先进复合材料在航空航天领域的应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
先进复合材料在航空航天领域的应用
1概述
现阶段,我国航空航天事业得到前所未有的发展,航空航天领域对材料的要求不断提升,为了满足航空航天领域对材料性能的要求,应该研发新型、高性能的材料,先进复合材料应运而生,其具有多功能性、经济效益最大化、结构整体性以及可设计性等众多特点。
将先进复合材料应用在航空航天领域,能够有效地提高现代航空航天器的性能,减轻其质量。
和传统钢、铝材料相比,先进复合材料的应用,能够减轻航天航空器结构重量的30%左右,在提高航空航天器性能的同时,还能降低制造和发射成木。
现阶段,先进復合材料己经成为飞船、卫星、火箭、飞机等现代航空航天器的理想材料,同时,先进复合材料己经和高分子材料、无机非金属材料及金属材料并列为四大材料。
因此,文章针对先进复合材料在航空航天领域应用的研究具有重要的现实意义。
2我国先进复合材料发展现状
自20世纪70年代开始,我国就开始了对复合材料的研究工作,经过40多年的研究与发展,我国先进复合材料的技术水平不断提高,并且取得了可喜的进步。
现阶段,我国先进复合材料在航空航天领域中的应用,逐渐实现了从次承力构件向主承力构件的转变,被广泛地推广和应用在军机、民机、航空发动机、新型验证机和无人机、卫星和宇航器、导弹以及火箭等领域,即先进复合材料己经进入到实践应用阶段。
但是,我国先进复合材料技术的发展和研究成果与国外发达国家的水平还具有一定的差距,现阶段我国先进复合材料的设计理念、制备方法、加工设备、生产工艺以及应用规模等都相对落后。
例如,我国军用战斗机中复合材料的用量低于国外先进战斗机的复合材料用量,仅有少数的军用战斗机超过20%,例如J-20其复合材料的用量约为27%。
我国成功研制的C919大型民用飞机,单架飞机的先进复合材料的用量超过16吨,标志着我国先进复合材料在航空航天领域的应用水平在不断提高。
3先进复合材料简介
3.1先进复合材料的组成
复合材料是由金属、无机非金属、有机高分子等若干种材料采用复合工艺组成的新兴材料,先进复合材料不仅能够保留原有组成材料的特点,还能够对各种组成材料的优良性能进行综合,各种材料性能的相互补充和关联,能够赋予新兴复合材料无法比拟的优越性能。
先进复合材料简称ACM,指的是碳纤维等高性能增强相增强的复合材料。
先进复合材料的多种性能都优于普通钢、铝金属材料,在航空航天领域的应用,能够有效地减轻航空航天设备的重量,同时赋予航空航天设备特殊的性能,例如吸波、防热等。
3.2先进复合材料的特性
先进复合材料的特性主要表现为:
3.2.1多功能性。
先进复合材料经过多年的发展,结合了众多优异的物理性能、力学性能、生物性能以及化学性能,例如防热性能、阻燃性能、屏蔽性能、吸波性能、半导性能、超导性能等,并且不同的先进复合材料的组成不同,其功能性存在一定的差别,综合性、多功能性复合材料已经成为先进复合材料发展的必然趋势之一。
3.2.2经济效益最大化。
先进复合材料在航空航天领域的应用,能够减少产品部件数量。
由于复杂部件的连接不需要进行钏接、焊接, 因此对连接部件的需求量降低,有效地减少了装配材料成木、装配和连接时间,进一
步降低了成本。
3.2.3结构整体性。
先进复合材料可以加工成整体部件,即采用先进复合材料部件能够替代若干金属部件。
某些特殊轮廓和表面复杂的部件,用
金属制造的可行性较低,采用先进复合材料能够很好地满足实际需求。
3.2.4可设计性。
采用树脂、纤维、复合结构方式,能够获得不同形状、不同性能的复合材料,例如选择合适的材料、铺层程序,能够加工出
膨胀系数为零的复合材料,并且复合材料的尺寸稳定性优于传统金属材
料。
4先进复合材料在航空领域的应用
传统的飞机制造以钢、铝、钛合金为主要材料,而传统飞机上应用比例最大、构成轻质结构主体的铝合金正在被越来越流行的复合材料所替代。
