年“精准扶贫”的构想,意味着每年要减贫约11700000人,将数据11700000用科学记数法表示为( )A .1.17×106B .1.17×107C .1.17×108D .11.7×1066.如图1,如果数轴上A ,B 两点之间的距离是8,那么点B 表示的数是( )图1A .5B .-5C .3D .-3`7.下列运算中,不正确的是( )A .-15+5=-10B .347×(-3.14)-637×3.14=-31.4C .334-(+3.75)=0D .-9÷(-3)2=18.下列计算:①-(0.1)3=-0.001;②-32=9;③(-1)3=-1;④-⎝ ⎛⎭⎪⎫-132=19;⑤⎝ ⎛⎭⎪⎫352=95;⑥⎝ ⎛⎭⎪⎫-132=19.其中,正确的有( )A .4个B .3个C .2个D .1个二、填空题(每小题3分,共24分)9.将顺时针旋转60°记为-60°,则逆时针旋转45°可记为________.10.小明家的冰箱冷冻室的温度是-2 ℃,冷藏室的温度是 5 ℃,则小明家的冰箱冷藏室的温度比冷冻室的温度高________ ℃.11.计算:3-22=________.12.下列各数 2.5,-3.14,0,21,-6,-114,+180中,属于分数的有____________________(填入符合条件的数).13.已知三个数:-32,(-3)2,(-3)3,其中,最大的数是________.14.某年级举办足球循环赛,规则是:胜一场得3分,平一场得1分,输一场得-1分.某班的比赛结果是胜3场、平2场、输4场,则该班得________分.15.被除数是-312,除数比被除数小112,则商为________.16.观察下面一列数:-1,2,-3,4,-5,6,-7,…,将这列数排成图2的形式,按照上述规律排下去,那么第10行从左边数第9个数是________.图2三、解答题(共52分)17.(6分)在数轴上将数-2.5,0,-3,4,-5,12表示出来,并结合数轴用“<”号将它们连接起来.18.(4分)计算:34+(-15)-(-16)-(+25).19.(6分)计算:4÷⎝ ⎛⎭⎪⎫-13÷()-6×16.20.(6分)计算:-9÷3+⎝ ⎛⎭⎪⎫12-23×12+32.21.(8分)若|a|=2,b =-3,c 是最大的负整数,求a +b -c 的值.22.(10分)小明家(记为A)、他上学的学校(记为B)、书店(记为C)依次坐落在一条东西走向的大街上,小明家位于学校西边250米处,书店位于学校东边100米处,小明中午放学后,到书店买本辅导书,然后回家吃中午饭,下午直接去学校上课.(1)试用数轴表示出小明家(A)、学校(B)、书店(C)的位置; (2)计算出小明家与书店的距离;(3)小明从中午放学离校到下午上学到校一共走了多少米?23.(12分)某自行车厂7天计划生产1400辆自行车,平均每天生产200辆,由于各种原因,无法按计划生产,下表是这7天的生产情况(超产为正,减产为负,单位:辆):第1天 第2天 第3天 第4天 第5天 第6天 第7天 +5-2-6+15-9-13+8(1)根据记录可知前4天共生产自行车______辆;(2)自行车产量最多的一天比产量最少的一天多生产________辆;(3)该厂实行日计件工资制,每生产一辆自行车,厂方付给工人工资60元,超额完成计划任务的,每超产一辆奖励15元,没有完成计划任务的,每减产一辆扣15元,则该厂工人这7天的工资总额是多少?1.A 2.A 3.A4.D 5.B 6.D 7.D 8.B 9.+45°10.7 11.-1 12.2.5,-3.14,-114 13.(-3)214.7 15.0.7 16.9017.解:将各数在数轴上表示略. -5<-3<-2.5<0<12<4.18.解:34+(-15)-(-16)-(+25) =34-15+16-25 =34+16-15-25=10. 19.解:4÷⎝ ⎛⎭⎪⎫-13÷(-6)×16 =4×3×16×16=13.20.解:-9÷3+⎝ ⎛⎭⎪⎫12-23×12+32=-3+12×12-23×12+9=-3+6-8+9=4.21.解:∵|a |=2,∴a =±2. ∵c 是最大的负整数,∴c =-1. 当a =2时,a +b -c =2-3-(-1)=0; 当a =-2时,a +b -c =-2-3-(-1)=-4.22.解:(1)根据题意,可选取从西向东为正方向,学校所在位置为原点,1个单位长度代表50米,则用数轴表示A ,B ,C 的位置如图所示:(2)100-(-250)=350(米). 答:小明家与书店的距离为350米. (3)100+100+|-250|+|-250|=700(米).答:小明从中午放学离校到下午上学到校一共走了700米.23.解:(1)812 (2)28(3)5-2-6+15-9-13+8=-2,2×60+2×15=150(元),1400×60-150=83850(元).答:该厂工人这一周的工资总额是83850元.。

苏科版数学七(上)第二章有理数单元测试卷

苏科版数学七(上)第二章有理数单元测试卷

- 1 - /共 5页七(上)数学第二章 有理数单元测试卷满分:100分 时间:90分钟 得分:_________一、填空题:(每空1分,共20分)1.某整数,若加上12,则为正数,若加上10,则为负数,那么这个的平方为___.2.-3的相反数是____,-12的倒数是____,-123的绝对值是____. 3.比较大小:0___-0.0021, 32-___43-4.简化符号:-(-321)=_____,-(8--)=_____.5.计算:-2÷12×2=_____,200720062008(1)0(1)--+-=____.6.最大的负整数是_____,绝对值最小的有理数是_____.7.用科学记数法表示:24500=____;近似数13.35精确到___位;近似数0.018有___个有效数字;863700保留3个有效数字为_____.8.如果数轴上到-4的距离等于3的点所表示的数是___.9.一个数的平方等于它的相反数,则这个数是_____,一个数的立方等于它本身,则这个数是_____.10.若a <0,b <0,|a |<|b |,则0___b a -. 二、选择题:(每题2分,共20分)11.下列关于数0的说法错误的是( )A 、0的相反数是0;B 、0没有倒数;C 、0不能做除数;D 、0除以任何数仍得0 12.下列各式中,等号不成立的是()A.3-=3B.-3=-3-C.3=3-D.-3-=3 13.下列各计算结果是正数的有( )个①)2(-- ②2-- ③2)3(-- ④2)]3([--A 、1B 、2C 、3D 、414.若b a +<0,且ab <0,则说法一定正确的是( )A 、a >0,b >0;B 、a <0,b <0C 、a 、b 异号且负数的绝对值大;D 、a b 异号,且正数的绝对值大 15.下列各式正确的是( )A 、22)5(5-=-;B 、2008(1)2008-=;C 、2007(1)(1)0---=;D 、0)1(99=- 16.七个有理数的积为负数,其中负因数的个数一定不可能是( )A 、1个B 、3个C 、6个D 、7个 17.下列说法正确的是( )A 、平方得25的数只有一个B 、立方得27的数只有一个C 、平方得-16的数只有一个D 、立方得64的数不一定有一个 18.a 为有理数,下列说法中正确的是( )A 、是正数2)21(+a ;B 、是正数212+a ;- 2 - /共 5页C 、是负数)--(221a ; D 、21212的值不小于-+a19.下列说法正确的是( )A 、如果a >b ,那么2a >2bB 、如果2a >2b ,那么a >bC 、如果|a |>|b |,那么2a >2bD 、如果 a >b ,那么|a |>|b |20.四个互不相等的整数a 、b、c、d,如果a bcd=9,那么a +b+c+d=()A ,0B ,8C ,4D ,不能确定三、解答题:(第21题4分,第22题每小题4分计32分,第23题4分,第24-27题第每小题5分,共60分)21.把下列各数在数轴上表示出来,并用“>”把它们连结起来:-312,-3.4,0,5,2.33,-112.22.计算: (1)(-478)-(-512)+(-414)-(+318);(2)-12-+13--0-14--19⎛⎫- ⎪⎝⎭; (3)(145-256-815)×(+60); (4)123÷152791245438⎡⎤⎛⎫+⨯+- ⎪⎢⎥⎝⎭⎣⎦;(5)[53-4×(-5)2-(-1)10]÷(-24-24+24);(6)316×(317-713)×619÷1121;(7)200712-200613+200512-200413+200312-200213+…+312-213+112-13;- 3 - /共 5页(8)(12+13+…+12007)(1+12+13+…+12006)-(1+12+13+…+12007)(12+13+…+12006).23.已知x =7,y =12,求代数式x +y的值.24.下图是一个数值转换器,填表:25.因为112⨯=1-12,123⨯=12-13,134⨯=13-14,……,11920⨯=119-120.所以112⨯+123⨯+134⨯+ (11920)=(1-12)+(12-13)+(13-14)+…+(119-120)=1-12+12-13+13-14+…+119-120=1-120=1920.上面的求和的方法是通过逆用分数减法法则,将和式中各分数转化成两个数之差,使得除首、末两项外中间项可以互相抵消,从而达到求和的目的.通过阅读,你一定学会了一种解决问题的方法.请你用学到- 4 - /共 5页的方法计算: (1)112⨯+123⨯+134⨯+…+()11n n-⨯; (2)124⨯+146⨯+168⨯+…+198100⨯.26.有一种“二十四点”的游戏,其游戏规则是这样的:任取四个1至13之间的自然数,将这四个数(每个数用且只能用一次)进行加减乘除四则运算,使其结果等于24. 例如对1,2,3,4可作运算:(1+2+3)×4[注意上述运算与4×(2+3+1)应视为相同方法的运算]. 现有四个有理数3,4,-6,10运用以上规则写出三种不同的运算式,使其结果等于24或-24,运算式如下:1._____________;2._____________;3._____________.27.(1)阅读下面材料:点A 、B 在数轴上分别表示实数a 、b ,A 、B 两点之间的距离表示为∣AB ∣.当A 、B 两点中有一点在原点时,不妨设点A 在原点,如图1,∣AB ∣=∣OB ∣=∣b ∣=∣a -b ∣; 当A 、B 两点都不在原点时,①如图2,点A 、B 都在原点的右边∣AB ∣=∣OB ∣-∣OA ∣=∣b ∣-∣a ∣=b -a=∣a -b ∣; ②如图3,点A 、B 都在原点的左边,∣AB ∣=∣OB ∣-∣OA ∣=∣b ∣-∣a ∣=-b -(-a )=∣a -b ∣;③如图4,点A 、B 在原点的两边,∣AB ∣=∣OB ∣+∣OA ∣=∣a ∣+∣b ∣= a +(-b )=∣a-b ∣; 0O b• • 图2• aO (A )b •• 图1 ba• • • 图3• ba•• 图4(2)回答下列问题:①数轴上表示2和5的两点之间的距离是______,数轴上表示-2和-5的两点之间的距离是______,数轴上表示1和-3的两点之间的距离是______;②数轴上表示x和-1的两点A和B之间的距离是____,如果∣AB∣=2,那么x为____;③代数式∣x+1∣=∣x-2∣取最小值时,相应的x的取值范围是_____.- 5 - /共5页。

