江宁区第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江宁区第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 阅读下面的程序框图,则输出的S=(

A .14
B .20
C .30
D .55
2. 如图所示的程序框图输出的结果是S=14,则判断框内应填的条件是(

A .i ≥7?
B .i >15?
C .i ≥15?
D .i >31?
3. 直角梯形中,,直线截该梯形所得位于左边图OABC ,1,2AB OC AB OC BC ===A :l x t =形面积为,则函数的图像大致为(

()S f t =
4.“m=1”是“直线(m﹣2)x﹣3my﹣1=0与直线(m+2)x+(m﹣2)y+3=0相互垂直”的()
A.必要而不充分条件B.充分而不必要条件
C.充分必要条件D.既不充分也不必要条件
5.(2015秋新乡校级期中)已知x+x﹣1=3,则x2+x﹣2等于()
A.7B.9C.11D.13
6.三个数60.5,0.56,log0.56的大小顺序为()
A.log0.56<0.56<60.5B.log0.56<60.5<0.56
C.0.56<60.5<log0.56D.0.56<log0.56<60.5
7.设数集M={x|m≤x≤m+},N={x|n﹣≤x≤n},P={x|0≤x≤1},且M,N都是集合P的子集,如果把b﹣a叫做集合{x|a≤x≤b}的“长度”,那么集合M∩N的“长度”的最小值是()
A.B.C.D.
8.运行如图所示的程序框图,输出的所有实数对(x,y)所对应的点都在某函数图象上,则该函数的解析式为()
A.y=x+2B.y=C.y=3x D.y=3x3
9. 已知双曲线(a >0,b >0)的右焦点F ,直线x=
与其渐近线交于A ,B 两点,且△ABF 为
钝角三角形,则双曲线离心率的取值范围是( )
A .
B .
C .
D .
10.设分别是中,所对边的边长,则直线与
,,a b c ABC ∆,,A B C ∠∠∠sin 0A x ay c ++=A 的位置关系是( )
sin sin 0bx B y C -+=A A .平行
B . 重合
C . 垂直
D .相交但不垂直
11.若函数则的值为( )
1,0,
()(2),0,x x f x f x x +≥⎧=⎨+<⎩
(3)f -A .5 B . C .
D .2
1-7-12.已知函数f (x )=x 2﹣6x+7,x ∈(2,5]的值域是( )
A .(﹣1,2]
B .(﹣2,2]
C .[﹣2,2]
D .[﹣2,﹣1)
二、填空题
13.如图,长方体ABCD ﹣A 1B 1C 1D 1中,AA 1=AB=2,AD=1,点E 、F 、G 分别是DD 1、AB 、CC 1的中点,则异面直线A 1E 与GF 所成的角的余弦值是 .
14.在直角坐标系xOy 中,已知点A (0,1)和点B (﹣3,4),若点C 在∠AOB 的平分线上且
||=2,则
= .
15.设变量满足约束条件,则的最小值是,则实数y x ,220
22010x y x y x y --≤⎧⎪-+≥⎨⎪+-≥⎩
22
(1)3(1)z a x a y =+-+20-a =
______.
【命题意图】本题考查线性规划问题,意在考查作图与识图能力、逻辑思维能力、运算求解能力.
16.【盐城中学2018届高三上第一次阶段性考试】已知函数有两个极值点,则实数的()()ln f x x x ax =-a 取值范围是.17.方程(x+y ﹣1)=0所表示的曲线是 .
18.定积分
sintcostdt= .
三、解答题
19.在某班级举行的“元旦联欢会”有奖答题活动中,主持人准备了两个问题,规定:被抽签抽到的答题同学,答对问题可获得分,答对问题可获得200分,答题结果相互独立互不影响,先回答哪个问
题由答题同学自主决定;但只有第一个问题答对才能答第二个问题,否则终止答题.答题终止后,获得的总分
决定获奖的等次.若甲是被抽到的答题同学,且假设甲答对问题的概率分别为.
(Ⅰ)记甲先回答问题再回答问题得分为随机变量,求的分布列和数学期望;
(Ⅱ)你觉得应先回答哪个问题才能使甲的得分期望更高?请说明理由.
20.我省城乡居民社会养老保险个人年缴费分100,200,300,400,500,600,700,800,900,1000(单位:元)十个档次,某社区随机抽取了50名村民,按缴费在100:500元,600:1000元,以及年龄在20:39岁,40:59岁之间进行了统计,相关数据如下:
100﹣500元600﹣1000总计
20﹣3910616
40﹣59151934
总计252550
(1)用分层抽样的方法在缴费100:500元之间的村民中随机抽取5人,则年龄在20:39岁之间应抽取几人?(2)在缴费100:500元之间抽取的5人中,随机选取2人进行到户走访,求这2人的年龄都在40:59岁之间的概率.
21.在△ABC中,内角A,B,C所对的边分别是a,b,c,已知tanA=,c=.
(Ⅰ)求;
(Ⅱ)若三角形△ABC的面积为,求角C.
22.设函数f(x)=lg(a x﹣b x),且f(1)=lg2,f(2)=lg12
(1)求a,b的值.
(2)当x∈[1,2]时,求f(x)的最大值.
(3)m为何值时,函数g(x)=a x的图象与h(x)=b x﹣m的图象恒有两个交点.
23.已知函数f(x)=xlnx,求函数f(x)的最小值.
24.如图,三棱柱ABC﹣A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC,且AB⊥BC,O为AC中点.
