流体力学_龙天渝_气体射流共31页文档
流体力学_龙天渝_气体射流
四、射流弯曲温差射流或浓差射流由于密度与周围密度不同, 所受的重力与浮力不相平衡,使整个射流将发生向下或向上弯 曲。通过推导可得出无因次轨迹方程为
式中,
为阿基米德准数,于是上式变为
对于平面射流,有 式中,
[例6-3]工作地点质量平均风速要求3m/s,工作面直径D=2.5m 送风温度为15℃,车间空气温度30 ℃,要求工作地点的质量 平均温度降到25 ℃ ,采用带导叶的轴流风机,紊流系数 = 0.12。求(1)风口的直径及速度;(2)风口到工作面的距离。 [解]温差 =15-30=-15 ℃
求出
代入下式
所以
工作地点质量平均风速要求3m/s 因为 所以 风口到工作面距离s可用下式求出
第五节 旋转射流
一、旋转射流概述 气流通过具有旋流作用的喷嘴外射运动。气流本身一面旋转, 一面向周围介质中扩散前进,这就形成了旋转射流。 二、旋转射流的流速分布 如图6-10 三、旋转射流的压强分布 图6-13反映了无因次压强的变化
四、旋转强度 旋转强度 的定义
式中 L0——流体进入旋流器时,相对于旋转轴的动量矩; K0——旋流器出口断面上的平均动量; d——旋流器出口断面直径。 图6-14中比较了不同 的射流的无因次速度沿射流轴向的变 化情况;图6-15是在不同的 值下,无因次流量变化曲线。
四、无因次流量 及 无因次流量计算的计算公式
五、起始段核心长度sn及核心收缩角
六、起始段流量QV
七、起始段断面平均流速v1
八、起始段质量平均流速v2
第三节 平面射流
气体从狭长缝隙中外射运动时,射流在条缝长度方向几乎无扩 散运动,只能在垂直条缝长度的各个平面上扩散运动。这种流 动称为平面射流。从表6-3中可看出,各无因次参数
流体力学_龙天渝_一元气体动力学原理
第九章 一元气体动力学基础一、学习指导 1. 基本参数 (1) 状态方程气体的压强p ,密度ρ以及温度(绝对)T 满足状态方程p RT ρ=式中,R 为气体常数,对于空气,287/()R J kg K =⋅。
(2) 绝热指数k/p v k c c =式中,c p 和c v 分别是等压比热和等容比热,他们与气体参数地关系为1p k c R k =-,11p c R k =-(3) 焓和熵焓h 的定义是ph e ρ=+式中,e 是气体内能,v e c T =。
h 可一表示为 p h c T =熵的表达式为ln()kps cv c ρ=+常数(4) 音速cc =(5) 马赫数马赫数M 的定义是uM c =式中,u 是气流速度;c 是音速。
2. 一元恒定流动的运动方程 (1) 气体一元定容流动ρ=常数22pv g γ+=常数 (2) 气体一元等温流动T =常数,pRT cρ==2ln 2v c p +=常量2ln 2v RT p +=常量(3) 气体一元绝热流动k p cρ= 212k p v k ρ⋅+-=常量3. 滞止参数气流在某断面的流速,设想以无摩擦绝热过程降低至零时,断面各参数所达到的值,称为气流在该断面的滞止参数。
用p 0、ρ0、T 0、i 0、c 0表示滞止压强、滞止密度、滞止温度、滞止焓值、滞止音速。
0/T T ,0/p p ,0/ρρ,0/c c 与马赫数M 的函数关系:20112T k M T -=+11200112k kk k p T k M p T ---⎛⎫⎛⎫==+ ⎪⎪⎝⎭⎝⎭1111200112k k T k M T ρρ---⎛⎫⎛⎫==+ ⎪⎪⎝⎭⎝⎭1122200112c T k M c T -⎛⎫⎛⎫==+ ⎪ ⎪⎝⎭⎝⎭4. 气体一元恒定流动的连续性方程2(1)dA dv M A v =-(1) M<1为亚音速流动,v<c ,因此dv 与dA 正负号相反,速度随断面面积增大而减慢;随断面面积减小而加快。
《流体力学》第六章气体射流
b b0
2.44
as b0
0.41
.