第二章 有理数 综合测试卷(原卷版)-2024-2025学年七年级数学上册同步精讲精练(苏科版)

第二章 有理数 综合测试卷(原卷版)-2024-2025学年七年级数学上册同步精讲精练(苏科版)

(苏科版)七年级上册数学《第二章有理数》综合测试卷时间:100分钟试卷满分:120分一、选择题(每小题3分,共10个小题,共30分)1.(2023春•望奎县期末)规定10吨记为0吨,11吨记为+1吨,则下列说法错误的是()A.9吨记为﹣9吨B.12吨记为+2吨C.6吨记为﹣4吨D.+3吨表示重量为13吨2.(2022秋•佛山期末)四个有理数−12,﹣0.8,−14,0中,最小的数是()A.−12B.﹣0.8C.−14D.03.(2022秋•连山区期末)《葫芦岛市第七次全国人口普查公报》发布,全市常住人口约为271.4万人,271.4万用科学记教法表示为()A.271.4×104B.2.714×106C.2.714×107D.2.714×1084.(2023春•镇江期末)将一把刻度尺按如图所示的方式放在数轴上(数轴的单位长度是1cm),刻度尺上的“1cm”和“6cm”分别对应数轴上“﹣1.2cm”和“xcm”,则x的值为()A.3.8B.2.8C.4.8D.65.(2022秋•丰都县期末)若m、n是有理数,满足|m|>|n|,且m>0,n<0,则下列选项中,正确的是()A.n<﹣m<m<﹣n B.﹣m<n<﹣n<m C.﹣n<﹣m<n<m D.﹣m<﹣n<n<m6.(2022秋•西安期中)一只蚂蚁沿数轴从点A 向一个方向移动了3个单位长度到达点B ,若点B 表示的数是﹣2,则点A 所表示的数是( ) A .1 B .﹣5 C .﹣1或5 D .1或﹣57.下列各对数中,互为相反数的是( ) A .﹣23与﹣32 B .(﹣2)3与﹣23C .(﹣3)2与﹣32D .−223与(23)28.(2023•贵阳模拟)有理数a ,b 在数轴上的对应点的位置如图所示,则下列结论正确的是( )A .a +b >0B .a ﹣b >0C .ab >0D .ab<09.(2023春•东湖区校级期末)若a ,b 为有理数,则下列说法中正确的是( ) A .若a ≠b ,则a 2≠b 2 B .若a >|b |,则a 2>b 2 C .若|a |>|b |,则a >b D .若a 2>b 2,则a >b10.(2022秋•龙岗区校级期末)2022减去它的12,再减去余下的13,再减去余下的14⋯⋯以此类推,一直减到余下的12022,则最后剩下的数是( )A .20212022B .0C .20222021D .1二、填空题(每小题3分,共8个小题,共24分)11.(2023•临沂模拟)﹣2023的绝对值是 .12.(2022秋•渌口区期末)有理数+3,7.5,﹣0.05,0,﹣2019,23中,非负数有 个.13.小超同学在计算30+A 时,误将“+”看成了“﹣”算出结果为12,则正确答案应该为 .14.(2022秋•南充期末)两个数的积是−29,其中一个是−16,则另一个是 .15.(2022秋•赣县区期末)草莓开始采摘啦!每筐草莓以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图所示,则这4筐草莓的总质量是 千克.16.(2023春•南岗区校级月考)已知|a |=5,|b |=7,且|a +b |=a +b ,则a +b 的值为 .17.定义一种运算:|a c bd |=ad ﹣bc ,如:|1−3−20|=1×0﹣(﹣2)×(﹣3)=﹣6.那么当a =﹣12,b =(﹣2)2﹣1,c =﹣32+5,d =14−|−34|时,则|a cbd|的值是 .18.(2023春•惠阳区校级月考)已知x ,y ,z 都是有理数,x +y +z =0,xyz ≠0,则|x|y+z+|y|x+z+|z|x+y的值是 .三、解答题(共8个小题,共66分)19.(每小题4分,共8分)(2022秋•和平区校级期末)计算 ①(13−18+16)×24; ②(﹣2)4÷(﹣223)2+512×(−16)﹣0.25.20.(8分)(2022秋•立山区期中)如图,直线上的相邻两点的距离为1个单位,如果点A、B表示的数是互为相反数,请回答下列问题:(1)那么点C表示的数是多少?(2)把如图的直线补充成一条数轴,并在数轴上表示:314,﹣3,﹣(﹣1.5),﹣|﹣1|.(3)将(2)中各数按由小到大的顺序用“<”连接起来.21.(8分)(2022秋•天门期中)已知有理数x、y满足|x|=9,|y|=5.(1)若x<0,y>0,求x+y的值;(2)若|x+y|=x+y,求x﹣y的值.22.(8分)(2022秋•潮安区期末)已知:a,b互为相反数,c,d互为倒数,x的绝对值是2,求x2﹣(a+b+cd)x+(a+b)2021+(﹣cd)2022的值.23.(8分)(2022秋•雁塔区校级期末)一架飞机进行特技表演,起飞后的高度变化如下表:高度变化上升4.5km下降3.2km上升1.1km下降1.5km上升0.8km 记作+4.5km﹣3.2km+1.1km﹣1.5km+0.8km (1)求此时飞机比起飞点高了多少千米?(2)若飞机平均上升1千米需消耗6升燃油,平均下降1千米需消耗4升燃油,那么这架飞机在这5个特技动作表演过程中,一共消耗多少升燃油?24.(8分)(2022秋•永川区期末)某辆出租车一天下午以公园为出发地在东西方向行驶,向东走为正,向西走为负,行车里程(单位:千米)依先后次序记录如下:+15,﹣2,﹣6,+7,﹣18,+12,﹣4,﹣5,+24,﹣3.(1)将最后一名乘客送到目的地时,出租车离公园多远?在公园的什么方向?(2)若出租车每千米耗油量为0.1升,每升油7元,则这辆出租车这天下午耗油费用多少元?(3)若出租车起步价为10元,起步里程为3千米(包括3千米),超过部分每千米2.4元,问这天下午这辆出租车司机的营业额是多少元?25.(8分)(2022秋•东昌府区校级期末)观察下列等式:第一个等式:a1=11×3=12(1−13);第二个等式:a2=13×5=12(13−15);第三个等式:a3=15×7=12(15−17);第四个等式:a4=17×9=12(17−19);…回答下列问题:(1)按以上规律列出第6个等式:a6=.(2)若n是正整数,请用含n的代数式表示第n个等式,a n==.(3)a1+a2+a3+…+a2022+a2023.26.(10分)老王在上星期五以每股10元的价格买进某种股票1000股,该股票的涨跌情况如下表(单位:元)(注:每天的涨跌价是以上一天的收盘价为基础)星期一二三四五每股涨跌﹣0.19+0.16﹣0.18+0.25+0.06(1)星期五收盘时,每股是元;(2)本周内最高价是每股多少元?最低价是每股多少元?(3)已知股票卖出时需付成交额3‰的手续费和2‰的交易税,如果老王在星期五以收盘价将股票全部卖出,他的收益情况如何?。

