第三章电容元件与电感元件

合集下载

《电容元件和电感元 》课件

《电容元件和电感元 》课件

PART 03
电容元件和电感元件的特 性比较
REPORTING
静态特性比较
总结词
在静态条件下,电容元件和电感元件的特性存在显著差异。
详细描述
电容元件在静态时表现为隔直流通交流的特性,其两端电压 与电流相位差为90度;而电感元件在静态时表现为通直阻交 流的特性,其两端电压与电流相位差为0度。
动态特性比较
机械应力
电感元件应能承受一定的 机械应力,如振动和冲击 。
THANKS
感谢观看
REPORTING
选频。
扼流:在高频电路中,电 感可以抑制高频信号的突
变。
旁路:在高频信号下,电 容可以作为旁路,使信号
顺利通过。
电感元件
滤波:对于高频信号,电 感可以滤除特定频率的信
号。
PART 05
电容元件和电感元件的选 用原则
REPORTING
根据电路需求选择合适的元件
滤波电路
耦合电路
选择低损耗、高绝缘电阻的电容或电 感元件。
电容
电容元件的电学量,表示电容器 容纳电荷的本领,与电容器极板 的面积、距离和介质有关。
电容元件的种类
01
02

固定电容
电容量固定的电容器,常 见有瓷介电容、薄膜电容 等。
可变电容
电容量可调的电容器,常 见有空气电容、可变电容 器等。
电解电容
有极性的电容器,正极和 负极材料不同,常见有铝 电解电容、钽电解电容等 。
总结词
在动态条件下,电容元件和电感元件的特性也表现出不同的特点。
详细描述
电容元件在动态时表现为充电和放电的过程,其阻抗随频率的升高而减小;而电 感元件在动态时表现为电流的磁效应,其阻抗随频率的升高而增大。

电工技术基础与技能ppt单元3 电感和电容

电工技术基础与技能ppt单元3  电感和电容

22 0.22F
电 容
2)数码标志法。
一般用三位数表示容量的大小,前面两位数字为电 容器标称电容量的有效数字,第三位数字表示有效数字 后面零的个数,单位是pF。如果用四位表示电容量的大 小,数字大于1时,单位为pF,当数字部分大于0小于1 时,其单位为微法(µF)。
例: 3300表示3300皮法(pF) 680表示680皮法(pF) 7表示7皮法(pF) 0.056表示0.056微法(µF)
C1C2 220 220 C μF 110μF C1 C2 220 220
各电容的电荷量为: q1 q2 CU 110106 220C 2.42102 C
两电容器两端的电压分别为:
q1 2.42102 U1 U 2 V 110V 6 C1 22010
q1 q2 CU 3.33106 300C 1103 C
各电容器上的电压为: 结论:电容器 C1C2 可能会被击穿。
q1 1 103 U1 V 200V 6 C1 5 10
q2 1 103 U2 V 100 V 6 C 2 10 10
q 6 104 连接后的共同电压为: U V 20 V 5 C 3 10
电磁感应
观察与思考:
谁有如此“神力”托起这庞然大物并控制其闪电般在城际间 疾驰的呢? 磁悬浮列车
向前推力
磁 场
一、磁场与磁力线 磁体的周围存在磁力作用的空间,这种作用的空 间就称为磁场。
磁场的方向:将小磁针放入磁场中某一点,当磁 针静止时,其N极所指的方向即为该点磁场的方向。
1 1 1 1 C C1 C2 C3
例 题
例:如图,电容C1和C2串联,C1 = C2= 220 F,额定工作 电压为 150 V,电源电压 U =220 V,求串联电容器的等效电 容是多大?两只电容器两端的电压是多大?在此电压下工作是 否安全? (电容器在此电压下是安全的) 解: 两只电容器串联后的等效电容为:

《电工电子技术与技能》教学大纲

《电工电子技术与技能》教学大纲

《电工电子技术与技能》教学大纲第一部分课程概述一、课程性质与任务本课程是中等职业学校非电类相关专业的一门基础课程。

其任务是:使学生掌握非电类相关专业必备的电工电子技术与技能,培养非电类相关专业学生解决涉及电工电子技术实际问题的能力,为学习后续专业技能课程打下基础;对学生进行职业意识培养和职业道德教育,提高学生的综合素质与职业能力,增强学生适应职业变化的能力,为学生职业生涯的发展奠定基础。

二、课程教学总体目标使学生会观察、分析与解释电的基本现象,具备安全用电和规范操作常识;了解电路的基本概念、基本定律和定理;熟悉常用电气设备和元器件、电路的构成和工作原理及在实际生产中的典型应用;会使用电工电子仪器仪表和工具;能初步识读简单电路原理图和设备安装接线图,并能对电路进行调试、对简单故障进行排除和维修;初步具备查阅电工电子手册和技术资料的能力,能合理选用元器件。

结合生产生活实际,培养对电工电子技术的学习兴趣和爱好,养成自主学习与探究学习的良好习惯;通过参加电工电子实践活动,培养运用电工电子技术知识和工程应用方法解决生产生活中相关实际电工电子问题的能力;强化安全生产、节能环保和产品质量等职业意识,养成良好的工作方法、工作作风和职业道德。

三、教学要求及建议(一)教学要求本门课程通过不同的教学方法和教学手段,使学生掌握电路理论、安全用电、模拟电子技术、数字电子技术、EDA技术等电工技术领域中的基本理论、基本知识;初步掌握一般电路和电子电路的分析方法;了解常用电子器件的作用和功能;了解电工电子技术领域中的新理论、新技术、新知识。