我们所指的复合材料主要是以高性能纤维作为增强体,用树脂作为基体将纤维粘结在内部并固化成型的高性能塑料。
随着复合材料的迅速发展和广泛应用,当前先进的复合材料在飞机上的关键应用部位和用量的多少,己成为衡量飞机结构先进性的重要指标之一。
由于碳纤维材料具有耐高温、密度低、强度大等特点,目前在航空航天领域运用最为广泛。
与密度达到2.8g/cm3左右的铝合金相比,先进的碳纤维复合材料密度一般在1.45〜1.6g/cm3左右;而拉伸强度可以达到1.5GMPa以上,超过铝合金部件的3倍,接近超高强度合金钢制部件的水平。
这种密度低、强度刚度高的优势,使飞机的复合材料结构部件在获得与先进铝合金部件在强度刚度等综合性能方面相当的水平时,重量可以大幅减少20%〜30%。
复合材料在飞机结构中的应用情况大致可以分为三个阶段:第一阶段是应用于受载不大的简单零部件,可减重20%;第二阶段是应用于承力大的部件,可减重25%〜30%;第三阶段是应用于复杂受力部位,如中机身段、中央翼盒等,可减重30%o复合材料主要用于制造航空器的外饰和内饰部件, 如飞机的一次构造材料:主翼、尾翼、机体,二次构造材料,副翼、方向舵、升降舵、内装材料、地板材、桁梁、刹车片等及直升飞机的叶片。
根据统计,小型商务机和直升飞机的碳纤维复合材料用量己占55%左右,军用飞机占25%左右,大型客机占20%左右。
4.1军机上的应用
为满足新一代战斗机对高机动性、超音速巡航及隐身的需求,20 世纪90年代后,西方战斗机全部大量采用复合材料结构。
先进的复合材料也大大增加了军用运输机的有效载重,增大了军用飞机的载油量,克服常规材料在高超声速飞行器研制中存在的瓶颈问题。
因此, 先进复合材料被广泛地应用在军机上,例如,碳纤维增强树脂基复合材料,在军机主结构、次结构以及特殊部位等方而的应用,有效地提高了军机的耐腐蚀性、抗疲劳性,同时还具有明显的减重效果;再如,F22由于存在超声速巡航需求,飞机外表而会长时间与空气高速剧烈摩擦,因此在机翼复合材料上放弃了环氧基树脂,而使
用双马来酰亚胺树脂基体以获得260C。
的最大工作温度。
4.2民机上的应用
民机和军用飞机不同,民用飞机作为以载客飞行和运营为目的的交通工具,对安全可靠性和经济性要求更加严格。
复合材料在飞机上大量应用的时间还比较短,在对材料工艺稳定性和有关试验数据尚不十分充分的情况下,应用较多含量的复合材料需要大量时间和实践的积累。
民航上的复合材料应用受限,使用分为两类:结构件用复合材料、舱内材料。
以波音787为例,每架飞机的结构比例中有50%是重约35噸的复合材料,这意味着它从材料密度上就减轻了15吨左右的重量。
而空客也不甘示弱,新的A350客机改名为A-350 XWB, XWB意为超宽机身,复合材料的比例达到了52%,是现在所有大型商用飞机中最高的。
A-350XWB的机体比B-787还宽13cm o作为世界上仅有的两个大型商用飞机研制巨头,波音、空客先后推出复合材料占结构比例50%的主力型号,这意味着大型客机结构设计以复合材料为主要材料的时代己经拉开序幕。
波音787等新一代复合材料飞机上实现的性能提升,并不仅仅是依靠低密度材料减重得来。
实际上复合材料在工艺、结构力学设计上,都有着传统金属材料所完全无法比拟的优势,比如复合材料可以做出超大尺寸的整体结构部件,而且尺寸大小不会随着温度高低而产生变化。
国产大飞机在复合材料的应用上还比较保守,公开的报道显示, 复合材料的使用量约占C919飞机结构重量的20%。
飞机上使用的复合材料主要是碳纤维增强树脂基复合材料,它们具有高耐腐蚀、质量轻等特点,在这些性能上的确要超过一般的金属材料。
通常复合材料的价格大约是常规铝合金材料的几十倍,即便是我们看起来已经很金贵的铝锂合金材料,其价格也比复合材料低得多,所以C919仅为波音737价格的2/2左右。
4.3航空发动机上的应用
对于航空领域,特别是发动机的结构设计制造而言,高性能系统所需的轻质和耐高温等特性越来越重要。
