《方程的根与函数的零点》优质课比赛说课教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§3.1.1 方程的根与函数的零点
说课教案
●教材地位与作用
●教学目标
●教学重难点
●教法、学法分析
●教学设计
●教学反思
一、教材地位与作用
函数与方程是高中数学新增内容,是近年高考的重点内容。
本节是在学习了前面两章基本函数性质的基础上,研究初等函数的图象和性质来判断此方程根的存在性及根的个数,从而了解方程的根与函数的零点的关系,掌握函数在具体区间存在零点的判定办法,为下一节“二分法求方程的近似解”及必修3中算法的学习提供知识基础。
因此,本节具有承上启下,紧密衔接的重要作用。
二、教学目标
依据新课标要求,结合教学内容特点,及学生的已有知识结构,特制定以下教学目标。
(一)学习目标
1.结合二次函数图象判断比较二次函数根的存在性及根的个数,掌握函数的零点与方程根的关系。
2.理解并运用函数在某个区间上存在零点的判断方法。
(二)过程与方法
1.函数零点与方程根的关系按教师引导自主探究。
2.零点存在性理论的运用通过合作释疑加深理解。
3.通过典例剖析引导学生运用所学知识加深理解。
(三)情感态度与价值观
培养学生自主发现,应用数形结合解决实际问题的主动精神,体会函数与方程思想,等价转换与化归思想。
三、教学重、难点
依据新课标,结合本节内容地位及作用,针对教学内容特点,确立重、难点如下:
重点:体会函数零点与方程根的关系,掌握零点存在性的判断条件。
难点:函数零点存在性理论的理解及应用。
关键:巧设问题链,引导学生自主探究。
四、教法、学法分析
为了突破难点,符合学生的认知结构,使学生真正自悟、自省,成为课堂的主体,我采用层层设疑——启发引导——自主探究——讨论思考——形成知识的教学流层,具体来说(1)由特例入手,创设情景。
(2)教师点拨,形成概念。
(3)运用概念、体会内涵。
(4)讨论思考,归纳推理。
(5)知识运用,巩固提高。
(6)小结反思,加深理解。
最后,作业练习,形成稳定思路。
在学生学习中,学生主要是多对比,思考,由特殊到一般,形成结论在问题中揭示理论,体会掌握理论,在自主训练中运用理论,形成知识结构。
五、教学设计
板书设计
六、教学反思
1.由具体到一般,逐层铺垫,设置问题,降低难度,易激发学生学习兴趣,使学生主动学习,自主探究。
2.采用问题链,学生自我小结,利于知识形成。
3.适当运用多媒体或计算器形象直观,利于学生接受。