苏科版七年级上册数学同步练习:第二章有理数单元复习1.docx

苏科版七年级上册数学同步练习:第二章有理数单元复习1.docx

初中数学试卷 桑水出品《有理数》单元复习课时训练1一、知识点填空1、三个重要的定义(1)正数: 的数叫做正数(2)负数:在正数前面加上“-”号,表示比0小的数叫做负数;(3)0即不是正数也不是负数,0是正数和负数的分界,可以表示没有也可表示具体的温度。

2、有理数的概念及分类(1)有理数包含 和 (2)有理数包含 、 和(3)有理数包含 、 、 、 和(4)整数包含 、 和 (5)分数包含 和(6)正有理数包含 和 (7)负有理数包含 和(8)任何有理数一定可以化成 和 ,只有有限小数和无限循环小数是有理数,因为它们都能化为分数,而无限不循环小数不能化成分数,所以无限不循环小数不是有理数。

(9)非负数包含 ;非负整数包含3、数轴:有 、 和 的 叫作数轴。

(1)任何一个有理数都能在数轴上找到 的点与之对应(2)数轴上的任何一个点都对应唯一一个数,不一定是有理数。

4、相反数:若两个数只有 ,则其中一个数叫另一个数的相反数或者叫它们互为相反数。

0的相反数是 ,相反数是它本身的数是 。

(1)互为相反数的两个数,在数轴上位于原点的 ,并且与原点的 ;互为相反数的两个数关于原点 。

数a 的相反数是 。

(2)如果数a 和数b 互为相反数,则a +b =0或a = —b ;)0(1≠-=ab b a 或)0(1≠-=ab ab (3)求一个数的相反数,只要在这个数的前面加上“—”即可;例如b a -的相反数是(4)多重符号的化简规律:当负号的个数为奇数个时,结果为 号;当负号的个数为偶数个时,结果为 号;与正号无关。

5、绝对值: 数轴上表示数a 的点与 叫做数a 的绝对值,记作(1)几何意义:一个数的绝对值就是数轴上表示 与 。

(2)代数意义:一个正数的绝对值是 ;0的绝对值是 ;一个负数的绝对值是 。

(3)非负数的绝对值是 ; 若0a ≥ ,则a = 。

若a = a , 则a非正数的绝对值是 ; 若0a ≤ ,则a = 。

苏教版七年级数学上册第二章有理数单元测试及答案(完整资料).doc

苏教版七年级数学上册第二章有理数单元测试及答案(完整资料).doc

【最新整理,下载后即可编辑】七年级数学第二章有理数单元测试姓名 得分 1、52-的绝对值是 ,52-的相反数是 ,52-的倒数是 .2、某水库的水位下降1米,记作 -1米,那么 +1.2米表示 .3、数轴上表示有理数-3.5与4.5两点的距离是 .4、已知|a -3|+24)(+b =0,则2003)(b a += . 5、已知p 是数轴上的一点4-,把p 点向左移动3个单位后再向右移1个单位长度,那么p 点表示的数是______________。

6、最大的负整数与最小的正整数的和是_________ 。

7、()1-2003+()20041-= 。

8、若x 、y 是两个负数,且x <y ,那么|x | |y | 9、若|a |+a =0,则a 的取值范围是10、若|a |+|b |=0,则a = ,b =二、精心选一选:(每小题3分,共24分.请将你的选择答案填在下表中.)1( )A 0B -1C 1D 0或1 2、绝对值大于或等于1,而小于4的所有的正整数的和是( )A 8B 7C 6D 5 3、计算:(-2)100+(-2)101的是( )A 2100B -1C -2D -2100 4、两个负数的和一定是( )A 负B 非正数C 非负数D 正数 5、已知数轴上表示-2和-101的两个点分别为A ,B ,那么A ,B 两点间的距离等于( )A 99B 100C 102D 103 6、31-的相反数是( )A -3B 3 C31 D31-7、若x >0,y <0,且|x|<|y |,则x +y 一定是( ) A 负数 B 正数 C 0 D 无法确定符号8、一个数的绝对值是3,则这个数可以是( )A 3B 3-C 3或3-D 31 9、()34--等于( )A 12-B 12C 64-D 64 10、,162=a 则a 是( )A 4或4-B 4-C 4D 8或8- 三、计算题(每小题4分,共32分)1、()26++()14-+()16-+()8+2、()3.5-+()2.3-()5.2--()8.4+-3、()8-)02.0()25(-⨯-⨯4、⎪⎭⎫⎝⎛-+-127659521()36-⨯5、 ()1-⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-÷3114310 6、8+()23-()2-⨯7、81)4(2033--÷- 8、100()()222---÷⎪⎭⎫ ⎝⎛-÷32 四、(5分)m =2,n =3,求m+n 的值 五、(5分)已知a 、b 互为相反数,c 、d 互为负倒数(即1cd =-),x 是最小的正整数。

苏科版七年级数学上册第二章 有理数 单元提高测试卷5份

苏科版七年级数学上册第二章 有理数 单元提高测试卷5份

苏科版七年级数学上册第二章 有理数 单元提高测试卷5份苏科版七年级数学上册第二章 有理数 单元提高测试卷一、选择题(每小题2分,共20分)1.下列说法正确的是 ( ) A .0是最小的整数 B .“+15 m”表示向东走15 m C .a<0,-a 一定是负数D .一个数前面加上“-”,就变成了负数2.已知a ,b 两数在数轴上对应的点如图所示,下列结论正确的是 ( ) A .a>b B .ab<0 C .0b a -> D .0a b +>3.下列各组数中,不是互为相反意义的量的是( )A.收入300元与支出30元B.上升10米和下降7米C.超过0.05mm 与不足0.03mD.增大2岁与减少2升 4.下列说法正确的是( )A.一个数的相反数一定是负数B.若| a |= b ,则a = bC.若-|m |=-2,则m =±2D.-a 一定是负数5.从数6,-1,15,-3中,任取三个不同的数相加,所得到的结果中最小的是 ( ) A .-3 B .-1 C .3 D .26.若a=-22,b=(-2) 2,c=(-2)3÷(-1+5),则a ,b ,c 的大小关系是 ( ) A .a <b <c B .a <c <b C .c <a <b D .c <b <a7.若a-b>0,且ab<0,那么a 、b 应满足的条件是 ( ) A .a >0、b >0 B .a <0,b <0C .a 、b 同号D .a 、b 异号,且负数的绝对值较大 8.西部地区面积占我国国土面积的23,我国国土面积约为960万平方千米,用科学记数法表示我国西部地区的面积为 ( ) A .66410⨯平方千米 B .66.410⨯平方千米C.76.410⨯平方千米D.46410⨯平方千米9.若a,b为有理数,有下列结论:(1)如果a≠b,那么|a|≠|b|;(2)如果a>b,那么|a|>|b|;(3)如果|a|>|b|,那么a>b;(4)如果|a|≠|b|,那么a≠b。