航空发动机产业是指涡扇/ 涡喷发动机、涡轴/涡桨发动机和传统传动系统以及航空活塞发动机的集研发、生产、维
修保障服务于一体化产业集群。
新的材料和工艺不断研发以应对新一代航空发动机的发展趋势,尤其是先进复合材料的应用,GE-AEBG公司、惠普公司在制造飞机发动机零部件时都采用了先进复合材料,主要包括风扇出风道导流片、风扇罩、推力反向器等部位。
先进复合材料在航空发动机上的应用具体表现在以下两个方而:
4.3.1陶瓷基复合材料的应用。
陶瓷基复合材料是将碳化硅陶瓷纤维与碳化硅基底材料复合后,再涂覆一层专用涂层提升其性能,密度仅为金属材料的三分之一。
由于陶瓷基复合材料具有的耐高温属性, 因此在发动机流道中使用空气代替,在发动机高温区只需要较少甚至不需要冷却气体,涡轮扇发动机大幅减重,意味着发动机运转效率更高,提高了发动机的性能、耐久性、燃油经济性和高推重比。
F-35战斗机使用的F135发动机是有史以来战斗机上安装过的推力最大的喷气式发动机,F135使用了陶瓷基复合材料(CMC),主要用在F135- PW-600喷管的外侧部分。
以GE航空集团为例,陶瓷基复合材料在GE航空集团的技术路线图上是一条关键路径。
通用电气航空集团将于2021年新建两个复合材料制造厂,用于碳化硅和陶瓷基复合材料的批量制造,这两种复合材料都是制造喷气式发动机零部件的必备材料。
GE公司是所有厂商中第一个决定使用CMC制造旋转叶片的,通过把陶瓷基复合材料叶片安装在发动机上试车,它们己经证明了旋转CMC叶片的性能,这是一个重要的里程碑。
4.3.2树脂基复合材料的应用。
树脂基复合材料具有降噪能力强、耐腐蚀性强、耐疲劳能力好、比模量高、强度高等众多优点。
通过将树脂基复合材料应用在航空发动机的冷端结构、反推力装置以及发动机短舱等结构上,不仅能够降低发动机的重量,还能够提高发动机的耐腐蚀性、抗疲劳性以及强度等。
例如,JTAGG验证机的进气机匣利用PMR15树脂基复合材料,该种先进复合材料的应用比传统铝合金进气机匣的重量降低了25%。
4.4新型验证机及无人机上的应用
现代战争理念的改变,使无人机倍受青睐,无人战斗机是未来航空武器的一个重点发展方向。
无人机除在情报、监视、侦察等信息化作战中的特殊作用外,还能在突防、核战、化学和生物武器战争中发挥有人军机无法替代
的作用。
无人机的发展方向是飞行更高、更远、更长,隐身性能更好,制造更加简便快捷,成木更低等,其中关键技术之一就是大量采用复合材料,超轻超大复合材料结构技术是提高其续航能力、生存能力、可靠性和有效载荷能力的关键。
和传统的铝合金混合结构相比,以复合材料为结构的无人机,例如“全球鹰”“捕食者” 等无人机都采用先进复合材料。
以■全球鹰”为例,该种无人机的机翼、尾翼都采用石墨/环氧复合材料,采用该种复合材料制造的无人机,和传统铝合金混合结构的重量相比降低了65%。
再如,诺斯罗普格鲁门公司研发的X-47无人战斗机,为了满足生存力、机动性、隐身性能等特殊要求,该无人机除了接头部位采用了少量的铝合金外,几乎整个机体都采用先进复合材料。
依靠复合材料,设计师还可以做出传统金属材料所无法达成的气动力学设计,比如超声速飞行的前掠翼飞机。
5先进复合材料在航天领域的应用
5.1卫星和宇航器结构材料
卫星结构的质量会影响对运载火箭的要求以及卫星功能,卫星结构的轻型化设计己经成为卫星结构发展的趋势之一。
国际通讯卫星中心的推力桶采用先进复合材料,该种推力桶质量比传统铝结构的质量降低了30%左右,降低的重量可以增加460条电话线路,同时还能够有效地降低卫星的发射费用。
欧美国家卫星结构的质量为总质量的2/20,其原因就是大量的应用了先进复合材料。
现阶段,我国神州系列飞船、风云二号气象卫星等都采用碳纤维/环氧复合材料,有效地降低了总体重量,同时发射成本也显著降低。
5.2导弹用结构材料
现阶段,美国已经将先进复合材料作为导弹弹头结构壳体、级间段、仪器舱等部件的主要材料,洛克希德导弹与宇航公司指出,采用碳纤维/环氧复合材料制造的导弹比传统铝结构导弹的重量减轻40%。