(二)教学建议1、以学生发展为本,重视培养学生的综合素质和职业能力,以适应电工电子技术快速发展带来的职业岗位变化,为学生的可持续发展奠定基础。

为适应不同专业及学生学习需求的多样性,可通过对选学模块教学内容的灵活选择,体现课程内容的选择性和教学要求的差异性。

教学过程中,应融入对学生职业道德和职业意识的培养。

电子元器件—电阻电容电感知识大全PPT版

电子元器件—电阻电容电感知识大全PPT版
参考书籍: 电子线路设计*实验*测试 主编:谢自美 51单片机应用从零开始 主编:杨欣,王玉凤,刘湘黔
第一课 电阻元件 电感元件 电容元件 电感的符号
电感器
带铁(磁)芯电感器 非铁磁芯电感器
可调电感器
带抽头电感器
磁芯微调电感器
铁芯变压器
绕组间有屏蔽的变压器 带屏蔽变压器
第一课 电阻元件 电感元件 电容元件
电感
第一课 电阻元件 电感元件 电容元件
色环电感基本构造
导磁体性质:铁氧体磁芯 绕线形式:单层密绕式 电感量:10,33,47,100... 应用范围:滤波 种类:电感线圈 封装形式:色环电感
色环电感特征
1.色环电感结构坚固,成本低廉,适合 自动化生产。 2.特殊铁芯材质,高Q值及自共振频率。 3.外层用环氧树脂处理,可靠度高。 4.电感范围大,可自动插件。
第2. 一常课用电的阻电元感件器电—感—元扼件流电线容元圈件
扼流线圈:又称为扼流 圈、阻流线圈、差模电感器, 是用来限制交流电通过的线 圈,分高频阻流圈和低频阻 流圈。采用开磁路构造设计, 有结构性佳、体积小、高Q 值、低成本等特点,适用于 笔记型电脑、喷墨印表机、 影印机、显示监视器、手机、 宽频数据机、游戏机、彩色 电视、录放影机、摄影机、 微波炉、照明设备、汽车电 子产品等。
它是利用半导体光敏效应制成的一种元件。电阻值随入 射光线的强弱而变化,光线越强,电阻越小。无光照射时, 呈现高阻抗,阻值可达1.5MΩ以上;有光照射时,材料激发 出自由电子和空穴,其电阻值减小,随着光强度的增加,阻 值可小至1kΩ以下。
如:可见光敏电阻,主要材料是硫化镉,应用于光电控 制。红外光敏电阻,主要材料是硫化铅,应用于导弹、卫星 监测。
第一课 电阻元件 电感元件 电容元件

第三章电容和电感

第三章电容和电感

第三章电容和电感第三章电容和电感3.1电场和电场强度⼀、教学⽬的要求:1.掌握电场的特性、及场强概念2.会运⽤电⼒线疏密及场强分析问题⼆、重点:1.掌握电场的特性、及场强概念2.会运⽤电⼒线疏密及场强分析问题三、难点:电⼒线及场强四、实验教具挂图其他:挂图课时:1课时五、教学内容(⼀)组织教学:(⼆)教学安排:1.提问2.检查作业(三)教学过程:直授课3.1.电场和电场强度:3.1.1电场:1.电荷的性质:2.电场定义:<1>特性:电场⼒、电场具有能量3. 1. 2电场强度:1.定义:<1> 公式:QF E =恒量(同⼀点) <2> 母意义及单位:<3> 电场强度⽅向规定:正电荷在电场中受⼒⽅向2.电⼒线:(1)电⼒线:(电场线)(2)电场线的特点:正电荷起始负电荷终⽌,不相交,不中断,不闭合(3)电场强度⼤⼩⽅向表⽰:A.电⼒线每点切线⽅向与场强⽅向⼀致。

B.电⼒线的疏密表⽰强度⼤⼩。

(4)匀强电场:各点E 的⼤⼩⽅向电场⼒相同总结:学⽣看书:练习:1.在电场中,把检验电荷去掉E=0()2.电场中某点场强⽅向与正电荷在该点受⼒⽅向相同()3.电荷的性质是()4.电⼒线的特点是()作业:P58. 1.3.4.5.3.2电容器和电容⼀、教学⽬的要求:1.掌握电容器及电容及基本概念。

2.掌握电容⼤⼩与那些因素有关。

⼆、重点:1.掌握电容器及电容及基本概念。

2.掌握电容⼤⼩与那些因素有关。

三、难点:Q/U 是⼀个常数、及电容概念四、实验教具挂图其他:⽆课时:!~2课时五、教学内容(⼀)组织教学:(⼆)教学安排:1.提问2.检查作业并订正(三)教学过程:1.导⼊:2.授新课:3.2电容器和电容3.2.1电容器:1.电容器:储存电荷的元件称为电容器,⽤“C”表⽰。

2.电容器构成:任何两个彼此绝缘⽽⼜互相靠近的导体(1)极板:两个导体称为极板(2)电介质(3)符号:3.平⾏板电容器:两快正对的平⾏⾦属板,⾏板电容器。

电工学 电容,电感元件

电工学 电容,电感元件

4 2
iS/A
2
W / J
4 6 (b)
8
t/s
由题意知L=2H,故电感上的储能为:
16
t0 0 2 4t 0 t 2 1 2 2 w(t ) li 4t 64t 256 2 2t 8 9 9 9 0 t 8
2
4
6
8

e )
例4-4 图所示电路,t<0时开关K闭合,电路已达到稳态。 t=0时刻,打开开关K, 球初始值il(0+), Uc(0+), i(0+), ic(0+), UL(0+)的值。
㈣电容的单位
在国际单位制中,电容C的单位为法拉 (F),但因法拉这个单位太大,所以 通常采用微法(μF)或皮法(pF)作 为电容的单位,其换算关系为
1F 10 F,
6
1F 10 pF
6
㈤电容的伏安关系 设电容上流过电流与其两端电压为关联参 考方向,如图所示,则根据电流的定义有
dq(t ) i(t ) dt
所以
1 1 uc (1) uc (0) ic (t )dt C 0
1 1 V 0 5tdt 1.25 2 0
10 0 -10
iC/A
t/s
1
2
3
4
5
(b)
1 4 uc (4) uc (0) ic (t )dt C 0
1 2 1 4 5tdt (10)dt 2 0 2 0
u(t ) u(t )
(4-4)
等式两边分别为电容电压在t时刻左右极限值.上 式说明在 t 和 t 时刻电压值是相等的。在动态 电路分析中常用这一结论,并称之为“换路理 论”。