苏科版七年级数学上册 第二章有理数单元复习提高习题

苏科版七年级数学上册  第二章有理数单元复习提高习题

有理数单元复习提高习题一、填空题1.若a、b互为相反数,c、d互为倒数,m的绝对值为2,则|a+b|4m+2m2−3cd的值是________.2.−13的倒数是________;123的相反数是________.3.若m,n分别表示一个有理数,且m,n互为相反数,则|m+(-2)+n|=________.二、计算题4. (1)12+(﹣23)+ 45+(﹣12)+(﹣13);(2)(﹣0.5)+3 14+2.75+(﹣5 12)(3)7+(﹣6.9)+(﹣3.1)+(﹣8.7)(4)|−45|+|+45|+|−25|.5.若a是最大的负整数,求a2000+a2001+a2002+a2003的值?6.已知:a与b互为相反数,c与d互为倒数,x的平方是16,y是最大的负整数.求:2x−cd+6(a+b)−y2015的值.7.已知|x+2|+|y−3|=0,−212x−53y+4xy的值.8.已知a、b为有理数,且|a+2|+(b-3)2=0,求a b+a(3-b)的值.9.若定义一种新的运算“*”,规定有理数a*b=4ab,如2*3=4×2×3=24.(1)求3*(﹣4)的值;(2)求(﹣2)*(6*3)的值.三、综合题10.有理数a、b、c在数轴上的位置如图:(1)判断正负,用“<”或“>”填空:c-b________0,a+b________0,a-c________0.(2)化简:|c−b|+|a+b|−|a−c|.11.已知有理数a,b在数轴上的位置如图所示.(1)在数轴上标出﹣a,﹣b的位置,并比较a,b,﹣a,﹣b的大小:(2)化简|a+b|+|a﹣b|.12.已知点A在数轴上对应的数为a,点B在数轴上对应的数为b,且|a+2|+(b﹣5)2=0,规定A、B两点之间的距离记作AB=|a﹣b|.(1)求A、B两点之间的距离AB;(2)设点P在A、B之间,且在数轴上对应的数为x,通过计算说明是否存在x的值使PA+PB=10;(3)设点P不在A、B之间,且在数轴上对应的数为x,此时是否又存在x的值使PA+PB=10呢?13.有理数4′×2、−ab+1、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:|−3|-c________0,|+10|+|−8|________0,c−a________0.(2)化简:| b-c|+| |+12|+b|-|c-|−10|14.观察下列等式:1 1×2=1﹣12,12×3= 12﹣13,13×4= 13﹣14,把以上三个等式两边分别相加得:11×2+ 12×3+ 13×4=1﹣12+ 12﹣13+ 13﹣14=1﹣14=34.(1)猜想并写出:1n(n+1)=________.(2)直接写出下列式子的计算结果:1 1×2+ 12×3+ 13×4+…+ 12016×2017=________.(3)探究并计算:1 2×4+ 14×6+ 16×8+…+ 12014×2016.15.若a、b互为相反数,c、d互为倒数,m的绝对值为2.(1)分别直接写出a+b,cd,m的值;(2)求m+cd+a+bm的值.答案与解析一、填空题1.若a、b互为相反数,c、d互为倒数,m的绝对值为2,则|a+b|4m+2m2−3cd的值是________.【答案】5【解析】【解答】解:∵a、b互为相反数,c、d互为倒数,∴a+b=0,cd=1,又m的绝对值为2,所以m=±2,m2=4,则原式=0+2×4﹣3×1=5.故答案为52.−13的倒数是________;123的相反数是________.【答案】-3;−123【解析】【解答】解:根据倒数和相反数的定义可知−13的倒数为−3;123的相反数是−123.3.若m,n分别表示一个有理数,且m,n互为相反数,则|m+(-2)+n|=________. 【答案】2【解析】【解答】∵m,n互为相反数,∴m+n=0,∴|m+(-2)+n|= |(m+n)+(-2)|=|0+(-2)|=2.二、计算题4.(1)12+(﹣23)+ 45+(﹣12)+(﹣13);(2)(﹣0.5)+3 14+2.75+(﹣5 12)(3)7+(﹣6.9)+(﹣3.1)+(﹣8.7)(4)|−45|+|+45|+|−25|.【答案】(1)解:12+(﹣23)+ 45+(﹣12)+(﹣13)= 12+(﹣12)+(﹣23)+(﹣13)+ 45=0﹣1+ 45=﹣15(2)解:原式=[(﹣12)+(﹣5 12)]+(314+2 34)=﹣6+6=0(3)解:原式=[(﹣6.9)+(﹣3.1)]+[(﹣8.7)+7]=﹣10+(﹣1.7)=﹣11.7(4)解:原式= 45+45+25= 85+25=25.若a是最大的负整数,求a2000+a2001+a2002+a2003的值?【答案】解:当a是最大的负整数—1时,原式=(−1)2000+(−1)2001+(−1)2002+ (−1)2003=−1+1+(−1)+1=0【解析】【分析】由题意最大的负整数是-1,将a=-1代入代数式,结合有理数的乘方的性质,负数的奇次方为负,负数的偶次方为正即可求解。