段名 参数名称 轴心速度
主
流量
体 断面平均 流速
段 质量平均 流速
符号
vm
Q
圆断面射流
vm v0
as
0.48 0.147
d0
平面射流
vm 1.2
v0
as 0.41
b0
Q Q0
4.4
as d0
0.147
Q 1.2 Q0
as 0.41 b0
v1
v1 v0
0.076 0.08 0.12 0.20
2
2 5 o2 0 ' 2 7 o1 0 '
29o00'
4 4 o3 0 ' 6 8 o3 0 '
.
紊流系数
喷嘴种类
带金属网格的轴流风机 收缩极好的平面喷口 平面壁上锐缘狭缝 具有导叶且加工磨圆边 口的风道上纵向缝
a
0.24 0.108 0.118
0.155
1
2
v1 v0
1 1
0.76
as r0
1.32
as r0
2
6.8
as r0
11.56
as r0
x
成反比的规律.
.
断面流量 断面平均流速 质量平均流速 起始段核心长度及收缩角 起始段流量 起始段断面平均流速 起始段质量平均流速
.
射流参数的计算
段 名
参数名称
符号
圆断面射流
平面射流
主 扩散角
α tg3.4a tg2.44a
体
段 射流直径 或半高度
D b
D d0
流体力学 第1章
第1章 绪论
血液的流动、植物体内输送营养 液、鸟类的翱翔,鱼在水中的游动 等现象归属于生物流变学。
第1章 绪论
高尔夫球运动起源于15世纪的苏格兰, 当时人们认为表面光滑的球飞行阻力小, 因此用皮革制球。后来发现表面有很多划 痕的旧球反而飞得更远,这个谜直到20世 纪建立流体力学边界层理论后才解开。现 在的高尔夫球表面有很多窝坑,在同样大 小和重量下,飞行距离为光滑球的5倍。
第1章 绪论
地下水的利用,石油、天然气的开采,这些都是渗流力 学研究的主要对象。
沿海地区有较严重的海水入侵,使地下水质恶化,氯离 子含量增加,给这些地区工农业生产和人民生活造成危害。
第1章 绪论
气体参与的燃烧与爆炸所产生的瞬间能量变化和 传递过程,形成了爆炸力学。
第1章 绪论
煤粉输送、沙漠迁移、泥沙流动等,均为流体中带有固体 颗粒或液体中带有气泡等问题,都属于多相流体力学研究的范 畴。
第1章 绪论
1.5 流体力学的应用
(1)舰船、航空、航天(飞机的(风洞)实验、火箭上天); (2)城市给排水; (3)水利、水电(三峡水利工程); (4)矿山应用。
第1章 绪论
飞机的出现以及航天飞机的飞行,使人类的活 动范围扩展到地球之外的其他星球。航空航天事 业同流体力学的分支学科——空气动力学和气体 动力学的发展密不可分的。
粗糙表面可以减少 空气的阻力及提供 升力,让高尔夫球 飞得更远 。
第1章 绪论
汽车发明于19世纪末,当时人们认为汽车的阻力主要来自前部对空气的撞 击,因此早期的汽车后部是陡峭的,称为箱型车,阻力系数约为0.8。实际上 汽车阻力主要来自后部形成的尾流,称为形状阻力。20世纪30年代起,人们 开始运用流体力学原理改进汽车尾部形状,出现甲壳虫型,阻力系数降至0.6。 20世纪50-60年代改进为船型,阻力系数为0.45。80年代又改进为鱼型, 阻力系数为0.3,以后进一步改进为楔型,阻力系数为0.2。90年代后,科研 人员研制开发的未来型汽车,阻力系数仅为0.137。
流体力学课后习题答案龙天渝
方向的投影面积;
的形心的淹没深度;是压力体的体积。
4、浮体的稳定性
设表示定倾半径,表示偏心距,它等于浮体平衡时,重心与浮心的距离,浮体的平衡有三种情况:
稳定平衡
=随遇平衡
不稳定平衡定倾半径的定义是
(2-9)
式中,是浮体被淹没的体积;是浮面对其转轴的面积惯性矩。
二、难点分析
1.通器内不同液体的压强传递
设抛物线方程为
,当
时,
,即
,则:
式中,
正是同高等径圆柱体的体积。
三、习题详解
【2-1】如题2-1所示,已知=20求水深
。
,=240
,
,
【解】设水和水银的密度分别为和
两式相减,化简后算得:
,当地大气压为,则
0,则液深
处的压强为
(2-5)
3、物体壁面受到的静止液体的总压力
计算静止液体对物体壁面的总压力时,只需考虑相对压强的作用。
(1)平面壁总压力
压力中心
= =
ca
(2-6)
+ (2-7)
式中,坐标从液面起算;下标d表示合力作用点;c表示形心。
(2)曲面壁总压力
分力
式中,
别是
,
和
=,
(2-8),
和
分
分别是曲面在
2.什么是流线?流线有哪些重要性质,流线和迹线有无重合的情况?