(Ⅰ)证明:A1O⊥平面ABC;
(Ⅱ)求直线A1C与平面A1AB所成角的正弦值;
(Ⅲ)在BC1上是否存在一点E,使得OE∥平面A1AB,若不存在,说明理由;若存在,确定点E的位置. 
江宁区第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题
1. 【答案】C
【解析】解:∵S 1=0,i 1=1;S 2=1,i 2=2;S 3=5,i 3=3;S 4=14,i 4=4;S 5=30,i=5>4退出循环,故答案为C .
【点评】本题考查程序框图的运算,通过对框图的分析,得出运算过程,按照运算结果进行判断结果,属于基础题. 
2. 【答案】C
【解析】解:模拟执行程序框图,可得S=2,i=0
不满足条件,S=5,i=1不满足条件,S=8,i=3不满足条件,S=11,i=7不满足条件,S=14,i=15
由题意,此时退出循环,输出S 的值即为14,结合选项可知判断框内应填的条件是:i ≥15?故选:C .
【点评】本题主要考查了程序框图和算法,依次写出每次循环得到的S ,i 的值是解题的关键,属于基本知识的考查. 
3. 【答案】C 【解析】
试题分析:由题意得,当时,,当时,01t <≤()21
22
f t t t t =
⋅⋅=12t <≤,所以,结合不同段上函数的性质,可知选项C 符
()1
12(1)2212f t t t =⨯⨯+-⋅=-()2,0121,12
t t f t t t ⎧<≤=⎨-<≤⎩合,故选C.
考点:分段函数的解析式与图象.
4.【答案】B
【解析】解:当m=0时,两条直线方程分别化为:﹣2x﹣1=0,2x﹣2y+3=0,此时两条直线不垂直,舍去;
当m=2时,两条直线方程分别化为:﹣6y﹣1=0,4x+3=0,此时两条直线相互垂直;
当m≠0,2时,两条直线相互垂直,则×=﹣1,解得m=1.
综上可得:两条直线相互垂直的充要条件是:m=1,2.
∴“m=1”是“直线(m﹣2)x﹣3my﹣1=0与直线(m+2)x+(m﹣2)y+3=0相互垂直”的充分不必要条件.
故选:B.
【点评】本题考查了直线相互垂直的充要条件、充要条件的判定,考查了分类讨论方法、推理能力与计算能力,属于中档题.
5.【答案】A
【解析】解:∵x+x﹣1=3,
则x2+x﹣2=(x+x﹣1)2﹣2=32﹣2=7.
故选:A.
【点评】本题考查了乘法公式,考查了推理能力与计算能力,属于中档题.
6.【答案】A
【解析】解:∵60.5>60=1,
0<0.56<0.50=1,
log0.56<log0.51=0.
∴log0.56<0.56<60.5.
故选:A
【点评】本题考查了不等关系与不等式,考查了指数函数和对数函数的性质,对于此类大小比较问题,有时借助于0和1为媒介,能起到事半功倍的效果,是基础题.
7.【答案】C
【解析】解:∵集M={x|m≤x≤m+},N={x|n﹣≤x≤n},
P={x|0≤x≤1},且M,N都是集合P的子集,
∴根据题意,M的长度为,N的长度为,
当集合M∩N的长度的最小值时,
M与N应分别在区间[0,1]的左右两端,
故M ∩N 的长度的最小值是=.
故选:C . 
8. 【答案】 C
【解析】解:模拟程序框图的运行过程,得;该程序运行后输出的是实数对
(1,3),(2,9),(3,27),(4,81);这组数对对应的点在函数y=3x 的图象上.故选:C .
【点评】本题考查了程序框图的应用问题,是基础题目. 
9. 【答案】D
【解析】解:∵函数f (x )=(x ﹣3)e x ,∴f ′(x )=e x +(x ﹣3)e x =(x ﹣2)e x ,令f ′(x )>0,即(x ﹣2)e x >0,∴x ﹣2>0,解得x >2,
∴函数f (x )的单调递增区间是(2,+∞).故选:D .
【点评】本题考查了利用导数判断函数的单调性以及求函数的单调区间的应用问题,是基础题目. 
10.【答案】C 【解析】
试题分析:由直线与,
sin 0A x ay c ++=A sin sin 0bx B y C -+=A 则,所以两直线是垂直的,故选C. 1sin (sin )2sin sin 2sin sin 0A b a B R A B R A B ⋅+⋅-=-=考点:两条直线的位置关系.11.【答案】D111]【解析】
试题分析:.()()()311112f f f -=-==+=考点:分段函数求值.12.【答案】C
【解析】解:由f (x )=x 2﹣6x+7=(x ﹣3)2﹣2,x ∈(2,5].
∴当x=3时,f(x)min=﹣2.
当x=5时,.
∴函数f(x)=x2﹣6x+7,x∈(2,5]的值域是[﹣2,2].
故选:C.
二、填空题
13.【答案】0
【解析】
【分析】以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出异面直线A1E与GF所成的角的余弦值.
【解答】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,
∵AA1=AB=2,AD=1,点E、F、G分别是DD1、AB、CC1的中点,
∴A1(1,0,2),E(0,0,1),G(0,2,1),F(1,1,0),
=(﹣1,0,﹣1),=(1,﹣1,﹣1),
=﹣1+0+1=0,
∴A1E⊥GF,
∴异面直线A1E与GF所成的角的余弦值为0.
故答案为:0.
14.【答案】 (﹣,) .
【解析】解:∵,,
设OC与AB交于D(x,y)点
则:AD:BD=1:5
即D分有向线段AB所成的比为

