高考数学专题复习专题七立体几何教案文

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学专题复习专题七立体几何教案文
第一篇:高考数学专题复习专题七立体几何教案文
专题七立体几何
自查网络
核心背记
一、空间几何体的结构特征
(一)多面体
1.棱柱可以看成是一个多边形(包含图形所围成的平面部分)上各点都沿同一个方向移动____所形成的几何体.
2.主要结构特征:棱柱有两个面互相平行,而其余的交线都互相平行,其余的这些面都是四边形.
3.侧棱和底面____的棱柱叫做直棱柱,底面为的直棱柱叫做正棱柱.4.有一个面是多边形,而其余各面都的三角形的多面体叫做棱锥.
5.如果棱锥的底面是一,它的顶点又在过且与底面垂直的直线上,则这个棱锥叫做正棱锥,正棱锥各侧面都是一的等腰三角形,这些等腰三角形____都相等,叫做棱锥的斜高.
6.棱锥被一的平面所截,截面和底面间的部分叫做棱台.一——
7.由正棱锥截得的棱台叫做正棱台.正棱台各侧面都是全等的等腰梯形,这些一叫做棱台的斜高.正棱台中两底面中心连线,相应的边心距和.组成一个直角梯形;两底面中心连线,和两底面相应的外接圆半径组成一个直角梯形.
(二)旋转体
1.分别以
一、直角梯形中——、——____所在的直线为旋转轴,其余各边旋转一周而形成的曲面所围成的几何体叫做圆柱、圆锥、圆台.旋转轴叫做所围成的几何体的轴;在轴上的这条边叫做这个几何体的高;垂直于轴的边旋转而成的叫做这个几何体的底面;不垂直于轴的边旋转而成的叫做这个几何体的侧面,无论旋转到什么位置,这条边都叫
做侧面的母线,’ 2.-个半圆绕着____所在的直线旋转一周所形成的曲面叫球面,球面所围成的几何体称为 1
球.球面也可以看做空间中到一个定点的距离等于定长的点的集合.
3.球的截面性质:球的截面是;球心和截面(不过球心)圆心的连线于截面;设球的半径为R,截面圆的半径为r,球心到截面圆的距离d就是球心0到截面圆心0i的距离,它们的关系是一.4.球的大圆、小圆:球面被的平面截得的圆叫做球的大圆;球面被的平面截得的圆叫做球的小圆.
(三)投影
1.当图形中的直线或线段不平行于投射线时,平行投影具有如下性质:①直线或线段的平行投影是____;②平行直线的平行投影是;
③平行于投射面的线段,它的投影与这条线段;④与投射面平行的平面图形,它的投影与这个图形;⑤在同一直线或平行线上,两条线段的平行投影的比等于____. 2.-个.把一个图形照射在一个平面上,这个图形的影子就是它在这个平面上的中心投影.空间图形经过中心投影后,直线还是直线,但是平行线可能变成____.
3.在物体的平行投影中,如果投射线与投射面____,则称这样的平行投影为正投影.4.除了平行投影的性质正投影还具备如下性质:直于投射面的直线或线段的正投影是.②于投射霹的平面图形的正投影是
(四)斜二测画法与三视图
1.斜二测画法的作图规则可以简记为:水平方向方向长度竖直方向线,变为方线,长度
2.投射面与视图:通常,总是选取三个____的平面作为投射面,来得到三个投影图.一个投射面水平放置,叫做水平投射面,投射到水平投射面内的图形叫做,一个投射面放置在正前方,这个投射面叫做直立投射面.投射到直立投射面内的圆形叫做和直立、水平两个投射面都垂直的投射面叫做侧立投射l面.投射到侧立投射面内的圆形叫做
3.三视图定义:将空间图形向水平投射面,直立投射面、侧立投
射面作正投影.然后把这个投影按一定的布局放在一个平面内,这样构成的图形叫做空闷图形的三视图.
4.三视图的画法要求;三视图的主视图、俯视图、左视图分别是从物体的看到的物体的正投影围成的平面图形.
5.一个物体的三视图的排列规则是:俯视图放在的下面,长度与一样;左视图放在主视图的,高度与____一样,宽度与——的宽度—样为了便于记忆.通常说:“长对正高平齐、宽相等”或“主左一样高、主俯—样长、左俯—样宽
6.画三视图时应注意:被挡住的轮廓要画成瘦线,尺寸线用细实线标出;φ表示直径,R表示半径;单位不注明按mm计,二、空间几何体的表面积与体积
(一)柱、锥、台的表面积公式