3.总流连续性方程的物理意义是什么?
4.何谓均匀流及非均匀流?以上分类与过流断面上流速分布是否均匀有无关系?
5.何谓渐变流,渐变哪些有哪些重要性质?引入渐变流概念,对研究流体运动有什么实际意义?
6.动能校正系数及动量校正系数的物理意义是什么?
流体力学_龙天渝_射流
第十一章气体射流一、学习指导1 射流结构(核心区与边界层;主体段与起始段)射流为紊流型,紊流的横向脉动造成射流与周围介质之间不断发生质量流量、射流的横断面沿x方向不断增加,形成了向周围扩散的锥体状流动场。
2 射流过渡段断面的射流速度仍然是均匀的。
沿x方向流动,射流不断带入周围介质,不仅是边界扩张,而且使射流主体的速度逐渐降低。
速度为u0的部分(如图A0D锥体)称为射流核心,其余部分速度小于u0 。
称为边界层。
显然,射流边界层从出口开始沿射程不断的向外扩散,带动周围介质进入边界层,同时向射流中心扩展,至某一距离处,边界层扩展到射流轴心线,核心区消失,只有轴心点上速度为。
射流这一断面称为过渡断面或转折断面。
3 射流的起始段与主体段以过渡断面为界,出口断面至过渡断面称为射流起始段。
过渡断面以后称为主体段。
二、难点分析1 射流的断面平均流速与质量平均流速 断面平均流速1Qv A =,表示射流断面的算术平均值。
质量平均流速定义为:用v 2乘以质量即得真实动量,002Q v Qv ρρ= 2 温差射流与浓差射流三、习题详解【1】 某车间温度为380C ,装有圆喷口空气淋浴设备,送风温度为250C ,风口距地面高度为4米,希望在地面上1.5米处造成一个直径为1.5米的工作区,求工作区中心温度为多少?(080.a =) 【解】 m .a r .S n 59067100==⎪⎪⎭⎫ ⎝⎛+=14708600.d as .d Dm .d 1400=2240147035000..d .T T m =+=∆∆ 922.T m -=∆35m t C =【2】 室外空气的射流由位于热车间外墙上离地板7.0m 处的小孔口送入,孔口的尺寸,高0.35m,长12m ,室外空气的温度为-100C 室内空气温度为+200C 射流初速度为2m/s ,求地板上的温度。
假定a=0.12,射流轴心着地。
【解】()252020502260.x a a .T T Ar y e +=2020-==b yy080.Ar = 0610.T T e=m .x s 058==424041003210..b as.T T m=+=∆∆C .t o m 287=【3】 已知空气淋浴喷口直径00.3D m =,要求工作区的射流半径为1.2m ,质量平均流速为3m/s,,设紊流系数0.08α=,求: (1)喷口和工作区的距离s ;(2)喷口流量0Q 【解】(1) 由射流主体段公式000.086.80.147 6.870.1470.30.30.5440.3as s D D D s ⎛⎫⎛⎫=+=+⨯ ⎪ ⎪⎝⎭⎝⎭=+ 0.3 2.40.3 3.860.5440.544D s m--===起始段长度00.30.3360.336 1.260.08n D s m s al ===<工作区在射流主体段。
流体力学_龙天渝_一元气体动力学基础共31页
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
流体力学_龙天渝_一元气体动力学基 础
36、如果我们国家的法律中只有某种 神灵, 而不是 殚精竭 虑将神 灵揉进 宪法, 总体上 来说, 法律就 会更好 。—— 马克·吐 温 37、纲纪废弃之日,便是暴政兴起之 时。— —威·皮 物特
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们 迅速累 聚,进 而变成 法律。 ——朱 尼厄斯
Thank you
流体力学_龙天渝_流体动力学基础