电容元件与电感元件

电容元件与电感元件
电工基础
电容元件与电感元件
1.1 电容元件 1.2 电容的串、并联 1.3 电感元件
1.1 电 容 元 件
1.1.1 电容
1、电容器
任何两个彼此靠近而且又相互绝缘的导体都可以构成 电容器。这两个导体叫做电容器的极板,它们之间的绝缘物 质叫做介质。
2、电容器符号
+q和-q为该元件正、负极板上的电荷量
1.3 电感元件
1.1.2 电感元件的电压电流关系
电感元件的电流变化时,其自感磁链也随之变化,由电 磁感应定律可知,在元件两端会产生自感电压。 关联参考方向下电感元件的电流、电压关系:
u L di dt
结论: 1、任何时刻,线性电感元件上的电压与其电流的变化率成正比。 2、只有当通过元件的电流变化时,其两端才会有电压。 3、电流变化越快,自感电压越大。当电流不随时间变化时,则 自感电压为零。这时电感元件相当于短路
求(1)开关S打开时,(2) 开关S关
a
闭时,ab间的等效电容Cab。
S b
C3 C4
, 解:(1)当S打开时,C1与 C2串联,C3与C4串联,两串联 支路再并联,所以
(2)当S闭合时,C1与C3并 联,C2与C4并联,并联之后再串
联,所以
Cab
C1C2 C1 C2
C3C4 C3 C4
10 10 20 20 10 10 20 20
1.2 电容的串、并联
1.2.1 电容器的并联
图1.2(a)所示为三个电容器并联的电路
u
+q1 C1 +q2 C2 +q3 C3
-q1
q2
-q 3
+q
u
C
-q
(a)
(b)

《电路原理》(第2版) 周守昌 目录

《电路原理》(第2版)  周守昌 目录

第九章 拉普拉斯变换
§9-1 拉普拉斯变换 §9-2 拉普拉斯变换的基本性质 §9-3 进行拉普拉斯反变换的部分分式展开法 §9-4 线性动态电路方程的拉普拉斯变换解法
第十章 电路的复频域分析
§10-1 基尔霍夫定律的复复频域导纳 §10-3 用复频域模型分析线路动态电路 §10-4 网络函数
绪论
第一章 基尔霍夫定律和电阻元件
§1-1 电路和电路模型 §1-2 电流和电压的参考方向 §1-3 基尔霍夫定律 §1-4 电阻元件 §1-5 独立源 §1-6 受控源 §1-7 运算放大器 §1-8 支路分析法
第二章 电阻电路的分析
§2-1 线性电路的性质·叠加定理 §2-2 替代定理 §2-3 戴维宁定理 §2-4 诺顿定理 §2-5 有伴电源的等效变换 §2-6 星形电阻网络与三角形电阻网络的等效变换 §2-7 特勒根定理 §2-8 互易定理 §2-9 节点分析法 §2-10 回路分析法 §2-11 电源的转移
第三章 动态元件和动态电路导论
§3-1 电容元件 §3-2 电感元件 §3-3 耦合电感元件 §3-4 单位阶跃函数和单位冲激函数 §3-5 动态电路的输入— 输出方程 §3-6 初始状态与初始条件 §3-7 零输入响应 §3-8 零状态响应 §3-9 全响应
第四章 一阶电路与二阶电路
§4-1 一阶电路的零输入响应 §4-2 一阶电路的阶跃响应 §4-3 一阶电路的冲激响应 §4-4 一阶电路对阶跃激励的全响应 §4-5 二阶电路的冲激响应 §4-6 卷积积分及零状态响应的卷积计算法
第一章基尔霍夫定律和电阻元件11电路和电路模型12电流和电压的参考方向13基尔霍夫定律14电阻元件15独立源16受控源17运算放大器18支路分析法第二章电阻电路的分析21线性电路的性质叠加定理22替代定理23戴维宁定理24诺顿定理25有伴电源的等效变换26星形电阻网络与三角形电阻网络的等效变换27特勒根定理28互易定理29节点分析法210回路分析法211电源的转移第三章动态元件和动态电路导论31电容元件32电感元件33耦合电感元件34单位阶跃函数和单位冲激函数35动态电路的输入输出方程36初始状态与初始条件37零输入响应38零状态响应39全响应第四章一阶电路与二阶电路41一阶电路的零输入响应42一阶电路的阶跃响应43一阶电路的冲激响应44一阶电路对阶跃激励的全响应45二阶电路的冲激响应46卷积积分及零状态响应的卷积计算法第五章正弦电流电路导论51正弦电压和电流的基本概念52线性电路对正弦激励的响应正弦稳态响应53正弦量的相量表示法54基尔霍夫定律的相量形式55电路元件方程的相量形式56阻抗和导纳57阻抗的串联与并联第六章正弦电流电路的分析61正弦电流电路的相量分析62正弦电流电路中的功率63谐振电路64含有耦合电感元件的正弦电流电路65理想变量器第七章三相电路71对称三相电压72三相制的联接法73对称三相电路的计算74不对称三相电路的计算75三相电路中的功率第八章非正弦周期电流电路的分析81周期函数的傅里叶级数展开式82线性电路对周期性激励的稳态响应83非正弦周期电流和电压的有效值平均功率84傅里叶级数的指数形式85周期信号的频谱简介86对称三相电路中的高次谐波第九章拉普拉斯变换91拉普拉斯变换92拉普拉斯变换的基本性质93进行拉普拉斯反变换的部分分式展开法94线性动态电路方程的拉普拉斯变换解法第十章电路的复频域分析101基尔霍夫定律的复频域形式102电路元件的复频域模型复频域阻抗和复频域导纳103用复频域模型分析线路动态电路104网络函数附录非线性电路1非线性电阻元件及其约束关系2非线性电阻元件的串联和并联3非线性电阻电路的图解分析法4小信号分析法绪论返回

交流电路中的电感与电容电流与电压的相位差与频率

交流电路中的电感与电容电流与电压的相位差与频率

交流电路中的电感与电容电流与电压的相位差与频率在交流电路中,电感和电容是两个重要的元件,它们会引起电流和电压之间的相位差,并且这种相位差会随着频率的变化而发生变化。