1.设直棱柱的高为b,底面多边形的周长为c,则直棱柱侧面面积计算公式为——.设圆柱的底面半径为r 周长为C,侧面母线长为l,则圆柱的侧面积是____. 2.设正棱锥的底面边长为a,底面周长为C,斜高为h,则正n梭锥的侧面积计算公式为一·如果圆锥底面半径为r,周长为C,侧面母线长为l,那么圆锥的侧面积是一.
3.如果设正棱台下底面边长为a、周长为C,上底面边长为a'、周长为C'斜高为h',则正竹棱台的侧面积公式为____ .如果圆台的上下底面半径分为r',r,周长为C,C,侧面母线长为l,那么圆台的侧面积是
(二)柱、锥、台的体积公式
1.棱柱的底面面积为S,高为h,则体积为——’
底面半径为r,高是h的圆柱体的体积计算公式是—一.
2.若一个棱锥的底面面积为S.高为h,那么它的体积公式为____.若圆锥的底面圆的半径为r,高为h,则体积为____.
3.若台体(棱台、圆台)上、下底面面积分别为S,S,高为h,则台体的体积公式为一,若圆台的上、下底面半径分别为r,r,高为h.则圆台的体积公式为
(三)球的表面积与体积公式设球的半径为R.则球的表面积计
算公式为-.即球面面积等于它的大圆面积的____.球的体积公式为
三、平面的基本性质与推论
(一)平面的定义平面是一个不加定义,只需理解的最基本的原始概念.在生活中平静的水面、镜面、书桌面都给我们平面的印象,立体几何中的平面就是由此抽象出来的.平面是处处平直的面,它是向四面八方一的.无大小、厚薄之分,它是不可度量的.(二)平面的基本性质及推论 1.平面的基本性质 1:如果一条直线上的两点在一个平面内,那么这条直线上的都在这个平面内,这时我们说:直线在平面内或平面____直线.
2.平面的基本性质2:经过____的三点,有且只有一个平面,即:____的三点确定一个平面.
3.推论1:经过一条直线和____一点,有且只有一个平面.
4.推论2:经过两条直线有且只有一个平面.
5.推论3:经过两条直线有且只有一个平面.
6.面面相交:如果两个平面有一条公共直线,则称之为两平面相交,这条公共直线也叫做两个平面的交线.平面口与p相交,交线是Z,符号表示为.
7.平面的基本性质3:如果不重合的两个平面有一个公共点,那么它们一条经过一的公共直线.
(三)异面直线
1._ ___的直线叫做异面直线.
2.异面直线的判定:与一平面相交于一点的直线与平面内一的直线是异面直线,用符号表示为:若ABn口-B,B垂z,Zc口,则直线AB与直线z是异面直线.
四、空间中的平行关系
(一)平面的基本性质4与等角定理
1.平面的基本性质4:平行子同一直线的两条直线____.符号表示为:若直线矗∥6.c∥6,那么——.
2.等角定理:如果一个角的p边与另一个角的两边分别对应平行,并且一,那么这两个角相等.
(二)空间四边形顺次连接____ 的四点A.B,C.D所梅成的图形叫做空闻四边形.其中,四个点A,B,C.D,每个点都Ⅱq它的____ .所连接的相邻顶点fa-的线段叫做它的____.连接不相邻的顶点的线段叫做空间四边形的____.
(三)直线与平面平行
1.直线a和平面口只有一个公共点A,叫做直线与平面____.这个公共点A叫做直线与平面的交点.记作____.
2.直线a与平面a没有公共点,叫做直线与平面平行.记作一一.
3.判定定理:如果____的一条直线和——的一条直线平行,那么这条直线与这个平面平行.4.性质定理:如果一条直线与一个平面平行,____ 的平面和这个平面相交,那么这条直线就和两平面的交线平行.
(四)平面与平面平行
1.两不重合平面有公共点就叫两平面相交,记作口n卢2 Z.若两个平面一,则称这两个平面为平行平面,“平面口平行于平面p"可以记作“口∥∥.
2.平面与平面平行的判定定理;如果一个平面内有两条一直线都平行于另一个平面,那么这两个平面平行.3.推论:如果—个平面内有两条____直线分别平行于另—个平面内的两条直线,则这两个平面平行.
4.性质定理:如果两个____平面同时与第三个平面相交,那么它们的交线平行.符号语言表示为:口//p,a(l y=a,pffy=b净_,.。