因 H 1 H 2 所以管中水流应从A流向B 水头损失
h H1 H 2 2.57 1.74 0.83m源自的总能量。两断面的水头分别为
解题步骤
p1 a1v12 7.2 62 H1 z1 0 2.57m g 2 g 1 9.8 2 9.8
2 p2 a1v2 6.1 1.52 H 2 z2 1 1.74m g 2 g 1 9.8 2 9.8
解题步骤
解: 首先利用连续性方程求断面1-1的平均流速。
v1 A1 v2 A2
A2 d2 2 0.30 2 v1 v2 ( ) v 2 ( ) v2 4v2 6m/s A1 d1 0.15
因水管直径变化缓慢,断面1-1及2-2水流可近似看
作渐变流,以过A点水平面为基准面分别计算两断面
渐变流与急变流元流的伯努利方程总流能量方程有一直径缓慢变化的锥形水管如图1所示断面11处直径中心点a的相对压强为72断面22处直径中心点b的相对压强为61断面平均流速两点高差为1米
第3章 流体动力学基础
3.1 流体运动的一些基本概念
流场-----流体运动的空间。 在流场中,流动参数(物理量)表示为空间 坐标x,y,z和时间t的函数。如
二维流动: 流动参数是两个坐标的函数;
三维流动: 流动参数是三个坐标的函数。 对于工程实际问题,在满足精度要求的情况下,将三维流 动简化为二维、甚至一维流动,可以使得求解过程尽可能 简化。
三维流动→二维流动
二维流动→一维流 动
流 线
流线的性质
均匀流与非均匀流、渐变流与急变流
均匀流:流速的大小和方向沿程不变。
非均匀流:渐变流与急变流 流体在直管道内的流动为缓变流,在管道截面积 变化剧烈、流动方向发生改变的地方,如突扩管、 突缩管、弯管、阀门等处的流动为急变流。
流体力学_龙天渝_绪论
第一章绪论一、学习导引1.主要概念质量力,表面力,粘性,粘滞力,压缩系数,热障系数。
注:(1)绝大多数流动问题中质量力仅是重力。
其单位质量力F在直角坐标系内习惯选取为:F =(0,0,-g)(2)粘性时流动介质自身的物理属性,而粘滞力是流体在产生剪切流动时该属性的表现。
2.主要公式牛顿剪切公式:或二、难点分析1.用欧拉观点描述流体流动,在对控制体内流体进行表面力受力分析时,应包括所有各个可能的表面的受力。
这些表面可能是自由面或与周围流体或面壁的接触面。
2.牛顿剪切公式反映的应力与变形率的关系仅仅在牛顿流体作所谓的纯剪切运动时才成立,对于一般的流动则是广义牛顿公式。
三、习题详解例1-1. 一底面积为40cm×45cm,高1cm的木块,质量为5kg,沿着涂有润滑油的斜面等速向下运动。
已知速度v=1/s,δ=1mm,求润滑油的动力粘滞系数。
解:设木块所受的摩擦力为T。
∵木块均匀下滑,∴T - Gsinα=0T=Gsinα=5×9.8×5/13=18.8N又有牛顿剪切公式得:μ=Tδ/(Av)=18.8×0.001/(0.40×0.45×1)=0.105Pa·S例1-2. 一圆锥体绕其铅直中心轴等速旋转,椎体与固定壁间的距离δ=1mm,全部为润滑油(μ=0.1Pa·S)充满。
当旋角速度ω=16s-1, 椎体底部半径R=0.3m,高H=0.5m时,求作用于圆锥的阻力矩。
解:设圆锥体表面微元圆台表面积为ds,所受切应力为dT,阻力矩为dM。
ds=2πr(H2+R2)1/2dh由牛顿剪切公式:dT=μ×ds×du/dy=μ×ds×ωr/δdM=dT×rr=Rh/H圆锥体所受阻力矩M:M==0.5(πμω/δ) (H2+R2)1/2 R3=0.5π×0.1×16/0.001×(0.52+0.32)1/2×0.33=39.6N·m。
流体力学气体射流
3
起始段
主体段 B
A
M
核心
o
D x0
边 界
E s0
s
x
C
层 F
图 11—1 射流结构
以圆断面射流为例应用动量守恒原理
出口截面上动量流量为 Q00 r020,任意横截面上的动
量流量则需积分。