七年级数学苏科版上册第2单元复习《单元测试》02 练习试题试卷 含答案

七年级数学苏科版上册第2单元复习《单元测试》02 练习试题试卷 含答案

苏科七年级上单元测试第2单元班级________姓名________一、单选题1.有理数a 、b 、c 在数轴上对应点的位置如图所示,若|b |>|c |,则下列结论中正确的是()A .abc <0B .b +c <0C .a +c >0D .ac >ab2.求23201913333+++++ 的值,可令23201913333S =+++++ ①,①式两边都乘以3,则2333S =+342020333++++ ②,②-①得2020331S S -=-,则2020312S -=仿照以上推理,计算出2155++342019555++++ 的值为()A .201951-B .202051-C .2020514-D .2010514-3.若||4=a ,||2=b ,且+a b 的绝对值与相反数相等,则-a b 的值是()A .2-B .6-C .2-或6-D .2或64.已知2ab -和1a -是一对互为相反数,()()()()()()1111112220202020ab a b a b a b ++++++++++ 的值是()A .12020B .12021C .20212022D .202020215.已知a 、b 、c 在数轴上的位置如图所示,试化简|a +b |﹣|b |+|b +c |+|c |的结果是()A .a +bB .a +b ﹣2cC .﹣a ﹣b ﹣2cD .a +b +2c6.如图所示,在这个数据运算程序中,若开始输入的x 的值为4,输出的结果是2,返回进行第二次运算则输出的是1,…,则第2020次输出的结果是()A .﹣1B .-2C .-4D .-67.现有以下五个结论:①整数和分数统称为有理数;②绝对值等于其本身的有理数是0和1;③每一个有理数都可以用数轴上的一个点表示;④若两个非0数互为相反数,则它们相除的商等于﹣1;⑤几个有理数相乘,负因数个数是奇数时,积是负数.其中正确的有()A .1个B .2个C .3个D .4个二、填空题8.观察下列等式:11111222=-=´111112112232233+=-+-=´´1111111131122334223344++=-+-+-=´´´……请按上述规律,写出第n 个式子的计算结果(n 为正整数)______.(写出最简计算结果即可)9.把一张纸片剪成4块,再从所得的纸片中任取若干块,每块剪成4块,像这样依次地进行下去,到剪完某一次为止,那么2018、2019、2020、2021这四个数中______可能是剪出的纸片数.10.你玩过24点游戏吧,请你运用加、减、乘、除运算和括号,写出数5、5、5、1得到24的算式__________(每个数只能用一次).11.观察下列等式:第1层1+2=3第2层4+5+6=7+8第3层9+10+11+12=13+14+15第4层16+17+18+19+20=21+22+23+24…在上述的数字宝塔中,从上往下数,2020在第_____层.12.阅读理解:12-111-22112==´,13-211-63223==´,14-311-124334==´……阅读以上材料后计算:111111111357911131517612203042567290++++++++=__.13.数轴上一个点到-1所表示的点的距离为4,那么这个点在数轴上所表示的数是______.14.有两组数,第一组:-0.25,314-,3,第二组数:-0.35,45,310-,从这两组数中各取一个数,将它们相乘,那么所有这样的乘积的总和是______.15.计算:14(81)249-¸´¸_______15=-.三、解答题16.计算(1)45554559696æöæöæö--++---ç÷ç÷ç÷èøèøèø(2)()33312121315137474æöæö´--´+-´+´-ç÷ç÷èøèø(3)()()3311624 2.52æö¸---´-+ç÷èø(4)()()2019211112424248æö-+-+--+´-ç÷èø17.计算:(1)()()221110.5222éù---´´--ëû;(2)18191919-´(简便计算).18.简算(1)﹣(2).19.先计算,再阅读材料,解决问题:(1)计算:11112362æö-+´ç÷èø.(2)认真阅读材料,解决问题:计算:121123031065æö¸-+-ç÷èø.分析:利用通分计算211231065-+-的结果很麻烦,可以采用以下方法进行计算:解:原式的倒数是:211213106530æö-+-¸ç÷èø21123031065æö=-+-´ç÷èø21123030303031065=´-´+´-´20351210=-+-=.故原式110=.请你根据对所提供材料的理解,选择合适的方法计算:1351252426213æöæö-¸-+-ç÷ç÷èøèø.20.已知点M ,N 在数轴上分别表示m ,n ,动点P 表示的数为x .(1)填写表格:m 23-2-n625-M ,N 两点间的距离4_____________(2)由表可知,点M ,N 之间的距离可以表示为m n -,则2x -可以看成是表示为x 的数到2的距离,若数轴上表示数x 的点位于2与6-之间(包含2和6-),那么①()26x x -+--=_______.②126x x x -++++的最小值=_______.(3)12399100x x x x x -+++-++-++ 的最小值=________.参考答案题号1234567答案BCCCCBC8.1n n +9.202010.5×(5-1÷5)=2411.44.12.281513.-5或314.0.15.15.161516.解:(1)45554559696æöæöæö--++---ç÷ç÷ç÷èøèøèø=45554559696---+=4555(45)(5)9966--+-+=105--=15-(2)()33312121315137474æöæö´--´+-´+´-ç÷ç÷èøèø=[][()33312115213137744æöæöù´-+-´+-´+´-ç÷ç÷ûèøèø=3311(52)13(2)744æö-´++´--ç÷èø=-10-39=-49(3)()()3311624 2.52æö¸---´-+ç÷èø=()()11684 2.58æö¸---´-+ç÷èø=12 2.52--+=0(4)()()2019211112424248æö-+-+--+´-ç÷èø=()()()11110242424248éù-+-´--´-+´-êúëû=11263-+-+=817.(1)12-;(2)379-解:(1)()()221110.5222éù---´´--ëû=()1112422--´´-=()1124--´-=11+2-=12-(2)18191919-´=1201919æö-+´ç÷èø=12019+1919-´´=380+1-=379-.18.解:(1)原式=×(﹣1.05﹣11.35+7.7)=×(﹣4.7)=﹣;(2)原式=﹣9×﹣18+4﹣9=﹣24.19.(1)8;(2)147-解:(1)计算:111111121212124268362362æö-+´=´-´+´=-+=ç÷èø;(2)原式的倒数是:()351252426213æö-+-´-ç÷èø,()()()()351252525252426213=´--´-+´--´-,3910268=-+-+,47=-,故原式147=-.20.解:(1)2-(-3)=5,(-2)-(-5)=3,填表如下:m 23-2-n625-M ,N 两点间的距离453(2)①()26x x -+--表示数轴上x 到2和x 到-6的距离之和,∴()()26268x x -+--=--=;②126x x x -++++表示数轴上x 到1和x 到-2以及x 到-6的距离之和,∵表示数x 的点位于2与-6之间(包含2和-6),∴当x 与-2重合时,126x x x -++++最小,即为1-(-6)=7;(3)12399100x x x x x -+++-++-++ 表示数轴上x 分别到1,-2,3,-4,...,99,-100的距离之和,∴当x =()991002+-=12-时,取最小值,最小值为111111239910022222--+-++--++--+- =()1.5 3.5 5.5...99.52++++´=5050.。