__._一.
5.两个平面平行,其中一个平面内的一直线平行于另一个平面.五,空间中的垂直关系
(一)直线与平面垂直
1.如果两条直线相交于一点或经过平移后相交于一点,并且交角为一,则称这两条直线互相垂直.
2.直线与平面垂直的定义:如果一条直线Z和一个平面口相交于点O,并且Z和这个平面内过点0的直线都垂直,则该直线垂直于这
个平面.这条直线叫做平面的——,这个平面叫做直线的____,交点叫做__-。

_.。

.-。

-..-.。

_一.
3.点到平面的距离:垂线上任意一点到____间的线段,叫做这个点到这个平面的垂线段,垂线段的长度叫做这个点到平面的距离.4.判定定理:如果一条直线与平面内的两条直线垂直,则这条直线与这个平面垂直.5.推论:如果在两条__—直线中,有一条直线垂直于平面,那么另一条直线也垂直于这个平面。


6.性质定理:如果两条直线垂直予同一个平面,那么这两条直线—__-
7.如果一条直线垂直于一个平面,那么这条直线就垂直于这个平面内的—一直线.
(二)平面与平面垂直
1*如果两个相交平面的一与第三个平面垂直,又这两个平面与第三个平面相交所得的两条直线互相____.就称这p个平面互相垂直.
2.如果-个平面过另一个平面的一,则这两个平面互相垂直.
3.如果两个平面互相垂直,那么在—一垂直予它们____
二、的直线垂直于另一个平面.4.如果p个平面互相垂直,那么经过第一个平面内的一点垂直于第二AI平面的直线在——平面内.参考答案
一、(一)1.相同的距离2.每相邻两个面3.垂直正多边形4.有一个公共顶点
5.正多边形底面中心全等底边上的高 6.平行于底面
7.等腰梯形的高斜高侧援
(=)1.矩形的一条边直焦三角形的一条直角边垂直于底边的腰圆面曲面
(=)1.所有点经过
2.不在同一直线上不共线 3.直线外.. 4.相交 5.平行 6.a 7.有且只有这个点’
(三)1.既不平行也不相交 2.不经过该点
四、(一)1.互相平行a//c2.方向相同
(二)不共面顶点边对角线
(三)1.相交ana=A 2.a//a3.不在一个平面内平面内4.经过这条直线
(四)1.没有公共点2.相交3.相交4.平行a//b 5.任意
五、(一)1-直角2.任何垂线垂面垂足3.垂足4.相交5.平行6.平行7.任意条
(二)1.交线垂直2.一条垂线3._AI平面内交线4.第一个
规律探究
1.在正棱锥中,要利用四个直角三角形(高、斜高及底面边心距组成一个直角三角形,高、侧棱与底面外接圆的半径组成一个直角三角形,底面的边心距、外接圆半径及底边一半组成一个直角三角形,侧棱、斜高与底边一半组成一个直角三角形)进行有关计算.2.在正棱台中,要充分利用三个直角梯形(高、斜高及上下底面的边心距组成一个直角梯形,侧棱、斜高及上下底边的一半组成—个直角梯形,侧梭、高及上下底面外接圆半径组成—个直角梯形)、两个直角三角形(上下底面的边心距,外接圆半径和边的一半)进行有关计算.3.解与直观图有关的问题时,应熟练掌握斜二测画法的规则,关键是确定宣观图的顶点或其他关键点.因此,尽量把顶点或其他关键点放在轴上或与轴平行的直线上.
4.学习三视图应会选取投射面,正确放置三视图中三个图的位置,掌握三视图之间的联系和规律:正俯长对正,正侧高平齐,俯侧宽相同.
5.棱柱、棱锥、棱台等多面体的表面积可以分别求各面面积,再求和.对于直棱柱、正棱锥、正棱台也可直接利用公式,6.圆柱、圆锥、圆台侧面积就是其侧面展开图的面积,要熟记公式.
7.有关旋转体的问题或球与多面体的切、接问题,特别要注意应用轴截面.8.有关体积的问题,要注意“等积变换”“分割求和” “拼补求差”等解题思路.
9.结合模型,在理解的基础上熟练掌握柱、锥、台的表面积公式和体积公式.
10.球的体积公式和表面积公式是用无限分割的极限思想推导出来
的.主要是记忆、掌握公式.
11.求柱、锥、台体的表面积就是求它们的侧面积和底面积之和,对于圆柱、圆锥、圆台,已知上、下底面半径和母线长可以用表面积公式直接求出;对于棱柱、棱锥、棱台没有一般计算公式,可以直接根据条件求各个面的面积.
12.求柱、锥、台体的体积时,根据体积公式,需要具备已知底面积和高两个重要条件,底面积一般可由底面边长或半径求出,但当高不知道时,求高比较困难,一般要转化勾平面几何知识求出高.13.证明直线共面可通过先证明其中的两条直线确定一个平面,再证明其余的直线都在这个平面内;也可以利用共面向量定理来证明.证明空间几点共面,可先取不共线的三点确定—个平面,再证明其他的点都在这个平面内’ 14.理解“有且只有一个”的含义,它强调存在性和唯一性两个方面,也称为“确定”平面.15.求证三点及三点以上的点共线,主要是依据平面的基本性质3,只要证明这些点都是两个平面的公共点' 那么它们都在这两个平面的交线上;求证三条直线或三条以上的直线共点的一般方法是:首先证明其中两条直线交于一点,再证明其余各直线都经过这点-16.平面的基本性质2及其推论是空间中确定平面的依据,也是证明两个平面重合的依据,还为立体几何问题转化为平面几何问题提供了理论依据和具体办法.
17.直线和平面平行时,注意把直线和平面的位置关系转化为直线和直线的位置关系,直线 6
和平面平行的性质定理在应用时,要特别注意“一条直线平行于一个平面,就平行于这个平面的一切直线”的错误结论.
18.以求角为背景考查两个平行平面间的性质,也可以是已知角利用转化和降维的思想方法求锵其他几何参量.19.线面平行和面面平行的判定和性质20.转化思想方法:直线与平面平行的判定定理和性质定理的实质就是线线平行与线面平行的转化.
21.要能够灵活地作出辅助线或辅助平面来解题.对此需强调两点;第一,辅助线、辅助面不能随意作,要有理论根据;第二,辅助线或辅助面有什么性质,一定要以某一性质定理为依据,决不能凭主观臆
断,否则谬误难免.
22.直线与平面垂直,只需这条直线垂直于这个平面内的两条相交直线,至于这两条相交直线是否和已知直线有公共点,这无关紧要.
23.三垂线定理及其逆定理是立体几何中的重要定理,复习运用时要注意:
①弄清定理中所指明的三种垂线,②定理中的直线a-定在某直线的射影所在的平面a内,因此要熟练地掌握直线n在不同位置时的情况.
24.在证明两平面垂直时,一般先从现有直线的平面中寻找平面的垂线,若这样的直线图中没有明确给出,则可通过作辅助线来解决,而作辅助线则应有理论根据,并有利于证明,不能随意添加,如有平面垂直时,一般要用性质定理,在一个面内作交线的垂线,使之转化为线面垂直,然后进一步转化为线线垂直.25.线面垂直的判定和性质:①依定义,所成角为90。