R
2ydy
R 2 2 ydy
0
0
列动量守恒式:
r0202
R 2 2 ydy
0
(11—1— 4) 10
y
12
dy
R
M
R r
y
y
y
yx
y
x0
s
x
12
图 11—2 射流计算式的推证
11
§11-3 圆断面射流的运动分析
m3/s
17
§11-4 平面射流
气体从狭长缝隙中外射运动时,射流只能在垂直条缝长度 的平面上扩散运动。如果条缝相当长,这种流动可视为平面运 动,故称为平面射流。
平面射流喷口高度以2b0(b0半高度)表示,a值见表11-1
后三项;j值为2.44,于是tan a=2.44a。而几何、运动、动力
特征则完全与圆断面射流相似。所以各运动参数规律的推导基 本与圆断面类似,这里不再推导,列公式于表11-3中。
温差或浓差射流分析,主要是研究射流温差、浓差分布场 的规律。同时讨论由温差、浓差引起射流弯曲的轴心轨迹。
在射流的形成过程中,会产生横向动量交换,旋涡的出现, 使之质量交换,热量交换,浓度交换。在这些交换中,热量扩 散比动量扩散要快些,因此温度边界比速度边界层发展要快些 厚些,如图11-3a所示。实线为速度边界层,虚线为温度边界 层的内外界线。
流体力学课件6气体射流
状态方程
总结词
描述气体在不同状态下的物理属性。
详细描述
状态方程是描述气体在不同压力、温度和密 度下的物理属性的关系式。在气体射流中, 状态方程可以用于计算气体的密度、压力和 温度等物理量,进而用于求解其他方程。
04
气体射流的数值模拟方法
有限差分法
有限差分法是一种基于离散化的数值方法,通过将连续的 物理量离散化为有限个离散点上的数值,并建立差分方程 来求解物理量的变化规律。
特性
气体射流具有方向性、扩散性和扰动 性等特性,这些特性决定了气体射流 的运动规律和作用效果。
分类与形式
分类
根据不同的分类标准,气体射流可以分为多种类型,如按流 动形态可分为自由射流、受限射流和冲击射流等;按气体性 质可分为可压缩气体射流和不可压缩气体射流等。
形式
气体射流的形式多样,常见的有喷嘴射流、燃烧室射流、透 平射流等,这些形式的应用范围和作用效果各不相同。
随着气体射流远离喷口,压力逐渐减小,这是由于气体流动过程中能量损失导致 的。
温度分布与变化
温度分布
气体射流中的温度分布与压力分布类 似,中心区域温度较高,边缘区域温 度较低。
温度变化
射流过程中,由于气体与周围介质之 间的热量交换,温度会发生变化。通 常情况下,射流会逐渐冷却。
密度分布与变化
密度分布
射流的基本方程
01
02
03
连续性方程
描述了气体射流中质量守 恒的规律,即流入和流出 射流区域的质量流量相等 。
动量方程
描述了气体射流中动量守 恒的规律,即流入和流出 射流区域的动量流量相等 。
能量方程
描述了气体射流中能量守 恒的规律,即流入和流出 射流区域的能量流量相等 。
流体力学龙天渝课后答案
流体力学龙天渝课后答案龙天渝课后答案第一章:流体力学基础概念在学习流体力学之前,我们首先需要了解一些基础概念。
流体力学是研究流体静力学和流体动力学的学科,它涉及了许多重要的概念和原理。
1. 流体的定义和特性:流体是指能够流动的物质,包括液体和气体。
与固体不同,流体具有流动性和粘滞性。
2. 流体静力学:流体静力学研究的是处于静止状态下的流体,它涉及了压力、密度、浮力等概念。
根据帕斯卡定律,流体中的压强是均匀的。
浮力是物体在液体中受到的向上的力,它的大小等于所排开的液体的重量。
3. 流体动力学:流体动力学研究的是流体在运动中的力学性质。
它基于质量守恒定律、动量守恒定律和能量守恒定律来描述流体的运动行为。
流体的运动可以通过速度场来描述,速度场是指在每个点上流体速度的矢量。
第二章:流体流动的方程了解了流体力学的基础概念后,我们来学习一些描述流体流动的方程。