苏科新版 七年级上册数学 第2章有理数 单元测试卷

苏科新版 七年级上册数学 第2章有理数 单元测试卷

苏科新版七年级上册数学第2章有理数单元测试卷一.选择题(共10小题).1.检测4个排球,其中超过标准的克数记为正数,低于标准的克数记为负数,从轻重的角度来看,最接近标准的球是()A.B.C.D.2.在下列实数:、、、、﹣1.010010001…中,无理数有()A.2个B.3个C.4个D.5个3.﹣的相反数是()A.B.﹣C.D.﹣4.下列说法中,正确的是()A.因为相反数是成对出现的,所以0没有相反数B.数轴上原点两旁的两点表示的数是互为相反数C.符号不同的两个数是互为相反数D.正数的相反数是负数,负数的相反数是正数5.a为有理数,下列说法正确的是()A.﹣a为负数B.a一定有倒数C.|a+2|为正数D.|﹣a|+2为正数6.下列数:﹣0.5,,0.1,﹣3,0,﹣(﹣0.7),其中负分数有()A.2个B.3个C.4个D.5个7.两个有理数a,b在数轴上的位置如图,下列四个式子中运算结果为正数的式子是()A.a+b B.a﹣b C.ab D.﹣b﹣a8.一种零件的直径尺寸在图纸上是30±0.03(单位:mm),它表示这种零件的标准尺寸是30mm,加工要求尺寸最大不超过()A.0.03B.0.02C.30.03D.29.979.下面的说法错误的是()A.0是最小的整数B.1是最小的正整数C.0是最小的自然数D.自然数就是非负整数10.在数轴上,点A对应的数是﹣6,点B对应的数是﹣2,点O对应的数是0.动点P、Q 分别从A、B同时出发,以每秒3个单位,每秒1个单位的速度向右运动.在运动过程中,线段PQ的长度始终是另一线段长的整数倍,这条线段是()A.PB B.OP C.OQ D.QB二.填空题11.某商店出售的某种品牌的面粉袋上,标有质量为(50±0.2)千克的字样,从中任意拿出两袋,他们的质量最多相差千克.12.对某种盒装牛奶进行质量检测,一盒装牛奶超出标准质量2克,记作+2克,那么﹣3克表示.13.有理数中,是整数而不是正数的数是,是负数而不是分数的是.14.在数轴上点P到原点的距离为5,点P表示的数是.15.数轴上距离原点2.4个单位长度的点有个,它们分别是.16.a﹣b的相反数是;|3.14﹣π|=.17.化简:=,﹣{﹣[+(﹣2.6)]}=.18.一次数学测试,如果96分为优秀,以96分为基准简记,例如106分记为+10分,那么85分应记为分.19.在有理数3.14,3,﹣,0,+0.003,﹣3,﹣104,6005中,负分数的个数为x,正整数的个数为y,则x+y的值等于.20.阅读下列材料:设=0.333…①,则10x=3.333…②,则由②﹣①得:9x=3,即.所以=0.333…=.根据上述提供的方法把下列两个数化成分数.=,=.三.解答题21.2018年国庆节放假八天,高速公路免费通行,各地风景区游人如织其中,其中闻名于世的“三孔”,在10月1日的游客人数就已经达到了10万人,接下来的七天中,每天的游客人数变化(单位:万人)如下表(正数表示比前一天多的人数,负数表示比前一天少的人数):日期10月2日10月3日10月4日10月5日10月6日10月7日10月8日人数变化+0.6+0.2+0.1﹣0.2﹣0.8﹣1.6﹣0.1(1)10月3日的人数为万人;(2)这八天,游客人数最多的是多少万人?最少呢?(3)这8天参观的总人数约为多少万人?22.把下列各数填入相应的大括号里.﹣0.78,3,+,﹣8.47,10,﹣,0,﹣4.正数:{…};分数:{…};非负整数:{…};负有理数:{…}.23.把下列各数分别填在相应的集合中:﹣,,﹣,0,﹣,、,0.,3.1424.请把下列各数填在相应的集合内:,﹣5,0.34,,20,﹣3.14,﹣1,正数集合{ }负整数集合{ }整数集合{ }分数集合{ }非正数集合{ }非负整数集合{ }.25.有20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:与标准质量的差值﹣3﹣2﹣1.501 2.5(单位:千克)筐数142328(1)20筐白菜中,最重的一筐比最轻的一筐重千克.(2)与标准重量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2元,则出售这20筐白菜可卖多少元?26.出租车司机小李某天上午营运时是在东西走向的大街上进行的,如果规定向东为正,向西为负,以他接到的第一位乘客开始计算,他这天上午连续所接六位乘客的行车里程(单位:km)如下:﹣2,+5,﹣1,+1,﹣6,﹣2,问:(1)将最后一位乘客送到目的地时,小李在第一位乘客上车点哪个方位?多远?(2)若汽车耗油量为0.15L/km(升/千米),这天上午小李接送乘客,出租车共耗油多少升?(3)若出租车起步价为8元,起步里程为3km(包括3km),超过部分每千米2元,问小李这天上午共得车费多少元?27.云云的爸爸驾驶一辆汽车从A地出发,且以A为原点,向东为正方向.他先向东行驶15千米,再向西行驶25千米,然后又向东行驶20千米,再向西行驶40千米,问汽车最后停在何处?已知这种汽车行驶100千米消耗的油量为8.9升,问这辆汽车这次消耗了多少升汽油?参考答案与试题解析一.选择题1.解:通过求四个排球的绝对值得,D球的绝对值最小.所以D球是接近标准的球.故选:D.2.解:无理数有:,,﹣1.020010001…,共有3个.故选:B.3.解:根据相反数的含义,可得﹣的相反数等于:﹣(﹣)=.故选:A.4.解:A、0的相反数为0,所以A选项错误;B、数轴上原点两旁且到原点的距离的点所表示的数是互为相反数,所以B选项错误;C、符号不同且绝对值相等的两个数是互为相反数,所以C选项错误;D、正数的相反数是负数,负数的相反数是正数,所以D选项正确.故选:D.5.解:当a=0时,﹣a也等于0,不是负数,因此选项A不正确;当a=0时,0没有倒数,因此选项B不正确;当a=﹣2时,|a+2|=0,因此选项C不正确;|a|≥0,|a|+2≥2,因此选项D正确;故选:D.6.解:﹣0.5,﹣是负分数,故选:A.7.解:由有理数a,b在数轴上的位置可得,a<﹣1,0<b<1,∴a+b<0;a﹣b<0;ab<0;﹣a﹣b>0;故选:D.8.解:根据正数和负数的意义可知,图纸上是30±0.03(单位:mm),它表示这种零件的标准尺寸是30mm,误差不超过0.03mm;加工要求尺寸最大不超过30.03mm.故选:C.9.解:A、没有最小的整数,故错误;B、1是最小的正整数,正确;C、0是最小的自然数,正确;D、自然数是0和正整数的统称,即自然数就是非负整数,正确.故选:A.10.解:设运动的时间为t秒,则运动后点P所表示的数为﹣6+3t,点Q表示的数为﹣2+t,PQ=|﹣6+3t﹣(﹣2+t)|=2|t﹣2|;OQ=|﹣2+t﹣0|=|t﹣2|,故选:C.二.填空题11.解:根据题意得:标有质量为(50±0.2)的字样,∴最大为50+0.2=50.2,最小为50﹣0.2=49.8,故他们的质量最多相差0.4千克.故答案为:0.4.12.解:“正”和“负”相对,若一盒装牛奶超出标准质量2克,记作+2克,那么﹣3克表示低于标准质量3克.13.解:零既不是正数也不是负数.故在理数中,是整数而不是正数的数是0和负整数;是负数而不是分数的是负整数.故答案为:0和负整数;负整数.14.解:∵在数轴上点P到原点的距离为5,即|x|=5,∴x=±5.故答案为:±5.15.解:设数轴上距离原点2.4个单位长度的点为a,则|a|=2.4,解得a=±2.4.故答案为:2;+2.4,﹣2.4.16.解:a﹣b的相反数是b﹣a;|3.14﹣π|=π﹣3.14.故答案为:b﹣a;π﹣3.14.17.解:﹣|﹣(﹣)|=﹣;﹣{﹣[+(﹣2.6)]}=﹣2.6.故答案为:﹣;﹣2.6.18.解:85﹣96=﹣11,故答案为:﹣11.19.解:负分数为:,,共2个;正整数为:3,6005,共2个,则x+y=2+2=4.故答案为:4.20.解:设=x=0.777…①,则10x=7.777…②则由②﹣①得:9x=7,即x=;根据已知条件=0.333…=.可以得到=1+=1+=.故答案为:;.三.解答题21.解:(1)2日的人数为:10+0.6=10.6万人,3日的人数为:10.6+0.2=10.8万人.故答案为10.8;(2)4日的人数为:10.8+0.1=10.9万人,5日的人数为:10.9﹣0.2=10.7万人,6日的人数为:10.7﹣0.8=9.9万人,7日的人数为:9.9﹣1.6=8.3万人,8日的人数为:8.3﹣0.1=8.2万人,所以这八天,游客人数最多的是10月4日,达到10.9万人.游客人数最少的是10月8日,达到8.2万人.(3)10+10.6+10.8+10.9+10.7+9.9+8.3+8.2=79.422.解:在﹣0.78,3,+,﹣8.47,10,﹣,0,﹣4中,分类如下:正数:{3,+,10,…};分数:{﹣0.78,+,﹣8.47,﹣,…};非负整数:{3,10,0,…};负有理数:{﹣0.78,﹣8.47,﹣,﹣4,…}.故答案为:3,+,10;﹣0.78,+,﹣8.47,﹣;3,10,0;0.78,﹣8.47,﹣,﹣4.23.解:有理数集合:(﹣,﹣,0,,0.,3.14,…),无理数集合:(,﹣,,…).24.解:正数集合{,0.34,20…};负整数集合{﹣5,﹣1…};整数集合{﹣5,0,20,﹣1…};分数集合{,0.34,﹣2,﹣3.14…};非正数集合{﹣5,﹣2,0,﹣3.14,﹣1…};非负整数集合{0,20…}.25.解:(1)最重的一筐超过2.5千克,最轻的差3千克,求差即可2.5﹣(﹣3)=5.5(千克),故最重的一筐比最轻的一筐重5.5千克.故答案为:5.5;(2)1×(﹣3)+4×(﹣2)+2×(﹣1.5)+3×0+1×2+8×2.5=﹣3﹣8﹣3+2+20=8(千克).故20筐白菜总计超过8千克;(3)2×(25×20+8)=2×508=1016(元).故出售这20筐白菜可卖1016元.26.解:(1)﹣2+5﹣1+1﹣6﹣2=﹣5.故此时小李在第一位乘客上车点的西边5km的位置;(2)|﹣2|+|+5|+|﹣1|+|+1|+|﹣6|+|﹣2|=2+5+1+1+6+2=17(千米),0.15×17=2.55(L).答:出租车共耗油2.55L;(3)根据题意可得:6×8+(2+3)×2=48+10=58(元).答:小李这天上午共得车费58元.27.解:根据题意得:15﹣25+20﹣40=35﹣65=﹣30,即汽车最后同在A西边30米处;根据题意得:(15+25+20+40)÷100×8.9=8.9(升),即这辆汽车这次消耗了8.9升汽油.。