,②判定定理;③性质定理;④其他结论,如,如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于同一个平面.
26.应用三垂线定理的难点主要是对非水平放置的图形的辨认,在解证中可按照“一定平面,二定垂线,三找斜线,射影可见,直线随便”的原则去认定图形.其关键是转化,即把已知的线线垂直转化为所需的线线垂直’也就是斜线和它在平面内的射影的转化,因此,寻找斜线、射影非常重要.
实际应用
3.如图,已知四棱锥P-ABCD的底面为等腰梯形,AB∥CD,AClBD,垂足为H,PH是四棱锥的高.(I)证明.平面PAC_1_平面PBD:,(Ⅱ)若AB-厢,/APB一/ADB= 60。

,求四棱锥P-ABCD的体积.
参考答案1.【答案lD【命题立意】本题考查几何体的直观图和三视图的有关知识,考查学生的空间想象能力.【解题思路】由已知条件和直观图(斜二测)可知D正确. 2.【答案】D【命题立意】本题考查空间想象能力及平行与垂直关系的推理与论证.【解题思路】A
错,平行直线的平行投影仍可平行;B错'平行于同~直线的两平面可平行或相交;c错,垂直于同一平面的两平面可平行或相交;D正确,空间想象易知垂直于同一平面的两直线平行,
第二篇:XX届高考数学立体几何复习教案
XX届高考数学立体几何复习教案
本资料为woRD文档,请点击下载地址下载全文下载地址
立体几何总复习
一、基本符号表示..点A在线m上:Am;
2.点A在面上:A

