茅箭区第三中学校2018-2019学年高二上学期第二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
茅箭区第三中学校2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1. 函数f (x )=ax 2+bx 与f (x )=log x (ab ≠0,|a|≠|b|)在同一直角坐标系中的图象可能是( )
A .
B .
C .
D .
2. 如图所示,函数y=|2x ﹣2|的图象是( )
A .
B .
C .
D .
3. 设定义域为(0,+∞)的单调函数f (x ),对任意的x ∈(0,+∞),都有f[f (x )﹣lnx]=e+1,若x 0是方程f (x )﹣f ′(x )=e 的一个解,则x 0可能存在的区间是( )
A .(0,1)
B .(e ﹣1,1)
C .(0,e ﹣1)
D .(1,e )
4. 棱台的两底面面积为1S 、2S ,中截面(过各棱中点的面积)面积为0S ,那么( )
A .=
B .0S =
C .0122S S S =+
D .20122S S S =
5. 已知函数f (x )是(﹣∞,0)∪(0,+∞)上的奇函数,且当x <0时,函数的部分图象如图所示,则不等式xf (x )<0的解集是( )
A .(﹣2,﹣1)∪(1,2)
B .(﹣2,﹣1)∪(0,1)∪(2,+∞)
C .(﹣∞,﹣2)∪(﹣1,0)∪(1,2)
D .(﹣∞,﹣2)∪(﹣1,0)∪(0,1)∪(2,+∞)
6. 设x ,y ∈R ,且满足,则x+y=( )
A .1
B .2
C .3
D .4 7. 对“a ,b ,c 是不全相等的正数”,给出两个判断: ①(a ﹣b )2+(b ﹣c )2+(c ﹣a )2≠0;②a ≠b ,b ≠c ,c ≠a 不能同时成立,
下列说法正确的是( )
A .①对②错
B .①错②对
C .①对②对
D .①错②错
8. 已知直线 a 平面α,直线b ⊆平面α,则( )
A .a b
B .与异面
C .与相交
D .与无公共点
9. 记集合T={0,1,2,3,4,5,6,7,8,9},M=,
将M 中的元素按从大到小排列,则第2013个数是( )
A .
B .
C .
D .
10.已知M={(x ,y )|y=2x },N={(x ,y )|y=a},若M ∩N=∅,则实数a 的取值范围为( )
A .(﹣∞,1)
B .(﹣∞,1]
C .(﹣∞,0)
D .(﹣∞,0]
11.已知函数()cos (0)f x x x ωωω=+>,()y f x =的图象与直线2y =的两个相邻交点的距离等于
π,则()f x 的一条对称轴是( )
A .12
x π=-
B .12
x π=
C .6
x π
=-
D .6
x π
=
12.如图,长方形ABCD 的长AD=2x ,宽AB=x (x ≥1),线段MN 的长度为1,端点M 、N 在长方形ABCD 的四边上滑动,当M 、N 沿长方形的四边滑动一周时,线段MN 的中点P 所形成的轨迹为G ,记G 的周长与G 围成的面积数值的差为y ,则函数y=f (x )的图象大致为( )
A .
B .
C .
D .
二、填空题
13.若圆与双曲线C :
的渐近线相切,则
_____;双曲线C 的渐近线方程是
____.
14.已知过双曲线22
221(0,0)x y a b a b
-=>>的右焦点2F 的直线交双曲线于,A B 两点,连结11,AF BF ,若
1||||AB BF =,且190ABF ∠=︒,则双曲线的离心率为( )
A .5-
B
C .6- D
【命题意图】本题考查双曲线定义与几何性质,意要考查逻辑思维能力、运算求解能力,以及考查数形结合思想、方程思想、转化思想.
15.设α为锐角,若sin (α﹣)=,则cos2α= .
16.已知f (x )=,若不等式f (x ﹣2)≥f (x )对一切x ∈R 恒成立,则a 的最大值为 .
17.抛物线C 1:y 2=2px (p >0)与双曲线C 2:
交于A ,B 两点,C 1与C 2的
两条渐近线分别交于异于原点的两点C ,D ,且AB ,CD 分别过C 2,C 1的焦点,则= .
18.在△ABC 中,已知=2,b=2a ,那么cosB 的值是 .
三、解答题
19.已知函数f (x )=alnx ﹣x (a >0). (Ⅰ)求函数f (x )的最大值;
(Ⅱ)若x ∈(0,a ),证明:f (a+x )>f (a ﹣x );
(Ⅲ)若α,β∈(0,+∞),f (α)=f (β),且α<β,证明:α+β>2α
20.某校为选拔参加“央视猜灯谜大赛”的队员,在校内组织猜灯谜竞赛.规定:第一阶段知识测试成绩不小于160分的学生进入第二阶段比赛.现有200名学生参加知识测试,并将所有测试成绩绘制成如下所示的频率分布直方图.
(Ⅰ)估算这200名学生测试成绩的中位数,并求进入第二阶段比赛的学生人数;
(Ⅱ)将进入第二阶段的学生分成若干队进行比赛.现甲、乙两队在比赛中均已获得120分,进入最后抢答阶段.抢答规则:抢到的队每次需猜3条谜语,猜对1条得20分,猜错1条扣20分.根据经验,甲队猜对每条
谜语的概率均为,乙队猜对前两条的概率均为,猜对第3条的概率为.若这两队抢到答题的机会均等,
您做为场外观众想支持这两队中的优胜队,会把支持票投给哪队?
21.已知f(x)=|x﹣1|+|x+2|.