现阶段,采用先进复合材料的导弹发射筒也被国外发达国家应用在战术、战略型号上,例如,俄罗斯的“白杨M”导弹、美国的・MX”导弹都采用复合材料发射筒。
因为先进复合材料导弹发射筒和传统金属结构相比,其结构质量显著降低,能有效地提高战略、战术导弹的灵活性。
在战术导弹领域,先进复合材料结构的导弹发射筒更加灵活、应用范围更加广泛。
现阶段,我国也研发了先进复合材
料结构的战略导弹和导弹发射筒,还研发了先进复合材料仪器舱,有效地提高了战略导弹的灵活性和机动性,应用效果良好。
5.3运载火箭结构材料
国外发达国家于20世纪50年代开始应用纤维缠绕成型的玻璃钢壳体代替传统的钢壳,例如,美国的目匕极星A-3”潜地导弹,采用纤维缠绕成型的玻璃钢壳体,其重量比采用传统钢壳的“AJ”轻了55% 左右,随后研发的。
MX”■三叉戟1”的三级发动机壳体,全部都采用芳纶/环氧复合材料,该种结构形式的壳体质量比纤维缠绕成型玻璃体壳体的重量减轻了50%左右。
随着先进复合材料的发展,其在运载火箭发动机壳体中的应用优势越来越明显,并且先进复合材料被应用在三叉戟II、德尔塔II -7925运载火箭等型号中。
现阶段,我国运载火箭发动机壳体制造业逐渐的开始应用先进复合材料,虽然起步较晚, 但是经过40多年的发展获得了巨大的进步,经过多年的研发,己经成功地将芳纶/环氧复合材料、玻璃纤维/环氧复合材料应用在运载火箭发动机壳体中。
先进复合材料在运载火箭结构设计中的应用,有效地降低了运载火箭发动机的重量,同时提高了运载火箭发动机的性能。
6复合材料在航空航天领域的发展前景
先进复合材料的应用己经成为评价航空航天器水平的重要标准,同时
也是提高航空航天器结构先进性的重要物质基础和先导技术。
由于我国先
进复合材料的应用水平和国外发达国家还存在一定的差距,但是我国己经
进行大量投入来强化先进复合材料方而的研究,其发展前景良好。
未来先
进复合材料的发展主要表现在以下四个方面:
6.1智能化
智能型先进复合材料和结构的研究,能够创造巨大的经济效益和社会效益,智能型先进复合材料在航空航天器外表的应用:在未来航空器表而增加各种传感器,能够对周围环境进行实时、全而、智能的检测,同时为通讯系统、电子战以及雷达系统提供瞬时模态,以此保证航空器能够安全、稳定地飞行。
6.2多功能化
在减小航空航天器体积的基础上,为了提高航空航天器的突防能力,许多结构部件需要具备多种功能,多功能先进复合材料的应用能够赋予航空航天器新的功能,现阶段,多功能先进复合材料的研究己经从双功能型向三功能型方向转变。
6.3质量轻、性能高
目前,我国先进复合材料能够减轻航空航天器的质量占总重的20%左右,和国外25%以上的减重效率还存在一定的差距。
导致该种现状的原因是我国先进复合材料的整体性能较低,并且结构的整体性相对较差。
因此,在未来的发展过程中,应该加强对复合材料强度、韧性以及整体性等方而的研究,研发整体性好、强度高和韧性高的先进复合材料,同时使复合材料的减重率超过25%。
6.4低成木
成木较高是限制先进复合材料在航空航天领域应用和发展的主要原因之一,为了解决该问题,应该对先进复合材料的制造工艺进行研究,采用科学的制造工艺进行先进复合材料结构、尺寸以及形状的加工和制造,同时采用先进的质量控制技术、自动化技术、机械化技术等,提高先进复合材料的生产效率,提高其成品率,以此降低先进复合材料的成本。
7结语
综上所述,经过40多年的发展,我国先进复合材料工业逐渐形成了一个完整的体系,并且部分先进复合材料己经成功地应用在航空航天器生产实践中,获得了良好的效果。
但是,从整体上来说我国先进复合材料技术水平和发达国家还存在一定的差距。
因此,我国先进复合材料研究、研发人员和生产企业应该加快先进复合材料结构、制造技术、生产工艺等方面的研究,同时借鉴国外的先进技术和经验, 解决我国先进复合材料在航空航天领域应用的各种难题,以此提高我国航空航天器的各种性能,进一步促进我国航空航天领域的全面、高速发展。