解得:

又∵||=2
∴=(﹣,)
故答案为:(﹣,)
【点评】如果已知,有向线段A(x1,y1),B(x2,y2).及点C分线段AB所成的比,求分点C的坐标,可将A,B两点的坐标代入定比分点坐标公式:坐标公式进行求解.
15.【答案】2
【解析】
16.【答案】.
【解析】由题意,y ′=ln x +1−2mx
令f ′(x )=ln x −2mx +1=0得ln x =2mx −1,
函数有两个极值点,等价于f ′(x )=ln x −2mx +1有两个零点,
()()ln f x x x mx =-等价于函数y =ln x 与y =2mx −1的图象有两个交点,

当m =
时,直线y =2mx −1与y =ln x 的图象相切,12
由图可知,当0<m <时,y =ln x 与y =2mx −1的图象有两个交点,12则实数m 的取值范围是(0,),12
故答案为:(0,).1217.【答案】 两条射线和一个圆 .
【解析】解:由题意可得x 2+y 2﹣4≥0,表示的区域是以原点为圆心的圆的外部以及圆上的部分.
由方程(x+y ﹣1)=0,可得x+y ﹣1=0,或 x 2+y 2=4,
故原方程表示一条直线在圆外的地方和一个圆,即两条射线和一个圆,
故答案为:两条射线和一个圆.
【点评】本题主要考查直线和圆的方程的特征,属于基础题.
18.【答案】 
 .
【解析】解:
0sintcostdt=0sin2td (2t )=(﹣cos2t )|=×(1+1)=.故答案为:
 三、解答题
19.【答案】
【解析】【知识点】随机变量的期望与方差随机变量的分布列【试题解析】(Ⅰ)的可能取值为.,,
分布列为:
(Ⅱ)设先回答问题,再回答问题得分为随机变量,则的可能取值为. ,,
,分布列为:

应先回答所得分的期望值较高.
20.【答案】
【解析】解:(1)设抽取x人,则,解得x=2,
即年龄在20:39岁之间应抽取2人.
(2)设在缴费100:500元之间抽取的5人中,年龄在20:39岁年龄的两人为A,B,在40:59岁之间为a,b,c,
随机选取2人的情况有(A,B),(A,a),(A,b),(A,c),(B,a),(B,b),(B,c),(a,b),(a,c),(b,c),共10种,
年龄都在40:59岁之间的有(a,b),(a,c),(b,c),共3种,
则对应的概率P=.
【点评】本题主要考查分层抽样的应用,以及古典概型的计算,利用列举法是解决本题的关键.
21.【答案】
【解析】解:(Ⅰ)由题意知,tanA=,
则=,即有sinA﹣sinAcosC=cosAsinC,
所以sinA=sinAcosC+cosAsinC=sin(A+C)=sinB,
由正弦定理,a=b,则=1;…
(Ⅱ)因为三角形△ABC的面积为,a=b、c=,
所以S=absinC=a2sinC=,则,①
由余弦定理得,=,②
由①②得,cosC+sinC=1,则2sin(C+)=1,sin(C+)=,
又0<C<π,则C+<,即C+=,
解得C=….
【点评】本题考查正弦定理,三角形的面积公式,以及商的关系、两角和的正弦公式等,注意内角的范围,属于中档题.
22.【答案】
【解析】解:(1)∵f(x)=lg(a x﹣b x),且f(1)=lg2,f(2)=lg12,
∴a﹣b=2,a2﹣b2=12,
解得:a=4,b=2;
(2)由(1)得:函数f(x)=lg(4x﹣2x),
当x∈[1,2]时,4x﹣2x∈[2,12],
故当x=2时,函数f(x)取最大值lg12,
(3)若函数g(x)=a x的图象与h(x)=b x﹣m的图象恒有两个交点.
则4x﹣2x=m有两个解,令t=2x,则t>0,
则t2﹣t=m有两个正解;
则,
解得:m∈(﹣,0)
【点评】本题考查的知识点是对数函数的图象和性质,熟练掌握对数函数的图象和性质,是解答的关键. 
23.【答案】
【解析】解:函数的定义域为(0,+∞)
求导函数,可得f′(x)=1+lnx
令f′(x)=1+lnx=0,可得
∴0<x<时,f′(x)<0,x>时,f′(x)>0
∴时,函数取得极小值,也是函数的最小值
∴f(x)min===﹣.
【点评】本题考查导数知识的运用,考查函数的最值,考查学生分析解决问题的能力,属于中档题.
24.【答案】
【解析】解:(Ⅰ)证明:因为A1A=A1C,且O为AC的中点,
所以A1O⊥AC.
又由题意可知,平面AA1C1C⊥平面ABC,
交线为AC,且A1O⊂平面AA1C1C,
所以A1O⊥平面ABC.
(Ⅱ)如图,以O为原点,OB,OC,OA1所在直线分别为x,y,z轴建立空间直角坐标系.
由题意可知,A1A=A1C=AC=2,又AB=BC,AB⊥BC,∴,
所以得:
则有:.
设平面AA1B的一个法向量为n=(x,y,z),则有,
令y=1,得所以.

因为直线A1C与平面A1AB所成角θ和向量n与所成锐角互余,所以.
(Ⅲ)设,
即,得
所以,得,
令OE∥平面A1AB,得,
即﹣1+λ+2λ﹣λ=0,得,
即存在这样的点E,E为BC1的中点.
【点评】本小题主要考查空间线面关系、直线与平面所成的角、三角函数等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力。

相关文档
最新文档