苏教版七年级数学上册 第二单元《有理数》单元复习含测试卷

苏教版七年级数学上册 第二单元《有理数》单元复习含测试卷

七年级数学《有理数》单元复习题有理数有关概念复习✍ 一、知识小结:1. 学习了正数、负数的知识后,大的可以说成小,小的可以说成大。

支出可以说成 。

可以说成增加等。

如“弟弟比哥哥小3岁。

”可以说成是“弟弟比哥哥大 岁”。

又如,小明的爸爸做生意亏损5000元,可以说成是“小明的爸爸做生意盈利 元”。

2. 大于零的数叫 , 在正数前加一个“- ”号的数叫做 , 既不是正数,也不是负数.3. 和 统称为有理数. 有理数的分类为:特别注意:下面分类是否有错误?并请你指出错误的原因。

(1)0⎧⎪⎨⎪⎩正数有理数负数(2)0⎧⎪⎨⎪⎩整数有理数分数(3)⎧⎪⎨⎪⎩整数有理数小数分数 (4)⎧⎪⎨⎪⎩正有理数有理数负有理数4. 规定了 、 和 的直线叫数轴。

所有的有理数都可以用数轴上的 表示,但并不是所有的点都表示有理数.数轴上的原点表示数________,原点左边的数表示 ,原点及原点右边的数表示 .在原点右边,越靠近原点的点表示的数越 (填“大”或“小”),在原点左边,越靠近原点的点表示的数越 (填“大”或“小”)。

5. 有理数的大小比较:⑴在数轴上表示的两个数,右边的数总比左边的数 .⑵正数都 0,负数都 0,正数 一切负数; ⑶两个负数比较大小, .6. 数a 的相反数是 . 的相反数大于它本身, 的相反数小于它本身, 的相反数等于它本身. 的倒数等于它本身.7. 一个数a 的绝对值是指数轴上表示数a 的点与 距离,记作 .①一个正数的绝对值是 ; 即:如果a>0,则|a| = ; ②一个负数的绝对值是 ;如果a<0,则|a| = ; ③0的绝对值是 . 如果a = 0,则|a| = .反之:若一个数的绝对值是它本身,则这个数是 ;若一个数的绝对值是它相反数,则这个数是 ;即若||a a =,则a 0;若||a a =-,则a 0. 二、练习:8. 绝对值最小的有理数是 ,最大的负整数是 ,最小的正整数 是 ;9. 在数轴上距离原点4个单位的数是 ,距离表示-1的点有3个单位的数是 ;10. 数轴上的点A 所对应的数是4,点B 所对应的数是-2,则A 、B 两点之间的距 离是 .11. 写出所有比-5大的非正整数为 , 比5小的非负整数 ,到原点的距离不大于3的所有整数有 .12. 绝对值等于3的数是 ;绝对值小于3的整数是 ;绝对值小于2011的所有整数的和等于 ;绝对值不大于100的所有整数的和等于 。

第二章 有理数 单元提高训练苏科版七年级数学上册

第二章  有理数  单元提高训练苏科版七年级数学上册

第二章 有理数 单元提高训练班级______ 姓名_______ 学号_____一、选择题1.()3=( )A .B .C .D .2.6月6日是全国“放鱼日”为促进渔业绿色发展,今年“放鱼日”当天,全国同步举办增殖放流200余场,放流各类水生生物苗种近30亿尾.数30亿用科学记数法表示为( )A .0.3×109B .3×108C .3×109D .30×1083.有理数a 、b 在数轴上对应的位置如图所示,则a +b 的值( )A .大于0B .小于0C .小于aD .大于b4.下列说法不正确的是( )A .正整数和负整数统称为整数B .正有理数和负有理数和零统称有理数C .整数和分数统称有理数D .正分数和负分数统称为分数5.用简便方法计算﹣(9+)×17时,最合适的变形是( )A .﹣(10﹣)×17B .﹣(9﹣)×17C .﹣(10+)×17D .﹣9×17+×17 6.如果有4个不同的正整数a 、b 、c 、d 满足(2021﹣a )(2021﹣b )(2021﹣c )(2021﹣d )=9,那么a +b +c +d 的值为( )A .0B .9C .8048D .80847.使等式x x +=+66成立的有理数x 是 ( )A .任意一个整数B .任意一个非负数C .任意一个非正数D .任意一个有理数 8.如图所示,在这个数据运算程序中,若开始输入的x 的值为4,输出的结果是2,返回进行第二次运算则输出的是1,…,则第2020次输出的结果是( )A .﹣1B .-2C .-4D .-6二、填空题9.计算:(1)250+(-520)=_______;(2)(-13)×7=_______.10.﹣2.5的绝对值是 .11.比较大小:0 -2(填“>”“<”或“=”).12.近似数1.5×103精确到 位.13.你玩过24点游戏吧,请你运用加、减、乘、除运算和括号,写出数5、5、5、1得到24的算式__________(每个数只能用一次).14.如果|x ﹣1|=2,那么x 的值是 .15.定义运算a *b =,a ﹣1≠0,若(a ﹣1)*(a ﹣4)=1,则a = . 三、解答题16.计算:(1)721+(-143)-9-(-41); (2)230.25()(1)35÷-⨯-;(3)311()(1)(2)424-⨯-÷-; (4)22213151()4(4)1417⎡⎤---⨯--⎣⎦.17.某灯具厂为抓住商业契机,计划每天生产某种景观灯300盏以便投入市场进行销售.但由于各种原因,实际每天生产景观灯数与计划每天生产景观灯数相比有出入,如表是该灯具厂上周的生产情况(增产记为正,减产记为负):星期一 二 三 四 五 六 日 增减(单位:盏)+4 ﹣6 ﹣3 +10 ﹣5 +11 ﹣2(1)求该灯具厂上周实际生产景观灯多少盏?(2)该灯具厂实行每天计件工资制,每生产一盏景观灯可得50元.若超额完成任务,则超过部分每盏另外奖励15元,少生产一盏扣20,那么该灯具厂工人上周的工资总额是多少元? 18.对于正整数a ,b ,规定一种新运算*,a*b 等于由a 开始的连续b 个正整数之和.如2*3=2+3+4=9.(1)计算7*8 的值.(2)计算 1*(2*6)的值.19. 现有一组有规律排列的数: 1,1,2,2,3,3,1,1,2,2,3,3------,…,其中1,1,2,2,3,3---这六个数按此规律重复出现.问:(1)第50个数是什么?(2)把从第1个数开始的前2 021个数相加,结果是多少?(3)从第1个数起,把连续若干个数的平方相加,若和为510,则共有多少个数的平方相加?20.观察下列两个等式:2﹣=2×+1,5﹣=5×+1,给出定义如下:我们称使等a ﹣b =ab +1成立的一对有理数a ,b 为“共生有理数对”,记为(a ,b ),如数对(2,),(5,),都是“共生有理数对”.(1)判断数对(﹣2,1),(3,)是否为“共生有理数对”,并说明理由;(2)若(m ,n )是“共生有理数对”,且m ﹣n =4,求(﹣4)mn 的值.(3)若(m ,n )是“共生有理数对”,则(﹣2n ,﹣2m )是“共生有理数对”吗?请说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数单元复习提高习题一、填空题1.若a、b互为相反数,c、d互为倒数,m的绝对值为2,则|a+b|4m+2m2−3cd的值是________.2.−13的倒数是________;123的相反数是________.3.若m,n分别表示一个有理数,且m,n互为相反数,则|m+(-2)+n|=________.二、计算题4. (1)12+(﹣23)+ 45+(﹣12)+(﹣13);(2)(﹣0.5)+3 14+2.75+(﹣5 12)(3)7+(﹣6.9)+(﹣3.1)+(﹣8.7)(4)|−45|+|+45|+|−25|.5.若a是最大的负整数,求a2000+a2001+a2002+a2003的值?6.已知:a与b互为相反数,c与d互为倒数,x的平方是16,y是最大的负整数.求:2x−cd+6(a+b)−y2015的值.7.已知|x+2|+|y−3|=0,−212x−53y+4xy的值.8.已知a、b为有理数,且|a+2|+(b-3)2=0,求a b+a(3-b)的值.9.若定义一种新的运算“*”,规定有理数a*b=4ab,如2*3=4×2×3=24.(1)求3*(﹣4)的值;(2)求(﹣2)*(6*3)的值.三、综合题10.有理数a、b、c在数轴上的位置如图:(1)判断正负,用“<”或“>”填空:c-b________0,a+b________0,a-c________0.(2)化简:|c−b|+|a+b|−|a−c|.11.已知有理数a,b在数轴上的位置如图所示.(1)在数轴上标出﹣a,﹣b的位置,并比较a,b,﹣a,﹣b的大小:(2)化简|a+b|+|a﹣b|.12.已知点A在数轴上对应的数为a,点B在数轴上对应的数为b,且|a+2|+(b﹣5)2=0,规定A、B两点之间的距离记作AB=|a﹣b|.(1)求A、B两点之间的距离AB;(2)设点P在A、B之间,且在数轴上对应的数为x,通过计算说明是否存在x的值使PA+PB=10;(3)设点P不在A、B之间,且在数轴上对应的数为x,此时是否又存在x的值使PA+PB=10呢?13.有理数4′×2、−ab+1、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:|−3|-c________0,|+10|+|−8|________0,c−a________0.(2)化简:| b-c|+| |+12|+b|-|c-|−10|14.观察下列等式:1 1×2=1﹣12,12×3= 12﹣13,13×4= 13﹣14,把以上三个等式两边分别相加得:11×2+ 12×3+ 13×4=1﹣12+ 12﹣13+ 13﹣14=1﹣14=34.(1)猜想并写出:1n(n+1)=________.(2)直接写出下列式子的计算结果:1 1×2+ 12×3+ 13×4+…+ 12016×2017=________.(3)探究并计算:1 2×4+ 14×6+ 16×8+…+ 12014×2016.15.若a、b互为相反数,c、d互为倒数,m的绝对值为2.(1)分别直接写出a+b,cd,m的值;(2)求m+cd+a+bm的值.答案与解析一、填空题1.若a、b互为相反数,c、d互为倒数,m的绝对值为2,则|a+b|4m+2m2−3cd的值是________.【答案】5【解析】【解答】解:∵a、b互为相反数,c、d互为倒数,∴a+b=0,cd=1,又m的绝对值为2,所以m=±2,m2=4,则原式=0+2×4﹣3×1=5.故答案为52.−13的倒数是________;123的相反数是________.【答案】-3;−123【解析】【解答】解:根据倒数和相反数的定义可知−13的倒数为−3;123的相反数是−123.3.若m,n分别表示一个有理数,且m,n互为相反数,则|m+(-2)+n|=________. 【答案】2【解析】【解答】∵m,n互为相反数,∴m+n=0,∴|m+(-2)+n|= |(m+n)+(-2)|=|0+(-2)|=2.二、计算题4.(1)12+(﹣23)+ 45+(﹣12)+(﹣13);(2)(﹣0.5)+3 14+2.75+(﹣5 12)(3)7+(﹣6.9)+(﹣3.1)+(﹣8.7)(4)|−45|+|+45|+|−25|.【答案】(1)解:12+(﹣23)+ 45+(﹣12)+(﹣13)= 12+(﹣12)+(﹣23)+(﹣13)+ 45=0﹣1+ 45=﹣15(2)解:原式=[(﹣12)+(﹣5 12)]+(314+2 34)=﹣6+6=0(3)解:原式=[(﹣6.9)+(﹣3.1)]+[(﹣8.7)+7]=﹣10+(﹣1.7)=﹣11.7(4)解:原式= 45+45+25= 85+25=25.若a是最大的负整数,求a2000+a2001+a2002+a2003的值?【答案】解:当a是最大的负整数—1时,原式=(−1)2000+(−1)2001+(−1)2002+ (−1)2003=−1+1+(−1)+1=0【解析】【分析】由题意最大的负整数是-1,将a=-1代入代数式,结合有理数的乘方的性质,负数的奇次方为负,负数的偶次方为正即可求解。