3.直线m在面内:m

4.直线m与面交于点A:m
=A;
5.面与面相交于直线m:=m;
二、点A到面的距离.(第一步:作面的垂线)
①作法:过点A作Ao
于o,连结线段Ao,即所求。

②求法:
(一)直接法;
(二)等体法(等积法包括:等体积法和等面积法);
(三)换点法。

如图,三棱锥中,PA⊥AB,PA⊥Ac,AB⊥Ac,PA=Ac=2,AB=1,m为Pc的中点。

(II)求点A到平面PBc的距离.(例2)四棱锥P—ABcD中,PA⊥底面ABcD,AB//cD,AD=cD=1,∠BAD=120°,PA=,∠AcB=
90°。

(III)求点B到平面PcD的距离。

(例3)如图,直三棱柱中,Ac⊥cB,D是棱的中点。

(I)求点B到平面的距离.三、两条异面直线m与n所成角.①作法:平移,让它
们相交.(若mn,则可证出mn所在的平面)
②求法:常用到余弦定理.③两条异面直线所成角的范围:
;任意两
条异面直线所成角的范围:
.如图,在中,斜边.可以通过以直线为轴旋转得到,且二面角是直二面角.动点的斜边上.(II)当为的中点时,求异面直线与所成角的大小;
四、线m与面所成角.(第一步:作面的垂线)
①作法:在线m上任取一点P(异于A),作Po
于o,连结Ao,则Ao为斜线PA在面内的摄影,m与面所成的角。

②求法:一般根据直角三角形来解。

③线面角的范围:
.已知正四棱柱中,AB=2。

(II)求直线与侧面所成的角的正切值.如图,在中,斜边.可以通过以直线为轴旋转得到,且二面角是直二面角.动点的斜边上.(III)求与平面所成角的最大值.五、二面角(注:若所求的二面角为直二面角,一般转化为求它的补角—锐角).(一)定义法:
①作法:在棱c上取一“好”点P,在两个半平面内分别作c的垂线(射线)m、n,则角即二面角—c—的平面角。

②求法:一般根据余弦定理。

(二)三垂线法:(第一步:作面的垂线)
①作法:在面或面内找一合适的点A,作Ao
于o,过A作ABc于B,则Bo为斜线AB在面内的射影,为二面角—c—的平面角。

三垂线法的步骤:
1、作面的垂线;
2、作棱的垂线,并连结另一边(平面角的顶点在棱上);
3、计算。

②求法:一般根据直角三角形来解。

③二面角的取值范围:
.如图,三棱锥中,PA⊥AB,PA⊥Ac,AB⊥Ac,PA=Ac=2,AB=1,m为Pc的中点。

(III)求二面角的正切值。

(例2)已知正四棱柱中,AB=2。

(III)求二面角的正切值。

(例3)四棱锥P—ABcD中,PA⊥底面ABcD,AB//cD,AD=cD=1,∠BAD=120°,PA=,∠AcB=
90°。

(II)求二面角D—Pc—A的大小;
(例4)已知:四棱锥P—ABcD的底面ABcD是边长为1的正方形,PD⊥底面ABcD,且PD=1。

(III)求二面角B—PA—c的余弦值.(例5)如图,直三棱柱中,Ac⊥cB,D是棱的中点。

(II)求二面角的大小。

六、三垂线定理.(第一步:作面的垂线)
.定理:PA为斜线,Po
于o,oA为射影,m,AomPAm.2.逆定理:PA为斜线,Po
于o,oA为射影,m,PAm
Aom.已知正四棱柱中,AB=2。

(I)求证:.七、线面平行()..定义:
2.判定定理:
3.性质定理:
(例1)已知:四棱锥P—ABcD的底面ABcD是边长为1的正方形,PD⊥底面ABcD,且PD=1。

(I)求证:Bc//平面PAD.八、线面垂直()..定义:
2.判定定理:
3.性质定理:
(例1)四棱锥P—ABcD中,PA⊥底面ABcD,AB//cD,AD=cD=1,∠BAD=120°,PA=,∠AcB=
90°。

(I)求证:Bc⊥平面PAc;
(例2)已知:四棱锥P—ABcD的底面ABcD是边长为1的正方形,PD⊥底面ABcD,且PD=1。

(II)若E、F分别为PB、AD的中点,求证:EF⊥平面PBc.九、面面平行()..定义:
2.判定定理:
3.性质定理:
十、面面垂直()..定义:
2.判定定理:
3.性质定理:
如图,三棱锥中,PA⊥AB,PA⊥Ac,AB⊥Ac,PA=Ac=2,AB=1,m为Pc的中点。