本文将详细讨论电感和电容在交流电路中的作用以及相位差和频率之间的关系。

一、电感在交流电路中的作用电感是一种能够储存能量的元件,其特点是随着电流的变化而产生反向的电动势。

在交流电路中,电感的主要作用是限制电流的变化速率,从而稳定电路的工作状态。

当电流变化快速时,电感会产生反向的电动势,抵消电流的变化,起到稳定电路的作用。

此外,电感还可以滤除高频信号,使之更适用于特定的频率范围。

二、电容在交流电路中的作用电容是一种储存电荷的元件,其特点是可以对电压进行积累和释放。

在交流电路中,电容的主要作用是储存电荷并提供稳定的电压。

当电压变化时,电容会通过吸收或释放电荷来平稳电压的波动。

电容还能够传递交流信号的直流成分,使电路能够输出稳定的直流电压。

三、电感与电容的相位差在交流电路中,电感和电容会引起电流和电压之间的相位差。

对于电感元件,电流落后于电压;而对于电容元件,电流超前于电压。

这是因为电感元件会阻碍电流的变化,使电流滞后于电压的变化;而电容元件能够积累电荷,并在电压变化时提前释放电荷,导致电流超前于电压。

四、频率对相位差的影响频率是指交流电信号的周期性变化,通常用赫兹(Hz)来表示。

在交流电路中,频率对相位差有显著的影响。

随着频率的增加,电感元件的相位差将增大,电流滞后于电压的程度更加明显。

而对于电容元件,随着频率的增加,相位差将减小,电流超前于电压的程度更加明显。

在低频情况下,电感元件的相位差比较小,电容元件的相位差比较大;而在高频情况下,电感元件的相位差比较大,电容元件的相位差比较小。

这是因为在低频情况下,电感元件对电流变化的阻碍作用较小,电容对电流变化的积累和释放作用较大;而在高频情况下,电感元件对电流变化的阻碍作用较大,电容对电流变化的积累和释放作用较小。

第3章 电容和电感

第3章  电容和电感
将小磁针在空间各点N极所指的方向用平滑的曲 线连接起来,可以得到一系列曲线,这些曲线称做 磁感应线或磁感线。
二、磁场方向的判断
1.通电直导线周围的磁场方向
通电直导线周围的磁感线是 以导线为圆心的一系列同心 圆,越靠近导线,磁场越强 ,磁感线越密。磁场方向用 右手定则判断,如图3-17所示
2.通电线框框内的磁场方向
3.电解电容器极性的判别
根据电解电容器正向接入时,漏电电流小反接 时漏电电流大的现象可判别电解电容器的极性 ,如图3-11所示。
活动三 电容器的连接方式
一、电容器的并联 将两个或多个电容器同极性的电极连接在一起, 接入电路的连接方式为电容器的并联,两个电容器 的并联如图3-12(a)所示。
设两个电容器的电容分别为C1,C2,并联后接在电 压为U的电路中,则两个电容器所带的电量Q1 和Q2分别为
【 例 3-1】 电 容 器 的 带 电 量 Q=4×10-3C , 电 压 U=200V , 求 电 容 器 的 电 容 ; 当 该 电 容 器 的 电 压 U=300V时,求该电容器的带电量。
四、影响电容器电容的因素 1.平板电容器的电容 当电容器为平板电容器时,电容为
式中,S为两极板正对的面积,单位为m2; d为两极板之间的距离,单位为m;
3.色标法
电容器色环表示法有立式色环、卧式色环。卧 式色环用色点表示。
色环及色点的读数基本单位为pF。电容器耐压 值也由色环表示。色环所表示的电容耐压值如 表3-2所示。
三、电容器的极性和质量判别
1.容量固定电容器漏电的判别 用万用表欧姆挡R×10k量程,将表笔与电容两极 并接,如图3-9所示。
使电容器的极板带电的过程称做充电。电 容器在充电过程中使两极板带电,便在两极 板之间的电介质内形成电场,两电极之间便 有了电压。如图3-3(c)所示。

电阻电容电感元件及其特性

电阻电容电感元件及其特性
第三节 电阻、电容、电感元件及其特性
一、电阻元件
二端元件: 有两个端钮与外部相连的元件。
二端电阻元件的 u、i 关系可由 u – i 平面的一条
曲线(伏安特性曲线)确定。
f(u,i)0
(电阻元件的电压与电流的约束关系, 简称VCR)
分 时不变电阻 或 线性电阻(过原点的直线)
类 时变电阻
非线性电阻
的值及 t = 2π/300 时的电流。
解: 电压 u 的最大值为60V,所以
+ i
1C 602 18 2
C632063366010 02F
u -
C
i C d u 0 .0d ( 1 6s0 1 in t0 ) 0 6c0 1 otA 0 s 0
d t
d t
t 2π 时 300
u、i、e(电动势)的参考方向为关联参考方向
edLdi
dt
dt
ue Ldi dt
i1
t
udti(0)
L0
i
+

uL e

+
3. 电感元件储存的能量 (关联参考方向)
电感 L 在任一瞬间吸收的功率:
pui Lidi dt
电感 L 在 dt 时间内吸收的能量:
P > 0 吸收能量 P < 0 释放能量
瓷介电容器系列 主要有:CC1, CC81, CT1,CT81,等
独石电容器 主要有: CC4, CT4. CC42, CT42 等
多层片状陶瓷电容器 ( SMD 贴 片 电 容 全 系 列) 片式钽电解电容 主要有: CC41,CT41.CA45 等
小型电 解电容
金属化聚丙烯 薄膜电容器