6.已知:a与b互为相反数,c与d互为倒数,x的平方是16,y是最大的负整数.求:的值.【答案】解:根据题意:a+b=0,cd=1,x=±4,y=-1,当x=4时,代数式=2×4−1+6×0- =8-1+1=8;当x=-4时,代数式=2×(-4)−1+6×0- =-8-1+1=-8,所以代数式值为8或-87.已知的值.【答案】解:∵∴x+2=0,且y-3=0,∴x=-2,y=3,∴ =- ×(-2)- ×3+4×(-2)×3=5-5-24=-24.8.已知a、b为有理数,且|a+2|+(b-3)2=0,求a b+a(3-b)的值.【答案】解:∵|a+2|+(b-3)2=0,∴a+2=0,b-3=0,∴a=-2,b=3,∴a b+a(3-b)=(-2)3+(-2)×(3-3)=-89.若定义一种新的运算“*”,规定有理数a*b=4ab,如2*3=4×2×3=24.(1)求3*(﹣4)的值;(2)求(﹣2)*(6*3)的值.【答案】(1)解:3*(﹣4),=4×3×(﹣4),=﹣48(2)解:(﹣2)*(6*3),=(﹣2)*(4×6×3),=(﹣2)*(72),=4×(﹣2)×(72),=﹣576.三、综合题10.有理数、、在数轴上的位置如图:(1)判断正负,用“<”或“>”填空:c-b________0,a+b________0,a-c________0.(2)化简:.【答案】(1)>;<;<(2)解:+ -=(c-b)+(-a-b)+(a-c)=c-b-a-b-c+a=-2b 11.已知有理数a,b在数轴上的位置如图所示.(1)在数轴上标出﹣a,﹣b的位置,并比较a,b,﹣a,﹣b的大小:(2)化简|a+b|+|a﹣b|.【答案】(1)解:如图所示:,b<﹣a<a<﹣b (2)解:∵a>0>b,而且|a|<|b|,∴a+b<0,a﹣b>0,∴|a+b|+|a﹣b|=﹣(a+b)+(a﹣b)=﹣a﹣b+a﹣b=﹣2b12.已知点A在数轴上对应的数为a,点B在数轴上对应的数为b,且|a+2|+(b﹣5)2=0,规定A、B两点之间的距离记作AB=|a﹣b|.(1)求A、B两点之间的距离AB;(2)设点P在A、B之间,且在数轴上对应的数为x,通过计算说明是否存在x的值使PA+PB=10;(3)设点P不在A、B之间,且在数轴上对应的数为x,此时是否又存在x的值使PA+PB=10呢?【答案】(1)解:∵|a+2|+(b﹣5)2=0,∴a+2=0,b﹣5=0,解得:a=﹣2,b=5,则AB=|a﹣b|=|﹣2﹣5|=7(2)解:若点P在A、B之间时,PA=|x﹣(﹣2)|=x+2,|PB|=|x﹣5|=5﹣x,∴PA+PB=x+2+5﹣x=7<10,∴点P在A、B之间不合题意,则不存在x的值使PA+PB=10(3)解:若点P在AB的延长线上时,PA=|x﹣(﹣2)|=x+2,PB=|x﹣5|=x﹣5,由PA+PB=10,得到x+2+x﹣5=10,解得:x=6.5;若点P在AB的反向延长线上时,PA=|x﹣(﹣2)|=﹣2﹣x,PB=|x﹣5|=5﹣x,由PA+PB=10,得到﹣2﹣x+5﹣x=10,解得:x=﹣3.5,综上,存在使PA+PB=10的x值,分别为6.5或﹣3.513.有理数、、在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:-c________0,+________0,________0.(2)化简:| b-c|+| +b|-|c-【答案】(1)<;<;>(2)解:—2b14.观察下列等式:=1﹣,= ﹣,= ﹣,把以上三个等式两边分别相加得:+ + =1﹣+ ﹣+ ﹣=1﹣= .(1)猜想并写出:=________.(2)直接写出下列式子的计算结果:+ + +…+ =________.(3)探究并计算:+ + +…+ .【答案】(1):(2)(3)解:+ + +…+====15.若、互为相反数,、互为倒数,的绝对值为2.(1)分别直接写出,,的值;(2)求的值.【答案】(1)解:∵、互为相反数,、互为倒数,的绝对值为2,∴(2)解:当时,当时,。

相关文档
最新文档