(I)求证:平面PcB⊥平面mAB.如图,在中,斜边.可以通过以直线为轴旋转得到,且二面角是直二面角.动点的斜边上.(I)求证:平面平面;
十一、有关对角线..平行四边形:
对角线平分.2.菱形:
对角线垂直且平分.3.矩形:
对角线相等且平分.4.正方形:
对角线相等且垂直且平分.十二、平移的方法..三角形(或梯形)的中位线:
且等于底边(上下两底之和)的一半.2.平行四边形:对边
且相等.3.等比例线段:
十三、重要辅助线的添加方法..见到中点,考虑:①中位线;②
;③
.2.见到平行四边形(菱形、矩形、正方形同理),考虑:①连结对角线;②对边平行且相等.十四、求三角形面积的通用方法.十五、三棱锥的任何一个面都可以作为底面,方便使用等体法.十六、立体几何解题策略(附加:在做立体几何大题时,后以文经常用到前一问的结论,平时注意)..由已知想性质;
2.由结论想判定;
3.由需要做辅助线或辅助平面.十七、有关棱柱.棱柱——————————直棱柱—————————正棱柱..两底面平行;
+1.侧棱垂直于底面
+1.底面是正多边形
2.侧棱平行
十八、有关棱锥.棱锥——————————正棱锥..一面一点一连;
+1.底面是正多边形;
2.顶点在底面的射影正好是底面正多边形的中心.
第三篇:2013届高考数学第一轮立体几何初步专项复习教案§3 三视图
【课时目标】1.初步认识简单几何体的三视图.2.会画出空间几何体的三视图并会由空间几何体的三视图画出空间几何体.1.空间几何体的三视图是指__________、__________、__________.2.三视图的排列规则是__________放在主视图的下方,长度与主视图一样,__________放在主视图的右面,高度与主视图一样,宽度与俯视图的宽度一样.
3.三视图的主视图、俯视图、左视图分别是从________、__________、________观察同一个几何体,画出空间几何体的图形.
一、选择题
1.下列说法正确的是()A.任何几何体的三视图都与其摆放的位置有关 B.任何几何体的三视图都与其摆放的位置无关 C.有的几何体的三视图与其摆放的位置无关D.正方体的三视图一定是三个全等的正方形
2.如图所示的一个几何体,哪一个是该几何体的俯视图()
3.如图所示,下列几何体各自的三视图中,有且仅有两个视图相同的是()
A.①②
B.①③
C.①④
D.②④ 4.一个长方体去掉一个小长方体,所得几何体的主视图与左视图分别如图所示,则该几何体的俯视图为()
5.实物图如图所示.无论怎样摆放物体,如图所示中不可能为其主视图的是()
6.一个长方体去掉一角的直观图如图所示,关于它的三视图,下列画法正确的是()
二、填空题
7.根据如图所示俯视图,找出对应的物体.
(1)对应________;(2)对应________;(3)对应________;(4)对应________;(5)对应________.
8.若一个三棱柱的三视图如图所示,则这个三棱柱的高(两底面之间的距离)和底面边长分别是________和________.
9.用小正方体搭成一个几何体,如图是它的主视图和左视图,搭成这个几何体的小正方体的个数最多为________个.
三、解答题
10.在下面图形中,图(b)是图(a)中实物画出的主视图和俯视图,你认为正确吗?如果不正确,请找出错误并改正,然后画出左视图(尺寸不作严格要求).
11.如图是截去一角的长方体,画出它的三视图.
能力提升
12.如图,螺栓是棱柱和圆柱的组合体,画出它的三视图.
13.用小立方体搭成一个几何体,使它的主视图和俯视图如图所示,搭建这样的几何体,最多要几个小立方体?最少要几个小立方体?
在绘制三视图时,要注意以下三点:
1.若两相邻物体的表面相交,表面的交线是它们的原分界线,在三视图中,分界线和可见轮廓都用实线画出,不可见轮廓用虚线画出.2.一个物体的三视图的排列规则是:俯视图放在主视图的下面,长度和主视图一样.左视图放在主视图的右面,高度和主视图一样,宽度和俯视图一样,简记为“长对正,高平齐,宽相等”.3.在画物体的三视图时应注意观察角度,角度不同,往往画出的三视图不同.
§3 三视图
答案
知识梳理。

相关文档
最新文档