05电容和电感元件

05电容和电感元件


t u(t ) = 1 ∫− ∞ idξ C
du i=C dt
q =Cu
q(t ) = q(t0 ) + ∫ idξ
t t
0
1 t idξ + 1 t idξ = ∫− ∞ C C ∫t 1 t idξ = u(t0 ) + ∫t C
0 0
0
若 t0=0
1 t u( t ) = u( 0) + ∫0 idξ C
L
u
对于线性电感,有: ψ =Li 对于线性电感 有
ψ L= i
def
ψ =NΦ 为电感线圈的磁链
N为电感线圈的匝数。 为电感线圈的匝数。
ψ 单位:Wb (韦伯) 单位: 韦伯)
L 称为自感系数或电感,L是一个正实常数。 称为自感系数或电感, 是一个正实常数 是一个正实常数。
的单位: 亨 电感 L 的单位:H(亨) (Henry,亨利 ,亨利)
u( 2) = 0 V
1 t t ≥ 2 S u( t ) = u( 2) + ∫2 0dξ = 0 2
i/ A
2
1 2
0
−2
t/S
uC / V
1 1
0
2
t/S
思考: 思考:
(1) 一般来说,电容、电感的电压波形与电流波形是不相同 一般来说,电容、 的,为什么? 为什么? (2)如果一个电感线圈两端电压为零,它所储存的磁场能量 如果一个电感线圈两端电压为零, 如果一个电感线圈两端电压为零 也为零,对吗?为什么? 也为零,对吗?为什么? (3) 电路元件的电压与电流都是有一定的关系的,因此, 电路元件的电压与电流都是有一定的关系的,因此, 某时刻电容储能与该时刻的电压有关, 某时刻电容储能与该时刻的电压有关,也可以说与该时 刻的电流有关,对不对? 刻的电流有关,对不对?

大工15秋《电路理论》辅导资料六

大工15秋《电路理论》辅导资料六

电路理论辅导资料六主 题: 第三章 线性动态电路的时域分析(第1-3节) 学习时间: 2015年11月2日--11月8日 内 容:一、本周知识点及重难点分布表6-1 本周知识点要求掌握程度一览表序号学习知识点要求掌握程度本周难点了解熟悉 理解 掌握 1 电容元件 ★ 2 电感元件★ 3 换路定律与初始值的计算★☆二、知识点详解【知识点1】电容元件电容元件、电感元件称为“动态元件”,包含他们的电路称为动态电路。

动态电路是“有记忆”的。

1、电容器和电容元件电容器:因介质不理想存在导电和损耗。

电容元件:实际电容器的理想化模型。

定义:如果一个二端元件,在任一时刻其存储的电荷与其两端电压之间的关系可用u-q 平面上的一条曲线来确定,则此二端元件称为电容元件。

若该曲线为u-q 平面上的一条过原点的直线,则此电容元件称为线性、非时变电容元件。

2、电容元件的伏安关系qC u= 单位:法拉(F )-61μF 10F =,121pF 10F -=伏安关系:d d d d q u i C t t== 图6-1 电容元件的库伏特性稳态直流电路中,u 不随时间变化,0I =,电容相当于开路,有隔直作用。

①0d d >tu 时,电流流向电容正极板,电容充电;②0dd<tu时,电流从电容正极板流出,电容放电。

电容的电压不能发生突变。

假设电容电压突变,则电流为无穷大值,即:∞→=tuCidd因实际中电容上存储的电荷量不可能发生突变,图6-2 电容元件的符号故电容的电流恒为限制,电容电压不能突变。

3、电容的储能u i、为关联参考方向下:()()()()()ttutCut i tutpdd==①0>p:电容吸收功率,将电能转换成电场能②0<p:电容释放功率,将电场能转换成电能从t~∞-时间内电容上存储(释放)的能量为:()()()()()()()()()()∞--====⎰⎰⎰-∞-∞-222121ddddd CutCuuuCuCuptWuuttξξξξξξξξξξ若电容从零开始充电,即()0=∞-u,则:()()212W t Cu t=表明:电容在某时刻的储能值,只取决于该时刻的电容电压值,与电流无关。

电子技术基础——电路与模拟电子(第3章)

电子技术基础——电路与模拟电子(第3章)

du(t ) p(t ) = u (t )i (t ) = Cu(t ) dt
(3―6)
对上式从-∞到 进行积分 可得t时刻电容上的储能为 进行积分, 对上式从 到t进行积分,可得 时刻电容上的储能为 计算过程中认为u(-∞)=0。 。 计算过程中认为
ωC (t ) = ∫
t
−∞
p (ξ )d ξ
(3-7)
1 1 1 = + C C1 C2
或写为
C1C2 C= C1 + C2
(3―18)
上式中C为电容 相串联时的等效电容。由式(3―17)画出 上式中 为电容C1与C2相串联时的等效电容。由式 为电容 画出 其等效电路如图3.6(b)所示。同理可得,若有 个电容 k(k=1,2,…,n) 所示。同理可得,若有n个电容 个电容C 其等效电路如图 所示 相串联, 相串联,其等效电容为
第3章 动态电路分析
电容元件及电容电流波形分别如图3.2( )、 例3-1 电容元件及电容电流波形分别如图 (a)、 (b)所示,已知 )所示,已知u(0)=0,试求 ,试求t=1s、t=2s、t=4s时的电 、 、 时的电 容电压u以及 以及t=2s时电容的储能。 时电容的储能。 容电压 以及 时电容的储能
第3章 动态电路分析
电感串并联: 电感串并联:
是电感L 相串联的电路, 图 3.8(a)是电感 1 与 L2 相串联的电路 , 流过两电感的电流是同一电 是电感 的微分形式和KVL,有 流i。根据电感 。根据电感VAR的微分形式和 的微分形式和 ,
L = L1 + L2
(3―25)
称为电感L1与 L2串联时的等效 称为电感 与 串联时的等效 电感。 由式(3―26)画出相应的等效 电感 。 由式 画出相应的等效 电路如图3.8(b)所示 。 同理 , 若有 所示。 同理, 若有n 电路如图 所示 个 电感 Lk(k=1,2,…,n) 相 串联 , 可 推 导其等效电感为