1. 质量守恒方程:质量守恒方程是流体动力学的基本方程之一,它表达了流体质量在单位时间内在空间中的改变量等于流入或流出的质量通量与积累产生的差值。
2. 动量守恒方程:动量守恒方程描述了流体运动时动量守恒的原理。
它表达了流体单位时间内动量的改变量等于施加在流体上的外力与流体内部压力和重力之差。
3. 能量守恒方程:能量守恒方程用于描述流体在流动过程中能量的守恒性质。
它包括液体内能、压力能和动能等各种能量形式的转换和积累。
第三章:流体的稳定性和边界层在流体力学中,稳定性和边界层是两个重要的概念。
1. 稳定性:稳定性研究的是流体在受到扰动后是否能够恢复到原来的状态。
稳定性分析可以通过线性稳定性理论或非线性动力学方法来进行。
2. 边界层:边界层是指流体在与固体表面接触时的一层较薄的流动区域。
边界层内的速度变化很大,而在边界层外的流体速度几乎保持不变。
边界层对于流体流动的阻力有重要影响。
第四章:流体力学的应用领域流体力学广泛应用于许多领域,包括工程、地球科学和生物医学等。
流体力学_龙天渝_流体动力学基础
第三章 总流(一元流动)流体动力学基础一、学习指导 1.主要概念:流线,过流断面,均匀流,渐变流,恒定流注:①流体是空间曲线。
对恒定流其空间位置不变,对非恒定流随时间而变化。
②渐变流是将流速的大小和方向变化不大的流段看成均匀流所作的工程近似,与均匀流无明确的界定,根据经验而定。
例:锥角较小的扩散段或收缩段,断面面积A(s)满足dA/ds=0的断面附近的流段是渐变流。
③过流断面,处处与流线垂直的断面。
2.基本方程:下述基本方程断面均取过流断面才成立。
①连续性方程条件:不可压缩流体恒定流 vA=const 即 v 1A 1=v 2A 2②总流能量方程条件:不可压缩流体恒定流,断面位于渐变流段,重力作用。
2l12222221111h 2g vg P Z 2g v g P Z -+++=++αραρ③动量方程条件:不可压缩流体恒定流,流出流进断面位于渐变流段,惯性坐标系。
ΣF=ρQ(β2v 2-β1v 1) ④动量矩定理条件:不可压缩流体恒定流,流出流进断面位于渐变流段,惯性坐标系。
ΣF ×r =ρQ(β2v 2×r 2-β1v 1×r 1)二、难点分析1.渐变流同一过流断面上:Z+P/(ρg)=const。
2.能量方程中Z+P/γ项可在断面上任一点取值,但必须在同一点取值,对管流通常取在轴线或管壁上,对明渠常取在自由面上。
不能将断面取在诸如管道进口等紧挨某些局部障碍的急变流段。
3.动量方程和动量矩方程是矢量方程,其各矢量的投影是代数值,正负与坐标系有关;方程是对控制体内的流体建立的,因此力ΣF是指流体的受力;在相对运动中,方程中的流速是惯性系中的流速。
解题前必须首先选择控制体和坐标系。
三、习题详解例3-1.断面为300mm×400mm的矩形风道,风量为2700m3/h,求平均流速。
解: Q=2700m3/h=0.75 m3/sA=300mm×400mm=0.12 m2v=Q /A=6.25 m/s答:平均流速为6.25 m/s。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
26、机遇对于有准备的头脑有特别的 亲和力 。 27、自信是人格的核心。
28、目标的坚定是性格中最必要的力 量泉源 之一, 也是成 功的利 器之一 。没有 它,天 才也会 在矛盾 无定的 迷径中 ,徒劳 无功。- -查士 德斐尔 爵士。 29、困难就是机遇。--温斯顿.丘吉 尔。 30、我奋斗,所以我快乐。--格林斯 潘。
谢谢!
36、自己的鞋子,自己知道紧在哪里。——西班牙
37、我们唯一不会改正的缺点是软弱。——拉罗什福科
xiexie! 38、我这个人走得很慢,但是我从不后退。——亚伯拉罕·林肯
39、勿问成功的秘诀为何,且尽全力做你应该做的事吧。——美华纳
40、学而不思则罔,思而不学则殆。——孔子