电工技术第三章 电路的暂态分析习题解答

电工技术第三章 电路的暂态分析习题解答

第三章 电路的暂态分析含有电感或电容储能元件的电路,在换路时会出现暂态过程。

本章研究了暂态过程中电压与电流的变化规律。

主要内容:1.暂态过程的基本概念。

2.换路定则:在换路瞬间,电容电流和电感电压为有限值的情况下,电容电压 和电感电流在换路前后的瞬间保持不变。

3.RC 电路的零输入响应、零状态响应和全响应。

4.RL 电路的零输入响应、零状态响应和全响应。

5.一阶线性电路暂态分析的三要素法:一阶线性电路在直流激励下的全响应零、 输入响应和零状态响应都可以用三要素法τte f f f t f -+∞-+∞=)]()0([)()(来求出。

6.暂态过程的应用:对于RC 串联电路,当输入矩形脉冲,若适当的选择参数 和输出,可构成微分电路或积分电路。

[练习与思考]解答3-1-1什么是稳态?什么是暂态?解:当电路的结构、元件参数及激励一定时,电路的工作状态也就一定,且电流和电压为某一稳定的值,此时电路所处的工作状态就称为稳定状态,简称为稳态。

在含有储能元件的电路中,当电路的发生换路时,由于储能元件储的能量的变化,电路将从原来的稳定状态经历一定时间变换到新的稳定状态,这一变换过程称为过渡过程,电路的过渡过程通常是很短的,所以又称暂态过程。

3-1-2什么是暂态过程?产生暂态过程的原因是什么?解:含有储能元件的电路从一个稳态转变到另一个稳态的所需的中间过程称为电路的暂态过程(过渡过程)。

暂态过程产生的内因是电路中含有储能元件,外因是电路发生换路。

3-2-1 初始值和稳态值分别是暂态过程的什么时刻的值?解:初始值是暂态过程的+=0t 时刻的值,稳态值是暂态过程的∞=t 时刻的值。

3-2-2 如何求暂态过程的初始值?解:求暂态过程初始值的步骤为:⑴首先画出换路前-=0t 的等效电路,求出-=0t 时刻电容电压)0(-C u 和电感电流)0(-L i 的值。

对直流电路,如果换路前电路处于稳态,则电容相当于开路,电感相当于短路。

大学电路 第三章-1

大学电路 第三章-1

相量形式:
U=U∠ u =ωLI∠(i +90o)=jωLI∠i=jωLI
2.电感元件
电感相量VAR的最显著特点:电压相位超前电流相位90°
3.电容元件
ut 2I sint i
du i( t ) C 2CU cost u dt 2CU sin t u 90o
u1 100cos(t 120 ), u2 220sin(t 30 )
求(1)i与U1及i与U2的相位关系; (2)如果选择i为参考正弦量,写出与i与U1的瞬 时表达式。
5.正弦量的有效值

T
0
pdt

T
0
i Rdt R i 2 dt I 2 RT
2 0
T
则:I
U 2
120o
图3-3 有效值相量图
例 3-3
•已知:i1=3 2 sin(ωt+30o) , i2=4 2 sin(ωt-60o) ,试用有 效值相量求i1+i2,并画出各电流的有效值相量图。
解: i1、i2有效值相量分别为:
I e j 3 2 e j 30 3e j 30 330 I 1 1 2
有效值相量
Ie I 有效值相量为:
j
I m j I e m I 2 2
例如:10 2 sinω t——10∠0o 10 2 cosω t=10 2 sin(ω t+90o)——10∠90o 25 2 sin(20t+30o)——25∠30o 120 2 sos(314t-45o)=120 2 Sin(314ω t+45o)
i(t)=Imsin(2πt/T +ψi)=Imsin(2πft+ψi) (3-4)

第3章 电路的暂态分析 3.1 电阻元件、电感元件与电容元件.

第3章 电路的暂态分析 3.1 电阻元件、电感元件与电容元件.

3.1 电阻元件、电感元件与电容元件 3.1.1 电阻元件。
i
+
电阻元件:消耗电能,转换为热能(电阻性) u
R
根据欧姆定律: u iR
_
即电阻元件上的电压与通过的电流成线性关系
金属导体的电阻与导体的尺寸及导体材料的
导电性能有关,表达式为:R l
S
电阻的能量 W
t
uidt
t Ri2dt 0
或与磁通的参考方向符合右手螺旋定则。
(2) 自感电动势瞬时极性的判别
i
i di 0
+-
u eL
-+
+
dt
eL实
-
eL
L di dt
<
0
eL与参考方向相反
i
+-
u eL
-+
-
eL实
+
i
di
dt 0
eL
L
di dt
>0
eL与参考方向相同
eL具有阻碍电流变化的性质
电感中出现的感应电动势表明在电感两端有电压产生, 用u表示,并规定u、I的参考方向一致,
三、初始值的确定
初始值:电路中各 u、i 在 t =0+ 时的数值。
求解要点:
(1) uC( 0+)、iL ( 0+) 的求法。 1) 先由t =0-的电路求出 uC ( 0– ) 、iL ( 0– ); 2) 根据换路定律求出 uC( 0+)、iL ( 0+) 。
换路前
换路后
t=0
因此,电容和电感在换路瞬时的uC 和iL 值可用下列关系表示:
uC (0-) = uC (0+) iL (0-) = iL(0+) 即 从t=0-到t=0+ 瞬间,电容两端的电压和流过电感的电流不能突 变,这称为换路定则。

电容、电感

电容、电感

第三章 电容和电感第一节 电容学习目标 1.掌握什么是电容器及常见的电容器;2.理解电容的概念及定义式,了解平行板电容器的电容与哪些因素有关3.理解介质的击穿 4.掌握电容的串并联 5.掌握电容的充放电重点 1.电容的串并联2.电容的充放电 难点 电容的充放电一、电场的基本概念1.电场:带电体周围存在电场。

静止电荷形成的为静电场,电流不变化的为恒定电场,电流不断变化的为变化电场。

2. 电场力:电场对场中电荷的作用力 3.电场强度:测量电场强度的物理量aFE =, 对于均匀电场ab ab EL U =,对于不均匀电场⎰=b a ab E U COS a二、 电容元件1.电容的定义:一种储存电场能量的实际器件,电容器所带电量Q 与电容器两极板间的电压U 的比值,称为电容器的电容,用C 表示。

2.图形符号: 3.计算式: UQC =,电容量表征导体在单位电压作用下储存电荷的能力,是由电容器本身的性质(导体大小、形状、相对位置及电介质)决定的,与电容器是不是带电无关。

4.单位:法拉(F)1F=103µF=106PF5.分类:按照介质可以分为空气电容器、纸介质电容器、银介质电容器、云母介质电容器、油介质电容器、金属介质电容器等。

按照电容的容量是否可调可以分为固定电容器、可调电容器,按照电容器有无极性可以分为无极性电容器和电解电容器。

6.平板电容器:电容器两金属片是平行平面,中间是均匀电场。

A Q E =,C与A、E、d有关,但C与U有关, UQd A C ==ε 7.广义电容器:任何两个导体间都存在电容,如输电线之间,输电线与大地之间,晶体管各极之间,电机变压器绕组的匝间,绕组与机壳之间,但都较小。

8.参数① 额定工作电压,若电容器的工作电压超过额定电压,将引起介质击穿,导致 电容器毁坏。

② 标称容量 ③ 允许误差④ 绝缘电阻:应越大越好。

LI UR = U 为所加电压,I L 为漏电流。

三、电容器的串联1.电量: Q=Q 1 =Q 2=Q 3 2.电压:U S =U 1+U 2+U 3 3.电容量:3211111C C C C ++=,即电容器串联之后,总容量减少,这相当于电阻的并联。

电阻电容电感基础知识参考大全

电阻电容电感基础知识参考大全

0
100
国外也有用色码标注电 棕色
1
101
容与电感的。现在,能 红色
2Leabharlann 10 2否识别色环电阻,已是 橙色
3
10 3
考核电子行业人员的基 黄色
4
105
本项目之一。
绿色
5
10 4
表 1.4 和 图 1.3 、 图 蓝 1.4、图1.5分别表示各种 紫 颜色所代表的意义及电 灰
6
106
7
107
8
108
阻、电容、电感的色码 白色
三、编号与习惯标识
在电子技术行业中,追求简捷和约定俗成 的习惯使元器件标识逐渐简化。如:用μ表μF, 相 应 的 pF、nF 亦 简 化 为 p、n。 为 计 算 机 操 作 方便而把μ用小写u代替也已被认同。同样,电 阻的数值一般省掉“Ω”符号,如果一个电阻 没有度量单位,就被认为是欧姆。在电感器中, 常 用 的 mH、μH 亦 可 简 化 为 m、μ(u)。 但 在一些书籍中或有可能引起误会的场合,还是 应该使用标准标识方法。
由上 可知 , 市场上 买不到 5 0 kΩ的电阻 , 26μF的电容和5.9mH的电感,而只能根据精度要 求在相应系列中选择接近的规格(除非电路性能 有特别要求),一般尽可能选择普通系列规格。
精密电抗元件可选用E48(±2%),E96 (±1%),E192(±0. 5%)等系列,但由于 制造、筛选及测试成本增高,使用数量较少,这 些元件价格要比常用系列高出数倍甚至数十倍。 表1.1列出了E6、E12、E24系列的数值及相应的 允许偏差。
(2)无源元件:工作时,不需要专门的附 加电源,如电阻、电容、电感和接插件。
无源元件又分为电抗元件和结构元件,而电 抗器件又可分为耗能元件和储能元件。电阻器是 典型的耗能元件;电容器、电感器则属于储能元 件。而开关、接插件属于结构元件。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

u ,i , p
p
P
0
u
i
图3-4-2
Pm U m I m
1 P Pm UI 2
t
3.3.1 电阻元件伏安特性的相量形式
那么,电压与电流的相量关系为: U
a
I
RI
电压电流的相量模型及相量图如图3-4-3所示

R
U
U
b

I u i
相量图 图3-4-3
则有
2 I sin( t i )
u

u(t ) Ri 2RI sin( t i ) 2U sin( t u )
上式表明:电阻两端电压 u 和电流 i 为同频率同相位的正弦量,它们之间关 系如下:
b
U RI
图3-4-1
i u
3.3.1 电阻元件伏安特性的相量形式 其电压与电流的波形图如图3-4-2所示
感(用字母L表示)。
电容和电感元件能够把从电源吸收的 能量储存起来,并能够释放所储存的能量倒
电路中去。
3.1 电容元件
电容元件种类很多,但 基本结构都是类似的,都是 由两个可导电的金属板间隔 着不导电的绝缘材料(介质) 而构成。结构示意图如图31所示 介质可以是绝缘纸、真 空、玻璃、陶瓷、云母、聚 苯乙烯等绝缘材料。
实为储能元件。
3.3.2 电感元件伏安特性的相量形式 3)无功功率(Q) 无功功率是用来描述储能元件与电源交换能 量的规模。
QL UI I 2 X L
单位是乏(var)
2 U XL
3.3.3 电容元件伏安特性的相量形式 1、伏安特性 在图3-4-7中,设加在电容两端的电压为
u( t ) 2U sin( t u )V
由上式可看出,电感的瞬时功率为一个两倍 于电压或电流频率的正弦量。波形图如图3-4-5 所示
3.3.2 电感元件伏安特性的相量形式 2)平均功 率
1 T 1 T 1 T P pdt uidt UI sin 2tdt 0 T 0 T 0 T 0



电感元件在一个周期内的平均功率为零(正、 负波形相抵消)。表明电感元件不消耗能量,只是 在电源和元件间进行能量的转换,同时说明电感确


C1 q1 C2 q2 C3 q3
u
u
q
C
q q1 q2 q3
则: C


C1 C2 C3
图3-3-5
当电容器的耐压值符合要求,但容量不够时, 可将几个电容并联。
3.1.6 电容的串
3.1 电容元件

如图3-3-6所示对

C1

q
C2
C3
于线性电容元件有
3.1.4 电容元件的电场能
1)电容元件的功率
p>0,表明电容元件在储存能量,p<0,表明电
容元件在释放能量。(电压与电流的方向是否关联)
du p ui uC dt
3.1 电容元件
2)电容元件的电场能量 电容元件从u(0)=0(电场能为零)增大到u(t)时, 总共吸收的能量,即t时刻电容的电场能量。
u u1 u 2 u3
1 1 1 1 则: C C1 C 2 C 3
u
q q
q
q
u1
u q 2 u3
u
C
q


图 3-3-6
电容串联的等效电容的倒数等于各电容倒数 之和。电容的串联使总电容值减少。Fra bibliotek 3.2 电感元件
电感元件在电子工业和电力系 统中应用很多,可用于发电机、变 压器、收音机、电视、雷达、电动 机、继电器等。 将一根导线按照一定的形状绕
否关联)
3.2 电感元件
电感电流从
i( 0 ) 0
增大到 i( t ) 总共吸收的
能量,即t时刻电感的磁场能量
WL ( t )
pdt L
0
t
i( t )
0
1 2 idt Li ( t ) 2
当电感的电流从某一值减小到零时,释放的磁 场能量也可按上式计算。在动态电路中,电感元件 和外电路进行着磁场能与其它能相互转换,本身不 消耗能量。
W (t ) c
t 0 Pdt

u( t ) 0 Cudu
1 2 Cu ( t ) 2
当电容电压由u减小到零时,释放的电场能量 也按上式计算。
动态电路中,电容和外电路进行着电场能量
和其它能量的相互转换,本身不消耗能量。
3.1 电容元件
3.1.5 电容的并联 如图3-3-5所示对 于线性电容元件有:
p,u ,i
p
u

0

i





T 4 T 4 T 4


t
T 4
图3-4-8
3.3.3 电容元件伏安特性的相量形式 那么电压与电流的大小关系为: 那么电压与电流的相位关系为:
I CU
i u 90
0
jCU 那么电压与电流的相量关系为: I 电压电流的相量模型及相量图如图3-4-9所示
jB U I L
3.3.2 电感元件伏安特性的相量形式 2、功率 1)瞬时功率 在关联参考方向下,当 i 0 时,电感吸收的 瞬时功率为 p ui 2U sin( t ) 2 I sin t 2
2UI cos t sin t UI sin 2t
L
i
3.2 电感元件
3.2.3 电感元件的伏安特性 根据电磁感应定律,感应电压等于磁链的变化 率。当电压的参考极性与磁通的参考方向符合右手 螺旋定则时,可得
u
d dt
则:
u
d dt

dLi dt
L
di dt
3.2 电感元件 电感元件的伏安特性说明:

任一瞬间,电感元件端电压的大小与
电压电流的相量模型及相量图如图3-4-6所示
I

U
U
L
u
I

i
相量模型
图3-4-6
相量图
3.3.2 电感元件伏安特性的相量形式 2、感抗 (X L) 由 可知
U LI U I L
即当U一定时,ωL越大,I越小。可见ωL反映了 电感对正弦交流电流的阻碍作用,因此称它为电感 电抗,简称感抗,用X L表示。
扼流圈),对低频电流阻力较小,而对直流( f=0)
电感相当于短路。
3.3.2 电感元件伏安特性的相量形式 感抗的倒数称为感纳,用BL表示, 即 1
BL
XL
它的单位是西门子(S),显然,感纳表示电 感对正弦交流电流的导通能力 有了感抗和感纳,那么电感元件的电压电流的 相量关系可表示为: U jX I L

XL
Um U L 2f L I Im
感抗的单位是欧姆。
3.3.2 电感元件伏安特性的相量形式
X L L 2fL
由感抗的公式可知, XL由电感L及电路中的频 率f决定。而当L一定时,电感对电流的阻碍作用, 即XL的大小由f决定,两者成正比关系。所以电感
元件对高频电流有较大的阻力(实际设备中的高频

i
u


图3-3-7
制成线圈则为一简单的电感元件。
如图3-3-7所示。
3.2 电感元件
3.2.1 电感元件符号
电感元件是实际电感线圈的理想化模型。其 符号如图3-3-8所示。
L
L
L
空心线圈
铁心线圈
可变铁心线圈
图3-3-8
3.2 电感元件
3.2.2电感元件单位 当电流通过线圈时,线圈处在该电流产生的磁场 当中,每匝线圈都有磁通Φ穿过。若线圈有N匝,则 与线圈交链的总磁通即为NΦ称做磁链Ψ,即Ψ=NΦ 磁链与产生它的电流的比值叫做电感元件的电感 或自感用字母L表示。 电感的单位为亨(利),符号为H,常用的单位有 毫亨(mH)、微亨(μH)。 电感元件的电感为一常数,磁链Ψ总是与产生它 的电流i成线性关系,即
上式表明电感两端电压 u 和电流 i 是同频率的正 弦量,电压超前电流90°。
3.3.2 电感元件伏安特性的相量形式 其电压与电流的波形图如图3-4-5所示
p,u ,i
p
u
i
0
+
+
+
+
T 4 T 4
T 4 T 4
T 4
图3-4-5
-
t
3.3.2 电感元件伏安特性的相量形式
U LI 那么电压与电流的大小关系为: 那么电压与电流的相位关系为: u i 900 jLI U 那么电压与电流的相量关系为:
q(库仑C) C u(伏特V)
电容的单位为法拉,简称法,符号为F。常 用单位有:微法(μF),皮法(pF)。
3.1 电容元件
3.1.3电容元件的伏安特性
电容是储存电荷的元件,当电容电压u随时 间 发生变化 时,储存在电容元件极板上的电荷
随之变化,出现充电或放电现象,连接电容的导
线中就有电流流过。这个电流即为电容电流。
该瞬间电流的变化率成正比,而与该瞬间
的电流无关。电感元件也称为动态元件,
它所在的电路称为动态电路。电感对直流
起短路作用。
3.2 电感元件
3.2.4 电感元件的磁场能
在关联参考方向下,电感吸收的功率
p ui Li
di dt
p>0,表明电感元件在储存能量,p<0,表
明电感元件在释放能量。(电压与电流的方向是
3.3.1 电阻元件伏安特性的相量形式 2)平均功率 平均功率定义为瞬时功率p在一个周期T内的平均 值,用大写字母P表示。即
相关文档
最新文档